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Abstract The aim of this paper is to provide an introduction to the improved
iterative Krylov solution of boundary integral equations for time-harmonic
scattering problems arising in acoustics, electromagnetism and elasticity. From
the point of view of computational methods, considering large frequencies is a
challenging issue in engineering since it leads to solving highly indefinite large
scale complex linear systems which generally implies a convergence breakdown
of iterative methods. More specifically, we explain the problematic and some
partial solutions through analytical preconditioning for high-frequency acous-
tic scattering problems and the introduction of new combined field integral
equations. We complete the paper with some recent extensions to the case of
electromagnetic and elastic waves equations.

Keywords time-harmonic scattering · acoustic · electromagnetism ·
elasticity · integral equation · Krylov solver · preconditioners · combined field
integral equation

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Difficulties for the iterative solution of scattering problems . . . . . . . . . . . . . . 3
3 Elements on pseudodifferential operator theory . . . . . . . . . . . . . . . . . . . . 15
4 Potential theory - integral equations . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Developing fast converging solutions: strategy and problematics . . . . . . . . . . . 31
6 Spectral analysis of integral operators for the sphere . . . . . . . . . . . . . . . . . 32

X. Antoine
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1 Introduction

The numerical solution of time-harmonic (exterior) scattering problems in the
high frequency regime remains a challenging problem due to its specific com-
putational drawbacks. A few possible directions can be considered to formu-
late the problem and try to solve it [19,51,56,81,82,88,99,100,116]. Here, we
choose the point of view of integral equations formulations [56,88,100,113]. In
the most recent industrial code developments, a boundary integral equation
formulation is approximated by the Boundary Element Methods (BEM) [82].
The resulting linear system is next solved by an iterative Krylov solver [69,106]
coupled e.g. with a Fast Multipole Method (FMM) [51,55,62,63,70,82,105,
111] or H-matrix [26,72,84]. However, for example in acoustic, the Helmholtz
operator for scattering problems is a highly indefinite complex-valued linear
operator. As a consequence, the associated matrix resulting from the bound-
ary element discretization is also highly indefinite and complex. This results
in a breakdown of the iterative Krylov solver in many applications or to an
extremely slow convergence in best cases. The aim of this paper is to explain
the specific difficulties linked to this problem and to introduce some partial
solutions to solve the problem. In particular, the convergence of the solver is
closely related to the spectral properties of the integral operators. We propose
here to modify the eigenvalue distribution in such a way that we get a fast
convergence. This is related to the idea of preconditioning but not only. Fur-
thermore, the originality of our approach is that we work at the continuous
level, meaning that we directly manipulate the Helmholtz operator and not its
discrete matrix representation. This point of view gives rise to an analytical
operator theory for building preconditioners which must be compared to the
standard purely algebraic approach.

The plan of the paper is the following. In Section 2, we give some basics
about numerical linear algebra and Krylov solvers. In particular, we describe
on a few explicit examples the problems of convergence that can arise when
solving indefinite linear systems. This leads us to analyze and understand why
high frequency exterior Helmholtz problems also suffer from a lack of conver-
gence. A brief review of some notions and recent developments on algebraic
preconditioners is also proposed for convergence improvement. As already said,
one of the originalities of our approach for preconditioning integral operators
is to build continuous analytical preconditioners. To this aim, Section 3 gives
an introduction to the theory of pseudodifferential operators and associated
symbolic calculus which will be used in the sequel. In particular, we give a
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first simple application of this theory for proposing an original interpretation
of standard algebraic Laplace shifted preconditioners. Section 4 focuses on the
theory of potential which is used for writing integral equation representations
for acoustic scattering. We develop the elementary notions for obtaining inte-
gral equations and review standard direct and indirect, first- and second-kind
Fredholm integral operator formulations. This allows us to insist on the spec-
tral properties of each representation and to precise the well-posedness results.
Section 5 gives a short presentation of the way actual integral equation solvers
are built. This mainly highlights the fact that the construction of a precon-
ditioner should be based on the only assumption that an integral operator is
never available through its matrix but rather through a ”black-box” which is
able to compute fast matrix-vector products. Therefore, a suitable precondi-
tioner should be matrix-free which is a strong restriction to usual algebraic
preconditioners. We analyze in Section 6 the spectral distribution of standard
integral operators in the case of a sphere where integral operators can be
diagonalized. This gives a thorough understanding of the eigenvalue distribu-
tion of each operator and how it is related to the frequency parameter k and
density nλ of discretization points per wavelength. In Section 7, we describe
two possible solutions for obtaining some efficient and robust analytical pre-
conditioners. The first strategy uses integral operators through the so-called
Calderón relations while the second one is based on the theory of pseudodiffer-
ential operators. Some examples show that these two directions are promising.
In Section 8, we propose to build some new alternative well-posed integral
equations with a spectral distribution well-suited to get a fast convergence of
an iterative solver. Examples show that these new integral formulations are
well-adapted for solving high frequency acoustic problems. In Sections 9 and
10, we discuss the extension of this approach to the Maxwell’s equations and
elasticity equations, respectively. In Section 11, we briefly review other recent
contributions for completeness. Finally, Section 12 gives a conclusion.

2 Difficulties for the iterative solution of scattering problems

2.1 Notations and background

Let us begin by some background in linear algebra. A vector norm on a vector
space Y is a real-valued function y 7→ ‖y‖ on Y which satisfies

• ‖y‖ ≥ 0, ∀y ∈ Y, and ‖y‖ = 0 if and only if y = 0 (positivity),
• ‖αy‖ = |α|‖y‖, ∀y ∈ Y, ∀α ∈ C (scaling),
• ‖y + x‖ ≤ ‖y‖+ ‖x‖, ∀y,x ∈ Y (triangular inequality).

For the particular case when Y = Cn, the most commonly used vector norms
are the Hölder norms (p-norms)

‖y‖p = (

n∑
i=1

|yi|p)1/p,
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with y = (yi)i=1,··· ,n and p ≥ 1. The most useful norms in practice are

‖y‖1 =

n∑
i=1

|yi|, ‖y‖2 = (

n∑
i=1

|yi|2)1/2, and ‖y‖∞ = max
i=1,··· ,n

|yi|.

We can use norms to measure the magnitude of a matrix. The same axioms
stated above for vector norms apply here

• ‖A‖ ≥ 0, ∀A ∈ Cn×n, and ‖A‖ = 0 if and only if A = 0 (positivity),
• ‖αA‖ = |α|‖A‖, ∀A ∈ Cn×n, ∀α ∈ C (scaling),
• ‖A+B‖ ≤ ‖A‖+ ‖B‖, ∀A,B ∈ Cn×n (triangular inequality).

Important norms are the induced matrix p-norms

‖A‖p = max
x∈Cn,x 6=0

‖Ax‖p
‖x‖p

.

A fundamental property is that

‖AB‖p ≤ ‖A‖p‖B‖p, ∀A,B ∈ Cn×n.

When p = 1 and p =∞, we have the simple formulas (A = (aij)1≤i,j≤n)

‖A‖1 = max
j=1,··· ,n

n∑
i=1

|aij | and ‖A‖∞ = max
i=1,··· ,n

n∑
j=1

|aij |.

The induced 2-norm is also called the spectral norm and is given by

‖A‖2 = ρ(A∗A)
1/2
,

with A∗ the transpose conjugate matrix (= ĀT ) and ρ(A) the maximum mod-
ulus of the eigenvalues of A (spectral radius).

To end this section, let us give some other useful definitions.

Definition 1 Let us introduce the following definitions

• A non Hermitian matrix A of size n × n is said to be positive-definite
(respectively negative-definite) if and only if <(x∗Ax) > 0 (respectively
<(x∗Ax) < 0) for all non-zero vectors x ∈ Cn.
• A Hermitian matrix A (A = A∗) of size n×n is called positive-definite (re-

spectively negative-definite) if and only if x∗Ax > 0 (respectively x∗Ax <
0) for all non-zero vectors x ∈ Cn.

• A Hermitian matrix A of size n × n is said to be positive-semidefinite
(respectively negative-semidefinite) if and only if x∗Ax ≥ 0 (respectively
x∗Ax ≤ 0) for all x ∈ Cn.
• A Hermitian matrix which is neither positive- or negative-semidefinite is

called indefinite.

We also have the following Proposition.

Proposition 1 A Hermitian matrix is positive-definite if and only if all its
eigenvalues are real and strictly positive.
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2.2 Iterative algorithms

We consider a linear system

Ax = b, (1)

where A is an invertible complex-valued matrix of size n×n and b ∈ Cn. Ap-
proaches for the solution of linear systems fall into two classes: direct methods
and iterative methods.

Direct methods [106] produce an exact solution in a predictable finite num-
ber of elementary operations assuming no rounding errors. When the matrix
is symmetric positive-definite, a Cholesky algorithm is applied. For a nonsym-
metric matrix, a gaussian elimination solver is used. In this case, the memory
storage and computational times costs scale as O(n2) and O(n3) respectively.
Then, a direct solution is clearly out of reach when A is large and dense,
requiring hence too large memory and prohibitive computational times.

Iterative schemes can be considered as an alternative to direct methods
for the solution of large linear systems. Stationary relaxation-type methods
(Jacobi, Gauss-Seidel...) [69,106] have the disadvantage of slow convergence
and concern certain classes of matrices only. Projection methods are more
general and robust. This is most particularly the case of Krylov subspace
methods [69,106]. These techniques are motivated by the Cayley-Hamilton
theorem [91] which allows to construct the inverse of a matrix as a polynomial
according to A. Krylov subspace methods consist in seeking an approximate
solution x(m) to (1) from an affine subspace

x(0) +Km(A, r(0)), (2)

with

• x(0) the initial guess,
• r(0) = b−Ax(0) the initial residual vector,
• Km(A, r(0)) = span{r(0), Ar(0), A2r(0), . . . , Am−1r(0)} the Krylov subspace

of dimension m,

such that the orthogonality condition (Petrov-Galerkin condition)

(B(x− x(m)),v) = 0, ∀v ∈ Km(A, r(0)), (3)

is fulfilled. The successive approximations are clearly expressed by x(m) =
x(0) + Pm−1(A)r(0), where Pm−1 is a polynomial of degree m− 1. The differ-
ent Krylov methods therefore differ in the choice of the matrix B (generally
symmetric positive-definite). If B defines a scalar product, then the orthogo-
nality condition (3) becomes equivalent to the following minimization problem
(optimality condition)

‖x− x(m)‖B = min
y∈Km(A,r(0))

‖x− y‖B .

Two standard examples of such methods are
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• Conjugate gradient methods: If A is symmetric positive-definite, then B =
A and (3) is equivalent to

‖x− x(m)‖A = min
y∈Km(A,r(0))

‖x− y‖A,

• Generalized Minimum RESidual method (GMRES) : For a general matrix
A, we choose B = ATA and get

‖b−Ax(m)‖2 = min
x∈Km(A,r(0))

‖b−Ax‖2.

A Krylov subspace method is then represented by a constructive algorithm of
a basis of the affine subspace Km(A, r(0)) and by an optimality criterion to
determine the approximate solution x(m) of (1).

Let us now focus our attention on the GMRES which constitutes the ref-
erence algorithm for integral equations. This algorithm, introduced by Saad
and Schultze [107], is well-adapted to solve large nonsymmetric linear sys-
tems. It corresponds to the choice of the Krylov subspace Km(A,v1), with
v1 = r(0)/‖r(0)‖2. At each iteration, Km(A,v1) has to be constructed. In
practice, we have to generate a set of basis of this subspace. The natural ba-
sis (v1, Av1, A

2v1, . . . , A
m−1v1) cannot be used because of its numerical de-

generacy. A solution is to construct an orthonormal basis (v1,v2, . . . ,vm) of
Km(A,v1) via the Arnoldi-Modified Gramm-Schmidt algorithm. We denote by
Vm = (v1,v2, . . . ,vm) the n×m matrix with columns vectors vi, i = 1, . . . , n,
and by Hm the (m + 1) ×m Hessenberg matrix where nonzero entries hij =
(Avj ,vi) are defined by the Arnoldi-Modified Gramm-Schmidt algorithm. Any
vector x in x(0) + Km(A,v1) can thus be written as x = x(0) + Vmy, where
y ∈ Cm. Moreover, the relation AVm = Vm+1Hm holds. It results in

b−Ax = b−A(x(0) + Vmy) = Vm+1(βe1 −Hmy),

by setting β = ‖r(0)‖2 and e1 = (1, 0, . . . , 0)T ∈ Rm+1. Then, we have the
optimality criterion

min
x∈Km(A,r(0))

‖b−Ax‖2 = min
y∈Rm

‖βe1 −Hmy‖2,

exploiting the fact that the column-vectors of Vm+1 are orthonormal. The
approximate solution x(m) can be obtained as x(m) = x(0) + Vmy(m), where
y(m) minimizes the functional J(y) = ‖βe1 −Hmy‖2. The pseudocode for a
basic form of the GMRES algorithm can now be given as

1. Initialization
Compute r(0) = b−Ax(0), β := ‖r(0)‖2 and v1 := r(0)/β

2. Define the (m+ 1)×m matrix Hm = {hij}1≤i≤m+1,1≤j≤m. Set Hm = 0.
3. Construction of the Arnoldi’s basis (steps 3-11)

for j = 1, 2, . . . ,m, do
4. compute wj := Avj
5. for i = 1, . . . , j, do
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6. hij := (wj ,vi)
7. wj := wj − hijvi
8. enddo
9. hj+1,j = ‖wj‖2. If hj+1,j = 0 set m := j and go to 12

10. vj+1 = wj/hj+1,j

11. enddo
12. Minimization problem

Compute y(m) as the minimizer of ‖βe1 − Hmy‖2 and x(m) = x(0) +
Vmy(m).

In order to solve the least-squares problem (step 12), the most adapted
technique is to employ a QR-decomposition of the Hessenberg matrix Hm

(see [106] for details).

Remark 1 The parameter m is not determined a priori. In general, a max-
imum number mmax is fixed and is typically dictated by the computational
ressources. If the maximum number mmax of iterations has been reached with-
out triggering the convergence test, then a restarting is done, i.e. GMRES is
started afresh with the last approximation x(mmax) as the initial guess. This
method is called restarted GMRES(mmax). The residual ‖b−Ax(m)‖2 is gen-
erally used as a stopping criterion.

Essentially, the computational cost of GMRES is related to

i) the total number of iterations N iter required to reach an a priori fixed
tolerance ε on the residual norm,

ii) the cost of one iteration which is mainly the Matrix-Vector Product (MVP)
wj = Avj involved at step 4.

If this algorithm is directly used for a full complex-valued matrix A, then the
total cost is O(N itern2). In terms of memory storage, the algorithm still needs
O(n2) entries for A. In the background of integral equations, efficient com-
pression algorithms have been proposed during the last decades. For example,
the multilevel FMM [51,55,62,63,70,82,105,111] both computes the MVP in
O(n log n) operations and requires O(n) entries. Essentially, the FMM pro-
poses to compute only the near-field entries exactly and the far-field entries
approximately (but with controllable error). Other fast algorithms exists like
e.g. H-matrix compression techniques [26,72,84] or high-order solvers devel-
oped in [33,34,36]. This drastic reduction both in computational cost and
memory storage for one iteration of the GMRES gives expectations for solving
high frequency problems.

Let us now briefly review the most important results on the convergence
behaviour of GMRES (for proof and further details see [69,96,106]). If A ∈
Cn×n is non singular, we define the quantity

κp(A) = ‖A‖p‖A−1‖p,

which is called the condition number of the linear system (1) with respect
to the induced matrix p-norm (cf. section 2.1). We begin by giving a global
convergence result.
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Theorem 1 Let A ∈ Cn×n be a non singular matrix. The full GMRES algo-
rithm is guaranteed to converge in at most n iterations.

This is true in the absence of round-off errors. Unfortunately, computer arith-
metic is not exact. Moreover, this is impractical for large linear systems which
indeed require too much iterative steps to reach the convergence. In these
situations, a preconditioner can be used to further reduce the number of iter-
ations (see e.g. Section 2.5). In order to predict the behaviour of GMRES, the
convergence analysis is concerned with the derivation of upper bounds on the
residual norms.

Proposition 2 Let A ∈ Cn×n be a non singular matrix and x(0) ∈ Cn an
initial guess. If we can diagonalize A in the form A = UΛU−1, where Λ is
the diagonal matrix of eigenvalues (λi)i of A corresponding to the appropriate
eigenvectors in U , then a bound on the residual norm at iteration m is

‖r(m)‖2 ≤ κ2(U) min
q∈Pm,q(0)=1

max
i=1,...,n

q(λi)‖r(0)‖2, (4)

with κ2(U) = ‖U‖2‖U−1‖2 the condition number of U in the 2-norm.

This bound was the first convergence result for GMRES [107]. However,
even if A is normal (κ2(U) = 1), the bound (4) may fail to provide any
reasonable information about the rate of reduction of the GMRES residual
norms. For diagonalizable but non normal A (U far from unitary), κ2(U)
might be very large, and the bound in (4) might be a large overestimate of
the residual norm. Moreover, it is not clear that only the conditioning of the
eigenvectors of A should influence the convergence behaviour of GMRES (see
Section 2.3). Obtaining computable bounds on the residual norm that generate
a good prescribed convergence curve for a general matrix is a difficult task.
Theoretical results (min-max approximations on matrix eigenvalues) in this
field are still partially known. We see in the sequel of the paper that the
analysis of the distribution of the eigenvalues in the complex plane gives a very
useful approach for predicting the convergence of the GMRES. Concerning the
restarted GMRES, the following proposition holds.

Theorem 2 If A is symmetric positive-definite, then GMRES(m) converges
at any m ≥ 1.

However, the restarted GMRES algorithm can stagnate when the matrix
is not definite positive. We will observe this difficulty in the following section.

2.3 Convergence problems for indefinite linear systems

In iterative methods, a common belief is that the condition number κ2(A) (in
the 2-norm) of A is a good measure of the convergence rate of the algorithm.
This is generally not true for a complex-valued matrix A where indeed the dis-
tribution of the eigenvalues in the complex plane is the most crucial point to
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(a) A1: Eigenvalue distribution (n = 100)
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(b) A1: Convergence history

Fig. 1 Matrix A1.

observe. In many applications, the eigenvalues of the matrix A are computed
in order to examine if the whole spectrum is included or not in a given part of
the complex plane. Unfortunately, the matrix is often defined with a given pre-
cision and the computed eigenvalues may differ from the real ones, especially
in highly non normal cases. To answer to this problem, the difficult notion of
ε-pseudospectrum of a matrix was introduced [114]. In a few words, the idea
is to compute the set of the eigenvalues of perturbed matrices A+E for some
E, with ‖E‖ ≤ ε. Generally, this approach is costly in terms of computation.

To illustrate the fact that the distribution of the eigenvalues plays a crucial
role in the convergence of the restarted GMRES, let us consider the seven
simple complex-valued diagonal matrices Aj defined by

A1 = diag(1/`2)1≤`≤n, A2 = diag(ei`/`2)1≤`≤n, A3 = diag(ei`)1≤`≤n,
A4 = diag(1 + ei`)1≤`≤n, A5 = diag(1.5 + ei`)1≤`≤n,
A6 = diag(1 + ei`/`)1≤`≤n, A7 = diag(1 + ei`/`2)1≤`≤n.

(5)
Concerning A1, the matrix is real-valued and the eigenvalues tend towards

zero as `→ +∞ (Figure 1(a)). In terms of operators (see section 3), it corre-
sponds to the notion of real-valued elliptic positive pseudodifferential operator
of order −2. More or less, the underlying operator is the inverse of the one-
dimensional Laplacian operator (∂2x)−1. In particular, the matrix is symmetric
and positive-definite. We can observe that there is an eigenvalue clustering
around zero. The condition number κ2(A1) = n2 becomes large as n grows
and so the convergence of GMRES(50) takes more iterations (Figure 1(b)).
However, the convergence is observed. The tolerance of the iterative solver is
fixed equal to ε = 10−14 in all the examples.

The second test-case is related to a complex-valued matrix A2. The case is
close to the previous one but the distribution of the eigenvalues in the com-
plex plane is completely different even if the corresponding magnitude tends
to zero (Figure 2(a)). The condition number is again n2 but we can quickly
observe the divergence of GMRES(50) e.g. for n = 100 (Figure 2(b)). Here,
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(a) A2: Eigenvalue distribution (n = 100)
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Fig. 2 Matrix A2.
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(a) A3: Eigenvalue distribution (n = 1000)

0 0.5 1 1.5 2 2.5 3

x 10
5

−14

−12

−10

−8

−6

−4

−2

0

2

Iteration

R
e
s
id

u
a
l 
h
is

to
ry

 (
lo

g
)

 

 

n = 100

n = 1000

(b) A3: Convergence history

Fig. 3 Matrix A3.

the matrix is indefinite (eigenvalues with negative or positive real parts). In
terms of operators, this corresponds to an indefinite complex-valued integral
(or pseudodifferential) operator of order −2. This is also a first-kind Fredholm
integral operator (see Section 4.3.5). These two situations show how the con-
vergence of the restarted GMRES strongly depends on the distribution of the
eigenvalues in the complex plane.

The third situation with A3 is also very interesting. The complex-valued
matrix has a condition number equals to 1 but the convergence of GMRES(50)
takes many iterations to converge for n = 100 and even diverges for n = 1000.
This example illustrates clearly that considering indefinite matrices leads to
instabilities of the restarted GMRES and eventually to its divergence. This is
still true if one translates the spectrum of A3 from 1 to the right and get the
matrix A4 (Figure 4(a)). Now, if one translates A3 from 1.5 and obtain A5,
then the convergence holds and is relatively fast since all the eigenvalues have
a large positive real part and are sufficiently far away from the origin (Figure
4(b)).
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(a) A4: Convergence history
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Fig. 4 Matrices A4 and A5.
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(a) A6: Eigenvalue distribution (n = 100)
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Fig. 5 Matrix A6.

Let us consider the two matrices A6 and A7. They look like A4 but the
perturbative term to 1 has a modulus which tends towards zero linearly or
quadratically (Figures 5(a) and 6(a)). This rate of convergence of the sequence
is related to the order of the underlying operator: first- or second-order. This
kind of matrices (close to positive-definite matrices for large values of n) cor-
responds to an integral operator called a second-kind Fredholm operator (see
Section 4.3.5). Their spectrum clusters around a complex value α (= 1 here)
up to a sequence converging to zero (ei`/` or ei`/`2 here). These configurations
lead to converging iterative schemes with a rate depending on the decay of the
sequence to zero (Figures 5(b) and 6(b)).
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(a) A7: Eigenvalue distribution (n = 100)
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(b) A7: Convergence history

Fig. 6 Matrix A7.

2.4 Why this happens in acoustic scattering: a simple example

We have just seen that an indefinite matrix without any robust eigenvalue
clustering implies bad convergence properties of the GMRES. Such a situation
naturally arises in acoustic scattering.

Let us look at the following simple scattering problem. We consider a plane
wave uinc(x) = e−ikx coming from +∞ and illuminating the left positive do-
main ] − ∞; 0]. The real-valued constant wavenumber is denoted by k. The
sound-hard scattering problem reads: find the scattered field u in the un-
bounded domain [0; +∞[ such that (∂2x + k2)u = 0, in [0; +∞[,

∂xu(0) = ik,
u travels to the right.

(6)

Of course, the solution is trivial: u(x) = eikx. Let us note that other boundary
conditions could be used as for example the sound-soft one: u(0) = −1 or
an impedance boundary condition. Since problem (6) is set in an unbounded
domain, one usually introduces an Artificial Boundary Condition (ABC) at
the fictitious boundary Σ = {1} (another point could be chosen). Its aim is to
replace the sentence ”u travels to the right” to get a bounded domain boundary
value problem. Here, the boundary condition is trivial and is (∂n − ik)u = 0,
where n is the outwardly directed unit normal vector to Ω at Σ. Finally, the
problem which is solved by a finite element method is (∂2x + k2)u = 0, in Ω,

∂xu(0) = ik,
(∂n − ik)u = 0, on Σ,

(7)

with Ω =]0; 1[ and Σ = {1}. Let us consider that we use a linear continuous
Galerkin approximation of (7). Then, the variational formulation writes down:
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find u such that∫
Ω

∂xu∂xv − k2uvdx− iku(1)v(1) = −ikv(0), (8)

for all well-chosen test-functions v. Let us denote by Mh and Sh respectively the
mass and stiffness matrices associated with the linear Finite Element Method
(FEM), for a uniform discretization of Ω. The length of one element is h and
the total number of degrees of freedom of the FEM is nh (which is equal
to the number of segments plus one). We denote by uh ∈ Cnh+1 the linear
approximation of u solution to (7) or (8). The term −iku(1)v(1) related to the
ABC contributes in the linear system by an additional term on the last row
and column of the linear system. We denote this matrix term by −ikBh. The
right-hand side is related to −ikv(0) and gives birth to a right-hand side vector
bh ∈ Cnh+1. Finally, the linear finite element approximation of (8) leads to
the solution of the system

(Sh − k2Mh − ikBh)uh = bh. (9)

The sparse matrix involved in system (9) is i) complex-valued because of
the boundary term −ikBh and ii) non positive-definite since we have the
contribution Sh − k2Mh. This is most particularly penalizing when solving
high frequency problems (k large). We report on Figure 7(a) the behaviour of
GMRES(50) applied to solving (9) for k = 60 and nh = 100. The convergence
is extremely slow. Let us note that nh must be quite large for this value of k
because of the pollution error [19,113] into the FEM. Figure 7(b) shows the
distribution of the eigenvalues of (Sh − k2Mh − ikBh) as well as (Sh − k2Mh).
We can clearly see that the problem has many eigenvalues lying in the left half-
plane with null imaginary part for (Sh−k2Mh). As a consequence, the matrix
is non positive-definite. Furthermore, the reason why all the eigenvalues are
real is that we are rather solving an interior Helmholtz problem with Neumann
boundary condition. In the case of an (exterior) scattering problem, adding
the ABC (which means that we consider the additional term −ikBh) leads to
a complex spectrum. This can be observed on Figure 7(b). Then, this is worst
for having a converging iterative scheme.

2.5 How to improve the convergence using preconditioners?

For practical purpose, large scale sparse linear systems are solved by an it-
erative Krylov solver. This is the case in acoustic scattering where we must
be able to design 1) a convergent iterative solver and 2) methods that con-
verge fastly if convergence occurs. One very convenient way to do this is to
precondition the linear system by a sparse matrix P called the preconditioner.
The idea is the following. Let us assume that we are solving a linear system
Ax = b and that we are able to build a matrix P such that P is close to A−1.
This means that in some sense, for a suitable matrix norm ‖·‖, the quantity
‖PA− I‖ or ‖AP − I‖ is small. Here, I is the identity matrix. We say that P
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Fig. 7 Matrix (Sh − k2Mh − ikBh).

is a left preconditioner if PA ≈ I or a right preconditioner if AP ≈ I. Since the
condition number κ(PA) is close to κ(I) = 1, we can guess that the solution
to the new linear system PAx = Pb by an iterative method is convergent
and fast. This can be expected for positive-definite matrices A but not nec-
essarily for indefinite matrices as we previously noticed. If applying P only
requires a MVP in the GMRES, we say that P is an explicit preconditioner.
If its application needs the solution of a sparse linear system, P is said to be
implicit.

Since we work at a matrix level, then the construction of the preconditioner
P can only be based on algebraic considerations (the entries of A). Many al-
gebraic preconditioners have been proposed during the last decades. Let us
mention e.g. Incomplete LU preconditioners (ILU), SParse Approximate In-
verses (SPAI) or Algebraic Recursive Multilevel Solvers (ARMS) and all their
variants. We refer to [23] for some of these techniques for general linear sys-
tems. Concerning the solution of scattering problems, these preconditioners
have been tested and improved for instance in [24,42,43,71,79,80,101,118].
However, even if these preconditioners provide an improved convergence, con-
vergence breakdown and slow convergence still arise when medium and high
wavenumbers k are considered within the restarted GMRES. This challenging
problem is so still open.

An alternative to the algebraic preconditioners is developed in the sequel.
Essentially, we can summarize the derivation of the algebraic preconditioners
to: 1) first, take a continuous (partial differential or integrodifferential) oper-
ator, 2) discretize it to get a matrix A and 3) build an approximate algebraic
inverse P . Our solution leading to what we call analytical preconditioners is
based on the following three points: 1) take a partial differential operator or
an integral operator, 2) build an approximate inverse at the continuous level
and 3) discretize this operator for example by a finite element method to get
a preconditioner P . The interesting aspect of this approach is that point 2)
keeps the information related to the underlying structure of the operator to
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approximate, information which is a priori lost by considering the algebraic
viewpoint. To attain this goal, we need a mathematical theory which allows
to compute practically an approximation of the inverse of a general operator
at the continuous level. This is the aim of the next section where we introduce
the tools from pseudodifferential operators theory and associated microlocal
calculus.

3 Elements on pseudodifferential operator theory

We introduce in this section the basics of the theory of pseudodifferential oper-
ators. The aim of pseudodifferential operators and associated microlocal sym-
bolic calculus is to naturally generalize partial differential and integral opera-
tors through the notion of symbol. After the definitions, we give some practical
rules for symbolic calculus which are the keystone for building approximations
of pseudodifferential operators, with future applications to analytical precon-
ditioning techniques (Sections 3.3, 7, 8, 9 and 10). For further reading, we refer
e.g. to [112] where the theory of pseudodifferential operators is presented with
more details that cannot be addressed in this short introduction.

3.1 Definitions: pseudodifferential operator and symbol

Let Ω ⊂ Rd be an open set and D′(Ω) the space of distributions on Ω which
is the dual space of D(Ω) := C∞0 (Ω) [108,112]. We introduce the vectorial dif-
ferential operator D = (D1, · · · , Dd), setting Dj := −i∂j = −i∂xj . A variable
coefficients partial differential operator P (x, D) of order m has the general
form

P (x, D) =
∑
|α|≤m

aα(x)Dα, (10)

where x := (x1, ..., xd) ∈ Ω, α = (α1, · · · , αd) is a multi-index in Nd and
the coefficients aα are C∞(Ω) smooth functions. The operator Dα is: Dα =
Dα1

1 ...Dαd
d . For the sake of clarity, we will sometimes precise the derivation

variable used forDα like for exampleDα
x or ∂αξ . The polynomial p : Ω×Rd 7→ C

p(x, ξ) =
∑
|α|≤m

aα(x)ξα,

is called the symbol of the operator P (in the sequel ξ = (ξ1, ..., ξd) is the
Fourier covariable). The principal symbol of order m of P , denoted by σp(P ),
represents the homogeneous part of degree m in ξ of p,

σp(P )(x, ξ) =
∑
|α|=m

aα(x)ξα.

For example, for the operator ”P (x, D) := div(A2(x)∇·) + a0(x)”, we have
p(x, ξ) = −ξTA2(x)ξ + a0(x) and σp(P )(x, ξ) = −ξTA2(x)ξ. Here, div v :=
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∂1v1 + ...+ ∂dvd is the usual divergence operator of a vector field v and ∇ is
the gradient operator.

Let f be a function in the Schwartz space S of C∞ functions that rapidly
decay at infinity. Then, its Fourier transform f̂ ∈ S is defined by

f̂(ξ) =

∫
Rd
e−ix·ξf(x)dx,

and we have

f(x) =
1

(2π)
d

∫
Rd
eix·ξf̂(ξ)dξ.

It is well-known that the Fourier transform is an isomorphism from S. More-
over we have the property D̂αu(ξ) = ξαû(ξ). The inverse Fourier transform is
used to rewrite the partial differential operator P : S → S through its symbol
p as

P (x, D)u(x) =
1

(2π)
d

∫
Rd
eix·ξp(x, ξ)û(ξ)dξ,

with u ∈ S. Pseudodifferential operators are a generalization of differential
operators. The motivation is to replace polynomial symbols p in ξ with more
general symbols. Working not only locally in space for x but also in the cotan-
gent space with respect to ξ is known as microlocal analysis.

Let us introduce the space of admissible symbols that define a pseudodif-
ferential operator.

Definition 2 Let m ∈ R. We denote by Sm(Ω) the space of functions a ∈
C∞(Ω × Rd) such that for every compact subset K ⊆ Ω and every α ∈ Nd,
β ∈ Nd, there exists a constant C = C(K,α, β) ∈ R such that

|∂βx∂αξ a(x, ξ)| ≤ C(1 + |ξ|)m−|α|, ∀(x, ξ) ∈ K × Rd.

The notation |ξ| designates the euclidian norm of vector ξ ∈ Rd, i.e. |ξ| =√
ξ · ξ, and, for a multi-index, we set |α| = α1 + ...+ αd. Elements of Sm(Ω)

are called symbols of order m and we write a ∈ Sm.

Let us define now a pseudodifferential operator A of order m through its
symbol a ∈ Sm and the inverse Fourier transform.

Definition 3 A symbol a ∈ Sm(Ω) defines a continuous linear operator A =
Op a : C∞0 (Ω)→ C∞0 (Ω) by

A(x, D)u(x) =
1

(2π)
d

∫
Rd
eix·ξa(x, ξ)û(ξ)dξ.

Operators of this type are called pseudodifferential operators of symbol a and
of order m. We set then A ∈ ψm(Ω).
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Pseudodifferential operators of arbitrarily small order m are called regularizing
and we have ψ−∞(Ω) = ∩m∈Rψm(Ω). The theory of pseudodifferential oper-
ators offers an interesting and useful property through the symbolic calculus.
This leads to practical computations on operators working at the algebraic
level with their symbols (see section 3.2).

To complete some of the definitions below, we introduce the notion of
elliptic pseudodifferential operator.

Definition 4 A symbol a ∈ Sm(Ω) is called elliptic (of degree m) if for every
K ⊂ Ω compact, there exists a constant C such that

|a(x, ξ)| ≥ C(1 + |ξ|)m, ∀x ∈ K, |ξ| ≥ 1

C
.

An elliptic pseudodifferential operator A ∈ ψm(Ω) is an operator with an
elliptic symbol a ∈ Sm(Ω).

Pseudodifferential operators have regularity properties which are related
to their order m. For example, if we denote by Hs(Ω) the Sobolev space of
order s ∈ R of distributions u defined on Ω [112], then it can be proved that
A is a continuous linear operator acting from Hs(Ω) onto Hs−m(Ω), for any
s ∈ R.

Finally, pseudodifferential operators have the pseudolocal property. We say
that an operator A acting on a distribution u is local if Au is smooth in the
same set as u. Pseudolocal means that the set where A is smooth includes the
set where u is smooth. This implies that A could smooth out a nonsmoothness
of u (a more rigorous mathematical definition uses the notion of support and
singular support of a distribution [112]). Partial differential operators with
smooth coefficients are local operators and every local operator is a differential
operator. Examples of pseudolocal operators include integral operators A of
the form

Au(x) =

∫
Ω

G(x,y)u(y)dy,

where G is a smooth kernel.

3.2 Practical symbolic calculus rules

The most important property of pseudodifferential operators for practical ap-
plications in scientific computing is the fact that all the computations like
the composition of two operators or the transposition of an operator can be
performed algebraically at the symbol level. We give here the main results use-
ful for the sequel and we most particularly introduce the idea of asymptotic
expansion of a symbol.

A symbol a ∈ Sm(Ω) is said to be homogeneous of degree m in ξ if the
following relation holds

∀(x, ξ) ∈ Ω × (Rd \ 0),∀λ > 0, a(x, λξ) = λma(x, ξ).

We can then give the following definition.
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Definition 5 Let a ∈ Sm(Ω). Consider a decreasing sequence of real con-
stants (mj)

∞
j=1, with limj→∞mj = −∞. Let (aj)

∞
j=1 be a sequence of homo-

geneous symbols aj ∈ Smj (Ω) such that

a−
k∑
j=1

aj ∈ Smk+1(Ω), (11)

for every k ∈ N, k 6= 0. Then, we say that (aj)
∞
j=1 is an asymptotic expansion

of a. In this case, we write a ∼
∑
j aj . The first term a1 of order m1 in the

expansion is called the principal symbol.

Not every symbol a ∈ Sm(Ω) has an asymptotic expansion. The set of
symbols of the form (11) is called classical. It is denoted by Smcl (Ω) and the
corresponding operators belong to ψmcl (Ω).

Remark 2 If two symbols a et b have the same asymptotic expansion, then
they differ from a smoothing pseudodifferential operator

a− b = (a−
k∑
j=1

aj)− (b−
k∑
j=1

aj) ∈ Smk+1(Ω),

for all k and limj→+∞mj = −∞, so (a − b) ∈ S−∞(Ω), with S−∞(Ω) =
∩m∈RSm(Ω).

As said above, one of the crucial points of pseudodifferential operators is
that we have algebraic rules for computing some operations on pseudodiffer-
ential operators. Two extremely important properties are the following.

Proposition 3 Let A ∈ ψm1

cl (Ω) and B ∈ ψm2

cl (Ω) with symbols a ∈ Sm1

cl (Ω)
and b ∈ Sm2

cl (Ω), respectively. Then

1. The transpose At of A is a pseudodifferential operator. The symbol at ∈
Sm1

cl (Ω) of At ∈ ψm1

cl (Ω) is given by the following expansion

at(x, ξ) ∼
∑
α∈Nd

1

α!
∂αξD

α
xa(x,−ξ), (12)

where α ∈ Nd is a multi-index.
2. The composition of two operators A and B, denoted by AB, is a pseudod-

ifferential operator. The symbol a]b ∈ Sm1+m2

cl (Ω) of AB ∈ ψm1+m2

cl (Ω)
is

a]b(x, ξ) ∼
∑
α∈Nd

1

α!
∂αξ a(x, ξ)Dα

xb(x, ξ). (13)

In particular, this shows that a(x,−ξ)t is the principal symbol of At and
σp(A)σp(B) of AB.

In addition to Proposition 3, let us remark that Dα
xa ∈ S

m1

cl and ∂αξ a ∈ S
m1−|α|
cl

if a ∈ Sm1

cl . Furthermore, we have the following Theorem.
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Theorem 3 Let A be an elliptic pseudodifferential operator of order m. There
exists a pseudodifferential operator B (inverse of A) with order −m such that
AB − I (right inverse of A) and BA − I ∈ ψ−∞(Ω) (left inverse of A). The
operator I is the identity operator (with symbol 1).

We can see that combining formula (13) and Theorem 3 gives a practical
way of computing an approximate inverse B of a given pseudodifferential op-
erator A if we know its symbol a or at least the first terms of its asymptotic
expansion. In practice, this can often be done. This point of view is at the basis
of what we call analytical preconditioners which is an alternative approach to
the purely algebraic methods described briefly in section 2.5.

3.3 A first and simple application to preconditioning of the Helmholtz
equation

An example of application of pseudodifferential operators theory and sym-
bolic calculus rules to preconditioning is the following. Let us consider the
Helmholtz operator L = ∆ + k2 of symbol σL(x, ξ) = σL(ξ) = k2 − |ξ|2 (the
dependence in x really occurs for an inhomogeneous media). Then, an exact
analytical (left) preconditioner would be an operator A such that AL = I.
Since L is a pseudodifferential (in fact, partial differential) operator of or-
der 2, A is a pseudodifferential operator of order −2. Formally, A is equal
to the nonlocal operator (∆ + k2)−1 with symbol (k2 − |ξ|2)−1. This point
of view is purely theoretical since the practical computation of A is exactly
what we wish to obtain by solving the initial scattering problem. A first
approximation is to consider a static approximation of the symbol of A as:
σA ≈ (−|ξ|2)−1. This means that the corresponding analytical preconditioner
is A0 = Op((−|ξ|2)−1) = ∆−1, implying that the associated preconditioned
operator to solve is: A0L = ∆−1(∆ + k2) = I + k2∆−2. Hence A0L is a
second-kind integral operator (see Section 4.3.5) with eigenvalue clustering
around (1, 0) in the complex plane for large frequencies |ξ|. This idea was in-
troduced differently by Bayliss, Goldberg and Turkel in [22]. It can be shown
(see also Figure 8(a) for a one-dimensional example) that this clearly im-
proves the convergence of an iterative solver when considering low-frequencies
k (close to the static problem). However, for larger values of k (medium and
high frequency regimes), the convergence may fail or strongly depends on k.
As an example, let us consider k = 60 and nh = 80 for the one-dimensional
case. We represent on Figure 8(a) the eigenvalue distribution in the complex
plane of the corresponding discrete preconditioned matrix I − k−2S−1h Mh. If
we would zoom around the origin, then one would observe a clustering of the
eigenvalues around (1, 0). However, as we can see, many eigenvalues remain
in the left half-plane leading to an indefinite matrix when k is sufficiently
large. An improved solution is to consider the smoothing of A by a complex
parameter α ∈ C: Aα = (∆ + k2α)−1. Adding this parameter leads to the
solution of a dissipative Helmholtz equation. This approach is called Laplace
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shifted preconditioning approach [66]. In terms of eigenvalues, the symbol of
the preconditioned operator AαL is

σAαL(x, z) =
1 + z

α+ z
, (14)

setting z = −|ξ|2/k2 ∈ R−. The eigenvalues are then distributed along a
circular arc as a consequence of the Poincaré map (14). The center of the
circle is

(
1

2
,

(a2 + b2 − a)

2b
)

and its radius is √
1

4
+

(a− (a2 + b2))2

4b2
,

setting α = a+ ib. The endpoints are α−1 for the low-frequency spatial values
|ξ| � k (z ≈ 0 for physical propagative modes) and (1, 0) for large frequencies
|ξ| � k (z ≈ −∞ for evanescent waves). For the ”grazing” waves related to
|ξ| ≈ k (z ≈ −1), one gets positive eigenvalues close to the origin. These re-
marks can be observed on Figures 8(b) and 8(c) for respectively α = 1 + 0.5i
and 1+i (”analytical arc”). From a practical point of view, Aα is computed by
a few steps of a multigrid algorithm or by an ILU factorization and not a di-
rect solver (see [66,116]). These preconditioners a priori lead to preconditioned
matrices with eigenvalues having positive real parts (and so positive-definite
matrices correspond). However, for a scattering problem, a boundary contri-
bution related to the ABC must be considered in the global system matrix
and must be included into the preconditioner. On figures 8(b) and 8(c), we
draw the numerical eigenvalues of the preconditioned matrices Aikα,hLh with

ABCs, setting Lh = Sh−k2Mh−ikBh and Aikα,h = (Sh−k2αMh−ikBh)−1. We
observe that the introduction of the boundary term modifies the circular arc.
Most particularly, the associated spectrum has eigenvalues with negative real
parts, meaning that Aikα,hLh is an indefinite matrix now. The residual history
of the GMRES(50) for computing the solution to the scattering problem with
different preconditioners are reported on Figure 8(d). This shows the diver-
gence of the restarted GMRES without preconditioner and its convergence for
α = 0, α = 1+i and α = 1+0.5i, which is compatible with the literature on the
topic [66,116]. The fastest convergence is obtained with α = 1+0.5i, which can
be expected from Figure 8(c) since most eigenvalues have significative positive
real parts.

This first simple application shows that the pseudodifferential operator the-
ory and symbolic calculus lead to some possible constructions of robust and
efficient preconditioners for PDEs. The aim of the next section is to provide
other applications for preconditioning well-known integral equation formula-
tions used in acoustic scattering problems.
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Fig. 8 Laplace shifted preconditioning.

4 Potential theory - integral equations

In this section, we present how to solve an exterior boundary value problem
set in an unbounded domain via the integral equation method. First, we re-
call the basic acoustic scattering problem and some notations. Next, we give
elements of potential theory that are crucial for the integral equation method.
Finally, we discuss the derivation of the classical direct and indirect integral
equations for both Dirichlet and Neumann boundary conditions. We also de-
scribe their properties for a numerical solution by a Krylov iterative solver
(like the GMRES).

4.1 Acoustic scattering problems

Let us define a d-dimensional bounded domain Ω− ⊂ Rd representing a non
penetrable body with boundary Γ := ∂Ω−. We denote by Ω+ := Rd \Ω− the
associated homogeneous exterior domain of propagation. Consider the scatter-
ing of an incident time-harmonic acoustic wave uinc by the obstacle Ω−. The
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scattered field u+ satisfies the following exterior boundary-value problem
∆u+ + k2u+ = 0, in Ω+,
u+|Γ = −uinc|Γ or ∂nu

+|Γ = −∂nuinc|Γ , on Γ ,

lim
‖x‖→+∞

‖x‖(d−1)/2
(
∇u+ · x

‖x‖
− iku+

)
= 0,

(15)

setting ∆ :=
∑d
i=1 ∂

2
xj , ‖x‖ =

√
x · x is the 2-norm of x ∈ Cd and x · y the

inner product of two-complex vectors x and y in Cd. We consider an incident
time-harmonic plane wave of the form

uinc(x) = e−ikθ
inc·x.

This wavefield is characterized by the wavenumber k := 2π/λ, setting λ as
the wavelength of the signal. In the two-dimensional case (d = 2), the di-
rection of incidence θinc is given by the relation θinc = (cos(θinc), sin(θinc))T ,
where θinc is the scattering angle in the polar coordinates system. In the three-
dimensional case (d = 3), we have

θinc = (cos(θinc) sin(φinc), sin(θinc) sin(φinc), cos(φinc))T .

The scattering angles (θinc, φinc) are expressed in the spherical coordinates
system. We define by n the outwardly directed unit normal to Ω− at the
boundary Γ . The boundary condition on Γ (second equation of (15)) depends
on the physical problem under study. The sound-soft or Dirichlet (respectively
sound-hard or Neumann) boundary condition on Γ corresponds to the first (re-
spectively second) boundary condition in (15). Finally, the last equation is the
well-known Sommerfeld’s radiation condition or the outgoing wave condition.
This condition models the behaviour of the solution to the Helmholtz equa-
tion at infinity and guarantees the uniqueness of the solution to the exterior
problem (15).

Let us introduce the functional spaces [100]

Hs
loc(Ω

+) :=
{
v ∈ D′(Ω+)/ψv ∈ Hs(Ω+),∀ψ ∈ D(Rd)

}
, s ≥ 1,

H1
−(∆) := H1(∆,Ω−) :=

{
u ∈ H1(Ω−);∆u ∈ L2(Ω−)

}
,

H1
+(∆) := H1

loc(∆,Ω
+) :=

{
u ∈ H1

loc(Ω
+);∆u ∈ L2

loc(Ω
+)
}
.

For u ∈ H1
±(∆), the exterior (+) and interior (−) trace operators of order j

(j = 0 or 1) can be defined by

γ±j : H1
±(∆) → H1/2−j(Γ )

u 7→ γ±j u
± = ∂jnu

±|Γ .
(16)

In this functional setting, the existence and uniqueness of the solution to the
scattering problem

Find u+ ∈ H1
loc(Ω

+) such that
∆u+ + k2u+ = 0, in D′(Ω+),
γ+j u

+ = g := −γ+j uinc, in H1/2−j(Γ ), j = 0 or 1,

lim
‖x‖→+∞

‖x‖(d−1)/2
(
∇u+ · x

‖x‖
− iku+

)
= 0,

(17)
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can be proved [56].
The first main difficulty arising in the numerical solution of the exterior

boundary-value problem (17) is related to the unboundedness of the propa-
gation domain Ω+. A solution is to apply the integral equation method [51,
56]. This approach allows to equivalently formulate the initial boundary-value
problem as an integral equation defined on the boundary Γ of the obstacle Ω−.
Thus, this method reduces the dimension of the problem to d − 1. Boundary
integral equations are derived from the potential theory. Let us give in the
following Section some elements of this theory.

4.2 Potential theory: basic relations - properties

The essential property is that any solution to the Helmholtz equation can be
represented as the linear combination of a single- and a double-layer potentials.
The following proposition holds.

Proposition 4 Let us define the outgoing Green’s function G associated with
the Helmholtz operator in Rd by

G(x,y) =


i

4
H

(1)
0 (k‖x− y‖), for d=2,

1

4π

eik‖x−y‖

‖x− y‖ , for d=3,
(18)

where H
(1)
0 designates the first-kind Hankel function of order zero [1]. Let

(v−, v+) ∈ H1(Ω−)×H1
loc(Ω

+) satisfying

∆v− + k2v− = 0 in Ω−,

and {
∆v+ + k2v+ = 0 in Ω+,
v+ outgoing wave.

Then, we have

L([∂nv(y)]Γ )(x)−D([v(y)]Γ )(x) =

{
v−(x), x ∈ Ω−,
v+(x), x ∈ Ω+,

(19)

where

[v]Γ := γ−0 v
− − γ+0 v+, [∂nv]Γ := γ−1 v

− − γ+1 v+,

and

Lp(x) :=

∫
Γ

G(x,y)p(y)dΓ (y), x /∈ Γ, (20)

Dφ(x) :=

∫
Γ

∂n(y)G(x,y)φ(y)dΓ (y), x /∈ Γ, (21)

for (p, φ) ∈ H1/2(Γ )×H−1/2(Γ ).
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The operators L and D defined above are called the single- and the double-
layer potentials respectively. To obtain integral equations set on the boundary
Γ , we need the trace formulae for these two potentials (see for instance [100]).

Proposition 5 The first and second traces on Γ of the single- and double-
layer potentials are given by composition (◦) as{

γ−0 ◦ L = γ+0 ◦ L = L,

γ∓1 ◦ L = ±I
2

+N ,
(22)

and {
γ∓0 ◦D = ∓I

2
+D,

γ−1 ◦D = γ+1 ◦D = S,
(23)

where I is the identity operator and L,N ,D and S are the four elementary
boundary integral operators expressed, for all x ∈ Γ , by

Lp(x) :=

∫
Γ

G(x,y)p(y)dΓ (y),

Np(x) :=

∫
Γ

∂n(x)G(x,y)p(y)dΓ (y),

Dφ(x) :=

∫
Γ

∂n(y)G(x,y)φ(y)dΓ (y),

Sφ(x) :=

∮
Γ

∂2G

∂n(x)∂n(y)
(x,y)φ(y)dΓ (y).

(24)

Note that the expression defining S is not an integral (its singularity is not
integrable) but a finite part expression associated with a hypersingular kernel.
We preferred to keep formally the integral expression for the sake of clarity.

Let us now summarize the continuity properties of the elementary bound-
ary integral operators (see for instance [100, Theorem 4.4.1] or Theorems 7.1
and 7.2 in [95]).

Proposition 6 For a smooth boundary Γ , the boundary integral operators
given in Proposition 5 define the following continuous mappings

L : Hs(Γ ) −→ Hs+1(Γ ),
N : Hs(Γ ) −→ Hs(Γ ),
D : Hs(Γ ) −→ Hs(Γ ),
S : Hs(Γ ) −→ Hs−1(Γ ),

(25)

for all s ∈ R. Moreover, the operators N and D are compact from Hs(Γ ) onto
itself, for all s ∈ R.

In the case of a Lipschitz boundary [57,95], the above continuity properties
still hold for −1 ≤ s ≤ 0 (respectively for 0 ≤ s ≤ 1) for the operators L and
N (respectively D and S), while the compactness properties of N and D fails.
A possible approach to rigorously extend the following developments is to use
some regularizing techniques (e.g. [38,39,65]).
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The integral representation (19) allows to determine the near-field around
the scatterer. Another physical quantity of interest is the scattering amplitude
(called also the far-field pattern). For instance, the expression of the scattering
amplitude in the direction θ for the two-dimensional case is given by

a0(θ) =
i

4

√
2

iπk

∫
Γ

e−iky·θ(γ+1 u
+(y) + ikθ · n(y)γ+0 u

+(y))dΓ (y).

4.3 Standard integral equations formulations

The Helmholtz representation formula (19) leads to the construction of many
integral equations (equivalent if invertible) in the case of a closed surface. In
the case of an open surface, only one integral equation can be written. The
aim of this part is to introduce the most standard integral equations for both
Dirichlet and Neumann boundary conditions. We usually distinguish between
direct and indirect integral equations with their own mathematical properties.

Let us introduce the following notations

• KD(Ω−) = {kDm,m ∈ N}: the set of Dirichlet irregular frequencies (interior
Dirichlet eigenvalues) is the set of values of k such that the boundary value
problem {

−∆v = k2v, in Ω−,

γ−0 v = 0, on Γ,

admits a non vanishing solution.
• KN (Ω−) = {kNm,m ∈ N}: the set of Neumann irregular frequencies (inte-

rior Neumann eigenvalues) is the set of values of k such that the boundary
value problem {

−∆v = k2v, in Ω−,

γ−1 v = 0, on Γ,

admits a non vanishing solution.

4.3.1 The Dirichlet problem: direct integral formulations

The total field w is expressed by w := u+ + uinc. The direct formulations
consist in seeking the total field under the form

w(x) = Lp(x) + uinc(x), x ∈ Ω+. (26)

The integral representation (26) ensures that w is solution to the Helmholtz
equation in Ω−∪Ω+, and satisfies the Sommerfeld radiation condition. Then,
we have to determine the unknown p such that w satisfies also the Dirich-
let boundary condition (γ+0 w = 0). More precisely, the representation (26)
corresponds to the particular choice of solutions (v−, v+) := (−uinc, u+) in
Proposition 4, i.e.

[v]Γ = 0 [∂nv]Γ = −γ+1 w|Γ := p
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and

Lp(x) =

{
−uinc(x) x ∈ Ω−,
u+(x) x ∈ Ω+.

Then, we get the following single-layer potential representation of the total
field

Lp(x) + uinc(x) =

{
0 for x ∈ Ω−,
w(x) for x ∈ Ω+.

This formulation is equivalent to extending artificially the total field by zero
inside Ω−, which explains that this approach is also referred sometimes to as
the null field method.

The next step is to obtain an integral equation for the physical unknown
p = −γ+1 w|Γ ∈ H−1/2(Γ ). To achieve this, the idea is to apply a trace operator
to the relation

Lp(x) + uinc(x) = 0, ∀x ∈ Ω−. (27)

At this point, many choices are available. Let us cite three of them leading to
classical integral equations of potential theory.

• EFIE : This equation is obtained by applying the trace operator γ−0 to
(27). Thanks to the trace relations of Proposition 5, this leads to the well-
known Electric Field Integral Equation (EFIE)

Lp = −γ+0 uinc, on Γ. (28)

• MFIE : This equation is derived by taking the normal trace operator γ−1
to (27). The trace relations of Proposition 5 give the so-called Magnetic
Field Integral Equation (MFIE)(I

2
+N

)
p = −γ+1 uinc, on Γ. (29)

• CFIE : This last equation is based on the application of the Fourier-Robin
(impedance) trace operator γ−1 +ηγ−0 to (27), with η 6= 0. Once again, using
the trace relations of Proposition 5, we get the Combined Field Integral
Equation (CFIE)(I

2
+N + ηL

)
p = −(γ+1 u

inc + ηγ+0 u
inc), on Γ. (30)

The existence and uniqueness results for the above direct integral equations
((28), (29) or (30)) are given in the following theorem.

Theorem 4 The following properties hold

1. The EFIE operator L defines an isomorphism from H−1/2(Γ ) onto H1/2(Γ )
if and only if k 6∈ KD(Ω−). Under this condition, the EFIE (28) is uniquely
solvable in H−1/2(Γ ).
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2. The MFIE operator
I
2

+N

is an isomorphism from H−1/2(Γ ) onto H−1/2(Γ ) if and only if we have
k 6∈ KN (Ω−). For this condition, the MFIE (29) is uniquely solvable in
H−1/2(Γ ).

3. The CFIE operator
I
2

+N + ηL

defines an isomorphism from H−1/2(Γ ) onto H−1/2(Γ ), for all wavenum-
bers k > 0, if and only if the imaginary part of η is such that =(η) 6= 0.
Under this condition, then the CFIE (30) is uniquely solvable in H−1/2(Γ ),
for any k > 0.

In the case where k in an irregular frequency, the integral equations EFIE
and MFIE have non zero kernels. Nevertheless, it can be shown that the spu-
rious modes of the EFIE will not radiate in the exterior. Thus, the field is
not corrupted outside the object: Lp = 0 on Γ implies that Lp = 0 in Ω+.
Therefore, the EFIE provides an accurate computation and often represents
a reference solution. Unlike the EFIE, the spurious solutions of the MFIE ra-
diate in the exterior domain, leading hence to a wrong solution. Finally, by
its construction itself, the CFIE is free of the internal-resonance problem. We
consider in the sequel the coupling parameter η = −ikβ/(1 − β), β ∈ ]0, 1[,
and the CFIE reads

(1− β)
i

k

(I
2

+N
)

+ βL = −
(

(1− β)
i

k
γ+1 u

inc + βγ+0 u
inc
)
, on Γ . (31)

A common choice of β for engineering computations is β = 0.2 which gives an
almost minimal condition number for the CFIE.

4.3.2 The Dirichlet problem: indirect integral formulations

The indirect formulations are based on the assumption that the solution can be
expressed in terms of a source density function defined on the boundary. The
unknowns are then generally non-physical quantities. The physical variables
are solved afterwards in terms of these source densities. Here, we focus on the
most commonly used indirect integral formulation independently proposed by
Burton-Miller [40] and Brakhage-Werner [31]. The idea is to seek the exterior
field as a superposition of the single- and double-layer potentials acting on a
fictitious surface density ψ

u+(x) = (D + ηL)ψ(x), ∀x ∈ Ω+, (32)

where η is a complex-valued coupling parameter to choose. The above expres-
sion leads, thanks to the trace relations (5), to the following integral equation

(
I
2

+D + ηL)ψ = −γ+0 uinc, on Γ. (33)
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Considering the above integral equation in the space H1/2(Γ ), we can prove
the following result.

Theorem 5 The operator
I
2

+D + ηL

defines an isomorphism from H1/2(Γ ) onto H1/2(Γ ) for all k > 0 under the
condition =(η) 6= 0. Then, (33) is uniquely solvable in H1/2(Γ ), for any fre-
quency k > 0.

An almost optimal value of η has been obtained in [5,87,89] as: η = ik.

4.3.3 The Neumann problem: direct integral formulations

Let us now briefly discuss the derivation of direct integral equations in the case
of a Neumann boundary condition. The total field w := u+ + uinc is searched
under the form

w(x) = Dφ(x) + uinc(x), x ∈ Ω+. (34)

Proposition 4 for (v−, v+) := (−uinc, u+) leads to

[v]Γ = −γ+0 w := φ, [∂nv]Γ = 0,

and

Dφ(x) =

{
−uinc(x) x ∈ Ω−,
u+(x) x ∈ Ω+.

Then, we get

Dφ(x) + uinc(x) =

{
0 for x ∈ Ω−,
w(x) for x ∈ Ω+.

Applying a trace operator to the relation

Dφ(x) + uinc(x) = 0, ∀x ∈ Ω−, (35)

the physical unknown φ = −γ+0 w ∈ H1/2(Γ ) is solution to the following direct
integral equations:

• EFIE :
Sφ = −γ+1 uinc, on Γ. (36)

• MFIE :

(−I
2

+D)φ = −γ+0 uinc, on Γ. (37)

• CFIE :

(−I
2

+D + ηS)φ = −(ηγ+1 u
inc
|Γ + γ+0 u

inc), on Γ. (38)

The existence and uniqueness results for the above integral equations are sum-
marized in the next result.
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Theorem 6 The following properties hold

1. The EFIE operator S defines an isomorphism from H1/2(Γ ) onto H−1/2(Γ )
if and only if k 6∈ KN (Ω−). Under this condition, the EFIE (36) is uniquely
solvable in H1/2(Γ ).

2. The MFIE operator

−I
2

+D

is an isomorphism from H1/2(Γ ) onto H1/2(Γ ) if and only if k 6∈ KD(Ω−).
Then, the MFIE (37) is uniquely solvable in H1/2(Γ ).

3. The CFIE operator

−I
2

+D + ηS

is an isomorphism from H1/2(Γ ) onto H−1/2(Γ ), for all wavenumbers k >
0 such that =(η) 6= 0. Under this condition, the CFIE (38) is uniquely
solvable in H1/2(Γ ) for all frequencies k > 0.

The reference CFIE that we consider in the present paper reads

((1− β)
i

k
(−I

2
+D)− β

k2
S)φ = −((1− β)

i

k
γ+0 u

inc − β

k2
γ+1 u

inc), on Γ.

(39)

4.3.4 The Neumann problem: indirect integral formulations

The Brakhage-Werner (or Burton-Miller) integral representation of the exte-
rior field is expressed by

u+(x) = (L+ ηD)ϕ(x), ∀x ∈ Ω+, (40)

where η is a complex-valued coupling parameter to determine. Then, the field
(40) solves the exterior boundary-value problem (17) if the surface density ϕ
is solution to the following integral equation(

− I
2

+N + ηS
)
ϕ = −γ+1 uinc, (41)

called the Burton-Miller or Brakhage-Werner (BW) integral equation. We have
the following existence and uniqueness result.

Theorem 7 The operator

−I
2

+N + ηS

defines an isomorphism from H1/2(Γ ) onto H−1/2(Γ ) for all k > 0, assuming
that =(η) 6= 0. Then, the equation (41) is uniquely solvable in H1/2(Γ ) for all
strictly positive frequencies k > 0.

An almost optimal value of η has been numerically discussed in [5,87,89] as:
η = 1/ik. We will see in Section 8 that better choices can be proposed.
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4.3.5 First- versus second-kind Fredholm integral equations

For surface formulations of acoustic scattering problems, we have seen in the
previous sections that various integral equations, direct or indirect, combined
or not, can be employed. Let us underline that all these integral equations
are applicable to closed geometries, and that the EFIE ((28) and (36) in the
Dirichlet and Neumann cases, respectively) is the only choice for the solutions
of scattering problems by open surfaces.

In view of the iterative solution (by the GMRES for instance) of the cor-
responding linear systems after discretization, two properties are essential to
achieve a fast convergence rate: on the one hand the existence and uniqueness
of the solution, on the other hand the good clustering of the eigenvalues around
an accumulation point far from the origin (and hence a well-conditioning). The
first property, as we have seen, is not ensured for each integral equation. Only
combined field integral equations (CFIE, BW) provide a well-possedness for
any frequency. To observe the second property, let us recall some definitions.
Given an integral operator A ∈ L(X) on a Hilbert space X, an integral equa-
tion is called of first-kind if it is of the form

A% = f,

or second-kind if it is written as

(I +A)% = f. (42)

Moreover, if A : X → X is compact, the above equations are respectively
called Fredholm integral equations of the first-kind and second-kind. As clas-
sically known [88], the spectrum of compact operators is composed in the
infinite dimensional case of 0 and a sequence of discrete eigenvalues possibly
accumulating at the origin. Therefore, second-kind Fredholm integral equa-
tions have large clusters of eigenvalues accumulating at the real value point 1
(cf. Section 2.3). This is a very interesting spectral property which guarantees
fast convergence of the Krylov iterative solvers.

The integral operator L is bounded from Hs(Γ ) onto Hs+1(Γ ), and it
is compact from L2(Γ ) onto itself. Therefore, the EFIE (28) is a first-kind
Fredholm integral equation on L2(Γ ) in the case of a Dirichlet condition. On
the contrary, the MFIE (29), the CFIE (30) and the BW integral equation
(33) are all second-kind integral equations. Then, the combined field integral
equations have all the properties required for an efficient iterative solving.

In the case of a Neumann boundary condition, the situation is more com-
plex. In fact, only the MFIE is a second-kind Fredholm integral equation but
it is unfortunately ill-posed. The EFIE, CFIE and BW integral equations in-
volve the operator S which is a first-order, strongly singular and non-compact
operator. Therefore, these equations are of the first-kind. There are two al-
ternatives to expect an eigenvalue clustering. The first one is to precondition
the integral operator (see Section 7). The second possibility is to incorporate
a suitable operator of order −1 which has a regularizing effect on S and leads
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to a second-kind integral equation (see Section 8). Let us note that in the
case of the numerical solution of scattering problems by an open surface, the
preconditioning represents the only way to improve convergence. We will come
back to this point in Section 7.

5 Developing fast converging solutions: strategy and problematics

Let us consider now an integral equation representation

A% = f

that we want to numerically solve. Here, A is one of the previous first- or
second-kind integral operators, f is a right-hand side given by the incident
field and % is the density that we would like to compute. For a numerical
calculation, the surface of the scatterer needs to be discretized by using for
example NK triangles K in three-dimensions, resulting in a discrete surface
Γh = ∪NKj=1K, where h is the meshsize (see Section 8.3 for more details). Let
us consider a regular triangulation Th based on triangles. The linear Galerkin
BEM uses the approximation space

Vh =
{
vh ∈ C0(Γh); vh = vh|Γ ∈ P1,∀T ∈ Th

}
,

of dimension NV (equal to the number of degrees of freedom). The density of
discretization points per wavelengh nλ is given by nλ = λ/hmax, where hmax

is the maximal length of the edges of the triangles. Then, the operator A is
also approximated by a matrix [A] and the right hand-side f by a complex-
valued vector fh. The sizes of the vector and the matrix [A] are equal to the
number of degrees of freedom of the BEM used to approximate the density
% by a vector %h. For example, using linear boundary elements leads to NV
degrees of freedom, where NV is the number of vertices of the triangular mesh.
One problem that we do not address here but which is a hard task in integral
equations consists in integrating the kernel singularities. However, since it is
out of our goal, we do not develop this point here.

Consider now that we want to solve the linear system

[A]%h = fh.

The matrix [A] is complex-valued, dense and highly non-definite positive. It
requires a storage of the order of O(N2

V ) (if a linear BEM is used) and its solu-
tion by a direct gaussian solver requires O(N3

V ) operations. For high frequency
problems, then NV becomes extremely large and makes the direct approach
not applicable. Therefore, since the introduction of the FMM [51,55,62,63,70,
82,105,111], the strategy for solving an integral equation has fundamentally
changed. The FMM (as well as other similar techniques, see [34,35,36]) allows
to compute with a low-storage O(NV ) and in a fast way O(NV logNV ) the
MVP: xh → [A]xh (”black box”). This matrix-free approach permits to solve
higher frequency problems if it is coupled with an iterative Krylov solver like
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the GMRES. As previously noticed, the global algorithm is efficient and ro-
bust if the GMRES converges with a few iterations. This is closely related to
the spectral properties of A as well as the way a preconditioner is built. Since
we have a non positive-definite matrix, the iterative algorithm may diverge. If
not, its convergence can be extremely slow. Furthermore, since we do not have
the matrix at hand (because of the matrix-free FMM approach), building the
preconditioner must be done without having access to the whole matrix.

The aim of the next sections are 1) to propose a spectral analysis of in-
tegral operators in some simplified situations to understand their properties
(Section 6) and 2) to explain two recent matrix-free analytical precondition-
ing techniques (Sections 7 and 8) for solving integral equation formulations in
acoustic.

6 Spectral analysis of integral operators for the sphere

Let Γ = S1 be the unit sphere centered at the origin. Let us introduce the
spherical harmonics Y nm as the functions of order m for n = −m · · ·m, with
m ∈ N [56], given by

Y nm(θ1, θ2) =

√
2m+ 1

4π

(m− |n|)!
(m+ |n|)!

Pnm(cosθ1)einθ2 , (θ1, θ2) ∈ S1,

where Pnm are the Legendre polynomials. The functions Y nm form a complete
orthonormal system of L2(S1). Furthermore, they also constitute a basis of
eigenvectors for the four elementary integral operators L, N , D and S (cf.
proposition 5). More precisely, we have the following Proposition [6,87].

Proposition 7 The eigenvalues Lm, Nm, Dm and Sm of multiplicity (2m+1)
respectively associated with the elementary integral operators L, N , D and S
are given by

LY nm = {ikjm(k)h(1)m (k)}Y nm = LmY nm,
NY nm = {−1/2 + ik2j

′

m(k)h(1)m (k)}Y nm = NmY nm,
DY nm = N tY nm = NmY nm = DmY nm,
SY nm = {ik3j

′

m(k)(h(1)m )′(k)}Y nm = SmY nm,

where jm denotes the spherical Bessel function and h
(1)
m the spherical Hankel

function of the first-kind [1]. Their derivatives are specified with a prime
′
.

Let us begin with the case of a sound-soft sphere. We consider the EFIE
operator L (28), the CFIE operator (31) and the usual BW operator (33) with
η = ik. A direct computation gives the eigenvalues CDm and BDm of the combined
operators (31) and (33) respectively

CDm = ik2h(1)m (k)(βj
′

m(k) + i(1− β)jm(k)),

BDm = ik2h(1)m (k)(j
′

m(k)− ijm(k)).
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We report on Figure 9 the spectrum of the usual integral operators tak-
ing k = 30 and a maximal number of modes mmax = 12k. To understand
the spectral distribution, we need to introduce three zones: the elliptic zone
of evanescent modes (m � k), the hyperbolic region of propagative modes
(m� k) and the transition (hyperbolic-elliptic) zone of physical surface modes
satisfying m ≈ k. To make the connection with pseudodifferential operators,
think for easiness that |ξ| = m. For the EFIE (Figure 9(a)), we can see that
some eigenvalues spread out in the complex plane and are related to the finite
number of propagative modes. Next, a loop begins to appear for modes close
to the transition zone. Finally, we observe an accumulation point at (0, 0) for
large modes m. Since L is a first-kind operator of order −1, its eigenvalues
asymptotically behave like m−1 for large values of m (elliptic zone). This im-
plies that the smallest eigenvalue is related to the largest mode mmax and
makes appear a dependence of the condition number according to the den-
sity of discretization points per wavelength nλ for integral equations [51]. The
largest eigenvalue is related to a propagative mode and leads to a dependence
of the condition number according to k. Therefore, the EFIE has a spectrum
which is not really appropriate to an iterative solver and preconditioning will
have to be considered, most particularly for large wavenumbers k and large
densities of discretization points. Two large clusters of eigenvalues at points
(1/2, 0) and (1, 0) can be observed for the BW operator (Figure 9(b)). The first
appears in the elliptic zone and the second one in the hyperbolic zone. The
few eigenvalues that form the loop between low-order and high-order modes
m correspond to surface modes. The CFIE operator also offers an interesting
and quite similar distribution of eigenvalues (Figure 9(c)). These good spectral
properties are linked to the Fredholm second-kind character of these operators.
As a consequence, the standard CFIE and BW formulations are well-adapted
for the iterative solution of the acoustic sound-soft problem.

Let us now consider the hard sphere. The eigenvalues CNm and BNm of the
CFIE (39) and the BW ((33), η = i/k) operators are expressed respectively
by

CNm = k(h(1)m )
′

(k)((1− β)jm(k) + iβj
′

m(k)),

BNm = −ik2(h(1)m )
′

(k)(jm(k) + ij
′

m(k)).

We draw on Fig. 10 the distribution of the eigenvalues for the EFIE, BW
and CFIE operators. We fix k = 30 and mmax = 12k modes. The EFIE
operator is of order 1 and its eigenvalues associated with high order modes
become large since they behave like m (Figure 10(a)). The smallest eigenvalue
is associated with the propagative modes. For the usual BW integral operator
(Figure 10(b)), we observe a cluster of eigenvalues linked to the low-order
modes. A large number of eigenvalues corresponding to the evanescent modes
are on the line x = 1/2 and do not cluster like for the sound-soft case. This
behaviour penalizes the convergence rate of the GMRES. Similar conclusions
arise for the CFIE (Figure 10(c)). This is due to the fact that these three
integral equations are first-kind Fredholm integral equations and so are ill-
conditioned. In particular, the convergence rate of a Krylov iterative solver
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Fig. 9 Sound-soft sphere: distribution of the eigenvalues for the EFIE, BW and CFIE.

will depend on the wavenumber k as well as the mesh density. Using some
asymptotics of the spherical Bessel and Hankel functions and some formal
replacements, approximations of the eigenvalues can be obtained for these
integral equations (see Section 8.2). For more general two-dimensional domains
(convex, non-convex, polygon, starlike polygon, trapping domains) in the case
of the acoustic sound-soft scattering problem, we refer for instance to [50,51]
which study the conditioning and spectral properties of the usual boundary
integral equations.

From this analysis, we clearly see that some efforts on analytical (or alge-
braic) preconditioning must be directed towards the EFIE for the sound-soft
problem and EFIE, BW and CFIE for the sound-hard case.

7 A first direction to improve the convergence: algebraic/analytical
preconditioning techniques for the EFIE

As seen above, the EFIE has a condition number which depends on both the
wavenumber k and the density of discretization points per wavelength nλ for
both the sound-soft and sound-hard scattering problems. Furthermore, the
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Fig. 10 Sound-hard spheres: distribution of the eigenvalues for the EFIE, BW and CFIE.

eigenvalues spread out in the complex plane which is very penalizing in view
of an iterative Krylov solution. One way to improve the convergence prop-
erties of the EFIE is to precondition it. Algebraic preconditioners have been
proposed over the years but may fail, most particularly for large wavenumbers.
Furthermore, they need to handle the full matrix which is incompatible with
the idea of a matrix-free solver imposed by the FMM method. We propose
here two possible directions for building analytical preconditioners: the first
one uses the Calderón integral relations and the second one elements from the
pseudodifferential operator theory.

7.1 Integral operator preconditioning

The idea of integral operator preconditioning uses the following Calderón re-
lations [100]

− LS =
I
4
−N 2, −SL =

I
4
− (N T )2. (43)

From these two equations, we can see that, since N is a compact operator,
then N 2 and (N T )2 are compact and their eigenvalues tend towards zero. This
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also means that the eigenvalues of −LS and −SL cluster around (1/4, 0) in
the complex plane since they are equal to the operator I/4 up to a compact
perturbation. As a consequence, −L (respectively −S) is a pseudo inverse op-
erator of S (respectively −L) and can serve as a preconditioner. This is an
interesting property since the application of this preconditioner in a FMM en-
vironment only involves some evaluations of standard integral operators. This
first application of Calderòn relations to preconditioning has been developed
by Steinbach and Wendland in [110]. It has been next applied to the EFIE
for acoustics and electromagnetism by Christiansen and Nédélec in [52]. Ex-
tensions and other studies related to this approach are available in [13,14,
15].

To show the improvement induced by a preconditioner based on Calderón
relations, we consider the transmission scattering problem which consists in
solving an exterior Helmholtz problem with wavenumber k2 coupled with an
interior Helmholtz problem for a wavenumber k2

√
N with transmission bound-

ary conditions. This physically corresponds to scattering by a penetrable ho-
mogeneous isotropic scatterer. Following [15], we propose a Calderón precon-
ditioner (denoted by C) for the two-field integral equation solution to the
transmission problem (see [15] for more details). We consider on Figure 11(a)
the convergence history of GMRES(50) for the preconditioned linear system in
the case of the unit square cylinder (centered at the origin and with sidelength
2). We represent the dependence of the preconditioned algorithm according to
both the wavenumber k2 and the density nλ of discretization points per wave-
length. The index

√
N for the interior problem is

√
N = 2 + i. We can observe

that the convergence is independent of the density nλ since it can be shown
that the preconditioned integral equation is Fredholm second-kind. However,
the convergence depends moderately on k2, which is one of the limitations for
Calderón preconditioners. Another example is given by the scattering problem
by a penetrable kite-shaped object (see Figure 11(b)) for

√
N = 1.55 + 0.64i.

The same conclusions can be made from Figure 11(c). We can see on Figure
11(d) (for k2 = 40 and nλ = 10) that even if some eigenvalues spread out in
the complex plane and imply a k2-dependence of the iterative solver, a large
cluster of eigenvalues characterizes the preconditioned matrix and results in
the nλ independence. This first example illustrates the interest of considering
the point of view of analytical preconditioning for solving scattering problems.
Let us finally mention that examples in [15] show that ILU preconditioners
fail in general and lead to a breakdown of the GMRES.

7.2 Pseudodifferential operator preconditioning

A second approach for preconditioning the EFIE uses the following result
which precises the principal symbol of the single-layer operator L and normal
derivative trace S of the double-layer potential.

Proposition 8 Let L and S be the single-layer and normal derivative trace
of the double-layer potentials defined by the expressions (24), respectively. Let
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Fig. 11 Calderón preconditioner for transmission problems.

ξ be the dual variable of x by Fourier transform for x restricted to Γ . Then,
the principal symbols of L and S, denoted by σp(L) and σp(S), are given by

σp(L) =
i

2
√
k2 − |ξ|2

and σp(S) = −
√
k2 − |ξ|2

2i
. (44)

Following an approach similar to the one developed in Section 3.3 but for
integral equations, a good preconditioner for the sound-soft scattering problem
based on the EFIE representation is Op(σp(L)−1) = −4Op(σp(S)) since then

−Op(σp(S))L =
I
4

+R, (45)

where R is a pseudodifferential operator of order less or equal to −1. One of
the crucial points in this approach is that k is also considered as a symbol
(associated with the time derivative operator ∂t if we come back to a wave
equation) of order 1. Then, the symbol σp(S) is homogeneous of order 1 and
defines a corresponding classical pseudodifferential operator of order 1. We see
here that the equation (45) is typically a pseudodifferential operator version
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of the second Calderón relation (43). The main difference is that the operator
Op(σp(S)) is a correct approximation of the inverse of L in both its hyperbolic
and elliptic zones. This is not the case of S which is only a good approximation
of the inverse in the elliptic part since the error term −(N T )2 is compact (for
large values of |ξ| compared to k). Consequently, the convergence rate of the
iterative Krylov solver is independent of the mesh refinement parameter nλ
and the dependence according to k is weakened. For the sound-hard scattering
problem, a suitable choice is −4Op(σp(L)) for preconditioning S and the same
conclusions arise.

Concerning the implementation in a FMM code, including the operator
Op(σp(S)) can be made independently of the integral equations. For effective-
ness, a complex Padé approximation of the square-root must be considered
(see Section 8.2), resulting in the numerical solution of a coupled system of
surface dissipative Helmholtz equations on Γ . Their approximate solution can
be considered by using an ILU preconditioner and an iterative scheme at the
cost O(NV ), which is much less than applying an integral operator. We refer
to [14] for the interested reader where much more details about the implemen-
tation are given. Some partial elements are also developed in Section 8.3.

To show the robustness of such an approach, we report on Figures 12 the
number of MVPs required for solving the sound-hard scattering problem by a
strip of length 2 with GMRES(50) for a tolerance ε = 10−6. We use the EFIE
and represent the number of MVPs with respect to the density nλ (for k = 15,
figure 12(a)) and the wavenumber k (for nλ = 20, figure 12(b)). The EFIE
is referred to as ”DBIE” here, the pseudodifferential preconditioner based on
−4Op(σp(L)) and a Padé approximation by ”Padé-type”, the Calderón inte-
gral preconditioner [L] by ”Calderon”. Furthermore, an algebraic SPAI (SParse
Approximate Inverse) preconditioner with sparsity level Nv = 5 is also used
for comparison. The choice Nv = 5 makes the preconditioning matrix already
quite dense (about 20% of nonzero coefficients). Another drawback is that it
is built on the full initial EFIE matrix [S] which is not available when consid-
ering a FMM solution. On this simple example, we can see that the number
of iterations is independent of both nλ and k. We report on Figure 12(c) the
convergence history for all methods. We can see the superiority here of the
two analytical preconditioners over the algebraic SPAI. A second example is
given on Figure 12(d) for a cobra-like shaped scatterer which is an open curved
resonator modeling an inlet. We can again observe the very good behaviour of
the iterative solvers with analytical preconditioners.

In references [14], other numerical examples show that some problems can
arise for the Calderón preconditioner if the scatterer is composed of two par-
allel strips or screens due to the existence of resonances. It seems that, for this
kind of situation, the pseudodifferential preconditioners are more robust. How-
ever, for a single three-dimensional open surface, some problems are still open
like for instance how to correctly handle the edges effects in a pseudodifferen-
tial approach. In the case of Calderón operators, this point is quite naturally
treated. A hybrid Calderón-pseudodifferential preconditioner is proposed in
[58].
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Fig. 12 Pseudodifferential preconditioner for scattering problems.

8 A second direction to improve the convergence: generalized
Combined Field Integral Equations in acoustic

We restrict our presentation to a Neumann boundary condition. Indeed, we
have seen in Section 6 that the standard combined field integral equations
(both BW and CFIE) are second-kind Fredholm integral equations for a sound-
soft obstacle. As a consequence, the convergence rate of an iterative solver
applied to these equations is independent of the density nλ but still depends
slightly on k. In the same spirit as what is proposed below, this dependence
can be weakened by developing generalized (direct and indirect) combined
field integral equations. In the case of the sound-hard obstacle, much work is
required since the standard integral equations are first-kind Fredholm integral
equations. Furthermore, our construction of new second-kind integral equa-
tions preserves the well-posedness of these new integral equations, meaning
that they are all free of any spurious resonance.
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8.1 Construction of generalized combined field integral equations

The starting point of the method proposed in [16,17,58] is based on the exterior
Helmholtz integral formulation

u+ = Dγ+0 u
+ − Lγ+1 u+, in Ω+. (46)

Consider the exact exterior Neumann-to-Dirichlet (called NtD) map V ex

V ex : H−1/2(Γ )→ H1/2(Γ )
γ+1 u

+ 7→ γ+0 u
+ = V exγ+1 u

+.
(47)

The NtD operator V ex is a nonlocal pseudodifferential operator of order −1.
We write the integral representation (46) under the form

u+ = DV exγ+1 u
+ − Lγ+1 u+, in Ω+. (48)

Applying the exterior normal derivative trace to (48), we get thanks to Propo-
sition 5

γ+1 u
+ =

(
SV ex +

I
2
−N

)
γ+1 u

+, in H1/2(Γ ), (49)

and hence the exact NtD operator V ex satisfies on Γ

I
2
−N + SV ex = I. (50)

Thus we conclude that plugging the exact NtD operator V ex (instead of the
constant η, see (41)) into the integral formulation leads to the identity operator
which can be solved trivially in one iteration (direct solver). In this sense, the
exact NtD is an ideal regularizing operator for the operator S. Furthermore,
assuming that k is not an eigenfrequency of the Helmholtz equation in Ω−

with a Neumann homogeneous boundary condition, we deduce from (50) that
the NtD map is expressed in terms of elementary boundary integral operators
on Γ by

V ex = S−1
(I

2
+N

)
. (51)

The first Calderón formula (see (43)) leads to another integral representation

V ex = −
(I

2
+N

)−1
L. (52)

However, it is too expensive numerically to apply one of these representations
of the operator V ex as a regularizing operator for S.

Instead, an approximation Ṽ of the exact NtD operator V ex is introduced
such that

ϕ = Ṽ ψ,

with (ϕ,ψ) an approximation of the Cauchy data (γ+0 u
+, γ+1 u

+). We propose
to solve the following integral equation(I

2
−N + SṼ

)
ψ = −γ+1 uinc, in H1/2(Γ ). (53)



Accelerated iterative integral equation solvers for wave scattering 41

based on the exterior integral representation

u+ = −Lψ +Dϕ, in Ω+. (54)

The spectral properties of (53) depend on the approximate NtD map Ṽ . Let us
consider the low-order approximation Ṽ = −i/k (corresponding to the Som-
merfeld radiation condition). This choice leads to the standard BW integral
equation (41) with the optimal parameter of Kress [87]. Consequently, the
integral equation (53) can be seen as a generalization of the standard BW
integral equation. A similar approach can also be developed for constructing
a generalized CFIE: for β ∈ ]0, 1[

((1−β)(−I
2

+D)−βṼ S)φ = −((1−β)γ+0 u
+ +βṼ γ+1 u

inc), in H1/2(Γ ), (55)

by composition of the operator S (EFIE) with −Ṽ and then adding the contri-
bution of the MFIE by a suitable linear combination. The pseudodifferential
operator Ṽ plays the role of a regularizing operator for the first-order operator
S. It should therefore be of order −1. This is not the case by considering the
low-order approximation Ṽ = −i/k which is of order zero. For this reason,
high-order approximations of the NtD operator are needed. This can be done
for example by adapting techniques related to the Beam Propagation Method
(BPM) [75] or On-Surface Radiation Conditions (OSRCs) methods [10,11,12,
18,78,90]. In particular, we refer to [11] which gives an overview of OSRC ap-
proaches. From [18], an accurate approximation of the NtD map is expressed
by the square-root operator

Ṽ =
1

ik
(1 +

∆Γ

k2δ
)−1/2, (56)

which is the principal part of the boundary integral operator −2L (see (52)
and Proposition 8). The operator ∆Γ is the usual Laplace-Beltrami operator
over the surface Γ (see also subsection 9.1) and the parameter kδ = k + iδ is
a complexified wavenumber. The aim of the damping parameter δ > 0 is to
regularize the square-root operator in the transition zone of grazing rays [18].
An optimal value of this parameter, related to the mean curvature of Γ and
to k, is given in [18]. Incorporating the operator Ṽ , the generalized combined
integral equations (53) and (55) are uniquely solvable [58] for any frequency
k > 0 and damping parameter δ > 0. Moreover, they are second-kind Fredholm
integral equations unlike the standard formulations (53) and (39). This is an
interesting property for an iterative Krylov solution.

8.2 The special case of the unit sphere

The eigenvalues of the operator −∆Γ are expressed by µm = m(m + 1). A
direct computation gives the eigenvalues BN,δm and CN,δm of respectively the
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Fig. 13 Sound-hard sphere: distribution of the eigenvalues for the generalized combined
field integral equations.

generalized BW and the CFIE operators as

BN,δm = −ik2(h(1)m )
′

(k)[ij
′

m(k)(1− µm
k2δ

)
−1/2

+ jm(k)],

and

CN,δm = k2(h(1)m )
′

(k)[−i(1− β)jm(k) + β(1− µm
k2δ

)
−1/2

j
′

m(k)].

We report on Fig. 13 the eigenvalues of the generalized integral operators by
taking k = 30 and mmax = 12k modes. The eigenvalues of the generalized
BW and CFIE operators cluster around the points (1, 0) and (1/2, 0), respec-
tively. This observation is partially related to the property that these integral
equations are Fredholm second-kind but also to the fact that an accurate ap-
proximation of the NtD operator is injected. By using suitable asymptotic
expansions of the Bessel and Hankel functions [1], we justify this remark by
the following approximations of the eigenvalues [58]

• in the elliptic zone (evanescent modes) for large values of m

BN,δm =
1

2
+
kδ
2k

+O
( 1

m3

)
, and CN,δm =

1

2
+β
( k

2kδ
−1

2

)
+O

( 1

m3

)
, β ∈ ]0, 1[.

• in the hyperbolic zone (propagative modes) for large wavenumbers k

BN,δm = 1 +O
(1

k

)
, and CN,δm =

1

2
+O

(1

k

)
(for β = 0.5).

The coupling between low-(propagative) and high-order (evanescent) modes
is observable as a loop around the accumulation points (1, 0) and (1/2, 0) for
the generalized BW and CFIE, respectively. From these observations, we can
expect the fast convergence of a Krylov solver for computing the solution of
(53) or (55).
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8.3 Numerical issues: implementation and examples

Let us denote by [P ] the matrix associated with the linear discretization of a
given integral operator P . The discretization of (53) leads to the NV × NV
dense complex linear system( [I]

2
− [N ] + [S][Ṽ ]

)
ψh = gh. (57)

The complex valued vectors ψh and gh of CNV are respectively the P1 inter-
polated unknown density ψ and the right-hand side of (53). The matrix repre-
sentation [I] of the identity operator I is the surface mass matrix. We refer for
example to [9,62] for the direct approximation of the integral operators N and
S. Of course, a FMM implementation can also be derived in the background of
Galerkin methods for a fast evaluation of MVP. Concerning the discretization
of the pseudodifferential operator Ṽ , rational Padé approximants are applied
for an efficient local representation of the square-root operator. In [18], the
authors use the rotating branch-cut technique, introduced by Milinazzo al.
[98], which consists in using the rational approximation defined by

√
1 +X ≈ eiθp/2RNp((1 +X)e−iθp − 1) = C0 +

Np∑
j=1

AjX

1 +BjX
, (58)

where θp is the rotation angle of the usual branch-cut {z ∈ R, z < −1} of the
square-root operator, and RNp denotes the standard real-valued Padé approx-
imation of order Np. The complex-valued coefficients C0, (Aj , Bj)j=1,··· ,Np are

related to the real Padé coefficients and the angle θp [18]. Since the square-root
operator is implemented in an iterative solver, we must be able to compute
y = [Ṽ ]x efficiently, for a given vector x ∈ CNV . This can be achieved by
writing (

1 +
∆Γ

k2δ

)
y =

1

ik

(
1 +

∆Γ

k2δ

)1/2
x.

Then, the MVP y = [Ṽ ]x is computed by first solvingNp uncoupled dissipative
surface Helmholtz equations(Bj

k2δ
[∆Γ ] + [I]

)
xj = [I]x, j = 1, ..., Np, (59)

using a variational formulation and a BEM, and y is then solution to

(
[I] +

[∆Γ ]

k2δ

)
y =

1

ik

(
C0[I]x +

Np∑
j=1

Aj
k2δ

[∆Γ ]xj

)
. (60)

The matrix [∆Γ ] is the surface stiffness matrix on Γh. Let us mention that
the solution of the (Np + 1) linear systems (59) and (60) is computed by an
ILUT preconditioned GMRES and only requires 2 or 3 iterations to get the
solution [58]. Therefore, applying the square-root operator results in a cost
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Fig. 14 Sound-hard unit square cylinder: number of MVPs for the four integral formulations
with respect to the wavenumber k (left: nλ = 10) and the density nλ of discretization points
per wavelength (right: k = 10).

of the order O(NV ) which is much less than applying an elementary integral
operator (even with a FMM implementation).

We present now some numerical results to compare the efficiency of the
GMRES without restart and for a tolerance equal to ε = 10−6 when using the
standard and generalized BW and CFIE. We report on Figure 14 an example of
computation for the scattering of an incident plane wave of incidence 45 degrees
by the unit square cylinder. For the usual formulations, we can see that the
number of MVPs grows linearly according to the density nλ. Indeed, these two
formulations are of the first-kind. Furthermore, the number of iterations also
depends on k (see the next example for the standard BW formulation). The
problem is related to the fact that injecting the Sommerfeld approximation is
not enough to handle the k-dependence of the convergence. These two points
can be improved by considering the generalized formulations. The conclusions
are confirmed for the three-dimensional case. In Figure 15, we present the
case of the scattering of an incident plane wave of incidence zero degree by
an ellipsoidal scatterer of semi-axis 1, 0.5 and 0.5 along the x1-, x2- and x3-
directions, respectively, and centered at the origin. Here again, the convergence
of the GMRES is independent of both the parameters k and nλ while this is
not the case for the two standard formulations.

To end, we consider a more realistic nonconvex 3D example: the geometry is
a submarine (see Figure 16) characterized by a very large length and a sharp
and irregular shape at the back. The dimensions are: length = 43m, thick-
ness ≈ 4 to 7m, high ≈ 4 to 7m. Figure 17 shows the eigenvalue distribution
of the standard and the generalized CFIE operators. An excellent eigenvalue
clustering around (1, 0) is observed with the generalized CFIE. This implies a
fast convergence of GMRES independently of both a frequency increase and
mesh refinement (see Fig. 18). These results come from [60] in which a single-
level FMM and the generalized CFIE are efficiently coupled and validated for
several 3D tests.
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Fig. 15 Sound-hard ellipsoidal scatterer: number of MVPs for the four integral formulations
with respect to the wavenumber k (left: nλ = 10) and the density nλ of discretization points
per wavelength (right: k = 5).
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Fig. 16 A 3D realistic configuration: mesh of a submarine.

9 Generalized Combined Field Integral Equations in
electromagnetism

The aim of this section is to explain how to extend the previous generalized
BW/CFIE to the Maxwell’s equations for electromagnetic waves.

9.1 The Maxwell exterior problem and standard boundary integral equations

The three-dimensional scatterer is denoted by Ω−, with a regular compact
boundary Γ = ∂Ω−. It represents a perfectly conducting object. The exterior
domain is defined by Ω+ = R3 \ Ω−. We assume that Ω− is illuminated
by an incident time-harmonic electromagnetic wave (Einc,H inc), with time-
dependence e−iωt, ω being the field pulsation. The incident field interacts
with Ω− and creates a scattered field (E+,H+). The total electromagnetic
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field (E ,H ) is given by{
E = E+ +Einc in R3 \Ω−,
H = H+ +H inc in R3 \Ω−, (61)

where E and H are the electric and magnetic fields, respectively. The exterior
Maxwell problem consists in computing (E+,H+) solution to the exterior
time-harmonic Maxwell system [56,99,100]{

curl E+ − ikZ0H
+ = 0 in Ω+,

curl H+ + ikZ−10 E+ = 0 in Ω+,
(62)

with the perfectly conducting boundary condition

n× (E+
|Γ × n) = −n× (Einc

|Γ × n), on Γ. (63)
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The wavenumber is k = ω/c, with c the speed of light, n is the outwardly
directed unit normal vector to Ω− and Z0 is the impedance of the vacuum.
The operator curl is the standard rotational operator of a three-dimensional
complex-valued vector field and × denotes the vector cross-product of two
vector fields in 3D. In addition, to get the uniqueness of the solution to the
exterior problem [99,100], (E+,H+) must satisfy the Silver-Müller radiation
condition at infinity

lim
‖x‖→+∞

‖x‖(E+ + Z0
x

‖x‖
×H+) = 0. (64)

The existence and uniqueness of (E+,H+), solution to (62)-(64) can be proved
[100] in suitable Sobolev spaces, for any wavenumber k > 0 and incident field
Einc.

One possible way to solve (62)-(64) is to use an integral representation
of E+ and H+ based on suitable vector fields tangent to Γ . Let us start by
giving the well-known Stratton-Chu formulae [56,99,100].

Theorem 8 The solution (E+,H+) to (62)-(64) has the following integral
representation{

E+(x) = ikZ0T J(x) +KM(x), x ∈ Ω+,
H+(x) = −KJ(x) + ikZ−10 TM(x), x ∈ Ω+.

(65)

In the above equations, J and M designate the electric and magnetic equivalent
surface currents respectively given by

J(x) = n(x)×H+
|Γ (x) and M(x) = −n(x)×E+

|Γ (x), x ∈ Γ.

The subscripts ± correspond to traces onto Γ from Ω±. The electric and mag-
netic potentials T and K are defined, for x /∈ Γ , by

T J(x) =
1

k2
curl curl

∫
Γ

G(x,y)J(y)dΓ (y)

=

∫
Γ

G(x,y)J(y)dΓ (y) +
1

k2
∇Γ

∫
Γ

G(x,y)divΓJ(y)dΓ (y)

KM(x) = −curl

∫
Γ

G(x,y)M(y)dΓ (y)

=

∫
Γ

∇yG(x,y)×M(y)dΓ (y),

(66)

where G is the free-space Green’s function given by (18).

The integral operators T and K are called the Maxwell single- and double-
layer potentials, and the surface currents J and M are the Cauchy data which
represent the new unknowns for the scattering problem (62). The incident field
(Einc,H inc) is solution to the Maxwell’s equations in R3 and does not satisfy
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the Silver-Müller radiation condition (64). The traces of incident electric and
magnetic fields, i.e. Einc and H inc, have no jump across Γ and satisfy{

0 = ikZ0T J inc(x) +KM inc(x), x ∈ Ω+,

0 = −KJ inc(x) + ikZ−10 TM
inc(x), x ∈ Ω+,

(67)

with

J inc(x) = n(x)×H inc
|Γ (x), x ∈ Γ,

M inc(x) = −n(x)×Einc
|Γ (x), x ∈ Γ.

For the perfectly conducting case (63), we then obtain{
E+(x) = ikZ0T J (x), x ∈ Ω+,
H+(x) = −KJ (x), x ∈ Ω+,

(68)

setting J = n×Htot
|Γ on Γ .

To derive suitable integral equations on Γ , the tangential traces of the
potentials T and K have to be considered. To this end, let us formally introduce
(see [100] for more rigorous definitions) the tangential gradient ∇Γ and the
tangential vector curl curlΓ which are linear continuous operators, as well
as their respective adjoint operators divΓ and curlΓ . The Laplace-Beltrami
operator acting on a function u is defined by

∆Γu = divΓ ∇Γu = − curlΓ curlΓ u,

and the Hodge operator applying on a tangent vector field v is

∆Γv = ∇Γ divΓ v − curlΓ curlΓ v.

For a smooth vector function v ∈ C∞(Ω), let us introduce [99,100] the tan-
gential trace mapping γt : v 7→ v|Γ ×n. We then have the following result [56,
99].

Proposition 9 The exterior (+) and interior (-) tangential traces of the po-
tentials T and K on Γ are given by

(γ±t ◦ T J)(x) = TJ(x)× n(x), x ∈ Γ,
(γ±t ◦ KM)(x) = ±1

2
M(x) +KM(x)× n(x), x ∈ Γ,

with, for x ∈ Γ ,

TJ(x) =

∫
Γ

G(x,y)J(y)dΓ (y) +
1

k2
∇Γ

∫
Γ

G(x,y)divΓJ(y)dΓ (y),

KM(x) =

∫
Γ

∇yG(x,y)×M(y)dΓ (y).

(69)
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To avoid the problem of interior resonances, Brakhage and Werner [31]
proposed the following combined potentials formulationE

+(x) = Ka(x)− iηkZ0T (n× a)(x), x ∈ Ω+,

H+(x) =
1

ikZ0
curlE+(x), x ∈ Ω+.

(70)

The coupling parameter η is a real-valued number and a is a fictitious density.
Taking the exterior tangential trace γ+t of the electric field (70) and for the
boundary condition (63), we derive the following boundary integral equation

(
1

2
I− n×K)a+ iηkZ0(n× T )(n× a) = −Einc

|Γ × n, on Γ. (71)

It can be proved [56] that the integral equation (71) is well-posed for any
wavenumber k > 0 and parameter η > 0 if Γ is sufficiently smooth. In [87],
Kress numerically shown that η = 1 yields the lowest condition number for
(71). However, despite this optimal choice, the combined integral equation (71)
remains a first-kind integral equation.

Now, taking the tangential traces in (68)

E
+
|Γ × n = ikZ0TJ × n, on Γ,

H+
|Γ × n = −1

2
J + n×KJ , on Γ,

and imposing the perfectly conducting boundary condition (63) leads to the
Electric Field Integral Equation (EFIE) and the Magnetic Field Integral Equa-
tion (MFIE), respectively given by

ikZ0TJ = −Einc
T and (

1

2
I + n×K)J = n×H inc

|Γ , on Γ, (72)

with Einc
T = n×(Einc

|Γ ×n), and where I is the identity operator. These integral
equations may be ill-posed for certain frequencies. To get a well-posed formu-
lation, Harrington and Mautz [73] proposed the following Combined Field
Integral Equation (CFIE)

CFIE = αEFIE + (1− α)MFIE, (73)

where α ∈ ]0, 1[ is an arbitrary parameter. Even if the CFIE does not have any
spurious mode, this well-posed integral equation is still a first-order compact
perturbation of the EFIE. This means that, after discretization by a BEM, the
resulting linear system remains badly conditioned, most particularly regarding
the wavenumber k and the mesh refinement.
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9.2 Generalized combined field integral equations

Similarly to the acoustic case, generalized CFIE can be derived to get a well-
conditioned and well-posed integral equation to solve [58,59]. Here, for the
sake of conciseness, we only present the main ideas without giving too much
details.

Let us consider that we know the exact Electric-to-Magnetic operator Λex

such that

n×H+
|Γ + Λex(n× (E+

|Γ × n)) = 0, on Γ,

or equivalently

J + Λex(n×M) = 0, on Γ.

This operator can be introduced in a natural way in (65), leading toE
+ = KM − ikZ0T Λex(n×M), in Ω+,

H+ =
1

ikZ0
curlE+, in Ω+.

(74)

Considering the tangential trace of the first equation of (74), we obtain

(
1

2
I− n×K)M + ikZ0(n× T )Λex(n×M) = E+ × n = M , on Γ,

and hence the following integral relation on Γ

(
1

2
I− n×K) + ikZ0(n× T )Λex ◦ n× = I,

which corresponds to an ideal situation if one wants to solve the integral
equation using a Krylov subspace iterative solver. However, the operator Λex

is never known explicitly in practice for a general surface Γ . As for the acoustic
case, the main idea is now to consider an approximation Λ̃ of the exact operator
Λex and to represent the exterior electromagnetic field asE

+ = Ka− ikZ0T Λ̃(n× a), in Ω+,

H+ =
1

ikZ0
curlE+, in Ω+.

(75)

The corresponding combined integral equation is then

(
1

2
I− n×K)a+ ikZ0(n× T )Λ̃(n× a) = −Einc

|Γ × n, on Γ, (76)

for the non-physical surface field a. Let us remark that the choice of the
Silver-Müller condition applied on the surface Γ , i.e. Λ̃ = I, leads to the
standard BW integral formulation for the optimal coupling parameter η = 1
proposed by Kress. Consequently, this approach can be interpreted as a natural
generalization of the Brakhage-Werner integral formulation.
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In the same spirit, a generalized CFIE can be proposed. Applying first Λ̃
to regularize the EFIE and next adding the MFIE yields

(
1

2
I + n×K − ikZ0Λ̃T )J = n×H inc

|Γ + Λ̃Einc
T , on Γ. (77)

Unlike a in (76), the surface current J is a physical unknown quantity, which
makes this integral equation more attractive for applications. In practice, one
possible suitable choice for Λ̃ is

Λ̃ = Z−10 (I +
∆Γ

k2δ
)
−1/2

(I− 1

k2δ
curlΓ curlΓ ). (78)

The optimal damping parameter δ is given by δ = 0.6k1/3H−2/3, where H is
the local mean curvature of Γ . The operator Λ̃ can be computed accurately
and efficiently based again on the complex Padé approximants (58) and using
adapted BEMs [64]. In addition, the generalized BW and CFIE are well-posed
at any frequency [58], generalizing hence the standard case. Finally, the cor-
responding operators have an excellent clustering of their eigenvalues [58].

To illustrate this last property, we solve both the standard CFIE with op-
timal coupling parameter (α = 0.2 is usually used in practice for the linear

combination), the generalized CFIE with nonlocal operator Λ̃ and its localized
version with Padé approximants for the unit sphere at k = 35. The solution
can be obtained in the basis of spherical harmonics (see [58] for more details).
We use the GMRES iterative solver without restart and a tolerance equal to
10−6 on the reduction of the initial residual. We plot on Figure 19 the his-
tory of the residual versus the iteration number until convergence. We set the
maximal number of Fourier modes for the series expansion to 3k, Z0 = 1 and
ε = 0.6k1/3. The generalized CFIE (before and after localization) clearly leads
to the best convergence rate, with a significant reduction of the number of it-
erations compared to the standard CFIE formulation. In fact, it can be shown
that the eigenvalue clustering at a point close to (1, 0) explains this superlin-
ear convergence. For more general scatterers, BEMs are needed, coupled to
acceleration algorithms like the FMM or H-matrix approaches.

10 Generalized Combined Field Integral Equations in elasticity

In this section, we present some recent developments for the fast iterative
solution of high-frequency scattering problems in elastodynamics using the
integral equation method. First, we introduce the exterior Navier problem
and the material to derive integral equations. Next, we give the main lines for
the construction of well-conditioned CFIEs. We finally report some numerical
simulations to illustrate their efficiency.
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Fig. 19 History of the residual norm vs. the number of iterations for the unit sphere (for
k = 35).

10.1 The exterior Navier problem and standard boundary integral equations

The propagation of time-harmonic waves in a three-dimensional isotropic and
homogeneous elastic medium Ω+ is governed by the Navier equation [85, Eq.
(12.5) page 55] for an angular frequency ω > 0. The medium is characterized
by the Lamé parameters µL and λL and the density ρ which are positive
constants. The scattered field u+ is decomposed into a longitudinal field up
with vanishing curl and a transverse divergence-free field us solutions to

∆up + κ2pup = 0 and curl curlus − κ2sus = 0, (79)

with respective wavenumbers κ2p = ρω2(λL + 2µL)−1 and κ2s = ρω2µ−1L . The
vector Laplace operator is ∆. The behavior of the scattered displacement
field u+ at infinity is described by the Kupradze radiation conditions [85,
Eqs (2.6)-(2.9) page 126] uniformly in all directions. The scattering problem
is formulated as follows : given an incident displacement wave uinc which is
assumed to solve the Navier equation in the absence of any scatterer, find the
field u+ = up + us, satisfying a Dirichlet boundary condition, solution to the
boundary-value problem

µL∆u
+ + (λL + µL)∇ divu+ + ρω2u+ = 0, in Ω+,

u+ = −uinc, on Γ,

lim
r→∞

r

(
∂up
∂r
− iκpup

)
= 0, lim

r→∞
r

(
∂us
∂r
− iκsus

)
= 0, r = ‖x‖.

(80)

The fundamental solution of the Navier equation is a 3-by-3 matrix-valued
function which is expressed by

Φ(x,y) =
1

ρω2
(curl curlx

{
G(κs,x− y) I3

}
−∇x divx

{
G(κp,x− y)I3

}
),

(81)
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with G the free-space Green’s function given by (18). The single- and double-
layer potential operators are respectively defined by

Lϕ =

∫
Γ

Φ(· ,y)ϕ(y)ds(y) and Dψ =

∫
Γ

[T yΦ(· ,y)]
T
ψ(y)ds(y), (82)

where T yΦ(x,y) is the tensor obtained by applying the traction operator
T y = T (n(y), ∂y) (see Eq. (84)) to each column of Φ(x,y). The scattered
field is expressed by the Somigliana integral representation [85,86]

u+(x) = Du+
|Γ (x)− Lt|Γ (x), x ∈ Ω+, (83)

where the Neumann trace, defined by t|Γ := Tu, is given through the traction
operator

T = 2µL
∂

∂n
+ λLndiv +µL n× curl . (84)

By using the potential theory introduced in Section 4, the standard CFIE
reads: find ψ = −(t|Γ + tinc|Γ ) ∈ (H−1/2(Γ ))3, with tinc|Γ = Tuinc, solution to

(
I
2

+N
′
+ iαL)ψ = −(tinc|Γ + iαuinc

|Γ ), on Γ, (85)

with the following boundary integral operators

Lϕ(x) =

∫
Γ

Φ(x,y)ϕ(y) ds(y),

N
′
ϕ(x) =

∫
Γ

T x {Φ(x,y)ϕ(y)} ds(y),

for a given vector density ϕ and x ∈ Γ . The CFIE (85) is proved to be well-
posed for any frequency ω > 0 and any non-zero real-valued parameter α
[76,85,86]. Recent works in the BEM community have been devoted to the
derivation of fast evaluation techniques to perform the matrix-vector product
needed in the iterative GMRES solver [45,46], leading to mature efficient al-
gorithms. However, similarly to the acoustic and electromagnetic cases, the
standard CFIE does not provide sufficiently good spectral properties at high
frequencies, and hence it is not very well-suited for an iterative solver [48,61].

10.2 Generalized combined field integral equations

The construction of generalized CFIEs for the Navier equation is not a di-
rect extension of the acoustic and electromagnetism cases. Some difficulties
inherent to elasticity have to be addressed. Let us define the exact exterior
Dirichlet-to-Neumann (DtN) map

Λex : u+
|Γ ∈ (H1/2(Γ ))3 7→ t|Γ := Λexu+

|Γ ∈ (H−1/2(Γ ))3. (86)
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Using the same approach described in acoustics, we get

I

2
+N ′ −Λex′

L = I, on Γ,

and the Calderón’s relations lead to the integral representations of the adjoint
DtN map

Λex′
= −(

1

2
I−N ′

)
L−1 =

(1

2
I +N ′

)−1
S (87)

with the hypersingular boundary integral operator S. A good regularizing op-

erator for L, and hence for the CFIE, is an approximate adjoint DtN map Λ̃
′
.

A particularity in elasticity is that the double-layer boundary integral operator
N and its adjoint N ′ are not compact even for sufficiently smooth boundaries.

Their principal parts must also be considered in the approximation Λ̃
′

(this
is not the case in acoustics, see Section 8.1). Obtaining the expressions of the
principal part of each elementary boundary integral operator is a difficult task.
Recent works proposed approximations of various orders for the exact adjoint
DtN map [47,61]. To this end, a modified potential theory was applied where
the tangential Günter derivative plays an important role. The approximations
of the DtN and the NtD maps are expressed in terms of surface differential
operators, square-root operators and their inverse. As an example, the princi-
pal part P (N ) of the operator N is decomposed as the sum of two terms, i.e.
P (N ) = N1 +N2, given by

N1 =
i

2
(n
(
∆Γ + κ2pI

)− 1
2 divΓ Iτ −∇Γ

(
∆Γ + κ2sI

)− 1
2 n · In),

N2 =
iµL
ρω2

(−n
(
∆Γ + κ2sI

) 1
2 divΓ Iτ + n∆Γ

(
∆Γ + κ2pI

)− 1
2 divΓ Iτ

+∇Γ

(
∆Γ + κ2pI

) 1
2
(
n · In

)
−∇Γ

(
∆Γ + κ2sI

)− 1
2∆Γ

(
n · In

)
),

where In = n ⊗ n (⊗ is the tensor of two vectors) and Iτ = I − In. The
generalized CFIE then reads: find ψ = −(t|Γ + tinc|Γ ) ∈ (H−1/2(Γ ))3 such that

(
I

2
+N

′
− Λ̃′L)ψ = −

(
tinc|Γ − Λ̃

′
uinc
|Γ
)
, on Γ. (88)

We report in Tables 1 and 2 the number of iterations #iter of the GM-
RES (with no restart and tolerance 10−3) for solving the standard CFIE (85)

and three generalized CFIE (called P-CFIE) with approximations Λ̃
′

of differ-
ent orders (LO=low-order, HO=high-order), for increasing frequency ω. Here
again, complex Padé approximants are applied to get accurate local repre-
sentations of the square-root operators and their inverses. These 3D results,
which are obtained in [48], attest the drastic convergence acceleration of the
generalized CFIE.
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#DOFs ω # iter # iter LO # iter HO(1) # iter HO(2)
CFIE P-CFIE P-CFIE P-CFIE

1 926 4 18 9 7 6 (10)
7 686 8.25 26 10 7 4 (11)
30 726 16.5 75 11 7 4 (14)
122 886 33 199 14 8 4 (15)
490 629 66.5 > 500 16 10 4 (16)

Table 1 Diffraction of S-waves by the unit sphere. Number of GMRES iterations # iter
for a fixed density of 10 points per wavelength. The variable #DOFs denotes the number of
degrees of freedom.

#DOFs ω # iter # iter LO # iter HO(1) # iter HO(2)
CFIE (η = 1) P-CFIE P-CFIE P-CFIE

1 446 2.5 14 10 9 9 (13)
6 630 5 40 12 10 9 (13)
26 505 11 120 13 10 9 (12)
105 990 22 >500 14 11 9 (13)

Table 2 Diffraction of P-waves by a cube. Number of GMRES iterations # iter for a fixed
density of 10 points per wavelength. The variable #DOFs denotes the number of degrees of
freedom.

11 Additional contributions and references

We end this paper by referencing some related contributions for precondition-
ing surface integral equations in acoustics, electromagnetism and elasticity.
There is an extensive literature on this subject. The following list of references
is arbitrary and not exhaustive. Additional references should be of course cited
for completeness. We select some of the representative works which should help
as a guideline for further reading, but we restrict the list for the sake of con-
ciseness.

In acoustics, more developments concerning the Calderón preconditioning
are available e.g. in [68]. Initially, closely related approaches to analytical pre-
conditioning and generalized CFIE were obtained by Levadoux in his Ph.D.
Thesis [92]. Generalized CFIE for the sound-hard case with corners was con-
sidered in [20]. The case of an impedance boundary condition with Lipschitz
boundary was analyzed in [115]. Regularized high-order integral equations
solvers were derived in [33] for 3D acoustic problems. This kind of precondi-
tioning was also studied for the iterative solution of acoustic [27,28,30] and
electromagnetic [27] transmission problems. The situation of heterogeneous
media is treated in [44] based on a weak FEM-BEM coupling between using
optimized domain decomposition techniques. This leads to similar issues as
for the generalized CFIE. Let us also mention an alternative and promising
approach, called multi-trace formulation, for solving multi-subdomain scat-
tering problems. It has been introduced in [74] and improved in a series of
contributions (e.g [54,104]). Finally, a successful practical application of the
generalized CFIE derived in Section 8 was proposed in [117] to simulate high-
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intensity focused ultrasound techniques used for the non-invasive treatment of
cancer.

In electromagnetism, contributions to the Calderón preconditioning intro-
duced by Christiansen and Nédélec [52,53] for the EFIE are given e.g. in [2,
3,7,8,21,67,83,97,109]. Domain decomposition preconditioners were recently
proposed in [103,104] for the EFIE. Other classes of closely related generalized
CFIE in electromagnetism were derived in [4,25,29,32,93,94]. Finally, more
algebraic preconditioning techniques are also available in [41].

The Calderón preconditioner was studied in [77] for elastodynamics. Much
less works are devoted to the construction of regularized CFIE for the Navier
equation. For example, in [37], the authors derived a new regularized CFIE
for 3D elastic scattering problems and the approach introduced in Section 10
is extended in [49] to the case of the Neumann boundary condition.

12 Conclusion

The aim of this paper was to introduce some recent achievements in the pre-
conditioning of surface integral equations for acoustic, electromagnetic and
elastic scattering problems. In particular, we discussed the high frequency
regime which is a very active area where much work still remains to do. A
selected review of some advances in the analytical preconditioning of surface
integral equations as well as the construction of generalized CFIE has been
detailed. Different points of view can be adopted like for example the inte-
gral or pseudodifferential approaches. Even in acoustics, many open questions
still need to be further investigated and can impact similar situations like e.g.
in electromagnetism or elasticity, where the numerical solution by boundary
integral equations is also extremely challenging.

Other future exciting directions of research include e.g. the understand-
ing of the effect of non convexity and geometrical singularities on an iterative
solver, the coupling of analytical and algebraic preconditioners, the applica-
tion of pseudodifferential operator theory to the design of hybrid analytical-
algebraic preconditioners for the finite element solution of time-harmonic waves,
and of course the application to large scale industrial problems within fast in-
tegral solvers.
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