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Abstract In a basic Stackelberg security game (SSG), a defender can simulta-
neously protect m out of n targets with n > m from an adversary that observes
the defense strategy and attacks where most convenient for him. We consider a
more realistic model where 1) The defender faces several different opponents, 2)
The adversaries are not completely rational and follow a quantal response (QR) to
decide which target to attack, and 3) We introduce risk aversion in the defender’s
behavior by minimizing an entropic risk measure instead of an expected loss.

Our contribution is as follows: 1) We show that we can find the risk-minimizing
defense policy by solving a nonconvex nonlinear optimization problem, 2) We
present an approximated problem (MINR) tailored for SSG that is a convex mixed
Integer nonlinear program, 3) We propose a general purpose methodology (CELL)
to optimize nonconvex and nonseparable fractional programming problems via
Mixed Integer linear Programming (MIP) approximations, 4) We show that both
problems provide lower bounds for SSG as well as arbitrarily good incumbents,
and 5) We present cutting plane methods to solve them to optimality with an off
the shelf MIP solver.

We test both algorithms on a large bedset of mid-sized instances and show
that MINR clearly dominates CELL and is able to produce - on average - solutions
that are within 2% of optimality in 2 hours. We finish by showing the empirical
qualitative advantages of introducing risk aversion into the defender’s behavior.
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1 Introduction

In this work we develop efficient solution methods for a fractional nonconvex op-
timization problem motivated from a Stackelberg game model in security applica-
tions. A Stackelberg game is defined as a game where the leader decides a mixed
strategy to maximize its utility, taking into account that the follower will observe
this strategy and in turn decide the action to maximize its utility [25]. In particu-
lar, Stackelberg game models have been used to represent the interaction between
defenders (that act as the leader) and attackers (corresponding to followers) in
diverse security settings [3,4,12]. For example, when defenders must patrol a sub-
set of targets and each adversary - knowing the patrolling strategy - selects the
target to attack [16,13]. Examples of such Stackelberg security games have been
successfully deployed in real-world security applications to help plan the patrols
conducted by the Los Angeles International Airport Police on LAX [16], the US
Federal Air Marshal Service on transatlantic flights [23], the LA Sheriff depart-
ment on Los Angeles’ subway system [11], and the US Coast Guard on ports and
waterways in Boston and New York City [20].

The Stackelberg security game model we investigate, which appears in [27,6],
makes two additional considerations: 1) it assumes adversaries use a logit discrete
choice model to select their action, and 2) the leader includes risk considerations
on its objective function, optimizing an entropic risk measure objective.

Stackelberg games typically assume a perfectly rational attacker that maxi-
mizes its utility knowing the defense strategy [16,13], or that can deviate slightly
from the optimal attack [17]. Nevertheless, humans sometimes make decisions that
are different from the policy that optimizes a given reward function [5]. Conse-
quently, assuming a highly intelligent adversary can lead to weak defense strate-
gies, that fail to take advantage of our knowledge about the attacker. The Quantal
Response (QR) Equilibrium model presented in [15] assumes that human adver-
saries do not behave rationally, sometimes selecting actions that do not maximize
their utility. In this model, followers use a logit discrete choice model to decide
between n possible actions, where action i (that gives a payoff Ui) is selected with
probability:

P(selecting action i) =
1∑n

j=1 e
λUj

eλUi ,

where the parameter λ represents a degree of rationality, with perfect rationality
(λ → ∞) or indifference (λ = 0) as special cases. This QR model has been shown
in diverse settings (including security applications) to more closely model human
behavior [9,21,26,27].

In a security domain, the consequences of catastrophic unlikely events could
far outweigh that of more common occurrences. However, planning for the worst
case can dedicate resources for scenarios that rarely occur, while planning for
the expected outcome could divert key resources from the catastrophic events.
Different risk measures have been used to balance likely outcomes with rare but
catastrophic ones in decision models. In this work, we use an Entropic risk measure
[18] that amplifies the importance of outcomes that exceed a given threshold. The
entropic risk measure of parameter α > 0 of a random variable Y is defined by

α lnE
[
e

Y
α

]
. While all outcomes are weighted, scenarios with a payoff larger than

α contribute more to this measure. Therefore, the parameter α corresponds to
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a payoff value of risky outcomes and must be chosen carefully to tune the risk
aversion level of the decision maker. Consider now the following example that
shows the effect of using the expected value objective (of optimal solution x∗) or
the entropic measure objective (of optimal solution x̃) on a small example where
there are two targets, a single patrol, and a single attacker with rationality factor
λ = 0.25. The payoffs of this game (were the defender is the row player and the
attacker is the column player) are given in Table 1a.

attack 1 attack 2
patrol 1 3, -1 -3, 1
patrol 2 -1, 3 1, -3

(a) Payoffs matrix. Each cell gives de-
fender utility, attacker utility.

E V w.c. P
x∗ 0.245 4.980 0.192
x̃ 0.233 4.546 0.159

Diff. -4.9% -8.7% -16.9%

(b) Comparing x∗, x̃ on expected
value, variance and worst case prob-
ability.

Table 1: Two targets, one defender resource example

Both the expected utility objective problem and the entropic risk measure
problem for this example can be expressed as a single variable non-linear problem
that can be solved numerically (presented in Section 2), giving the results summa-
rized in Table 1b. The solution that optimizes the entropic risk measure, x̃, has a
smaller variance and a smaller probability of the worst case scenario than the so-
lution that optimizes the expected value, x∗. Using an Entropic risk measure gives
a solution that reduces the possible bad outcomes, thus reducing the variance that
the solution observes at the expense of a worse expected value.

Stackelberg security game models with a quantal response adversary were in-
troduced in [28] for the case of a single adversary, leading to problems with the
following structure:

min
x

1
n∑

i=1

βie−γixi

n∑
i=1

βie
−γixi (ai − bixi)

s.t. Hx ≤ h .

That work used a binary search procedure on the fractional objective to provide an
approximate solution by solving a polynomial number of optimization problems.
Furthermore they showed that if the defender strategy only has resource con-
straints, a non-linear transformation makes these optimizations problems convex.
In the case of additional constraints, a piecewise linear approximation turns these
optimization problems into mixed linear optimization problems. This line of work
is extended in [6] by considering the use of an entropic risk measure for the single
follower case. The authors show that the problem maintains the above structure
and extend the convex reformulation to the case where the defender strategy has
linear constraints with a positive coefficient matrix.

To the best of our knowledge there is no prior work on Stackelberg security
games with quantal response for multiple followers. Given that multiple adversaries
in Stackelberg games are modeled using a Bayesian model [10], considering multiple
adversaries is equivalent to considering uncertainty in the payoff functions. This
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makes the multiple follower problem a stochastic version of the single follower
problem introduced in [28,6]. In this work we develop efficient solution methods for
the stochastic Stackelberg game with quantal response followers, which considers
algorithms for problems with the following form:

min

p∑
l=1

πl 1
n∑

i=1

βl
ie

−γl
ixi

n∑
i=1

βl
ie

−γl
ixi

(
ali − blixi

)
s.t. Hx ≤ h ,

(1)

with non-negative coefficients βl
i, γ

l
i, a

l
i, and bli.

In this work we propose two different solution strategies to approximately solve
the stochastic problem above in the case of general polyhedral constraints. The
first recasts the problem as a nonconvex nonlinear optimization problem that we
can approximate via piecewise linear approximations. The second uses a generic
methodology to approximate multidimensional nonlinear functions via spatial dis-
cretization. Both solution strategies require efficiently solving the mixed integer
linear optimization problems that arise. We structure the rest of the paper as
follows: in the next section we introduce the problem formulation that will be
considered in this paper. In Section 3 we present the solution methods that solve
the Stackelberg security game with multiple quantal response followers and show
that both can provide arbitrarily good defense strategies. In Section 4 we present
repair heuristics for both models and strategies to select the discretization points
in order to speed up the solution methods and strenghten the relaxation bounds.
We show experimental results in Section 5 on mid-sized artificial instances and
compare the performance of our algorithms and the quality of the solution they
provide. We present our conclusions in Section 6.

2 Notation and problem formulation

The Stackelberg security game we consider consists of a single leader (defender)
that patrols n targets that could be attacked by one of p followers (attackers). The
leader can patrol up to m < n targets simultaneously and each follower selects one
target to attack. The payoffs for the leader and the followers depend on whether
the target attacked is patrolled or not. If follower l ∈ {1 . . . p} attacks target
i ∈ {1 . . . n}, then the payoffs received by attacker l are either a reward Rl

i > 0 if
the target is not patrolled or a penalty P l

i < 0 if the target is patrolled. Similarly,
if attacker l attacks target i, we let the payoffs for the defender be a reward R̄l

i > 0
when the target is patrolled and a penalty P̄ l

i < 0 if it is not patrolled.
The set of actions for the defender are the feasible subsets of targets I ⊆

{1, . . . , n} that can be patrolled simultaneously (|I| ≤ m). We denote by z the
mixed strategy over this action space, so that zI is the probability with which the
defender patrols the set of targets I. Since the payoffs only depend on whether a
target i is patrolled or not, we consider the frequency of protecting target i, given
by xi =

∑
i∈I zI , the sum of probabilities of the defender strategies that patrol i.

With the frequency of patrolling target i, xi ∈ [0, 1], we can express the expected
utility of the defender and attacker l when target i is attacked by follower l as
Ū l
i (xi) = xiR̄

l
i + (1− xi)P̄

l
i and U l

i (xi) = xiP
l
i + (1− xi)R

l
i, respectively.
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Since follower l ∈ {1 . . . p} selects targets according to a QR model with a
rationality parameter λl > 0, we denote the probability of attacker l selecting
target i by

yli(x) =
1

n∑
j=1

eλ
lU l

j(xj)
eλ

lU l
i (xi) =

eλ
l(xiP

l
i+(1−xi)R

l
i)

n∑
j=1

eλ
l(xjP

l
j+(1−xj)R

l
j)

. (2)

2.1 Expected utility defender problem

Similar to prior work on Stackelberg security games [13,28], we formulate the de-
fender optimization problem in terms of this frequency variable, which by defini-
tion satisfies xi ∈ [0, 1], and

∑n
i=1 xi ≤ m. We assume that the vector of frequency

variables must satisfy a set of linear constraints Hx ≤ h that can represent ad-
ditional constraints on feasible patrols (e.g. targets i and i′ cannot (or must) be
patrolled together). We denote X = {x : Hx ≤ h} the feasible set of defender
frequency variables. For an integer k, let [k] := {1, . . . , k}. Let πl represent the
probability of facing follower l. With the notation introduced above, the defender
decision problem that maximizes the expected defender utility by adjusting the
frequency variables is:

max

p∑
l=1

n∑
i=1

πlyli(x)
(
xiR̄

l
i + (1− xi) P̄

l
i

)
s.t. x ∈ X .

Substituting (2) above and multiplying the objective by -1 we observe that the
above problem is equivalent to the minimization problem (1) by setting βl

i =

eλ
lRl

i > 0, γl
i = λl(Rl

i − P l
i ) ≥ 0, ali = −P̄ l

i ≥ 0 and bli = R̄l
i − P̄ l

i ≥ 0.

2.2 Entropic utility defender problem

We now formulate the defender’s problem with the entropic risk measure objective.
The random variable of defender utilities takes the following values for each l ∈
[p], i ∈ [n]:

P̄ l
i with probability πlyli(x)(1− xi)

R̄l
i with probability πlyli(x)xi .

For a random variable Y the entropic risk measure of parameter α ≥ 0 is α lnE
[
e

Y
α

]
which penalizes values of Y that exceed the threshold parameter α. Since the de-
fender is interested in maximizing its utility, the payoffs that should be penalized
by the risk measure are the small ones. We do this by minimizing minus the utility
(cost). The entropic risk objective of the cost of the defender is given by

Eα(x) := α ln

p∑
l=1

n∑
i=1

πlyli(x)

(
xie

− R̄l
i

α + (1− xi) e
− P̄ l

i
α

)
.
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The defender’s decision problem, to minimize this entropic risk objective adjusting
the frequency of coverage variables x ∈ X is expressed as follows:

min
x∈X

α ln

p∑
l=1

n∑
i=1

πlyli(x)

(
xie

− R̄l
i

α + (1− xi) e
− P̄ l

i
α

)
.

Define the following constants P̃ l
i := e−

P̄ l
i

α and R̃l
i := e−

R̄l
i

α . Substituting the
expression of the quantal response (2) in the problem above and noting that α ln
is a monotonic increasing function, we can express this problem equivalently as:

min
x∈X

p∑
l=1

πl

n∑
i=1

βl
ie

−γl
ixi

(
P̃ l
i −

(
P̃ l
i − R̃l

i

)
xi

)
n∑

i=1

βl
ie

−γl
ixi

.

Again, this problem is of the form of the minimization problem (1) with the same

βl
i > 0 and γl

i ≥ 0 and with ali = P̃ l
i > 0 and bli = P̃ l

i − R̃l
i > 0.

The solutions x∗ and x̃ of the example in Table 1 are obtained by solving the
problems introduced in Subsections 2.1 and 2.2, respectively. Here the problems
have a single adversary and the defender variables satisfy x1, x2 ∈ [0, 1] such that
x1 + x2 ≤ 1.

2.3 Piecewise linear approximations

Piecewise linear approximations of non-linear, non convex functions are an im-
portant part of the solution methods proposed. Here we set the notation used to
construct piecewise linear approximations using few binary variables (a logarithm
of the number of partitions), as described in [24].

Consider an univariate function f : [l, u] 7→ R and a partition of the interval
[l, u] given by K + 1 points l = t0 < t1 < ... < tK = u. A piecewise linear
approximation of f that matches the function at the partition points is given
by
∑K

k=0 λkf(tk) with
∑K

k=0 λk = 1, λ ≥ 0, and such that it has at most two
coefficients that are non-zero and they must be consecutive (this last constraint is
known as an SOS2 constraint). The work in [24] provides an efficient representation
of these SOS2 constraints, which directly implies the next result.

Let L(K) = ⌈log2 K⌉ and consider BK : [K] 7−→ {0, 1}L(K) a bijective map-
ping such that for all q ∈ [K − 1], BK(q) and BK(q + 1) differ in at most one
component (See reflected binary or Gray code in [8]). Such a Gray code can be
found quickly by the recursive algorithm of [14].

Proposition 1 [24] Given f : [l, u] → R and a partition l = t0 < t1 < ... < tK =
u of [l, u]. For every x ∈ [l, u] the piecewise linear function that equals f(x) at the
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partition points is given by f̂(x) =
K∑

k=0

λkf (tk), for a (λ, z) that satisfies

x =
K∑

k=0

λktk

K∑
k=0

λk = 1∑
p∈S+

K(l)

λp ⩽ zl ∀l ∈ [L(K)]∑
p∈S−

K(l)

λp ⩽ 1− zl ∀l ∈ [L(K)]

zl ∈ {0, 1} ∀l ∈ [L(K)]
λ ≥ 0 .

(3)

Here QK(k) := {k, k + 1} if k ∈ [K − 1] and QK(K) = {K} and for k ∈ [L(K)]
define:

S+
K(k) :=

{
p ∈ {0, ...,K} : ∀q ∈ QK(p), (BK(q))k = 1

}
S−
K(k) :=

{
p ∈ {0, ...,K} : ∀q ∈ QK(p), (BK(q))k = 0

}
.

This formulation uses only ⌈log2 K⌉ extra binary variables. Given a partition
set t = (t0, . . . , tK) with K+1 points, we define the set of constraints that encode
the piecewise linear approximation at x by:

LPL(t,K, x) :=
{(

(λk)k∈[K], (zl)l∈[L(K)]

)
satisfying (3)

}
.

We refer to this construction of a piecewise linear approximation as the Log-
arithmic Piecewise Linear approximation (LPL). We can therefore express the
approximation of f(x) by

f̂(x) =
K∑

k=0

λkf(tk) s.t. (λ, z) ∈ LPL(t,K, x) .

Remark 1 The piecewise linear function f̂ which equals function f at all points in
a partition set t of the interval [l, u] satisfies the following [22]:

1. If f is a convex function, then f̂(x) ≥ f(x) for all x ∈ [l, u].

2. If f is L-Lipschitz over [l, u], then max
x∈[l,u]

|f̂(x)− f(x)| ≤ L
2 max

i∈[K−1]
|ti+1 − ti|.

3 Solution methods

In this section we present two different solution methods to solve problem (1).
We begin with the observation that the numerators in each fractional term of the
objective function can be considered non-negative without loss of generality. In
fact, for any constant Al ∈ R with l ∈ [p] we have that

n∑
i=1

βl
ie

−γl
ixi
(
ali − blixi

)
n∑

i=1

βl
ie

−γl
ixi

=

n∑
i=1

βl
ie

−γl
ixi
(
Al + ali − blixi

)
n∑

i=1

βl
ie

−γl
ixi

−Al .
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Assuming Al ≥ max
i∈[n]

{
bli − ali

}
and since xi ∈ [0, 1], we can show that function

N l
i (xi) = βl

ie
−γl

ixi
(
Al + ali − blixi

)
is convex and nonnegative.

To simplify our exposition in addition to function N l
i above we introduce

Dl
i(xi) = βl

ie
−γl

ixi , N l(x) =
n∑

i=1

N l
i (xi), and Dl(x) =

n∑
i=1

Dl
i(xi).

3.1 A Mixed Integer Nonlinear Reformulation (MINR)

We now use the fact that both the numerator and the denominator of these frac-
tional component are positive to reformulate (1) as follows.

Proposition 2 For any Al ≥ max
i∈[n]

{
bli − ali

}
and defining:

Lu
l := ln

(
n∑

i=1

βl
ie

−γl
i

(
Al + ali − bli

))
Uu
l := ln

(
n∑

i=1

βl
i

(
Al + ali

))

Lv
l := ln

(
n∑

i=1

βl
ie

−γl
i

)
Uv
l := ln

(
n∑

i=1

βl
i

)
,

problem (1) is equivalent to

min
x,u,v

p∑
l=1

πleul−vl

s.t. x ∈ X

−eul +
n∑

i=1

βl
ie

−γl
ixi
(
Al + ali − blixi

)
≤ 0 ∀l ∈ [p]

evl −
n∑

i=1

βl
ie

−γl
ixi ≤ 0 ∀l ∈ [p]

Lu
l ≤ ul ≤ Uu

l ∀l ∈ [p]
Lv
l ≤ vl ≤ Uv

l ∀l ∈ [p]

(4)

Proof First, from the observation above we can rewrite (1) as follows:

min
x∈X

p∑
l=1

πl

 n∑
i=1

βl
ie

−γl
ixi(Al+al

i−blixi)
n∑

i=1
βl
ie

−γl
i
xi

−Al


For each l ∈ [p] introduce variables (ul, vl) ∈ R2. Since the numerator and de-
nominator of each fraction are nonnegative, we have that this last problem can be
rewritten as follows:

min
u,v

p∑
l=1

πleul−vl −
p∑

l=1

πlAl

s.t. eul ≥
n∑

i=1

βl
ie

−γl
ixi
(
Al + ali − blixi

)
∀l ∈ [p]

evl ≤
n∑

i=1

βl
ie

−γl
ixi ∀l ∈ [p] .
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The term −
p∑

l=1

πlAl is constant. The range constraints on variables ul and vl are

obtained by maximizing and minimizing the bounds on eul and evl . The facts that
Al ≥ max

i∈[n]
{bli−ali}, γl

i ≥ 0 and bli ≥ 0 imply that both these bounds are decreasing

functions of xi which obtain its maximum value for xi = 0 and minimum value
for xi = 1. ⊓⊔

Given the choice of Al, we have that the sources of non-convexity of problem
(4) are the functions ul → −eul indexed by l ∈ [p] in the second set of constraints

and xi → −e−γl
ixi for every i ∈ [n], l ∈ [p] in the third set of constraints. This

motivates the use of piecewise linear functions to approximate the problem. The
LPL formulation is used below to construct piecewise linear approximations of the
non-convex portions of the constraints. The range constraints on variables inform
where this approximation should be done.

For each target i ∈ [n], consider the partition ti of [0, 1] on K + 1 points (i.e.
0 = ti0 < ti1 < ... < tiK = 1). For each follower l ∈ [p], consider the partition τ l

of [Lu
l , U

u
l ] on K + 1 points (i.e. Lu

l = τ l
0 < τ l

1 < ... < τ l
K = Uu

l ). Using these
partitions we construct the following mixed integer convex optimization problem:

min
x, u, v, ρ, ϑ
θ, λ, z, ξ, y

p∑
l=1

πlρl (5)

s.t. x ∈ X (6)

ρl ≥ eul−vl ∀l ∈ [p] (7)

n∑
i=1

θil ≤
K∑

k=0

ξlke
τ l
k ∀l ∈ [p] (8)

θil ≥ βl
ie

−γl
ixi

(
Al + ali − blixi

)
∀l ∈ [p], i ∈ [n] (9)

ϑl ≤
n∑

i=1

βl
i

K∑
k=0

λi
ke

−γl
it

i
k ∀l ∈ [p] (10)

ϑl ≥ evl ∀l ∈ [p] (11)

Lu
l ≤ ul ≤ Uu

l ∀l ∈ [p] (12)

Lv
l ≤ vl ≤ Uv

l ∀l ∈ [p] (13)

eL
u
l −Uv

l ≤ ρl ≤ eU
u
l −Lv

l ∀l ∈ [p] (14)

eL
v
l ≤ ϑl ≤ eU

v
l ∀l ∈ [p] (15)(

λi, zi
)
∈ LPL

(
ti,K, xi

)
∀i ∈ [n] (16)(

ξl, yl
)
∈ LPL

(
τ l,K, ul

)
∀l ∈ [p] (17)

This approximate problem has integer variables z and y defined in the LPL con-
straints and convex constraints in (7), (9) and (11). The following result shows
that the optimal solution to this problem provides a good solution to (4).

Proposition 3 Consider uniform partitions t and τ with K + 1 points in the
definition of problem (5-17). Let κ̂ be the optimal solution value of the approximate
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problem (5-17) and κ the optimal solution value of the original problem (1), then
0 ≤ κ − κ̂ ≤ O(1/K). Furthermore, x ∈ X part of optimal solution to (5-17) is
feasible for (1) with objective κ(x) such that |κ(x)− κ| ≤ O(1/K).

Proof We begin showing that κ̂ ≤ κ by using (x∗, u∗, v∗) an optimal solution for
(4) (since by Proposition 2 it is equivalent to (1)) to construct a feasible point in
(5-17). Given x∗ and u∗

l the LPL constraints define unique variables λ∗, z∗ and ξ∗l ,
y∗l to satisfy these constraints. Setting ρ∗l := eu

∗
l −v∗

l , θi∗l := N l
i (x

∗
i ) and ϑ∗

l := ev
∗
l

we have that (x∗, u∗, v∗, ρ∗, ϑ∗, θ∗, λ∗, z∗, ξ∗, y∗) is feasible for (5-17). Checking
the constraints uses the inequalities that (x∗, u∗, v∗) satisfies from problem (4)
and Remark 1.

For the second part we begin with
(
x, u, v, ρ, ϑ, θ, λ, z, ξ, y

)
the optimal solution

to (5-17) and show that a slight change is feasible for (4). Notice that x ∈ X ,
therefore feasible for (1). By inspection we can verify this optimal solution satisfies:

ρl = eul−vl êul = N l(x) evl = D̂l(x) . (18)

However, feasible solutions to (4) satisfy that eul ≥ N l(x) and evl ≤ Dl(x).

Recall f̂ is the piecewise linear approximation of f . From Remark 1 we have that

Dl(x) ≤ D̂l(x) ≤ Dl(x) + ε1 and that eul ≤ êul ≤ eul + ε2. The values ε1 and
ε2 are of the form LC/(2K) which is O(1/K). Here L is a constant that depends
on the function being approximated and C/K denotes the interval width in the
uniform partition. Combining these bounds with the last two equalities in (18),
we can define u′

l and v′l such that

eu
′
l := eul + ε2 ≥ N l(x) ev

′
l := evl − ε1 ≤ Dl(x) . (19)

The solution
(
x, u′, v′

)
is then feasible for (4), which means

κ ≤
p∑

l=1

πleu
′
l−v′

l =

p∑
l=1

πl e
ul + ε2
evl − ε1

.

From the first part we obtain that 0 ≤ κ− κ̂. The first equation in (18) implies
that κ̂ =

∑p
l=1 π

leul−vl . Combining this with the last expression we have

0 ≤ κ− κ̂ ≤
p∑

l=1

πl

(
eul + ε2
evl − ε1

− eul

evl

)
=

p∑
l=1

πl

(
ε2e

vl + ε1e
ul

evl (evl − ε1)

)
.

From Remark 1 and (18) we have that N l(x) ≥ eul and evl ≥ Dl(x). Defining
N+ := max

l∈[p],x∈X
N l(x), D+ := max

l∈[p],x∈X
Dl(x), D− := min

l∈[p],x∈X
Dl(x), and ϵ =

max {ϵ1, ϵ2} we obtain the following bound that gives the result since ϵ = O(1/K)

0 ≤ κ− κ̂ ≤ ϵ
N+ +D+ + ε1
D− (D− − ε1)

.

Now we show that |κ− κ(x)| is O(1/K). From the second part we have that x
is feasible for (1) and κ ≥ κ̂. This, and the inequalities in (19) imply

κ ≥ κ̂ =

p∑
l=1

πl e
ul

evl
=

p∑
l=1

πlN
l(x)− ε2

Dl(x) + ε1
.
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Since κ(x) =
p∑

l=1

πl N
l(x)

Dl(x)
, we have, similarly to the previous derivation, that

0 ≤ κ(x)− κ ≤
p∑

l=1

πl

(
N l(x)

Dl(x)
− N l(x)− ε2

Dl(x) + ε1

)
≤ ϵ

N+ +D+

D− (D− + ε1)
. ⊓⊔

Solving problem (5-17) is challenging as it is a problem with convex constraints
and integer variables. To avoid the non-linearity, we approximate the convex por-
tions of the constraint functions exploiting the fact that a convex function is the
upper envelope of the linear support functions at every point. In particular we
replace the convex non-linear terms of the functions eul−vl , given l ∈ [p], evl ,

and N l
i (xi) = βl

ie
−γl

ixi
(
Al + ali − blixi

)
with their first order Taylor expansions.

This modifies only constraints (7), (9), and (11) giving the mixed integer linear
optimization problem (with infinitely many constraints):

min
x, u, v, ρ, ϑ
θ, λ, z, ξ, y

p∑
l=1

πlρl

s.t. (6), (8), (10), (12), (13), (14), (15), (16), (17)

ρl ≥ eûl−v̂l (1 + ul − vl − ûl + v̂l) ∀(ûl, v̂l)
l ∈ [p]

θil ≥ N l
i (x̂i) +

(
N l

i

)′
(x̂i) (xi − x̂i) ∀x̂i

∀l ∈ [p], i ∈ [n]

ϑl ≥ ev̂l (1 + vl − v̂l) ∀v̂l l ∈ [p] .

(20)

To tackle the infinitely many constraints in the above problem, we will generate
them as we need them with a cutting plane procedure. We set up the problem with
an initial set of linear support functions. Let Uu,v

l be the set of points used to build
linear support function of (ul, vl) → eul−vl , given l ∈ [p]. Similarly let Uv

l and Ux
li

be the set of points used to generate linear support functions of vl → evl and N l
i ,

respectively. The tractable optimization problem is (20) replacing the last three
constraints with the following.

ρl ≥ eûl−v̂l (1 + ul − vl − ûl + v̂l) ∀(ûl, v̂l) ∈ Uu,v
l

l ∈ [p]

θil ≥ N l
i (x̂i) +

(
N l

i

)′
(x̂i) (xi − x̂i) ∀x̂i ∈ Ux

li

∀l ∈ [p], i ∈ [n]

ϑl ≥ ev̂l (1 + vl − v̂l) ∀v̂l ∈ Uv
l , l ∈ [p] .

3.2 Multidimensional cell approximation with (n+ p) log2 K binaries (CELL)

We now present a generic method to approximate nonseparable functions using
linear constraints and variables, in the spirit of [19].

We transform our problem (1) into the following equivalent form:

min
x∈X ,ρ

{
p∑

l=1

πlρl :
n∑

i=1

(
N l

i (xi)− ρlD
l
i (xi)

)
≤ 0 ,∀l ∈ [p]

}
(21)
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This problem is in general not convex because of the products ρlD
l
i (xi). Similar to

the previous model, we added and subtracted Al ≥ max
i∈[n]

{bil−ali} to the numerator

of (1) so that N l
i (xi) is convex and non-negative.

To tackle this non-convexity, we take advantage of the partial separability
in the constraints of (21) to efficiently approximate the products ρlD

l
i (xi) with a

relatively small number of binary variables. The following proposition presents this
piecewise linear approximation on a given homogeneous grid, which is a variant of
the method referred to as the optimistic MILP model in [19].

Proposition 4 Consider a ground set G :=
{
x ∈ RI : l ≤ x ≤ u

}
and a set of J

functions fj : G → R, each one of them Lj-Lipschitz. Also consider a discretization
of G in each dimension: li = ti0 ≤ ti1 ≤ ... ≤ tiK = ui, where tiki

= li +
ki

K (ui − li)
for every ki ∈ {0, ...,K}. The following formulation gives an Lj ||u − l||1/K ap-
proximation f̄j for every function fj on G:

f̄j(x) = min
µ,λ,z

∑
k∈{0,...,K}I

µk · fj
(
t1k1

, ..., tIkI

)
s.t.

(
λi, zi

)
∈ LPL

(
ti,K, xi

)
∀i ∈ [I]

µk ≤ λi
ki

∀k ∈ {0, ...,K}I
∀i ∈ [I]∑

k∈{0,...,K}I

µk = 1∑
k∈{0,...,K}I

µkt
i
ki

= xi ∀i ∈ [I]

µ ≥ 0

(22)

Proof Let us consider some j ∈ [J ]. By definition of f̄j(·), for any x ∈ G there
exists some tuple (µ, λ, z) satisfying (22) such that

∆j(x) :=
∣∣fj(x)− f̄j(x)

∣∣ =
∣∣∣∣∣∣fj(x)−

∑
k∈{0...K}I

µk · fj
(
t1k1

, ..., tIkI

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

k∈{0...K}I

µk ·
[
fj(x)− fj

(
t1k1

, ..., tIkI

)]∣∣∣∣∣∣
≤

∑
k∈{0...K}I

µk1,...,kI
·
∣∣∣fj(x)− fj

(
t1k1

, ..., tIkI

)∣∣∣ .

Here the second equality is due to ||µ||1 = 1 and the inequality because of the
convexity of | · |. Next, because we have

(
λi, zi

)
∈ LPL

(
ti,K, xi

)
for any i ∈ [I],

there is an index kx
i ∈ {0, ...,K − 1} such that tikx

i
≤ xi ≤ tikx

i +1 and the only

possible nonzero values of λi are λi
kx
i
and λi

kx
i +1. In consequence, the precedence

constraints (second set of contraints in (22)) enforce that the only possible nonzero
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values of µ are the µk1,...,kI
with ki ∈ {kx

i , k
x
i + 1} for every i ∈ [I]. We then obtain:

∆j(x) ≤
kx
1+1∑

k1=kx
1

...

kx
I+1∑

kI=kx
I

µk1,...,kI
·
∣∣∣fj(x)− fj

(
t1k1

, ..., tIkI

)∣∣∣
≤ max

ki∈{kx
i ,k

x
i +1},i∈[I]

∣∣∣fj(x)− fj
(
t1k1

, ..., tIkI

)∣∣∣ ∥µ∥1
≤ max

ki∈{kx
i ,k

x
i +1},i∈[I]

Lj

∥∥∥x−
(
t1k1

, ..., tIkI

)∥∥∥
1
= Lj

I∑
i=1

max
ki∈{kx

i ,k
x
i +1}

∣∣∣xi − tiki

∣∣∣
Where the Lj-Lipschitz assumption and ∥µ∥1 = 1 are used. Define G(x) as the cell
of the discretization of G that contains x, i.e.

G(x) :=
{
x′ ∈ G : tikx

i
≤ x′

i ≤ tikx
i +1,∀i ∈ [I]

}
.

Given that x ∈ G(x) we have that:

∆j(x) ≤ max
x′∈G(x)

Lj

I∑
i=1

max
ki∈{kx

i ,k
x
i +1}

∣∣∣x′
i − tiki

∣∣∣
= Lj

I∑
i=1

max
ki∈{kx

i ,k
x
i +1}

max
x′
i∈

[
ti
kx
i
,ti

kx
i
+1

]
∣∣∣x′

i − tiki

∣∣∣
= Lj

I∑
i=1

∣∣∣tikx
i +1 − tikx

i

∣∣∣ = Lj

K

I∑
i=1

|ui − li| =
Lj

K
||u− l||1 . ⊓⊔

This result shows that the maximum distance between f̂j and fj is O(1/K).
Also, the size of the optimization problem that approximates function fj does
not depend on the number of functions to approximate J . The optimization prob-
lem uses L(K)I binary variables, O

(
KI
)
continuous variables and O

(
IKI

)
con-

straints. A direct consequence is the piecewise linear cell formulation of an opti-
mization problem, stated below.

Proposition 5 Given an optimization problem

min
x∈X

f(x)

s.t. gj(x) ≤ bj ∀j ∈ {1, ..., J},
its cell-approximation is given by the following MIP

min
x∈X ,µ,λ,z

∑
k∈{0,...,K}I

µk · f
(
t1k1

, ..., tIkI

)
s.t.

∑
k∈{0,...,K}I

µk · gj
(
t1k1

, ..., tIkI

)
≤ bj ∀j ∈ [J ](

λi, zi
)
∈ LPL

(
ti,K, xi

)
∀i ∈ [I]

µk ≤ λi
ki

∀k ∈ {0, ...,K}I
∀i ∈ [I]∑

k∈{0,...,K}I

µk = 1∑
k∈{0,...,K}I

µkt
i
ki

= xi ∀i ∈ [I]

µ ≥ 0

(23)
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This formulation takes advantage of the fact that we only need to determine
once to which cell x belongs and use this to approximate every function in the
problem. Therefore the number of binary variables does not depend on the number
of functions to approximate. We now show that using the cell discretization, the
solution we obtain is an O(1/K)-optimal solution for our original SSG problem.

Proposition 6 Consider a discretization of the range of variables xi and ρl into
K subintervals with homogeneous partitions ti =

(
ti0 . . . t

i
K

)
and τ l =

(
τ l
0 . . . τ

l
K

)
.

Let κ̂ be the optimal solution value of problem (24), x part of its optimal solution.
Let also κ(x) the objective function value and κ the optimal solution value of
problem (1). Then |κ̂− κ| and |κ(x)− κ| are O(1/K).

min
x,ρ,λ,y,ξ,z,µ

p∑
l=1

πlρl

s.t. x ∈ X
n∑

i=1

K∑
k=0

λi
kN

l
i

(
tik
)

−
n∑

i=1

K∑
kl=0

K∑
ki=0

µl,i
kl,ki

τ l
kl
Dl

i

(
tiki

)
≤ 0 ∀l ∈ [p](

λi, zi
)
∈ LPL

(
ti,K, xi

)
∀i ∈ [n](

ξl, yl
)
∈ LPL

(
τ l,K, ρl

)
∀l ∈ [p]

0 ≤ µl,i
kl,ki

≤ ξlkl
∀kl, ki ∈ {0, ...,K}
∀l, i ∈ [p]

0 ≤ µl,i
kl,ki

≤ λi
ki

∀kl, ki ∈ {0, ...,K}
∀l, i ∈ [p]

K∑
kl=0

K∑
ki=0

µl,i
kl,ki

= 1 ∀l ∈ [p],∀i ∈ [n]

K∑
kl=0

K∑
ki=0

µl,i
kl,ki

tiki
= xi ∀i ∈ [n]

K∑
kl=0

K∑
ki=0

µl,i
kl,ki

τ l
kl

= ρl ∀l ∈ [p]

(24)

Proof First, for any x ∈ X and ρl ∈ R, l ∈ [p], we have from Proposition 4 that

− ϵl ≤ Nl(x)− ρlDl(x)−
[
N̄l(x)− D̄l (x, ρl)

]
≤ ϵl ,

for some ϵl > 0 (that is O(1/K)). Where f̄ is the approximation of f . Defining

ρ∗l (x) :=
Nl(x)
Dl(x)

and using Dl(x) > 0, we obtain:

N̄l(x)− D̄l (x, ρl)− ϵl
Dl(x)

+ ρl ⩽ ρ∗l (x) ≤
N̄l(x)− D̄l (x, ρl) + ϵl

Dl(x)
+ ρl. (25)
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Consider
(
x, ρ, λ, y, ξ, z, µ

)
the optimal solution of (24). From these constraints we

have that N̄l (x)− D̄l (x, ρ) ≤ 0. Using the right inequality in (25) at x, ρ gives

κ (x) =

p∑
l=1

πlρ∗l (x) ≤
p∑

l=1

πl

(
ϵl

Dl (x)
+ ρ̄l

)
(26)

=

p∑
l=1

πlϵl
Dl (x)

+ κ̂

≤
p∑

l=1

πlϵl
Dl (x)

+ κ̂
(
x∗) (27)

Here we use that x, ρ are optimal for (24) and denote κ̂(x∗) the objective value of
(24) on solution x∗.

Second, consider a function f : Rn → R and its cell-approximation f̄ . Notice
that if the function t → f (x1, ..., xi−1, t, xi+1, ..., xn) is nondecreasing, then so is
the function t → f̄ (x1, ..., xi−1, t, xi+1, ..., xn). Since ρ → −ρDl(x) is decreasing
then so is ρ → −D̄l(x, ρ). This means that we can find ρ̄l(x) such that N̄l(x) −
D̄l (x, ρ̄l(x)) = 0. Consider now x∗ the optimal solution to (1) Taking the left
inequality of (25) x∗ and ρ̄l (x

∗) we obtain:

κ̂(x∗) =

p∑
l=1

πlρ̄l
(
x∗) ≤ p∑

l=1

πl

(
ρ∗l
(
x∗)+ ϵl

Dl (x∗)

)

≤ κ+

p∑
l=1

πlϵl
Dl (x∗)

(28)

Adding (27) and (28) together, and defining D− = min
l∈[p],x∈X

Dl(x) and ϵ = max
l∈[p]

ϵl,

we get:

0 ≤ κ (x)− κ ≤
p∑

l=1

πlϵl

(
1

Dl (x̄)
+

1

Dl (x∗)

)
≤ 2ϵ

D− .

To finish, we now prove that |κ− κ̂| = O(1/K). From (26) and by optimality
of x∗ we obtain:

κ− κ̂ ≤ κ(x)− κ̂ ≤
p∑

l=1

πlϵl
Dl (x̄)

≤ ϵ

D− (29)

Further, from (28) and by optimality of x̄ we obtain:

κ̂− κ ≤ κ̂(x∗)− κ ≤
p∑

l=1

πlϵl
Dl (x∗)

≤ ϵ

D− (30)

finishing the proof. ⊓⊔

Notice that the approach is valid for any fractional programming problem
having separable numerators and denominators. In our case, however, using the
Al trick from the last subsection makes all the numerators convex. This implies
that we are not forced to use an a priori cell approximation for them as depicted
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in the second constraint of (24). In consequence we can use again a cutting plane
approach by adding additional variables θl and replacing the linearized constraints
of N l

i (xi) in (24) by the following:

n∑
i=1

θil ≤
n∑

i=1

K∑
kl=0

K∑
ki=0

µl,i
kl,ki

τ l
kl
Dl

i

(
tiki

)
∀l ∈ [p]

θil ≥ N l
i (x̂i) +

(
N l

i

)′
(x̂i) (xi − x̂i) ∀x̂i, (31)

∀l ∈ [p], ∀i ∈ [n]

The same approximation bound is achieved with smaller tolerances. We can also
consider the bounds for the objective ρl and the new variables θl

eL
u
l −Uv

l ≤ρl ≤ eU
u
l −Lv

l ,∀l ∈ [p]

eL
u
l ≤θl ≤ eU

u
l ,∀l ∈ [p]

Last but not least, not using an LPL approximation for the numerators N l en-
sures that κ̂ is a genuine lower bound for κ by using a proof similar to the last
Proposition.

3.3 A cutting plane approach

The main problem with the cell-approximation (22) is the number of precedence
constraints (the second set of constraints in (22)) and the dimension {0, ...,K}I
of the variable µ. To bypass this issue, we propose the following cutting plane
approach for the generic optimization problem (23):

Proposition 7 Given fixed variables (x, λ, z) for problem (23), we consider the
µ subproblem of (23) (i.e. the problem of optimizing only with respect to µ). The
dual of the µ subproblem in (23) is:

max
p,c,d,s

−
I∑

i=1

∑
k∈{0,...,K}I

pkiλ
i
ki

+ c+
I∑

i=1

dixi −
J∑

j=1

sjbj

s.t. −
I∑

i=1

pkiλ
i
ki

+ c+
I∑

i=1

dit
i
ki

−
J∑

j=1

sjgj
(
t1k1

, ..., tIkI

)
≤ f

(
t1k1

, ..., tIkI

)
∀k ∈ {0, ...,K}I

p, s ≥ 0

The cuts added to the relaxed problem are the following

η ≥ −
I∑

i=1

∑
k∈{0,...,K}I

p̂kiλ
i
ki

+ ĉ+
I∑

i=1

d̂ixi −
J∑

j=1

ŝjbj (32)

0 ≥ −
I∑

i=1

∑
k∈{0,...,K}I

p̂kiλ
i
ki

+ ĉ+
I∑

i=1

d̂ixi −
J∑

j=1

ŝjbj (33)
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Note that given a feasible solution
(
x̂, λ̂, ẑ

)
for (22), the variables λ̂ are mostly zero

except for at most 2I of them, meaning that we can fix to zero all the corresponding
variables p. This suggests a Benders decomposition approach [2] to solve our cell-
approximation problem (24). We begin with the following master problem

min
x,ρ,θ,λ,y,ξ,z

p∑
l=1

πlρl

s.t. x ∈ X(
λi, zi

)
∈ LPL

(
ti,K, xi

)
∀i ∈ [n](

ξl, yl
)
∈ LPL

(
τ l,K, ρl

)
∀l ∈ [p]

eL
u
l −Uv

l ≤ ρl ≤ eU
u
l −Lv

l ∀l ∈ [p]

and add the cutting planes described in the following proposition as we need them:

Proposition 8 When solving problem (24) with a cut generation strategy, if the
current incumbent x̂ of the master problem violates a linear support function con-
straint modeled by θil , (31), then we add the following cut to the master problem:

θil ≥ N l
i (x̂i) +

(
N l

i

)′
(x̂i) (xi − x̂i)

If the current incumbent
(
x̂, ρ̂, θ̂, λ̂, ξ̂

)
of the master problem makes the subproblem

in µ infeasible, the Benders cut to add to the master problem are:

p∑
l=1

n∑
i=1

K∑
ki=0

K∑
kl=0

(
r̂liklki

ξlkl
+ ŝliklki

λi
ki

)
−

p∑
l=1

q̂l

n∑
i=1

θil −
p∑

l=1

n∑
i=1

(v̂lixi + ŵliρl) ≥
p∑

l=1

n∑
i=1

ûli

where (q̂, r̂, ŝ, û, v̂, ŵ) is an optimal ray of the dual of the subproblem in µ.

Notice that the dual of the subproblem in µ of formulation (24) is in fact
separable in p smaller problems:

p∑
l=1

max
ql,rl,sl,ul,vl,wl

ql
n∑

i=1

θil −
n∑

i=1

K∑
ki=0

K∑
kl=0

(
rliklki

ξ̂lkl
+ sliklki

λ̂i
ki

)
+

n∑
i=1

(uli + vlix̂i + wliρ̂l) (34)

s.t.: qlτ
l
kl
Dl

i

(
tiki

)
− rliklki

− sliklki
+ uli + vlit

i
ki

+ wliτ
l
kl

≤ 0

, ∀i ∈ {1, ..., n},∀ (kl, ki) ∈ {0, ...,K}2 (35)

ql, r
l, sl ≥ 0 (36)

From this dual we observe that only feasibility cuts are added as the variables µ do
not appear in the objective function. Whenever ξlkl

= 0, the objective coefficient

for all the variables rliklki
is zero, meaning that we can make rliklki

tend to infinity
and turn redundant the only constraint where said variable appears. The same
phenomenon occurs with λi

ki
= 0 and the variables sliklki

. Overall, when we are
not cutting to solve the LP relaxation, for each pair (l, i) we will have only four
non-redundant constraints and eight non-obviously zero variables r and s, leaving
an LP of linear size in terms of n, K and p.
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4 Computational speedups

4.1 Primal upper bounds: embedded heuristics

When using a cutting plane approach, it can be hard to decide when to stop.
Of course, we can stop whenever we cannot separate the current incumbent, in
which case it is feasible and the objective value of our master relaxed problem
is that of the full approximated problem. However, waiting for full feasibility can
- and does - make the method sloppy in practice. Any valid upper bound for
the master problem can provide an optimality gap, therefore having some way to
“repair” an incumbent (i.e. make it feasible for the full approximated problem) is of
crucial importance. The main idea of our heuristics is similar to the arguments “by
construction” of Propositions 3 and 6. For both models, we take the x components
of the current incumbent, and solve the nonlinear approximated problems: 1)in
(u, v, ρ, ϑ, θ, λ, z, ξ, y) at x fixed for MINR, which can be done by hand by making
constraints tight, and 2)in (ρ, λ, z, ξ, y, µ) at x fixed for CELL, where solving in
(ρ, λ, z, ξ, y, µ) is also doable by hand, but solving in µ requires to solve p LPs with
O(n) variables and O(n) constraints each.

4.2 Smart grids

From an implementation point of view, it is always interesting to use uniform grids
from their simplicity. However, it is well known that better approximations can be
constructed by choosing wisely the discretization points. We present here a way
to cleverly a fixed number of points K out of the K ≫ K points of a uniform
grid, such that some error measure is minimized. In [1], they show how to select a
subset of the K points - without any restriction on the size of the subset - such that
the loss in precision plus some ”storage cost” is minimized. They formulate the
problem as a shortest path problem in a directed acyclic network with K nodes and
K (K − 1) /2 edges. The problem can be seen as a minimization problem taking
the form min

y∈Y

{
l⊤y + α · e⊤y

}
where l and s are respectively a precision loss vector

and a unitary weight vector e, the latter being ponderated by some penalization
α ≥ 0. In their formulation, using more edges means selecting more points: the
storage cost per point selected, α, is in fact a proxy to moderate the number of
points selected. With this observation in mind, our objective is to minimize the
same precision loss, while enforcing that the number of points selected is exactly
some number K. The problem can be written as:

min
y∈Y

{
l⊤y : e⊤y = K

}
.

Our main idea is to solve the latter problem via a Lagrangean algorithm that
will select the best penalization α∗ that will give a ”good” selection - wrt to
the precision loss l - of exactly K points. Given some penalization α > 0, the
lagrangean relaxation of our problem is

min
y∈Y

{
l⊤y + α · e⊤y

}
− αK .
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If α = 0, all the points are kept by the optimal solution of the lagrangean relax-
ation, whereas if α is very large, only the first and last point of the grid defined
by the K points will be selected. In between, the number of points selected by
the optimal solution will be monotone nonincreasing wrt to α. The main idea of
our algorithm is to select the smallest α such that the optimal solution of the
corresponding lagrangean relaxation uses exactly K points.

Moreover, in the multiple adversaries setting, for each variable xi we use a
single grid to approximate all the functions Di

l for each l ∈ [p]. In consequence, we
have to make sure that we are minimizing some kind of joint error amongst the
adversaries. The easiest and most straightforward way to attain this goal was to
minimize the sum of the errors induced by every function involving xi.

5 Computational results

The algorithms presented in this paper were coded in C programming language and
run over Dell PowerEdge C6420 cluster nodes with Intel Xeon Gold 6152 CPUs
at 2.10GHz with 64Gb RAM each. All the Mixed Integer Linear Programming
problems are solved using the callable library of CPLEX[7]. When generating the
gradient and Benders cuts or building heuristic solutions from incumbents, we use
the user cuts and callbacks technology of the callable library of CPLEX 12.6.

5.1 Parameters and instance generation

Parameters We solve all our problems at relative precision 10−9 in order to make
sure that the cuts are taken into account and set a time limit of 3 hours for each
run. During the Branch-and-Bound-and-Cut, we separate fractional incumbents
only in the root node, and only integer incumbents during the tree search. The
heuristics being very fast in practice, they are called each time an incumbent is
found by the solver. K initial gradient cuts are added to approximate each of the
convex real valued function.

Payoffs generation Although we do not assume zero sum games - i.e. the payoff
of any attacker is equal to minus the payoff of the defender - it seems reasonable
to assume that in practice, the payoffs should be somehow related. In this goal,
we draw the payoffs Rl

i, R̄
l
i, −P l

i and −P̄ l
i from a uniform distribution in [0, 1].

Adversaries We test our algorithms with p ∈ {5, 7, 10, 12, 15}. The rationality
coefficient λl of each attacker is drawn from a uniform distribution in λ · [0.9, 1.1],
and we make vary λ ∈ {0.2, 0.7, 1.2, 1.7, 2.2}.

Defender’s risk aversion The parameter α captures an absolute risk aversion and
penalizes greatly defense strategies whose bad realizations exceed α. Noticing that
α has units - the same as the payoffs - we selected the parameter α of the Entropic
risk measure α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} ⊂ [−1, 1]. Notice that α is a very subjective
measure of the risk aversion of the decision maker and as such, it can be difficult
to adjust in practice.
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Instance size and operational constraints We consider instances with a number
of targets n ∈ {10, 20, 30, 40, 50} and a number of resources m = d · n where
d ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We consider only the case where only the resource
constraint is present, without any operational ones.

Grids The approximation grids have K segments with K ∈ {2, 4, 8, 16, 32}. When
using smart grids, we consider K = 256 sampled points from which we select K.

Base case To analyze the influence of each parameter, we took as a base case
n = 20, m = 20 · 0.3 = 6, p = 7, α = 0.5, λ = 0.7 and K = 4. We then vary n, d,
p, α, λ and K independently and repeat the experiment 10 times.

5.2 Algorithmic performances

We test the MINR reformulation and the cell model (CELL) with uniform grids
(U) or smart grids (S). For each experiment, we test the expected value maximiza-
tion (EX) and the entropic risk minimization with α = 0.5 (EN). For example,
minimizing the entropic risk with the cell model using smart grids is denoted
EN-CELL-S.

During the Branch and Bound and Cut procedure, let us define L as the best
relaxation bound, U the objective value of the best (wrt the nonlinear mixed
integer problems, where only the nonconvex functions are approximated) integer
feasible solution, and R the real objective value of the best (wrt to the real, non
approximated problem) solution so far. All the bounds found by each algorithm
upon termination, L, U and R, are presented as the fraction of the best bound R∗

found on the same instance by any algorithm.

General impression We show high level performance indicators in Table 2. Solv-
ing EN and EXP take similar execution times, however, the bounds and gaps are
better for ENT (higher L, lower U and R). We can also see that MINR is faster
and provides better bounds than CELL. Using smart grids makes the overall solu-
tion slightly slower for both algorithms and provides worse bounds for CELL but
improves them for MINR. The process takes longer using smart grids because the

risk measure EX EN
model CELL MINR CELL MINR
grid U S U S U S U S

time 9171 9534 7436 7458 9364 9503 7232 7280
L 0.870 0.869 0.973 0.975 0.894 0.892 0.977 0.980
U 0.962 0.968 0.983 0.984 0.969 0.973 0.986 0.987
R 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

appGap 9.852 10.480 1.045 0.883 7.955 8.615 0.941 0.792
realGap 13.071 13.171 2.755 2.490 10.808 10.991 2.294 2.041

Table 2: Overall average normalized bounds. Time in seconds, gaps in %.

optimization problems become harder: in fact, selecting K points out of K for all
the functions to approximate takes on average 4 seconds and 11 seconds in the
worst case.
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Fig. 1: Normalized bounds over time (in seconds) in the base case.

Parameters’ influence In Table 3, we present the final gaps and the execution
times in function of the parameters. The execution time steadily increases until
reaching the limit of 3 hours (marked “*”) with every parameter n, d, p, K, λ and
α. We have the confirmation at a finer level that the MINR model outperforms
CELL, and that the smart grids help to close the final gaps. More detailed results
can be found in the Annex in Tables 7, 8, 9, 10, 11 and 12.

Example of bounds progress with time In Figure 1, we present an example of bound
progression over time in the base case. It illustrates the fact that in terms of the
relaxation bound L (dashed), LMINRP (+) is very superior to CELL (×) and
that the smart grids (in black) do outperform the uniform grids (in gray). We can
also confirm that in terms of real objective value R (solid) both algorithms are
quite equivalent. More importantly the algorithms begin to stall after an hour,
suggesting that the cut generation mechanisms in use might be improved

5.3 Qualitative results

Probability distribution calculation To compare a risk neutral defense policy with
a risk averse one, we want to see if there is some kind of stochastic dominance
of a risk averse strategy versus a risk neutral one. To do so, we compare the
payoffs distributions of the defender depending on its risk aversion. In practice,
the defender can cover m targets out of n and the attackers target a single place
each. The only possible outcomes for the defender are: 1)being attacked on a
defended target i by attacker l with payoff V = R̄l

i > 0 or 2)being attacked on
an undefended target i by attacker l with payoff V = P̄ l

i < 0. Consequently, if we
assume that all the payoffs R̄l

i and P̄ l
i are different the only values possible are in

V ∈ {V1 < V2 < ... < V2np−1 < V2np} =

p∪
l=1

n∪
i=1

{
R̄l

i, P̄
l
i

}
.
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Recall from Section 2 that given a mixed defense strategy x ∈ [0, 1]n and the
associated QR y(x) ∈ [0, 1]n, the payoff of the defender is:

P̄ l
i with probability πlyli(x)(1− xi)

R̄l
i with probability πlyli(x)xi .

This way we can compute the probability distribution of the payoff of any defender
without sampling a large number of simulations. We compare the expected value,
variance, Value at Risk (VaR) at level 10%, Conditional Value at Risk (CVaR) at
level 10% and entropic risk at level α′ = 0.5 in function of α and λ.

General comments We now compare all the solutions obtained with MINR-S, as
the solutions it provides showed to be the most reliable. All the indicators are
given as the fraction of the same indicator for the risk neutral solution with the
base case parameter.

There is no clear influence of the parameters n, p and the number of break-
points K. However, the remaining parameters do have a strong influence on the
characteristics of a risk averse solution.

α influence In Table 4, we can see that by decreasing α (i.e. getting more risk
averse), there is a clear improvement in terms of all the risk aversion indicators.
That can come, however, at the cost of a significant loss in expected payoff.

risk m. Eα=0.1 Eα=0.3 Eα=0.5 Eα=0.7 Eα=0.9 E
E 1.294 1.108 1.048 1.027 1.019 1
V 0.840 0.881 0.919 0.939 0.949 1

VaR10 0.954 0.952 0.972 0.985 0.991 1
CVaR10 0.957 0.973 0.985 0.990 0.991 1
E0.5 1.029 0.981 0.978 0.980 0.983 1

Table 4: Quality Vs. α. All indicators are losses.

λ influence In Table 5, we can see that facing increasingly rational adversaries has
a significant negative impact on the risk neutral solution, whereas the risk averse
solutions hedge welll against smarter ennemies.

λ 0.2 0.7 1.2 1.7 2.2
risk m. ENT EXP ENT EXP ENT EXP ENT EXP ENT EXP

E 0.979 0.921 1.048 1 1.061 1.013 1.070 1.016 1.096 1.019
V 0.926 1.033 0.920 1 0.912 0.986 0.893 0.972 0.854 0.971

VaR10 0.952 0.994 0.973 1 0.976 0.998 0.966 0.998 0.955 0.999
CVaR10 0.974 0.992 0.985 1 0.987 1.001 0.983 0.999 0.977 0.999
E0.5 0.952 0.977 0.979 1 0.981 1.000 0.975 0.995 0.966 0.995

Table 5: Quality Vs. λ. All indicators are losses.
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Fig. 2: Cumulative distributions of the loss for x (E0.5) (black) and x (E) (gray)

d influence In Table 6, we can observe - without surporise - that having more
resources (higher values of d) has an extremely strong impact on the quality of
the solution: in fact, when we are able to cover simultaneously half the targets
(d = 0.5), the expected losses of both the risk averse and risk neutral policies
become negative.

d 0.1 0.2 0.3 0.4 0.5
risk m. ENT EXP ENT EXP ENT EXP ENT EXP ENT EXP

E 2.122 2.105 1.590 1.546 1.048 1 0.524 0.457 -0.027 -0.088
V 0.568 0.608 0.761 0.834 0.92 1 1.009 1.095 1.052 1.128

VaR10 1.036 1.048 1.008 1.022 0.973 1 0.923 0.963 0.872 0.913
CVaR10 1.018 1.023 1.001 1.012 0.985 1 0.96 0.985 0.933 0.963
E0.5 1.262 1.271 1.124 1.138 0.979 1 0.82 0.844 0.641 0.669

Table 6: Quality Vs. d. All indicators are losses.

Example of distributions Eα Vs. E In Figure 2, we compare the cumulative distri-
butions of a risk averse solution (black) and that of a risk neutral solution (gray).
We can see that past the loss 0.7, the risk averse solution dominates the risk averse
one. The variance of the risk averse solution is 20% lower at the cost of losing a
30% in payoff.

6 Conclusions

In this paper, we extended the classic model of Stackelberg security games with
quantal response to a risk averse setting for the defender and facing several ad-
versaries with different degrees of rationality. We presented two ways of finding
an approximately optimal defense strategy by solving nonlinear MIPs via cutting
planes. The first methodology (CELL) has a broader range of applications, but
the second (MINR) is more efficient, both in solution quality and execution time,
and offers a reasonable performance for practical mid-sized cases. Computational
results showed that minimizing an Entropic risk measure instead of maximizing
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the expected value can be advantageous from a qualitative point of view, allow-
ing to significantly reduce the overall payoff variance and the probability of bad
scenarios to occur.

Being cutting planes methods, our algorithms suffered from a sloppy behavior
towards the end of the tree search. In a future work, we should investigate the use
of stronger cuts, stabilization methods, or the fine tuning of the cut generation
process. The Entropic risk measure is not the only way to introduce risk aversion
in the behavior of an agent: In fact, there is a whole array of risk aversion-inducing
tools in the literature that can be used instead. In a current work, we show that us-
ing classical risk measures such as Value-at-Risk, Conditional-Value-at-Risk, upper
semi-deviations, etc... the resulting optimization problems have the same structure
as the ones described in this paper.
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7 Annex

In Tables 7, 8, 9, 10, 11 and 12 we present the full bounds over all the parameters.
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risk measure EX EN
model CELL MINR CELL MINR
grid U S U S U S U S

time n 10 2498 5354 14 6 1287 2809 10 7
20 * * 3837 4387 * * 5640 5479
30 * * * * * * * *
40 * * * * * * 10797 *
50 * * * * * * * *

L n 10 0.983 0.983 0.990 0.988 0.986 0.986 0.991 0.990
20 0.918 0.912 0.990 0.988 0.940 0.937 0.991 0.990
30 0.887 0.881 0.981 0.979 0.915 0.912 0.983 0.982
40 0.872 0.869 0.976 0.973 0.887 0.888 0.977 0.976
50 0.865 0.864 0.973 0.970 0.879 0.879 0.973 0.972

U n 10 0.983 0.984 0.990 0.988 0.986 0.986 0.991 0.991
20 0.983 0.984 0.990 0.988 0.985 0.987 0.991 0.990
30 0.984 0.986 0.990 0.988 0.986 0.989 0.991 0.991
40 0.984 0.986 0.990 0.988 0.988 0.989 0.991 0.991
50 0.986 0.988 0.990 0.988 0.990 0.991 0.991 0.991

R n 10 1.001 1.000 1.000 1.000 1.001 1.001 1.000 1.000
20 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000
30 1.002 1.002 1.000 1.000 1.003 1.004 1.000 1.000
40 1.002 1.002 1.000 1.000 1.004 1.004 1.000 1.000
50 1.002 1.002 1.000 1.000 1.004 1.004 1.000 1.000

appGap n 10 0.010 0.102 0.010 0.010 0.010 0.010 0.010 0.009
20 6.557 7.321 0.010 0.015 4.542 5.030 0.010 0.017
30 9.835 10.639 0.935 0.900 7.199 7.777 0.873 0.871
40 11.450 11.881 1.459 1.453 10.177 10.266 1.479 1.494
50 12.237 12.462 1.708 1.776 11.196 11.258 1.806 1.821

realGap n 10 1.775 1.732 0.995 1.225 1.499 1.421 0.882 0.953
20 8.293 8.895 1.029 1.249 6.154 6.500 0.891 0.973
30 11.415 12.029 1.921 2.108 8.792 9.181 1.730 1.808
40 12.979 13.240 2.449 2.655 11.592 11.543 2.345 2.429
50 13.662 13.733 2.699 2.979 12.433 12.433 2.670 2.751

Table 7: Performances Vs. n. “*”= 3h time out
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risk measure EX EN
model CELL MINR CELL MINR
grid U S U S U S U S

time d 0.1 783 2122 2 8 332 705 3 8
0.2 * * 183 785 8591 10361 287 1603
0.3 * * 3837 4387 * * 5640 5479
0.4 * * * * * * 10161 10334
0.5 * * * * * * * *

L d 0.1 0.984 0.986 0.986 0.989 0.988 0.989 0.990 0.992
0.2 0.952 0.946 0.988 0.994 0.971 0.967 0.992 0.995
0.3 0.918 0.912 0.990 0.988 0.940 0.937 0.991 0.990
0.4 0.889 0.887 0.982 0.984 0.906 0.911 0.986 0.988
0.5 0.885 0.884 0.984 0.984 0.893 0.886 0.981 0.985

U d 0.1 0.984 0.986 0.986 0.989 0.989 0.990 0.990 0.992
0.2 0.982 0.984 0.988 0.994 0.986 0.987 0.992 0.995
0.3 0.983 0.984 0.990 0.988 0.985 0.987 0.991 0.990
0.4 0.986 0.986 0.985 0.988 0.987 0.988 0.989 0.991
0.5 0.990 0.990 0.993 0.990 0.990 0.990 0.994 0.992

R d 0.1 1.001 1.001 1.000 1.000 1.001 1.001 1.000 1.000
0.2 1.001 1.001 1.000 1.000 1.002 1.001 1.000 1.000
0.3 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000
0.4 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000
0.5 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000

appGap d 0.1 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
0.2 3.075 3.836 0.010 0.010 1.544 2.086 0.010 0.010
0.3 6.557 7.321 0.010 0.015 4.542 5.030 0.010 0.017
0.4 9.776 10.108 0.274 0.402 8.168 7.745 0.301 0.368
0.5 10.635 10.651 0.923 0.616 9.787 10.544 1.320 0.694

realGap d 0.1 1.667 1.501 1.413 1.093 1.252 1.152 1.007 0.799
0.2 4.902 5.474 1.170 0.648 3.095 3.461 0.784 0.509
0.3 8.293 8.895 1.029 1.249 6.154 6.500 0.891 0.973
0.4 11.175 11.423 1.784 1.565 9.544 9.037 1.404 1.239
0.5 11.566 11.651 1.642 1.575 10.836 11.576 1.961 1.519

Table 8: Performances Vs. d. “*”= 3h time out
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risk measure EX EN
model CELL MINR CELL MINR
grid U S U S U S U S

time p 5 * * 1248 2132 * * 1922 2560
7 * * 3837 4387 * * 5640 5479
10 * * 10409 8866 * * * 9907
12 * * * * * * * 10437
15 * * * * * * * *

L p 5 0.923 0.919 0.990 0.988 0.947 0.945 0.991 0.990
7 0.918 0.912 0.990 0.988 0.940 0.937 0.991 0.990
10 0.908 0.904 0.988 0.987 0.930 0.925 0.988 0.989
12 0.901 0.900 0.981 0.986 0.915 0.915 0.983 0.987
15 0.886 0.884 0.972 0.983 0.903 0.902 0.975 0.983

U p 5 0.983 0.985 0.990 0.988 0.987 0.988 0.991 0.990
7 0.983 0.984 0.990 0.988 0.985 0.987 0.991 0.990
10 0.983 0.983 0.990 0.988 0.984 0.986 0.991 0.990
12 0.983 0.984 0.990 0.988 0.985 0.986 0.991 0.990
15 0.984 0.985 0.990 0.988 0.985 0.986 0.991 0.990

R p 5 1.002 1.002 1.000 1.000 1.002 1.002 1.000 1.000
7 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000
10 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000
12 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000
15 1.000 1.001 1.000 1.000 1.001 1.001 1.000 1.000

appGap p 5 6.095 6.613 0.010 0.010 4.010 4.364 0.010 0.010
7 6.557 7.321 0.010 0.015 4.542 5.030 0.010 0.017
10 7.623 8.021 0.195 0.029 5.482 6.198 0.282 0.089
12 8.396 8.558 0.901 0.154 7.112 7.181 0.853 0.269
15 9.955 10.317 1.865 0.460 8.355 8.527 1.581 0.749

realGap p 5 7.822 8.216 1.030 1.236 5.474 5.670 0.903 0.965
7 8.293 8.895 1.029 1.249 6.154 6.500 0.891 0.973
10 9.334 9.636 1.202 1.258 7.141 7.710 1.171 1.069
12 9.992 10.081 1.870 1.382 8.619 8.615 1.750 1.252
15 11.478 11.698 2.817 1.685 9.846 9.937 2.463 1.729

Table 9: Performances Vs. p. “*”= 3h time out
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risk measure EX EN
model CELL MINR CELL MINR
grid U S U S U S U S

time K 2 909 3360 2 8 626 1864 3 8
4 * * 3837 4387 * * 5640 5479
8 * * * * * * * *
16 8035 8131 * * 9505 8439 * *
32 10641 10763 * * * 10670 * 10761

L K 2 0.914 0.920 0.942 0.954 0.920 0.925 0.958 0.965
4 0.918 0.912 0.990 0.988 0.940 0.937 0.991 0.990
8 0.871 0.869 0.991 0.992 0.888 0.887 0.992 0.993
16 0.862 0.861 0.988 0.991 0.874 0.874 0.990 0.991
32 0.842 0.855 0.988 0.990 0.857 0.839 0.989 0.990

U K 2 0.914 0.920 0.942 0.955 0.920 0.925 0.958 0.966
4 0.983 0.984 0.990 0.988 0.985 0.987 0.991 0.990
8 0.998 0.998 0.997 0.997 0.999 1.000 0.997 0.998
16 1.000 1.001 0.999 0.999 1.002 1.002 0.999 0.999
32 1.002 1.001 1.000 1.000 1.004 1.004 1.000 1.000

R K 2 1.002 1.002 1.001 1.001 1.005 1.004 1.001 1.001
4 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000
8 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000
16 1.001 1.001 1.000 1.000 1.002 1.003 1.000 1.000
32 1.002 1.002 1.000 1.000 1.004 1.004 1.000 1.000

appGap K 2 0.010 0.010 0.009 0.010 0.009 0.009 0.009 0.010
4 6.557 7.321 0.010 0.015 4.542 5.030 0.010 0.017
8 12.726 12.879 0.587 0.457 11.043 11.220 0.563 0.514
16 13.816 13.938 1.055 0.846 12.724 12.832 0.891 0.817
32 15.902 14.593 1.204 0.968 14.684 16.495 1.048 0.942

realGap K 2 8.786 8.166 5.866 4.634 8.445 7.924 4.287 3.542
4 8.293 8.895 1.029 1.249 6.154 6.500 0.891 0.973
8 13.004 13.157 0.914 0.740 11.332 11.459 0.807 0.716
16 13.872 13.987 1.128 0.905 12.771 12.876 0.934 0.853
32 15.914 14.602 1.215 0.975 14.682 16.495 1.048 0.944

Table 10: Performances Vs. K. “*”= 3h time out
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risk measure EX EN
model CELL MINR CELL MINR
grid U S U S U S U S

time λ 0.2 7743 8484 64 38 8567 8334 22 29
0.7 * * 3837 4387 * * 5640 5479
1.2 * * * * * * * *
1.7 * * * * * * * *
2.2 * * * * * * * *

L λ 0.2 0.995 0.995 0.998 0.997 0.997 0.997 0.998 0.998
0.7 0.918 0.912 0.990 0.988 0.940 0.937 0.991 0.990
1.2 0.793 0.793 0.963 0.963 0.816 0.815 0.963 0.966
1.7 0.628 0.626 0.916 0.924 0.643 0.644 0.914 0.926
2.2 0.518 0.514 0.856 0.874 0.530 0.527 0.857 0.876

U λ 0.2 1.000 1.000 0.998 0.997 1.000 1.000 0.998 0.998
0.7 0.983 0.984 0.990 0.988 0.985 0.987 0.991 0.990
1.2 0.967 0.972 0.973 0.972 0.967 0.972 0.976 0.976
1.7 0.838 0.866 0.948 0.953 0.845 0.874 0.953 0.958
2.2 0.694 0.752 0.915 0.934 0.699 0.763 0.921 0.938

R λ 0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.7 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000
1.2 1.001 1.001 1.000 1.000 1.002 1.002 1.000 1.000
1.7 1.001 1.001 1.000 1.000 1.004 1.005 1.001 1.000
2.2 1.001 1.001 1.000 1.001 1.006 1.005 1.001 1.000

appGap λ 0.2 0.471 0.460 0.010 0.010 0.264 0.268 0.010 0.010
0.7 6.557 7.321 0.010 0.015 4.542 5.030 0.010 0.017
1.2 17.947 18.375 0.999 0.936 15.668 16.091 1.374 1.022
1.7 25.097 27.701 3.352 3.050 23.983 26.329 4.067 3.326
2.2 25.278 31.597 6.418 6.424 24.221 31.014 6.881 6.599

realGap λ 0.2 0.521 0.509 0.212 0.289 0.300 0.302 0.170 0.181
0.7 8.293 8.895 1.029 1.249 6.154 6.500 0.891 0.973
1.2 20.762 20.790 3.686 3.753 18.609 18.631 3.773 3.387
1.7 37.306 37.440 8.423 7.667 36.022 35.908 8.679 7.408
2.2 48.272 48.624 14.400 12.667 47.343 47.604 14.365 12.443

Table 11: Performances Vs. λ. “*”= 3h time out
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model CELL MINR
grid U S U S

time α 0.1 * * 3968 2022
0.3 * * 3905 3552
0.5 * * 5640 5479
0.7 * * 6829 7808
0.9 * * 7672 9496

L α 0.1 0.952 0.946 0.994 0.994
0.3 0.943 0.943 0.992 0.991
0.5 0.940 0.937 0.991 0.990
0.7 0.935 0.935 0.991 0.990
0.9 0.934 0.931 0.990 0.989

U α 0.1 0.991 0.992 0.995 0.994
0.3 0.988 0.989 0.992 0.992
0.5 0.985 0.987 0.991 0.990
0.7 0.985 0.986 0.991 0.990
0.9 0.984 0.986 0.991 0.990

R α 0.1 1.003 1.003 1.000 1.000
0.3 1.002 1.003 1.000 1.000
0.5 1.002 1.002 1.000 1.000
0.7 1.002 1.002 1.000 1.000
0.9 1.002 1.002 1.000 1.000

appGap α 0.1 3.914 4.641 0.034 0.010
0.3 4.574 4.657 0.010 0.010
0.5 4.542 5.030 0.010 0.017
0.7 5.056 5.242 0.043 0.049
0.9 5.145 5.568 0.051 0.084

realGap α 0.1 5.022 5.678 0.596 0.600
0.3 5.939 5.938 0.809 0.859
0.5 6.154 6.500 0.891 0.973
0.7 6.656 6.702 0.950 1.033
0.9 6.792 7.029 0.967 1.067

Table 12: Performances Vs. α. “*”= 3h time out


