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Abstract

We consider a Stackelberg game that arises in a security domain (SSG), where a

defender can simultaneously protect m out of n targets from an adversary that

observes the defense strategy before deciding on an utility maximizing attack.

Given the high stakes in security settings, it is reasonable that the defender in

this game is risk averse with respect to the attacker’s decisions.

Here we focus on developing efficient solution algorithms for a specific SSG,

where the defender uses an entropic risk measure to model risk aversion to the

attacker’s strategies, and where multiple attackers select targets following logit

quantal response equilibrium models. This problem can be formulated as a

nonconvex nonlinear optimization problem. We propose two solution methods:

(1) approximate the problem through convex mixed integer nonlinear programs

(MINR) and (2) a general purpose methodology (CELL) to optimize nonconvex

and nonseparable fractional problems through mixed integer linear program-

ming approximations. Both methods provide arbitrarily good incumbents and

lower bounds on SSG. We present cutting plane methods to solve these problems

for large instances. Our computational experiments illustrate the advantages of

introducing risk aversion into the defender’s behavior and show that MINR

dominates CELL, producing in 2 hours solutions that are within 2% of optimal
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on average.

Keywords: Stackelberg Security Games, Risk Averse Optimization, Entropic

Risk Measure, Quantal Response, Piecewise Linear Approximation,

Decomposition

1. Introduction

In this work we develop efficient solution methods for a fractional nonconvex

optimization problem motivated from a Stackelberg game model in security ap-

plications. A Stackelberg game is defined as a game where the leader decides a

mixed strategy to maximize its utility, taking into account that the follower will

observe this strategy and in turn decide the action to maximize its utility [1].

In particular, Stackelberg game models have been used to represent the inter-

action between defenders (that act as the leader) and attackers (corresponding

to followers) in diverse security settings [2, 3, 4]. For example, when defenders

patrol a subset of targets that can be attacked by multiple adversary types, who

- knowing the patrolling strategy - select the target to attack [5, 6]. Examples

of such Stackelberg security games (SSGs) have been successfully deployed in

real-world security applications to help plan the patrols conducted by the Los

Angeles International Airport Police on LAX and the US Federal Air Marshal

Service on transatlantic flights [6], the LA Sheriff department on Los Angeles’

subway system [7], and the US Coast Guard on ports and waterways in Boston

and New York City [8]. In particular, the applications with Airport Police, Fed-

eral Air Marshal Service and LA Sheriff department consider multiple attacker

types.

The SSG model we study makes two additional considerations, which have

appeared previously: 1) it assumes adversaries use a logit discrete choice model

to select their action [9], and 2) the leader includes risk considerations on its

objective function, optimizing an entropic risk measure objective [10]. The SSG

models with a single adversary, introduced in [9], lead to problems with the
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following structure:

min
x

1
n∑
i=1

βie−γixi

n∑
i=1

βie
−γixi (ai − bixi)

s.t. Hx ≤ h .

These models are extended in [10] to the case when the defender uses an en-

tropic risk measure, giving problems that maintain the above problem structure.

Solution strategies for these SSG against a single adversary consider a binary

search procedure on the fractional objective and either (1) a non-linear variable

transformation to obtain convex subproblems, when there are simple defender

strategy constraints and (2) a piecewise linear approximation giving mixed linear

optimization problems, when the defender strategy satisfies general polyhedral

constraints.

Extending these solution strategies for the case with multiple attacker types

has not been investigated. In this paper we focus on the computational challenge

of efficiently solving this SSG model when facing multiple adversaries.

1.1. Boundedly rational adversaries and Quantal Response

Stackelberg games typically assume a perfectly rational attacker that max-

imizes its expected utility given the defense strategy [5, 6], or that can deviate

slightly from the optimal attack [11]. Nevertheless, humans sometimes make de-

cisions that are different from the policy that optimizes a given reward function

[12]. Consequently, assuming a highly intelligent adversary can lead to weak de-

fense strategies, that fail to take advantage of our knowledge about the attacker.

The Quantal Response (QR) Equilibrium model presented in [13] assumes that

human adversaries do not behave rationally, sometimes selecting actions that

do not maximize their utility. In this model, followers use a logit discrete choice

model to decide between n possible actions, where action i (that gives a payoff

Ui) is selected with probability:

P(selecting action i) =
1∑n

j=1 e
λUj

eλUi ,
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where the parameter λ represents a degree of rationality, with perfect rationality

(λ → ∞) or indifference (λ = 0) as special cases. The QR model has been

used to model human behavior in various settings, including economics [14, 15],

game theory [16], transportation engineering [17], marketing [18], and security

applications [19].

1.2. Risk-Averse defender and Entropic risk measure

As mentioned above, rational players in standard game theory models opti-

mize expected reward functions. Even when considering mixed strategies, the

objective can be seen as the expected reward with respect to the adversary’s

probability distribution over actions. However, in a security domain, the conse-

quences of catastrophic unlikely events could far outweigh that of more common

expected occurrences. Planning for the worst case can focus resources on sce-

narios that rarely occur, while planning for expected reward could divert key

resources from catastrophic events. Different risk measures have been used to

balance likely outcomes with rare but catastrophic ones in decision models. Less

common is to consider risk measures to model risk-adverse behavior against the

uncertainty due to the adversary’s probability distribution over actions.

In this work, we use an entropic risk measure [20] that amplifies the impor-

tance of outcomes that exceed a given threshold to model risk-adverse behavior

against the attacker’s probability over actions. The entropic risk measure of

parameter α ≥ 0 of a random variable Y is defined by α lnE[eY/α]. While all

outcomes are weighted, scenarios with a payoff larger than α contribute more

to this measure. Therefore, the parameter α corresponds to a payoff value of

risky outcomes and must be chosen carefully to tune the risk aversion level of

the decision maker.

Consider now the example in Table 1 to illustrate the risk that can be present

in an expected value maximizing policy. This example presents the expected

value, variance and worst case probability for the optimal solutions of the SSG

with an expected value objective (x∗) and the SSG with an entropic measure

objective (x̃). The example has two targets, a single patrol, and a single attacker
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with rationality factor λ = 0.25. The payoffs of this game (where the defender

is the row player and the attacker is the column player) are given in Table 1a.

attack 1 attack 2

patrol 1 3, -1 -3, 1

patrol 2 -1, 3 1, -3

(a) Payoffs matrix. Each cell contains the

utilities [defender, attacker].

E V w.c. P

x∗ 0.245 4.980 0.192

x̃ 0.233 4.546 0.159

Diff. -4.9% -8.7% -16.9%

(b) Comparing x∗ and x̃ wrt their expected

values, variances and worst case probabili-

ties.

Table 1: Two targets, one defender resource example

Both the expected utility objective problem and the entropic risk measure

problem for this example can be expressed as a single variable non-linear max-

imization problem (presented in Section 2) that give the results summarized in

Table 1b. The solution that optimizes the entropic risk measure, x̃, has a smaller

variance and a smaller probability of the worst case scenario than the solution

that optimizes the expected value, x∗. Using an Entropic risk measure gives

a solution that reduces the possible bad outcomes, thus reducing the variance

that the solution observes at the expense of a worse expected value.

1.3. Contributions and paper structure

To the best of our knowledge there is no prior work on risk averse SSGs with

multiple QR followers. Given that multiple adversaries in Stackelberg games

are modeled using a Bayesian model [21], considering multiple adversaries is

equivalent to considering uncertainty in the payoff functions. This makes the

multiple follower problem a stochastic version of the single follower problem

introduced in [9, 10]. In this work we develop efficient solution methods for

the stochastic SSG with QR followers, which considers algorithms for problems
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with the following form:

min
x

p∑
l=1

πl
1

n∑
i=1

βlie
−γlixi

n∑
i=1

βlie
−γlixi

(
ali − blixi

)

s.t. Hx ≤ h ,

(1a)

(1b)

with non-negative coefficients βli, γ
l
i, a

l
i, and bli. We note that the use of multi-

nomial logit models in various settings has led to formulating problems with

similar structure to (1) for different applications, such as in bundle pricing [22]

or transportation network design [23].

In this work we investigate solution strategies to solve problem (1). This

problem has a non-linear non-convex objective with arbitrary polyhedral con-

straints. Due to the non-convexity of the problem, non-linear solution methods

are not guaranteed to obtain the optimal solution. We therefore propose two

decomposition solution strategies for problem (1) when it has general polyhedral

constraints. The first solution method exploits problem structure to recast the

problem as a non-convex nonlinear optimization problem that can be approxi-

mated using piecewise linear functions. The second uses a generic methodology

to approximate multidimensional nonlinear functions via spatial discretization.

Both solution strategies require efficiently solving sequences of mixed integer

linear optimization problems and are able to provide upper and lower bounds

on the exact optimal solution.

We structure the rest of the paper as follows: in the next section, we in-

troduce the problem formulation. In Sections 3 and 4 we present two different

solution methods that approximately solve the SSG with multiple QR followers

and show that both can provide lower bounds and arbitrarily good defender

strategies. In Section 5 we present repair heuristics for both models and strate-

gies to select the discretization points in order to speed up the solution methods

and strengthen the relaxation bounds. We show experimental results in Section

6 on mid-sized artificial instances and compare the performance of our algo-

rithms and the quality of the solution they provide. We present our conclusions

in Section 7.
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2. Notation and problem formulation

The SSG we consider consists of a single leader (defender) that patrols n

targets that could be attacked by one of p followers (attackers). The leader

can patrol up to m < n targets simultaneously and each follower selects one

target to attack. The payoffs for the leader and the followers both depend on

whether the target attacked is patrolled or not. If follower l ∈ {1, ..., p} attacks

target i ∈ {1, ..., n}, then the payoffs received by attacker l are either a reward

Rli > 0 if the target is not patrolled or a penalty P li < 0 if the target is patrolled.

Similarly, if attacker l attacks target i, we let the payoffs for the defender be a

reward R̄li > 0 when the target is patrolled and a penalty P̄ li < 0 if it is not

patrolled.

The set of actions for the defender are the feasible subsets of targets I ⊆

{1, ..., n} that can be patrolled simultaneously (|I| ≤ m). We denote by z :=

(zI)I⊆{1,...,n} the mixed strategy over this action space, so that zI is the prob-

ability with which the defender patrols some set of targets I. Letting qli denote

the probablity with which follower l attacks target i, we can express the defender

and l-th attacker utility for given strategies z, q as

Ū(z, q) =
p∑
l=1

∑
I⊂{1...n}

 ∑
i∈{1...n}
i∈I

R̄lizIq
l
i +

∑
i∈{1...n}
i6∈I

P̄ li zIq
l
i


U l(z, q) =

∑
I⊂{1...n}

 ∑
i∈{1...n}
i∈I

P li zIq
l
i +

∑
i∈{1...n}
i6∈I

RlizIq
l
i

 .

Since the payoffs only depend on whether a target i is patrolled or not, we

consider the frequency of protecting target i, given by xi =
∑
I⊆{1,...,n}:i∈I zI ,

the sum of probabilities of the defender strategies that patrol i. With the

frequency of patrolling target i, xi ∈ [0, 1], we can express the expected utility

of the defender and attacker l when target i is attacked by follower l as Ū li (xi) =

xiR̄
l
i + (1− xi)P̄ li and U li (xi) = xiP

l
i + (1− xi)Rli, respectively.

Since follower l ∈ {1 . . . p} selects targets according to a QR model with a

rationality parameter λl > 0, we denote the probability of attacker l selecting
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target i by

yli(x) =
1

n∑
j=1

eλ
lU lj(xj)

eλ
lU li (xi) =

eλ
l(xiP

l
i+(1−xi)Rli)

n∑
j=1

eλ
l(xjP lj+(1−xj)Rlj)

. (2)

2.1. Expected utility defender problem

Similar to prior work on Stackelberg security games [6, 9], we formulate the

defender optimization problem in terms of the frequency variables x, which by

definition satisfy x ∈ [0, 1]n and
∑n
i=1 xi ≤ m. We assume that the vector of

frequency variables must satisfy a set of linear constraints Hx ≤ h that can

represent additional constraints on feasible patrols (e.g. targets i and i′ cannot

(or must) be patrolled together). We denote X := {x : Hx ≤ h} the feasible

set of defender frequency variables. For an integer k, let [k] := {1, ..., k}. Let

πl represent the probability of facing follower l. With the notation introduced

above, the defender decision problem that maximizes the expected defender

utility by adjusting the frequency variables is:

max
x∈X

p∑
l=1

n∑
i=1

πlyli(x)
(
xiR̄

l
i + (1− xi) P̄ li

)
.

Substituting (2) above and multiplying the objective by -1 we observe that

the above problem is equivalent to the minimization problem (1) by setting

βli := eλ
lRli > 0, γli := λl(Rli − P li ) ≥ 0, ali := −P̄ li ≥ 0 and bli := R̄li − P̄ li ≥ 0.

2.2. Entropic utility defender problem

We now formulate the defender’s problem with the entropic risk measure

objective. The random variable of defender utilities takes the following values

for each l ∈ [p], i ∈ [n]:

P̄ li with probability πlyli(x)(1− xi)

R̄li with probability πlyli(x)xi .

Recall that the entropic risk with parameter α ≥ 0 of a random variable Y is

α lnE[eY/α], which penalizes values of Y that exceed the threshold parameter

α. Since the defender is interested in maximizing its utility, the payoffs that
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should be penalized by the risk measure are the small ones. This is achieved

by minimizing minus the utility (i.e. a cost). The entropic risk objective of the

cost of the defender is given by

Eα(x) := α ln

p∑
l=1

n∑
i=1

πlyli(x)
(
xie
−R̄li/α + (1− xi) e−P̄

l
i /α
)
.

Risk averse model. The goal of the defender is to minimize this entropic risk

objective by adjusting the frequency x ∈ X of the coverage variables, which is

achieved by solving the following optimization problem:

min
x∈X

α ln

p∑
l=1

n∑
i=1

πlyli(x)
(
xie
−R̄li/α + (1− xi) e−P̄

l
i /α
)
.

After 1) defining the constants P̃ li := e−P̄
l
i /α and R̃li := e−R̄

l
i/α, 2) substituting

the expression of the quantal response (2) in the problem above and 3) noting

that α ln is a monotonic increasing function, the problem above is equivalent to:

min
x∈X

p∑
l=1

πl

n∑
i=1

βlie
−γlixi

(
P̃ li −

(
P̃ li − R̃li

)
xi

)
n∑
i=1

βlie
−γlixi

.

Again, this problem is of the form of the minimization problem (1) with the

same βli > 0 and γli ≥ 0 and with ali := P̃ li > 0 and bli := P̃ li − R̃li > 0.

The solutions x∗ and x̃ of the example in Table 1 are obtained by solving

the problems introduced respectively in Subsections 2.1 and 2.2. Both problems

have a single adversary and the defender variables satisfy x ∈ [0, 1]2 such that

x1 + x2 ≤ 1.

2.3. Rescaling Trick

Observe that the numerators in each fractional term of the objective function

in (1) can be considered non-negative without loss of generality. In fact, for any

constant Al ∈ R with l ∈ [p] we have that

n∑
i=1

βlie
−γlixi

(
ali − blixi

)
n∑
i=1

βlie
−γlixi

=

n∑
i=1

βlie
−γlixi

(
Al + ali − blixi

)
n∑
i=1

βlie
−γlixi

−Al .
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Assuming Al ≥ maxi∈[n]{bli − ali} and since xi ∈ [0, 1], we can show that each

function N l
i (xi) := βlie

−γlixi(Al + ali − blixi) is convex and nonnegative. To

simplify our exposition, we also introduce the functions

Dl
i(xi) := βlie

−γlixi , N l(x) :=

n∑
i=1

N l
i (xi), and Dl(x) :=

n∑
i=1

Dl
i(xi).

In the remainder of this paper, our goal is to solve the following scaled

problem with constants Al satisfying the aforementioned condition:

ω := min
x∈X

ω(x) :=

p∑
l=1

πl
N l(x)

Dl(x)
(3)

3. A Mixed Integer Nonlinear Reformulation (MINR)

In this Section, we present a reformulation of (3) that takes advantage of its

structure and allows a straightforward piecewise-linear approximation of every

non-convex constraint.

3.1. A reformulation

We now use the fact that both the numerator and the denominator of these

fractional components are positive to reformulate (3) as follows.

Proposition 1. For any Al ≥ maxi∈[n]{bli − ali} and defining:

Lul := ln

n∑
i=1

N l
i (1) Uul := ln

n∑
i=1

N l
i (0)

Lvl := ln

n∑
i=1

Dl
i(1) Uvl := ln

n∑
i=1

Dl
i(0),

10



problem (3) is equivalent to

ω = min
x,u,v

p∑
l=1

πleul−vl

s.t. x ∈ X

− eul +

n∑
i=1

βlie
−γlixi

(
Al + ali − blixi

)
≤ 0, ∀l ∈ [p]

evl −
n∑
i=1

βlie
−γlixi ≤ 0, ∀l ∈ [p]

Lul ≤ ul ≤ Uul , ∀l ∈ [p]

Lvl ≤ vl ≤ Uvl , ∀l ∈ [p]

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

Proof. For each l ∈ [p] consider the extra variables (ul, vl) ∈ R2. Since the

functions N l and Dl are nonnegative, (3) can be rewritten as follows:

ω = min
x,u,v

p∑
l=1

πleul−vl

s.t. x ∈ X

eul ≥ N l(x), ∀l ∈ [p]

evl ≤ Dl(x), ∀l ∈ [p].

Noticing that any optimal solution (x∗, u∗, v∗) of the latter problem satisfies

eu
∗
l = N l(x∗) and ev

∗
l = Dl(x∗), The range constraints on each ul (respectively

vl) are obtained by maximizing and minimizing N l (respectively Dl) in x ∈

[0, 1]n ⊃ X . The facts that Al ≥ maxi∈[n]{bli−ali}, γli ≥ 0 and bli ≥ 0 imply that

both N l and Dl are decreasing functions of each xi that attain their maximum

value for xi = 0 and minimum value for xi = 1.

Given the choice of Al, the only sources of non-convexity of problem (4)

are the univariate functions ul → −eul in constraints (4c) and xi → −e−γ
l
ixi

in constraints (4d). This motivates the use of piecewise linear functions to

approximate (4).
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3.2. Piecewise linear approximations

Piecewise linear approximations of non-linear, non-convex functions are an

important part of the solution methods proposed. Here we set the notation

used to construct piecewise linear approximations using a few binary variables

(a logarithm of the number of partitions), as described in [24].

Consider a univariate function f : [l, u] → R and a partition of the interval

[l, u] given by K + 1 points l = t0 < t1 < ... < tK = u. A piecewise linear

approximation of f that matches the function at the partition points is given

by
∑K
k=0 λkf(tk) with

∑K
k=0 λk = 1, λ ≥ 0, and such that it has at most two

coefficients that are non-zero and they must be consecutive (this last constraint

is known as an SOS2 constraint). The work in [24] provides an efficient repre-

sentation of these SOS2 constraints, which directly implies the next result.

Let L(K) = dlog2Ke and consider BK : [K] 7−→ {0, 1}L(K) a bijective

mapping such that for all q ∈ [K − 1], BK(q) and BK(q + 1) differ in at most

one component (See reflected binary or Gray code in [25]). Such a Gray code

can be found quickly by the recursive algorithm of [26].

Proposition 2. [24] Given f : [l, u] → R and a partition l = t0 < t1 < ... <

tK = u of [l, u], for every x ∈ [l, u] the piecewise linear function that equals f(x)

at the partition points is given by Pt[f ](x) =
∑K
k=0 λkf (tk), for a (λ, z) that

satisfies

x =

K∑
k=0

λktk

K∑
k=0

λk = 1

∑
p∈S+

K(l)

λp 6 zl, ∀l ∈ [L(K)]

∑
p∈S−K(l)

λp 6 1− zl, ∀l ∈ [L(K)]

zl ∈ {0, 1}, ∀l ∈ [L(K)]

λ ≥ 0,

(5a)

(5b)

(5c)

(5d)

(5e)

(5f)
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where defining QK(k) := {k, k + 1} if k ∈ [K − 1] and QK(K) = {K}, for

k ∈ [L(K)] we have:

S+
K(k) := {p ∈ {0, ...,K} : ∀q ∈ QK(p), (BK(q))k = 1}

S−K(k) := {p ∈ {0, ...,K} : ∀q ∈ QK(p), (BK(q))k = 0} .

This formulation uses only dlog2Ke extra binary variables. Given a partition

set t = (t0, . . . , tK) with K+1 points, we define the set of constraints that encode

the piecewise linear approximation at x by:

LPL(t,K, x) :=
{(

(λk)k∈[K], (zl)l∈[L(K)]

)
satisfying (5)

}
.

We refer to this construction of a piecewise linear approximation as the Log-

arithmic Piecewise Linear approximation (LPL). We can therefore express the

approximation of f(x) by

Pt[f ](x) =

K∑
k=0

λkf(tk) s.t. (λ, z) ∈ LPL(t,K, x) .

The next (known) result gives us some information about LPL approximations:

Proposition 1. The piecewise linear function Pt[f ] which equals function f at

all points in a partition set t of the interval [l, u] satisfies the following [27]:

1. If f is a convex function, then Pt[f ](x) ≥ f(x) for all x ∈ [l, u].

2. If f is L-Lipschitz over [l, u] (i.e. |f(x)− f(y)| ≤ L||x− y|| for any x, y),

then

max
x∈[l,u]

|Pt[f ](x)− f(x)| ≤ L
2

max
i∈[K−1]

|ti+1 − ti|.

3.3. A Lower-Bounding Approximated Problem

The LPL formulation is used below to construct piecewise linear approxima-

tions of the non-convex portions in (4). The range constraints xi ∈ [0, 1] and

ul ∈ [Lul , U
u
l ] inform where each approximation should be done.

For each target i ∈ [n], consider a partition ti of [0, 1] on K + 1 points (i.e.

0 = ti0 < ti1 < ... < tiK = 1). For each follower l ∈ [p], consider a partition

τ l of [Lul , U
u
l ] on K + 1 points (i.e. Lul = τ l0 < τ l1 < ... < τ lK = Uul ). Using

13



these partitions we construct the following mixed integer convex optimization

problem:

ω̂ := min
x, u, v, ρ, ϑ

θ, λ, z, ξ, y

p∑
l=1

πlρl

s.t. x ∈ X

ρl ≥ eul−vl , ∀l ∈ [p]

n∑
i=1

θil ≤
K∑
k=0

ξlke
τ lk , ∀l ∈ [p]

θil ≥ βlie−γ
l
ixi
(
Al + ali − blixi

)
, ∀l ∈ [p], i ∈ [n]

ϑl ≤
n∑
i=1

βli

K∑
k=0

λike
−γlit

i
k , ∀l ∈ [p]

ϑl ≥ evl , ∀l ∈ [p]

Lul ≤ ul ≤ Uul , ∀l ∈ [p]

Lvl ≤ vl ≤ Uvl , ∀l ∈ [p]

eL
u
l −U

v
l ≤ ρl ≤ eU

u
l −L

v
l , ∀l ∈ [p]

eL
v
l ≤ ϑl ≤ eU

v
l , ∀l ∈ [p](

λi, zi
)
∈ LPL

(
ti,K, xi

)
, ∀i ∈ [n](

ξl, yl
)
∈ LPL

(
τ l,K, ul

)
, ∀l ∈ [p]

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

(6g)

(6h)

(6i)

(6j)

(6k)

(6l)

(6m)

This approximate problem has integer variables z and y defined in the LPL

constraints and convex constraints in (6c), (6e) and (6g). For any x ∈ X ,

let us define ω̂(x) as the optimal value of (6) when x is fixed, implying that

ω̂ = minx∈X ω̂(x).

The next Proposition shows that (6) provides a lower bound for (3) and any

of its optimal solutions provides a good solution to (3).

Proposition 3. Given uniform partitions t and τ of K + 1 points in the defi-

nition of (6) and (x̂, û, v̂, ρ̂, ϑ̂, θ̂, λ̂, ẑ, ξ̂, ŷ) an optimal solution of (6). We have

1. 0 ≤ ω − ω̂ ≤ O(1/K)

2. x̂ is feasible for (3) and |ω(x̂)− ω| ≤ O(1/K).
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Proof. Annex Section 8.1.

3.4. A Cutting Plane Algorithm

Solving problem (6) is challenging as it is a problem with convex constraints

and integer variables. To avoid the non-linearity, we approximate the convex

portions of the constraint functions by exploiting the fact that a convex function

is the upper envelope of the linear support functions at every point. In particular

we replace the convex non-linear terms of the functions eul−vl , given l ∈ [p], evl ,

and N l
i (xi) = βlie

−γlixi
(
Al + ali − blixi

)
with their first order Taylor expansions.

This modifies only constraints (6c), (6e), and (6g) giving the mixed integer

linear optimization problem (with infinitely many constraints):

ω̂ = min
x, u, v, ρ, ϑ

θ, λ, z, ξ, y

p∑
l=1

πlρl

s.t. (6b), (6d), (6f), (6h− 6m)

ρl ≥ eûl−v̂l (1 + ul − vl − ûl + v̂l) , ∀(ûl, v̂l), l ∈ [p]

θil ≥ N l
i (x̂i) + (N l

i )
′ (x̂i) (xi − x̂i) , ∀x̂i, l ∈ [p], i ∈ [n]

ϑl ≥ ev̂l (1 + vl − v̂l) , ∀v̂l, l ∈ [p] .

(7a)

(7b)

(7c)

(7d)

(7e)

To tackle the infinitely many constraints in the above problem, we will gen-

erate them as we need them with a cutting plane procedure. We set up the

problem with an initial set of linear support functions. Let Uu,vl be the set of

points used to build a linear support function of (ul, vl)→ eul−vl , given l ∈ [p].

Similarly let Uvl and Uxli be the set of points used to generate linear support

functions of vl → evl and N l
i , respectively. The tractable optimization problem

is (7) replacing the last three constraints (7c-7e) with the following.

ρl ≥ eûl−v̂l (1 + ul − vl − ûl + v̂l) , ∀(ûl, v̂l) ∈ Uu,vl , l ∈ [p]

θil ≥ N l
i (x̂i) +

(
N l
i

)′
(x̂i) (xi − x̂i) , ∀x̂i ∈ Uxli, l ∈ [p], i ∈ [n]

ϑl ≥ ev̂l (1 + vl − v̂l) , ∀v̂l ∈ Uvl , l ∈ [p].

We call ω̂[U ] the optimal value of the corresponding relaxation.
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4. Multidimensional cell approximation (CELL)

We now present a generic method to approximate nonseparable functions

using linear constraints and variables, in the spirit of [28]. Akin to the previous

model, introducing new variables ρ, we recast (3) into the equivalent form:

min
x∈X ,ρ

{
p∑
l=1

πlρl : N l(x)− ρlDl(x) ≤ 0,∀l ∈ [p]

}
. (8)

This problem is in general not convex because of the products ρlD
l(x). To

tackle this non-convexity, we take advantage of the partial separability in the

constraints of (8) to efficiently approximate the products ρlD
l
i (xi) with a rel-

atively small number of binary variables. We first present a generic way to

approximate nonseparable multivariate functions.

4.1. Multidimensional Generic Approximations

The following Proposition is similar to a method coined optimistic MILP

model in [28]. It presents a piecewise linear approximation of several non-

separable multivariate functions defined on a common homogeneous grid.

Proposition 4. Consider a ground set G :=
{
x ∈ RI : l ≤ x ≤ u

}
and J func-

tions fj : G → R being Lj-Lipschitz. Given a discretization of G in each dimen-

sion: li = ti0 ≤ ti1 ≤ ... ≤ tiK = ui, where tiki = li + ki (ui − li) /K, Ct[fj ] is an

Lj ||u− l||1/K approximation of every function fj on G:

Ct[fj ](x) = min
µ,λ,z

∑
k∈{0,...,K}I

µkfj
(
t1k1 , ..., t

I
kI

)
s.t.

(
λi, zi

)
∈ LPL

(
ti,K, xi

)
, ∀i ∈ [I]

µk ≤ λiki , ∀k ∈ {0, ...,K}I , i ∈ [I]∑
k∈{0,...,K}I

µk = 1

∑
k∈{0,...,K}I

µkt
i
ki = xi, ∀i ∈ [I]

µ ≥ 0

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)
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Proof. Annex Section 8.2.

This result shows that the maximum distance between Ct[fj ] and fj is

O(1/K). Notice that when I = 1, Ct[fj ] = Pt[fj ]. Also, the size of the op-

timization problem that approximates the functions fj does not depend on

the number of functions J to approximate. The optimization problem uses

L(K)I binary variables, O
(
KI
)

continuous variables and O
(
IKI

)
constraints.

A direct consequence is the piecewise linear cell formulation of an optimization

problem, stated below.

Proposition 5. Given an optimization problem

min
x∈X

f(x)

s.t. gj(x) ≤ bj ∀j ∈ {1, ..., J},

its cell-approximation is given by the following optimization problem

min
x∈X ,µ,λ,z

∑
k∈{0,...,K}I

µkf
(
t1k1 , ..., t

I
kI

)
s.t.

∑
k∈{0,...,K}I

µkgj
(
t1k1 , ..., t

I
kI

)
≤ bj , ∀j ∈ [J ](

λi, zi
)
∈ LPL

(
ti,K, xi

)
, ∀i ∈ [I]

µk ≤ λiki , ∀k ∈ {0, ...,K}I , i ∈ [I]∑
k∈{0,...,K}I

µk = 1∑
k∈{0,...,K}I

µkt
i
ki

= xi, ∀i ∈ [I]

µ ≥ 0

(10)

This formulation takes advantage of the fact that we only need to determine

once to which cell x belongs and use this to approximate every function in the

problem. The most important consequence of this fact is that the number of

binary variables does not depend on the number of functions to approximate.

4.2. A Lower-Bounding Approximated Problem

We now show that the CELL-approximated problem provides a lower bound

for (8) and any of its optimal solutions provides a good solution to (8). Consider
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a discretization of the range of variables xi and ρl into K subintervals with

homogeneous partitions ti =
(
ti0, ..., t

i
K

)
and τ l =

(
τ l0, ..., τ

l
K

)
. Defining

ω̂(x) := min
ρ, λ

y, ξ

z, µ

p∑
l=1

πlρl

s.t.

n∑
i=1

K∑
k=0

λikN
l
i

(
tik
)

−
n∑
i=1

K∑
kl=0

K∑
ki=0

µl,ikl,kiτ
l
kl
Dl
i

(
tiki
)
≤ 0, ∀l ∈ [p]

(
λi, zi

)
∈ LPL

(
ti,K, xi

)
, ∀i ∈ [n](

ξl, yl
)
∈ LPL

(
τ l,K, ρl

)
, ∀l ∈ [p]

0 ≤ µl,ikl,ki ≤ ξ
l
kl
,

∀kl, ki ∈ {0, ...,K},∀l ∈ [p], i ∈ [n]

0 ≤ µl,ikl,ki ≤ λ
i
ki ,

∀kl, ki ∈ {0, ...,K},∀l ∈ [p], i ∈ [n]

K∑
kl=0

K∑
ki=0

µl,ikl,ki = 1, ∀l ∈ [p], i ∈ [n]

K∑
kl=0

K∑
ki=0

µl,ikl,kit
i
ki = xi, ∀i ∈ [n]

K∑
kl=0

K∑
ki=0

µl,ikl,kiτ
l
kl

= ρl, ∀l ∈ [p],

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)

(11g)

(11h)

(11i)

the CELL-approximation of (8) is ω̂ := minx∈X ω̂(x).

Proposition 6. Given uniform partitions t and τ with K + 1 points in the

definition of (11) and (x̂, ρ̂, λ̂, ŷ, ξ̂, ẑ, µ̂) some optimal solution for (11) We have

1. 0 ≤ ω − ω̂ ≤ O(1/K)

2. x̂ is feasible for (3) and |ω(x̂)− ω| ≤ O(1/K).

Proof. Annex Section 8.3
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Notice that the approach is valid for any fractional programming problem

having separable numerators and denominators. In our case, however, using the

rescaling trick of Subsection 2.3 makes all the numerators convex. This implies

that we are not forced to use an a priori cell approximation for them as depicted

in (11b). In consequence we can use again a cutting plane approach by adding

additional variables θl and replacing constraints (11b) by the following:

n∑
i=1

θil ≤
n∑
i=1

K∑
kl=0

K∑
ki=0

µl,ikl,kiτ
l
kl
Dl
i

(
tiki
)
, ∀l ∈ [p]

θil ≥ N l
i (x̂i) +

(
N l
i

)′
(x̂i) (xi − x̂i) , ∀x̂i, l ∈ [p], i ∈ [n]

(12a)

(12b)

The same approximation bound is achieved with smaller tolerances. We can

also consider the bounds for the objective ρl and the new variables θl

eL
u
l −U

v
l ≤ρl ≤ eU

u
l −L

v
l , ∀l ∈ [p]

eL
u
l ≤θl ≤ eU

u
l , ∀l ∈ [p]

4.3. A cutting plane approach

The main problem with the cell-approximation (9) is the number of con-

straints (9c) and the dimension |{0, ...,K}I | of the variable µ. To bypass this

issue, we now propose a cutting plane strategy for the generic optimization

problem (10):

Proposition 7. Given fixed variables (x, λ, z) for problem (10), consider the

µ-subproblem of (10) (i.e. that optimizes only with respect to µ). Its dual is:

max
p,c,d,s

−
I∑
i=1

∑
k∈{0,...,K}I

pkiλ
i
ki + c+

I∑
i=1

dixi −
J∑
j=1

sjbj

s.t. −
I∑
i=1

pkiλ
i
ki + c+

I∑
i=1

dit
i
ki −

J∑
j=1

sjgj
(
t1k1 , ..., t

I
kI

)
≤ f

(
t1k1 , ..., t

I
kI

)
,

∀k ∈ {0, ...,K}I

p, s ≥ 0.
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It generates the following Benders cuts that are added to the relaxed problem:

η ≥ −
I∑
i=1

∑
k∈{0,...,K}I

p̂kiλ
i
ki + ĉ+

I∑
i=1

d̂ixi −
J∑
j=1

ŝjbj

0 ≥ −
I∑
i=1

∑
k∈{0,...,K}I

p̂kiλ
i
ki + ĉ+

I∑
i=1

d̂ixi −
J∑
j=1

ŝjbj

Note that given a feasible solution (x̂, λ̂, ẑ) for (9), the variables λ̂ are mostly

zero except for at most 2I of them, meaning that we can fix to zero all the

corresponding variables p. This suggests a Benders decomposition approach

[29] to solve our cell-approximation problem (11). We begin with the following

master problem

min
x,ρ,θ,λ,y,ξ,z

p∑
l=1

πlρl

s.t. x ∈ X(
λi, zi

)
∈ LPL

(
ti,K, xi

)
, ∀i ∈ [n](

ξl, yl
)
∈ LPL

(
τ l,K, ρl

)
, ∀l ∈ [p]

eL
u
l −U

v
l ≤ ρl ≤ eU

u
l −L

v
l , ∀l ∈ [p]

and add the cutting planes described in the nest proposition as we need them:

Proposition 8. When solving problem (11) with a cut generation strategy,

consider the current incumbent (x̂, ρ̂, θ̂, λ̂, ξ̂) of the master problem. If x̂ violates

a linear support function constraint (12) modeled by some θil , the following cut

is added to the master problem:

θil ≥ N l
i (x̂i) +

(
N l
i

)′
(x̂i) (xi − x̂i) .

If (x̂, ρ̂, θ̂, λ̂, ξ̂) makes the subproblem in µ infeasible, the Benders cut to add to

the master problem is:

p∑
l=1

n∑
i=1

K∑
ki=0

K∑
kl=0

(
r̂liklkiξ

l
kl

+ ŝliklkiλ
i
ki

)
−

p∑
l=1

q̂l

n∑
i=1

θil −
p∑
l=1

n∑
i=1

(v̂lixi + ŵliρl) ≥
p∑
l=1

n∑
i=1

ûli

where (q̂, r̂, ŝ, û, v̂, ŵ) is an optimal ray of the dual of the subproblem in µ.
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Notice that the dual of the subproblem in µ of formulation (11) is in fact

separable in p smaller problems:

p∑
l=1

max
ql,rl,sl,ul,vl,wl

ql

n∑
i=1

θil −
n∑
i=1

K∑
ki=0

K∑
kl=0

(
rliklki ξ̂

l
kl

+ sliklki λ̂
i
ki

)
+

n∑
i=1

(uli + vlix̂i + wliρ̂l)

s.t. qlτ
l
kl
Dl
i

(
tiki
)
− rliklki − s

li
klki

+ uli + vlit
i
ki + wliτ

l
kl
≤ 0,

∀i ∈ [n], (kl, ki) ∈ {0, ...,K}2

ql, r
l, sl ≥ 0

From this dual we observe that only feasibility cuts are added as the variables

µ do not appear in the objective function. Whenever ξ̂lkl = 0, the objective

coefficient for all the variables rliklki is zero, meaning that we can make rliklki

tend to infinity and turn redundant the only constraint where said variable

appears. The same phenomenon occurs with λ̂iki = 0 and the variables sliklki .

Overall, when we are not cutting to solve the LP relaxation, for each pair (l, i)

we will have only four non-redundant constraints and eight non-obviously zero

variables r and s, leaving an LP of linear size in terms of n, K and p.

As for MINR, let ω̂[U ] be the optimal value of the relaxed master problem

with some cuts only, with Taylor cuts defined by a subset Uxli of primal points

x̂i, and Benders cuts defined by a subset Uµ. of dual points (q̂, r̂, ŝ, û, v̂, ŵ).

5. Computational speedups

5.1. Primal upper bounds: embedded heuristics

When using a cutting plane approach, it can be hard to decide when to stop.

Of course, we can stop whenever we cannot separate the current incumbent, in

which case it is feasible and the objective value of our master relaxed problem

is that of the full approximated problem. However, waiting for full feasibility

can - and does - make the method sloppy in practice. Any valid upper bound

for the master problem can provide an optimality gap, therefore having some

21



way to “repair” an incumbent (i.e. make it feasible for the full approximated

problem) is of crucial importance.

The main idea of our heuristics is similar to the arguments “by construc-

tion” from Propositions 3 and 6. In both models, we fix the x components

of the current incumbent, and solve the nonlinear approximated problems: 1)

in (u, v, ρ, ϑ, θ, λ, z, ξ, y) at x fixed for MINR, which can be done by hand by

making constraints tight, and 2) in (ρ, λ, z, ξ, y, µ) at x fixed for CELL, where

optimizing in (ρ, λ, z, ξ, y, µ) is also doable by hand, but solving in µ requires to

solve p LPs with O(n) variables and O(n) constraints each.

5.2. Smart grids

From an implementation point of view, it is always interesting to use uniform

grids from their simplicity. However, it is well known that better approximations

can be constructed by choosing wisely the discretization points. We present here

a way to cleverly select a fixed number of points K out of the K � K points of

a uniform grid, such that some error measure is minimized.

“Low Error” Selection with “a few” points. In [30], they show how to select a

subset of the K points - without any restriction on the size of the subset - such

that the loss in precision plus some ”storage cost” is minimized. They formulate

the problem as a shortest path problem in a directed acyclic network with K

nodes and K (K − 1) /2 edges. The problem can be seen as a minimization

problem taking the form miny∈Y
{
l>y + α · e>y

}
where l and s are respectively

a precision loss vector and a unitary weight vector e, the latter being ponderated

by some penalization α ≥ 0. In their formulation, using more edges means

selecting more points: the storage cost per point selected, α, is in fact a proxy

to moderate the number of points selected.

Lowest Error Selection with exactly K points. With this observation in mind,

our objective is to minimize the same precision loss, while enforcing that the

number of points selected is exactly some number K. The problem can be
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written as:

min
y∈Y

{
l>y : e>y = K

}
.

Our main idea is to solve the latter problem via a Lagrangean algorithm that

will select the best penalization α∗ that will give a ”good” selection - wrt to

the precision loss l - of exactly K points. Given some penalization α > 0, the

lagrangean relaxation of our problem is

min
y∈Y

{
l>y + α · e>y

}
− αK .

If α = 0, all the points are kept by the optimal solution of the lagrangean

relaxation, whereas if α is very large, only the first and last point of the grid

defined by the K points will be selected. In between, the number of points

selected by the optimal solution will be monotone nonincreasing wrt to α. The

main idea of our algorithm is to select the smallest α such that the optimal

solution of the corresponding lagrangean relaxation uses exactly K points.

Moreover, in the multiple adversaries setting, for each variable xi we use a

single grid to approximate all the functions Di
l for each l ∈ [p]. In consequence,

we have to make sure that we are minimizing some kind of joint error amongst

the adversaries. The easiest and most straightforward way to attain this goal

was to minimize the sum of the errors induced by every function involving xi.

6. Computational results

The algorithms presented in this paper were coded in C programming lan-

guage and run over Dell PowerEdge C6420 cluster nodes with Intel Xeon Gold

6152 CPUs at 2.10GHz with 64Gb RAM each. All the Mixed Integer Lin-

ear Programming problems are solved using the callable library of CPLEX[31].

When generating the gradient and Benders cuts or building heuristic solutions

from incumbents, we use the user cuts and callbacks technology of the callable

library of CPLEX 12.6.
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6.1. Parameters and instance generation

Parameters. We solve all our problems at relative precision 10−9 in order to

make sure that the cuts are taken into account and set a time limit of 3 hours

for each run. During the Branch-and-Bound-and-Cut, we separate fractional

incumbents only in the root node, and only integer incumbents during the tree

search. The heuristics being very fast in practice, they are called each time

an incumbent is found by the solver. K initial gradient cuts are added to

approximate each of the convex real valued function.

Payoffs generation. Although we do not assume zero sum games - i.e. the payoff

of any attacker is equal to minus the payoff of the defender - it seems reasonable

to assume that in practice, the payoffs should be somehow related. In this goal,

we draw the payoffs Rli, R̄
l
i, −P li and −P̄ li from a uniform distribution in [0, 1].

Adversaries. We test our algorithms with p ∈ {5, 7, 10, 12, 15}. The rationality

coefficient λl of each attacker is drawn from a uniform distribution in λ·[0.9, 1.1],

and we make vary λ ∈ {0.2, 0.7, 1.2, 1.7, 2.2}.

Defender’s risk aversion. The parameter α captures an absolute risk aversion

and penalizes greatly defense strategies whose bad realizations exceed α. Notic-

ing that α has units - the same as the payoffs - we selected the parameter α of

the Entropic risk measure α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} ⊂ [−1, 1]. Notice that α

is a very subjective measure of the risk aversion of the decision maker and as

such, it can be difficult to adjust in practice.

Instance size and operational constraints. We consider instances with a number

of targets n ∈ {10, 20, 30, 40, 50} and a number of resources m = d · n where

d ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We consider only the case where only the resource

constraint is present, without any operational ones.

Grids. The approximation grids have K segments with K ∈ {2, 4, 8, 16, 32}.

When using smart grids, we consider K = 256 sampled points from which we

select K.
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Base case. To analyze the influence of each parameter, we took as a base case

n = 20, m = 20 · 0.3 = 6, p = 7, α = 0.5, λ = 0.7 and K = 4. We then vary n,

d, p, α, λ and K independently and repeat the experiment 10 times.

6.2. Algorithmic performances

We test the MINR reformulation and the cell model (CELL) with uniform

grids (U) or smart grids (S). For each experiment, we test the expected value

maximization (EX) and the entropic risk minimization with α = 0.5 (EN). For

example, minimizing the entropic risk with the cell model using smart grids is

denoted EN-CELL-S.

During the Branch and Bound and Cut procedure, let us define L := ω̂[U ]

as the best relaxation bound so far, U := ω̂(x̂) the objective value of the best

solution so far x̂ for the approximated problem, R := ω(x̂) the real objective

value of the best solution so far x̂ for the original problem. All the bounds found

by each algorithm upon termination, L, U and R, are presented as the fraction

of the best bound R∗ found on the same instance by any algorithm.

General impression. We show high level performance indicators in Table 2.

Solving EN and EXP take similar execution times, however, the bounds and

gaps are better for ENT (higher L, lower U and R). We can also see that MINR

is faster and provides better bounds than CELL. Using smart grids makes the

overall solution slightly slower for both algorithms and provides worse bounds

for CELL but improves them for MINR. The process takes longer using smart

grids because the optimization problems become harder: in fact, selecting K

points out of K for all the functions to approximate takes on average 4 seconds

and 11 seconds in the worst case.

Parameters’ influence. In Table 3, we present the final gaps and the execution

times in function of the parameters. The execution time steadily increases until

reaching the limit of 3 hours (marked “*”) with every parameter n, d, p, K,

λ and α. We have the confirmation at a finer level that the MINR model

outperforms CELL, and that the smart grids help to close the final gaps. More
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risk measure EX EN

model CELL MINR CELL MINR

grid U S U S U S U S

time 9171 9534 7436 7458 9364 9503 7232 7280

L 0.870 0.869 0.973 0.975 0.894 0.892 0.977 0.980

U 0.962 0.968 0.983 0.984 0.969 0.973 0.986 0.987

R 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

appGap 9.852 10.480 1.045 0.883 7.955 8.615 0.941 0.792

realGap 13.071 13.171 2.755 2.490 10.808 10.991 2.294 2.041

Table 2: Overall average normalized bounds. Time in seconds, gaps in %.

detailed results can be found in the Appendix Section 8.4 (Tables 7, 8, 9, 10, 11

and 12).

Example of bounds progress with time. In Figure 1, we present an example of

bound progression over time in the base case. It illustrates the fact that in

terms of the relaxation bound L (solid line), LMINRP (no � symbol) is very

superior to CELL (�) and that the smart grids (in black) do outperform the

uniform grids (in gray). We can also confirm that in terms of real objective

value R (dotted line) both algorithms are quite equivalent. More importantly

the algorithms begin to stall after an hour, suggesting that the cut generation

mechanisms in use might be improved

6.3. Qualitative results

Probability distribution calculation. To compare a risk neutral defense policy

with a risk averse one, we want to see if there is some kind of stochastic domi-

nance of a risk averse strategy versus a risk neutral one. To do so, we compare

the payoffs distributions of the defender depending on its risk aversion. In prac-

tice, the defender can cover m targets out of n and the attackers target a single

place each. The only possible outcomes for the defender are: 1)being attacked

on a defended target i by attacker l with payoff V = R̄li > 0 or 2)being attacked

on an undefended target i by attacker l with payoff V = P̄ li < 0. Consequently,
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Figure 1: Normalized bounds over time (in seconds) in the base case.

if we assume that all the payoffs R̄li and P̄ li are different the only values possible

are in

V ∈ {V1 < V2 < ... < V2np−1 < V2np} =

p⋃
l=1

n⋃
i=1

{
R̄li, P̄

l
i

}
.

Recall from Section 2 that given a mixed defense strategy x ∈ [0, 1]n and the

associated QR y(x) ∈ [0, 1]n, the payoff of the defender is:

P̄ li with probability πlyli(x)(1− xi)

R̄li with probability πlyli(x)xi .

This way we can compute the probability distribution of the payoff of any de-

fender without sampling a large number of simulations. We compare the ex-

pected value, variance, Value at Risk (VaR) at level 10%, Conditional Value at

Risk (CVaR) at level 10% and entropic risk at level α′ = 0.5 in function of α

and λ.

General comments. We now compare all the solutions obtained with MINR-S,

as the solutions it provides showed to be the most reliable. All the indicators
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are given as the fraction of the same indicator for the risk neutral solution with

the base case parameter.

There is no clear influence of the parameters n, p and the number of break-

points K. However, the remaining parameters do have a strong influence on the

characteristics of a risk averse solution.

α influence. In Table 4, we can see that by decreasing α (i.e. getting more risk

averse), there is a clear improvement in terms of all the risk aversion indicators.

That can come, however, at the cost of a significant loss in expected payoff.

risk m. Eα=0.1 Eα=0.3 Eα=0.5 Eα=0.7 Eα=0.9 E

E 1.294 1.108 1.048 1.027 1.019 1

V 0.840 0.881 0.919 0.939 0.949 1

VaR10 0.954 0.952 0.972 0.985 0.991 1

CVaR10 0.957 0.973 0.985 0.990 0.991 1

Eα=0.5 1.029 0.981 0.978 0.980 0.983 1

Table 4: Quality Vs. α. All indicators are losses.

λ influence. In Table 5, we can see that facing increasingly rational adversaries

has a significant negative impact on the risk neutral solution, whereas the risk

averse solutions hedge well against smarter ennemies.

λ 0.2 0.7 1.2 1.7 2.2

risk m. ENT EXP ENT EXP ENT EXP ENT EXP ENT EXP

E 0.979 0.921 1.048 1 1.061 1.013 1.070 1.016 1.096 1.019

V 0.926 1.033 0.920 1 0.912 0.986 0.893 0.972 0.854 0.971

VaR10 0.952 0.994 0.973 1 0.976 0.998 0.966 0.998 0.955 0.999

CVaR10 0.974 0.992 0.985 1 0.987 1.001 0.983 0.999 0.977 0.999

Eα=0.5 0.952 0.977 0.979 1 0.981 1.000 0.975 0.995 0.966 0.995

Table 5: Quality Vs. λ. All indicators are losses.

d influence. In Table 6, we can observe - without surprise - that having more

resources (higher values of d) has an extremely strong impact on the quality of
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Figure 2: Cumulative distributions of the loss for x (E0.5) (black) and x (E) (gray)

the solution: in fact, when we are able to cover simultaneously half the targets

(d = 0.5), the expected losses of both the risk averse and risk neutral policies

become negative.

d 0.1 0.2 0.3 0.4 0.5

risk m. ENT EXP ENT EXP ENT EXP ENT EXP ENT EXP

E 2.122 2.105 1.590 1.546 1.048 1 0.524 0.457 -0.027 -0.088

V 0.568 0.608 0.761 0.834 0.92 1 1.009 1.095 1.052 1.128

VaR10 1.036 1.048 1.008 1.022 0.973 1 0.923 0.963 0.872 0.913

CVaR10 1.018 1.023 1.001 1.012 0.985 1 0.96 0.985 0.933 0.963

Eα=0.5 1.262 1.271 1.124 1.138 0.979 1 0.82 0.844 0.641 0.669

Table 6: Quality Vs. d. All indicators are losses.

Example of distributions Eα Vs. E. In Figure 2, we compare the cumulative

distributions of a risk averse solution (black) and that of a risk neutral solution

(gray). We can see that past the loss 0.7, the risk averse solution dominates the

risk averse one. The variance of the risk averse solution is 20% lower at the cost

of losing a 30% in payoff.

7. Conclusions

In this paper, we extended the classic model of Stackelberg security games

with quantal response to a risk averse setting for the defender and facing sev-
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eral adversaries with different degrees of rationality. We presented two ways of

finding an approximately optimal defense strategy by solving nonlinear MIPs

via cutting planes. The first methodology (CELL) has a broader range of ap-

plications, but the second (MINR) is more efficient, both in solution quality

and execution time, and offers a reasonable performance for practical mid-sized

cases. Computational results showed that minimizing an Entropic risk measure

instead of maximizing the expected value can be advantageous from a qualita-

tive point of view, allowing to significantly reduce the overall payoff variance

and the probability of bad scenarios to occur.

Being cutting planes methods, our algorithms suffered from a sloppy behav-

ior towards the end of the tree search. In a future work, we should investigate

the use of stronger cuts, stabilization methods, or the fine tuning of the cut

generation process. The Entropic risk measure is not the only way to introduce

risk aversion in the behavior of an agent: In fact, there is a whole array of

risk aversion-inducing tools in the literature that can be used instead. In an

ongoing work, we show that using classical risk measures such as Value-at-Risk,

Conditional-Value-at-Risk, upper semi-deviations, etc... the resulting optimiza-

tion problems have the same structure as the ones described in this paper.
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[19] R. Yang, C. Kiekintveld, F. Ordóñez, M. Tambe, R. John, Improving re-

source allocation strategy against human adversaries in security games, in:

22th IJCAI Proceedings, Barcelona, Spain, Vol. 22, AAAI Press, 2011, pp.

458–464.

[20] J. W. Pratt, Risk aversion in the small and in the large, Econometrica:

Journal of the Econometric Society 32 (1/2) (1964) 122–136.

33



[21] J. C. Harsanyi, Games with incomplete information played by “bayesian”

players, i-iii: Part i. the basic model, Management Science 14 (3) (1967)

159–182.

[22] G. R. Bitran, J.-C. Ferrer, On pricing and composition of bundles, Produc-

tion and Operations Management 16 (1) (2007) 93–108.

[23] H. Liu, D. Z. Wang, Global optimization method for network design prob-

lem with stochastic user equilibrium, Transportation Research Part B:

Methodological 72 (2015) 20–39.

[24] J. Vielma, G. Nemhauser, Modeling disjunctive constraints with a logarith-

mic number of binary variables and constraints, Mathematical Program-

ming 128 (1-2) (2011) 49–72.

[25] E. Gilbert, Gray codes and paths on the n-cube, Bell System Technical

Journal 37 (3) (1958) 815–826.

[26] D. E. Knuth, The art of computer programming: sorting and searching,

Vol. 3, Pearson Education, 1998.

[27] L. S. Thakur, Error analysis for convex separable programs: the piecewise

linear approximation and the bounds on the optimal objective value, SIAM

Journal on Applied Mathematics 34 (4) (1978) 704–714.

[28] R. Rovatti, C. D’Ambrosio, A. Lodi, S. Martello, Optimistic milp model-

ing of non-linear optimization problems, European Journal of Operational

Research 239 (1) (2014) 32–45.

[29] J. Benders, Partitioning procedures for solving mixed-variables program-

ming problems, Numerische Mathematik 4 (1) (1962) 238–252.

[30] R. Ahuja, T. Magnanti, J. Orlin, Network flows: theory, algorithms, and

applications, Prentice hall, 1993.

[31] CPLEX, V12. 1: User Manual for CPLEX (2009).

34



8. Appendix

8.1. Proof of Proposition 3

1) We first show that ω̂ ≤ ω. Since by Proposition 1, (4) is equivalent to

(3), we now use an optimal solution (x̃, ũ, ṽ) for (4) to construct a feasible point

in (6). Given x̃ and ũ, there is a unique tuple (λ̃, z̃, ξ̃, ỹ) that satisfies the LPL

constraints (6l) and (6m). Setting ρ̃l := eũl−ṽl , θ̃il := N l
i (x̃i) and ϑ̃l := eṽl we

have that (x̃, ũ, ṽ, ρ̃, ϑ̃, θ̃, λ̃, z̃, ξ̃, ỹ) is feasible for (6) after using the constraints

of (4) that (x̃, ũ, ṽ) satisfies and Proposition 1. Its objective value in (6) is∑p
l=1 π

leũl−ṽl ≥ ω̂. Given that ω =
∑p
l=1 π

leũl−ṽl , we obtain the result.

We now show that a slight change in (x̂, û, v̂) is feasible for (4). Notice that

x̂ ∈ X and is thus feasible for (1). We can see that (x̂, û, v̂, ρ̂, ϑ̂, θ̂, λ̂, ẑ, ξ̂, ŷ)

satisfies:

ρ̂l = eûl−v̂l , Pτ l [e·](ûl) = N l(x̂), ev̂l = Pt[Dl](x̂) :=

n∑
i=1

Pti [Dl
i](x̂i) . (14)

However, feasible solutions to (4) must satisfy eul ≥ N l(x) and evl ≤ Dl(x).

Recall that Pt[f ] is the LPL approximation of f on the grid t. From Proposition

1 we have that Dl(x) ≤ Pt[Dl](x) ≤ Dl(x) + ε1 and that eul ≤ Pτ l [e·](ul) ≤

eul + ε2. The values ε1 and ε2 are of the form LC/(2K) = O(1/K), where L is

a constant that depends on the function being approximated and C/K denotes

the interval width in the uniform partition. Combining these bounds with the

last two equalities in (14), we can define u′ and v′ such that

eu
′
l := eûl + ε2 ≥ N l(x̂), ev

′
l := ev̂l − ε1 ≤ Dl(x̂) . (15)

The solution (x̂, u′, v′) is then feasible for (4), which means that

ω ≤
p∑
l=1

πleu
′
l−v
′
l =

p∑
l=1

πl
eûl + ε2
ev̂l − ε1

. (16)

The first equation in (14) implies that ω̂ =
∑p
l=1 π

leûl−v̂l . Combining this with

(16) we obtain

0 ≤ ω − ω̂ ≤
p∑
l=1

πl
(
eûl + ε2
ev̂l − ε1

− eûl

ev̂l

)
=

p∑
l=1

πl
ε2e

v̂l + ε1e
ûl

ev̂l (ev̂l − ε1)
.
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From Proposition 1 and (14) we have that N l(x̂) ≥ eûl and ev̂l ≥ Dl(x̂). Defin-

ing ε = max {ε1, ε2}, N+ := maxl∈[p],x∈X N
l(x), D+ := maxl∈[p],x∈X D

l(x) and

D− := minl∈[p],x∈X D
l(x), the following gives the result since ε = O(1/K):

0 ≤ ω − ω̂ ≤ ε N
+ +D+ + ε1

D− (D− − ε1)
.

2)Now we show that |ω − ω(x̂)| ≤ O(1/K). We already have that x̂ is feasible

for (1) and ω ≥ ω̂. This, and the inequalities in (15) imply

ω(x̂) ≥ ω ≥ ω̂ =

p∑
l=1

πl
eûl

ev̂l
≥

p∑
l=1

πl
N l(x̂)− ε2
Dl(x̂) + ε1

.

Since ω(x̂) =
∑p
l=1 π

lN l(x̂)/Dl(x̂), similar to the previous derivation we have

0 ≤ ω(x̂)− ω ≤
p∑
l=1

πl
(
N l(x̂)

Dl(x̂)
− N l(x̂)− ε2
Dl(x̂) + ε1

)
≤ ε N+ +D+

D− (D− + ε1)
= O(1/K).

8.2. Proof of Proposition 4

Consider some j ∈ [J ]. By definition, for any x ∈ G there exists some tuple

(µ, λ, z) satisfying (9) such that

∆j(x) := |fj(x)− Ct[fj ](x)| =

∣∣∣∣∣∣fj(x)−
∑

k∈{0,...,K}I
µkfj

(
t1k1 , ..., t

I
kI

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

k∈{0,...,K}I
µk
[
fj(x)− fj

(
t1k1 , ..., t

I
kI

)]∣∣∣∣∣∣
≤

∑
k∈{0,...,K}I

µk1,...,kI
∣∣fj(x)− fj

(
t1k1 , ..., t

I
kI

)∣∣ .
The second equality is due to ||µ||1 = 1 and the inequality comes from the

convexity of | · |. Next, because we have
(
λi, zi

)
∈ LPL(ti,K, xi) for any i ∈ [I],

there is an index kxi ∈ {0, ...,K − 1} such that tikxi
≤ xi ≤ tikxi +1 and the only

possible nonzero values of λi are λikxi
and λikxi +1. In consequence, constraints

(9c) enforce that the only possible nonzero components of µ are the µk1,...,kI
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with ki ∈ {kxi , kxi + 1} for every i ∈ [I]. We then obtain:

∆j(x) ≤
kx1 +1∑
k1=kx1

...

kxI+1∑
kI=kxI

µk1,...,kI
∣∣fj(x)− fj

(
t1k1 , ..., t

I
kI

)∣∣
≤ max
ki∈{kxi ,kxi +1},i∈[I]

∣∣fj(x)− fj
(
t1k1 , ..., t

I
kI

)∣∣ ‖µ‖1
≤ max
ki∈{kxi ,kxi +1},i∈[I]

Lj
∥∥x− (t1k1 , ..., tIkI )∥∥1

= Lj
I∑
i=1

max
ki∈{kxi ,kxi +1}

∣∣xi − tiki∣∣
Where the Lj-Lipschitz assumption and ‖µ‖1 = 1 are used. Define G(x) as the

cell of the discretization of G that contains x, i.e.

G(x) :=
{
x′ ∈ G : tikxi ≤ x

′
i ≤ tikxi +1,∀i ∈ [I]

}
.

Given that x ∈ G(x) we have that:

∆j(x) ≤ max
x′∈G(x)

Lj
I∑
i=1

max
ki∈{kxi ,kxi +1}

∣∣x′i − tiki ∣∣
= Lj

I∑
i=1

max
ki∈{kxi ,kxi +1}

max
x′i∈

[
ti
kx
i
,ti
kx
i
+1

] ∣∣x′i − tiki ∣∣
= Lj

I∑
i=1

∣∣∣tikxi +1 − tikxi
∣∣∣ =
Lj
K

I∑
i=1

|ui − li| =
Lj
K
||u− l||1 .

8.3. Proof of Proposition 6

For any x ∈ X and ρl ∈ R, l ∈ [p], let us define N l(x) :=
∑n
i=1 Cti [N l

i ](xi)

and Dl (x, ρl) :=
∑n
i=1 Cτ l,ti [·Dl

i(·)](ρl, xi). We have from Proposition 4 that

− εl ≤ N l(x)− ρlDl(x)−
(
N l(x)−Dl (x, ρl)

)
≤ εl ,

for some εl > 0 that is O(1/K). Defining ρ̃l(x) := N l(x)/Dl(x) and using

Dl(x) > 0, we obtain:

N l(x)−Dl (x, ρl)− εl
Dl(x)

+ ρl ≤ ρ̃l(x) ≤ N
l(x)−Dl (x, ρl) + εl

Dl(x)
+ ρl. (17)
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Because (x̂, ρ̂, λ̂, ŷ, ξ̂, ẑ, µ̂) is optimal - hence feasible - for (11), we have that

N l(x̂) − Dl(x̂, ρ̂) ≤ 0. Letting x̃ be an optimal solution for (3) and using the

right inequality in (17) at (x̂, ρ̂) gives

ω(x̂) =

p∑
l=1

πlρ̃l(x̂) ≤
p∑
l=1

πl
(

εl
Dl (x̂)

+ ρ̂l

)

=

p∑
l=1

πlεl
Dl (x̂)

+ ω̂

≤
p∑
l=1

πlεl
Dl (x̂)

+ ω̂ (x̃)

(18a)

(18b)

(18c)

Second, consider a function f : Rn → R and its cell-approximation Ct[f ]. No-

tice that if the function y → f (x1, ..., xi−1, y, xi+1, ..., xn) is nondecreasing, then

so is the function y → Ct[f ] (x1, ..., xi−1, y, xi+1, ..., xn). Since ρ → −ρDl(x) is

decreasing then so is ρ → −Dl(x, ρ). This means that there is ρ̂l(x) such that

N l(x)−Dl (x, ρ̂l(x)) = 0. The left inequality of (17) at x̃ and ρ̂l (x̃) implies

ω̂(x̃) =

p∑
l=1

πlρ̂l (x̃) ≤
p∑
l=1

πl
(
ρ̃l (x̃) +

εl
Dl (x̃)

)

≤ ω +

p∑
l=1

πlεl
Dl (x̃)

(19a)

(19b)

Adding (18c) and (19b) together and defining D− := minl∈[p],x∈X D
l(x) and

ε := maxl∈[p] εl, we get:

0 ≤ ω (x̂)− ω ≤
p∑
l=1

πlεl

(
1

Dl(x̂)
+

1

Dl(x̃)

)
≤ 2ε

D−
= O(1/K) .

We now prove |ω − ω̂| = O(1/K). From (18b) and by optimality of x̃ we get

ω − ω̂ ≤ ω(x̂)− ω̂ ≤
p∑
l=1

πlεl
Dl (x̂)

≤ ε

D−
= O(1/K).

We now finish by proving ω̂ 6 ω. Let ρ̄l(x) such that N l(x)−Dl(x, ρ̄l(x)) = εl

and remark that from optimality considerations, we have ρ̄l(x) > ρ̂l(x). The left

inequality of (17) at x̃ and ρ̄l (x̃) implies that: 0 6 ρ̃l (x̃)−ρ̄l (x̃) 6 ρ̃l (x̃)−ρ̂l (x̃),

implying in turn that

0 6
p∑
l=1

πl (ρ̃l (x̃)− ρ̂l (x̃)) = ω − ω̂
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8.4. Full result Tables

In Tables 7, 8, 9, 10, 11 and 12 we present the full bounds over all the

parameters.
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risk measure EX EN

model CELL MINR CELL MINR

grid U S U S U S U S

time n 10 2498 5354 14 6 1287 2809 10 7

20 * * 3837 4387 * * 5640 5479

30 * * * * * * * *

40 * * * * * * 10797 *

50 * * * * * * * *

L n 10 0.983 0.983 0.990 0.988 0.986 0.986 0.991 0.990

20 0.918 0.912 0.990 0.988 0.940 0.937 0.991 0.990

30 0.887 0.881 0.981 0.979 0.915 0.912 0.983 0.982

40 0.872 0.869 0.976 0.973 0.887 0.888 0.977 0.976

50 0.865 0.864 0.973 0.970 0.879 0.879 0.973 0.972

U n 10 0.983 0.984 0.990 0.988 0.986 0.986 0.991 0.991

20 0.983 0.984 0.990 0.988 0.985 0.987 0.991 0.990

30 0.984 0.986 0.990 0.988 0.986 0.989 0.991 0.991

40 0.984 0.986 0.990 0.988 0.988 0.989 0.991 0.991

50 0.986 0.988 0.990 0.988 0.990 0.991 0.991 0.991

R n 10 1.001 1.000 1.000 1.000 1.001 1.001 1.000 1.000

20 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

30 1.002 1.002 1.000 1.000 1.003 1.004 1.000 1.000

40 1.002 1.002 1.000 1.000 1.004 1.004 1.000 1.000

50 1.002 1.002 1.000 1.000 1.004 1.004 1.000 1.000

appGap n 10 0.010 0.102 0.010 0.010 0.010 0.010 0.010 0.009

20 6.557 7.321 0.010 0.015 4.542 5.030 0.010 0.017

30 9.835 10.639 0.935 0.900 7.199 7.777 0.873 0.871

40 11.450 11.881 1.459 1.453 10.177 10.266 1.479 1.494

50 12.237 12.462 1.708 1.776 11.196 11.258 1.806 1.821

realGap n 10 1.775 1.732 0.995 1.225 1.499 1.421 0.882 0.953

20 8.293 8.895 1.029 1.249 6.154 6.500 0.891 0.973

30 11.415 12.029 1.921 2.108 8.792 9.181 1.730 1.808

40 12.979 13.240 2.449 2.655 11.592 11.543 2.345 2.429

50 13.662 13.733 2.699 2.979 12.433 12.433 2.670 2.751

Table 7: Performances Vs. n. “*”= 3h time out
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risk measure EX EN

model CELL MINR CELL MINR

grid U S U S U S U S

time d 0.1 783 2122 2 8 332 705 3 8

0.2 * * 183 785 8591 10361 287 1603

0.3 * * 3837 4387 * * 5640 5479

0.4 * * * * * * 10161 10334

0.5 * * * * * * * *

L d 0.1 0.984 0.986 0.986 0.989 0.988 0.989 0.990 0.992

0.2 0.952 0.946 0.988 0.994 0.971 0.967 0.992 0.995

0.3 0.918 0.912 0.990 0.988 0.940 0.937 0.991 0.990

0.4 0.889 0.887 0.982 0.984 0.906 0.911 0.986 0.988

0.5 0.885 0.884 0.984 0.984 0.893 0.886 0.981 0.985

U d 0.1 0.984 0.986 0.986 0.989 0.989 0.990 0.990 0.992

0.2 0.982 0.984 0.988 0.994 0.986 0.987 0.992 0.995

0.3 0.983 0.984 0.990 0.988 0.985 0.987 0.991 0.990

0.4 0.986 0.986 0.985 0.988 0.987 0.988 0.989 0.991

0.5 0.990 0.990 0.993 0.990 0.990 0.990 0.994 0.992

R d 0.1 1.001 1.001 1.000 1.000 1.001 1.001 1.000 1.000

0.2 1.001 1.001 1.000 1.000 1.002 1.001 1.000 1.000

0.3 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

0.4 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

0.5 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

appGap d 0.1 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

0.2 3.075 3.836 0.010 0.010 1.544 2.086 0.010 0.010

0.3 6.557 7.321 0.010 0.015 4.542 5.030 0.010 0.017

0.4 9.776 10.108 0.274 0.402 8.168 7.745 0.301 0.368

0.5 10.635 10.651 0.923 0.616 9.787 10.544 1.320 0.694

realGap d 0.1 1.667 1.501 1.413 1.093 1.252 1.152 1.007 0.799

0.2 4.902 5.474 1.170 0.648 3.095 3.461 0.784 0.509

0.3 8.293 8.895 1.029 1.249 6.154 6.500 0.891 0.973

0.4 11.175 11.423 1.784 1.565 9.544 9.037 1.404 1.239

0.5 11.566 11.651 1.642 1.575 10.836 11.576 1.961 1.519

Table 8: Performances Vs. d. “*”= 3h time out
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risk measure EX EN

model CELL MINR CELL MINR

grid U S U S U S U S

time p 5 * * 1248 2132 * * 1922 2560

7 * * 3837 4387 * * 5640 5479

10 * * 10409 8866 * * * 9907

12 * * * * * * * 10437

15 * * * * * * * *

L p 5 0.923 0.919 0.990 0.988 0.947 0.945 0.991 0.990

7 0.918 0.912 0.990 0.988 0.940 0.937 0.991 0.990

10 0.908 0.904 0.988 0.987 0.930 0.925 0.988 0.989

12 0.901 0.900 0.981 0.986 0.915 0.915 0.983 0.987

15 0.886 0.884 0.972 0.983 0.903 0.902 0.975 0.983

U p 5 0.983 0.985 0.990 0.988 0.987 0.988 0.991 0.990

7 0.983 0.984 0.990 0.988 0.985 0.987 0.991 0.990

10 0.983 0.983 0.990 0.988 0.984 0.986 0.991 0.990

12 0.983 0.984 0.990 0.988 0.985 0.986 0.991 0.990

15 0.984 0.985 0.990 0.988 0.985 0.986 0.991 0.990

R p 5 1.002 1.002 1.000 1.000 1.002 1.002 1.000 1.000

7 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

10 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

12 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

15 1.000 1.001 1.000 1.000 1.001 1.001 1.000 1.000

appGap p 5 6.095 6.613 0.010 0.010 4.010 4.364 0.010 0.010

7 6.557 7.321 0.010 0.015 4.542 5.030 0.010 0.017

10 7.623 8.021 0.195 0.029 5.482 6.198 0.282 0.089

12 8.396 8.558 0.901 0.154 7.112 7.181 0.853 0.269

15 9.955 10.317 1.865 0.460 8.355 8.527 1.581 0.749

realGap p 5 7.822 8.216 1.030 1.236 5.474 5.670 0.903 0.965

7 8.293 8.895 1.029 1.249 6.154 6.500 0.891 0.973

10 9.334 9.636 1.202 1.258 7.141 7.710 1.171 1.069

12 9.992 10.081 1.870 1.382 8.619 8.615 1.750 1.252

15 11.478 11.698 2.817 1.685 9.846 9.937 2.463 1.729

Table 9: Performances Vs. p. “*”= 3h time out
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risk measure EX EN

model CELL MINR CELL MINR

grid U S U S U S U S

time K 2 909 3360 2 8 626 1864 3 8

4 * * 3837 4387 * * 5640 5479

8 * * * * * * * *

16 8035 8131 * * 9505 8439 * *

32 10641 10763 * * * 10670 * 10761

L K 2 0.914 0.920 0.942 0.954 0.920 0.925 0.958 0.965

4 0.918 0.912 0.990 0.988 0.940 0.937 0.991 0.990

8 0.871 0.869 0.991 0.992 0.888 0.887 0.992 0.993

16 0.862 0.861 0.988 0.991 0.874 0.874 0.990 0.991

32 0.842 0.855 0.988 0.990 0.857 0.839 0.989 0.990

U K 2 0.914 0.920 0.942 0.955 0.920 0.925 0.958 0.966

4 0.983 0.984 0.990 0.988 0.985 0.987 0.991 0.990

8 0.998 0.998 0.997 0.997 0.999 1.000 0.997 0.998

16 1.000 1.001 0.999 0.999 1.002 1.002 0.999 0.999

32 1.002 1.001 1.000 1.000 1.004 1.004 1.000 1.000

R K 2 1.002 1.002 1.001 1.001 1.005 1.004 1.001 1.001

4 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

8 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

16 1.001 1.001 1.000 1.000 1.002 1.003 1.000 1.000

32 1.002 1.002 1.000 1.000 1.004 1.004 1.000 1.000

appGap K 2 0.010 0.010 0.009 0.010 0.009 0.009 0.009 0.010

4 6.557 7.321 0.010 0.015 4.542 5.030 0.010 0.017

8 12.726 12.879 0.587 0.457 11.043 11.220 0.563 0.514

16 13.816 13.938 1.055 0.846 12.724 12.832 0.891 0.817

32 15.902 14.593 1.204 0.968 14.684 16.495 1.048 0.942

realGap K 2 8.786 8.166 5.866 4.634 8.445 7.924 4.287 3.542

4 8.293 8.895 1.029 1.249 6.154 6.500 0.891 0.973

8 13.004 13.157 0.914 0.740 11.332 11.459 0.807 0.716

16 13.872 13.987 1.128 0.905 12.771 12.876 0.934 0.853

32 15.914 14.602 1.215 0.975 14.682 16.495 1.048 0.944

Table 10: Performances Vs. K. “*”= 3h time out
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risk measure EX EN

model CELL MINR CELL MINR

grid U S U S U S U S

time λ 0.2 7743 8484 64 38 8567 8334 22 29

0.7 * * 3837 4387 * * 5640 5479

1.2 * * * * * * * *

1.7 * * * * * * * *

2.2 * * * * * * * *

L λ 0.2 0.995 0.995 0.998 0.997 0.997 0.997 0.998 0.998

0.7 0.918 0.912 0.990 0.988 0.940 0.937 0.991 0.990

1.2 0.793 0.793 0.963 0.963 0.816 0.815 0.963 0.966

1.7 0.628 0.626 0.916 0.924 0.643 0.644 0.914 0.926

2.2 0.518 0.514 0.856 0.874 0.530 0.527 0.857 0.876

U λ 0.2 1.000 1.000 0.998 0.997 1.000 1.000 0.998 0.998

0.7 0.983 0.984 0.990 0.988 0.985 0.987 0.991 0.990

1.2 0.967 0.972 0.973 0.972 0.967 0.972 0.976 0.976

1.7 0.838 0.866 0.948 0.953 0.845 0.874 0.953 0.958

2.2 0.694 0.752 0.915 0.934 0.699 0.763 0.921 0.938

R λ 0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.7 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

1.2 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

1.7 1.001 1.001 1.000 1.000 1.004 1.005 1.001 1.000

2.2 1.001 1.001 1.000 1.001 1.006 1.005 1.001 1.000

appGap λ 0.2 0.471 0.460 0.010 0.010 0.264 0.268 0.010 0.010

0.7 6.557 7.321 0.010 0.015 4.542 5.030 0.010 0.017

1.2 17.947 18.375 0.999 0.936 15.668 16.091 1.374 1.022

1.7 25.097 27.701 3.352 3.050 23.983 26.329 4.067 3.326

2.2 25.278 31.597 6.418 6.424 24.221 31.014 6.881 6.599

realGap λ 0.2 0.521 0.509 0.212 0.289 0.300 0.302 0.170 0.181

0.7 8.293 8.895 1.029 1.249 6.154 6.500 0.891 0.973

1.2 20.762 20.790 3.686 3.753 18.609 18.631 3.773 3.387

1.7 37.306 37.440 8.423 7.667 36.022 35.908 8.679 7.408

2.2 48.272 48.624 14.400 12.667 47.343 47.604 14.365 12.443

Table 11: Performances Vs. λ. “*”= 3h time out
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model CELL MINR

grid U S U S

time α 0.1 * * 3968 2022

0.3 * * 3905 3552

0.5 * * 5640 5479

0.7 * * 6829 7808

0.9 * * 7672 9496

L α 0.1 0.952 0.946 0.994 0.994

0.3 0.943 0.943 0.992 0.991

0.5 0.940 0.937 0.991 0.990

0.7 0.935 0.935 0.991 0.990

0.9 0.934 0.931 0.990 0.989

U α 0.1 0.991 0.992 0.995 0.994

0.3 0.988 0.989 0.992 0.992

0.5 0.985 0.987 0.991 0.990

0.7 0.985 0.986 0.991 0.990

0.9 0.984 0.986 0.991 0.990

R α 0.1 1.003 1.003 1.000 1.000

0.3 1.002 1.003 1.000 1.000

0.5 1.002 1.002 1.000 1.000

0.7 1.002 1.002 1.000 1.000

0.9 1.002 1.002 1.000 1.000

appGap α 0.1 3.914 4.641 0.034 0.010

0.3 4.574 4.657 0.010 0.010

0.5 4.542 5.030 0.010 0.017

0.7 5.056 5.242 0.043 0.049

0.9 5.145 5.568 0.051 0.084

realGap α 0.1 5.022 5.678 0.596 0.600

0.3 5.939 5.938 0.809 0.859

0.5 6.154 6.500 0.891 0.973

0.7 6.656 6.702 0.950 1.033

0.9 6.792 7.029 0.967 1.067

Table 12: Performances Vs. α. “*”= 3h time out
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