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ABSTRACT

Virtually recomposing destroyed frescoes is of great importance for heritage conservation. Given a
digitized fresco image and a digitized set of fragments, such a problem is challenging due to the
potentially large number of fragments, their irregular shape, uniqueness and non-overlapping con-
straints, the possible absence of fragments and the possible presence of small, homogeneous, eroded
and/or spurious fragments. To cope with these specific features, we propose in this paper a fast and
efficient non-dense approach benefiting from previous developments in pattern matching. Preliminary
experiments led on simulations exhibit a mean accuracy above 90% with a mean translation error of
less than 4 pixels and a mean orientation error of about 1 degree. An analysis of fresco and fragment
features impacting the algorithm is also provided. Compared to a dense approach and the recent Deep-
Match approach, the proposed one remains competitive both in running time and accuracy.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Earthquakes can cause damage to a nation not only with re-
spect to the properties of individuals and companies, but also
with respect to its the artistic heritage. For instance, when old
churches or monuments are destroyed, the frescoes painted on
their walls or ceilings suffer the same fate.

Fortunately, nowadays, images of almost all artistic works
have been acquired, so that the reconstruction of these frescoes
from the set of their pieces is a task not only possible for hu-
mans but even automated using computer vision. Virtual recon-
struction also maximizes the chances of succeeded restorations
by minimizing the handling of fragments.

Let I denote the image of the fresco before the destruction
and let F be the set of the fragments of the fresco. The consid-
ered problem can be formulated as follows: Estimate for each
fragment in F , the parameters of the geometrical transforma-
tion that, when applied to the fragment, generates an image Ĩ
as close as possible to the model image I. Such a formulation
allows for the presence of spurious fragments for which the de-
rived set of geometrical parameters should be the empty set.

Most of the proposed works for solving jigsaw puz-
zles exploit fragment border consistency [1] and/or fragment
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shapes [2]. However, our problem includes missing fragments
representing up to 50% of the fresco area and fragment erosion
has degraded their shape. On the other hand, the fresco model
is available and fragment radiometry is preserved so that fresco
reconstruction can be handled as a pattern matching problem
with specific constraints. Pattern matching applications range
from estimating geometrical relationships between images or
frames (e.g. for image co-registration, e.g. [3]) to object recog-
nition (e.g., [4]) within an image. We distinguish three main
kinds of approaches.

The first one is based on the evaluation of the relevance of a
geometric transformation between two images, via a criterion
computed on the whole image fields, such as normalized cross-
correlation [5]. While these approaches are robust against cor-
rupted data, a core issue is the derivation of the subset of trans-
formations to evaluate.

The second kind of approaches is based on hand-crafted fea-
tures both for the detection of keypoints and for their descrip-
tion

The third kind of approaches is inherited from the success of
deep networks for the past decade. For pattern matching, Deep-
Match [6, 7] has been proposed and is widely used for instance
for object tracking. It applies a multi-layer deep convolutional
architecture to yield possibly non-rigid matches between a pair
of images. Thus, despite its high performance, the fact that
matching constraints (object rigidity, non-overlapping) are dif-
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ferent may be a challenge for its use in our fresco reconstruction
problem.

Let us recall the specific features of fresco reconstruction: (i)
the number of fragments ranges from several hundreds to a few
thousands, definitively excluding exhaustive exploration of the
solution space; (ii) a fragment does not correspond to a rect-
angular tile, i.e. in the bounding box containing the fragment,
only a subset of the pixels have to be considered; (iii) in the so-
lution, the fragments shall not overlap. Even more, there may
be a gap between adjacent fragments depending on their level
of erosion; (iv) some parts of the fresco may be lost (no frag-
ment covers them); (v) any fragment must appear at most one
time in the solution: 0 times for the spurious fragments and 1
time for the others; (vi) some fragments may be very small (less
than a few tens of pixels) and/or homogeneous. The algorithm
proposed in this study takes into account all these features while
benefiting from previous developments in pattern matching.

The rest of this paper is organized as follows. The proposed
approach is detailed in Section 2. Section 3 presents both a
comparison with alternative approaches (even if much more
various alternatives have been tested during the aforementioned
competition) and an analysis of the fresco and fragment features
impacting the algorithm performance. Section 4 concludes by
raising the main perspectives of this work.

2. Proposed approach

Due to the important number of fragments to process, we
oriented our solution as the second kind of approaches men-
tioned in Section 1, namely based on hand-crafted features. In-
deed, it allows us to estimate the geometrical transformation
directly from matched keypoint pairs saving numerous calcula-
tions. However, such an approach is sensitive to outliers. Be-
sides, we have to cope with border issues due to the fact that
some fragments are very small (less than a few tens of pix-
els) and finally to carry out the uniqueness and non-overlapping
constraints. Before detailing how these points have been ad-
dressed, let us introduce the notations for the rest of the paper.

For a positive integer c > 0, let us denote by D = [0, 1]c the
normalized image intensities (in our experiments, only color
images are handled, so c = 3). We define the fresco image as
I ∈ DY , where the domain Y denotes a connected subset of R2.
Let F be the finite set of fragment images whose cardinality
is denoted ]F . For any j ∈ {1, . . . , ]F }, a fragment image is
defined as f j ∈ DX j , where the domain X j denotes a connected
subset of R2. Then, our problem boils down to finding, for each
fragment image f j, (i) the translation vector t j and the rota-
tion angle θ j allowing for the fragment placement in the fresco
domain Y which is the most consistent with the whole fresco
image I and (ii) its label l j ∈ {0, 1} representing its belonging or
not in the fresco (fragment f j belongs to the fresco if and only
if l j = 1) and therefore the relevance of

(
t j, θ j

)
.

2.1. Using color information

The goal of this step is to improve the matching between key-
points. The point for such purpose is to restrict the considered

area in the fresco with respect to the considered fragment. In-
deed, by doing so, we will drastically reduce the amount of
putative keypoints in the fresco and thus reduce both matching
ambiguities and matching errors. This can be simply achieved
if we are able to derive, for each fragment, a rough estimation
of its location in the fresco. In addition to computational effi-
ciency, we set two constraints for this rough estimation. It shall
be (i) based on information that is complementary to the one
used in the keypoint detector/descriptor; (ii) rotation invariant
since, the fragment orientation is still unknown.

Then, regarding the first constraint, let us remark that the
considered data images (fresco and fragments) are in color,
whereas most keypoint descriptors are defined for grayscale im-
ages. The color extension of these latter ones is generally a
simple concatenation of the descriptors computed for each of
the color channels, respectively. However, actual 3D color his-
tograms are much more discriminating than concatenated ones.

Dealing with the second constraint, histograms provide a
global description of an area without regards to the spatial orga-
nization of its elements. However, such a description remains
sensitive to rotation depending on the shape of the area consid-
ered for histogram estimation. Specifically, the only shape that
is rotation invariant is a disk. In this study, we have approx-
imated the disk shape by a number of rectangles (denoted by
N ∈ N>0) inscribed in it, whose sizes are determined by uni-
formly sampling angles along the arc of one of the quadrants
of the disk. This strategy allows us to benefit from the compu-
tational efficiency of integral images or integral histograms [8],
while drastically reducing sensitivity to rotation. Then, from
the histogram representation, most popular approaches for de-
riving confidence maps of pattern location in an image are
based on histogram similarity or distance computation [9]. On
the one hand, these techniques are often designed for robust-
ness to occlusion phenomena, which are completely absent in
our case. One the other hand, they do not handle actual 3D
histograms. Therefore, we prefer an older approach, namely
histogram backprojection [10], that meets our application con-
ditions while being simple and efficient.

The chosen strategy is as follows. Firstly, the fresco 3D color
histogram is computed in a chosen color space 1 using B ∈ N>0
bins per channel. Then, for any fragment f j, the optimal in-
scribed (denoted by (c j, r j) ∈ (R2 × R>0)) and circumscribed
(denoted by (C j,R j) ∈ (R2 × R>0)) circles are computed.

Secondly, the estimated inscribed circle is approximated by
N tiles and the 3D color histogram (B3 bins) of the fragment
(restricted to N tiles) is derived and computed in the same color
space as I using again B3 bins (B bins per channel).

Thirdly, the consistency between the fragment histogram and
the fresco local ones is mapped. Using for this the backprojec-
tion technique of [10], the ‘consistency’ measure relies on an
histogram ratio which is spatially low-pass filtered. Note that
using an averaging filter allows us to benefit from integral im-
ages [11] and to make the complexity for such step independent
of the fragment size.

1This choice is not discussed here. Even if the results will correspond to
RGB color space, the proposed approach applies to any 3D color space.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Steps of the proposed approach for reconstructing digitized frescoes from a given fresco image and a set of fragments (a). For any fragment (the
considered one appears in cyan here), a confidence map is computed indicating for any pixel the amount of similarity in terms of image intensities between
the fresco and the fragment from the area covered by the inner disk of the latter centered at that pixel (b). This map is thresholded and a morphological
dilation is applied to take into account the spatial extent of the fragment (c). In (b) and (c), the red cross denotes the true location of the inscribed circle of
the fragment. Borders of the fresco image and borders of any fragment are extended and keypoints (green crosses) are extracted from both of them (d),(e).
Using (c), keypoints from (d) are discarded (f). Resulting keypoints are matched (g) and fragments satisfying specific constraints are greedily placed (h).

Fourthly, the resulting confidence map is thresholded to de-
rive a binary map. The threshold, denoted by τcm ∈ [0, 1], is
set to ensure that the actual match of the fragment is included
in the binary map. The benefit of using binary maps is that they
can be efficiently stored to minimize the memory footprint.

Lastly, we propose a final step that carries out a refinement
of the previous binary map to be able to use it as a research area
when matching fresco and fragment keypoints (as presented in
the next section). Indeed the computed confidence values cor-
respond to a fragment centered on its inscribed circle center.
Then, to take into account the spatial extent of the fragment
domain, binary maps are dilated (in an isotropic way in the ab-
sence of orientation prior knowledge) to provide so-called key-
point area maps. The radius of the dilation depends on the radii
of the inner and circumscribed circles as well as their respec-
tive centers. Empirically, we set the dilation radius equal to
α
2 (R j − r j + ‖C j − c j‖2), where ‖.‖2 is the L2 norm in R2 and
α ∈ [0, 1] is a prior parameter aiming to cope with the fact that,
when the centers c j and C j are distinct, this can unnecessarily
enlarge the fragment at some places.

2.2. Handling fresco and fragment borders

In the considered application, the fragments may have any
geometric shape so that when considering their bounding box,
some pixel values are missing.

Two solutions could be envisaged when faced to the previous
issue: the modification of the keypoint detector-descriptor, and
the data modification. For the first solution, keypoint detector
adaptation goes through the modification of the used linear fil-
ters for the detector based on detection of important gradient
values in two perpendicular directions (such as for those in-
spired from Harris’ one [12], including SIFT [13]) or through
the adaptation of the considered set of pixels for detectors based
on values along a chain such as those inspired by FAST [14].
For the descriptor however, the situation is more complex. In-
deed, if the aim of keypoint description is the matching based
on a distance (or similarity) between descriptors, it appears
rather tricky to modify one descriptor (due to missing pixels)

independently of the second one (having a different local con-
text).

Thus, despite the attractiveness of the first solution, we turn
towards the second solution, which presents in addition the ben-
efit of processing in the same way the fresco borders. Specif-
ically, pixel values are extrapolated in order to fill the missing
parts. Note that as illustrated on Fig. 1, the extrapolation pre-
vents the detection of keypoints on these parts while allowing
keypoint descriptor computation.

2.3. Handling non-overlapping between fragments
The fragment non-overlapping prior is used as a validity test

for fragment transformation (translation and rotation). Indeed,
for any j ∈ {1, . . . , ]F }, denoting by Tt j,θ j (X j) ∈ R2 the re-
sult of the geometric transformation

(
t j, θ j

)
of its domain X j,

we can check whether Tt j,θ j (X j) is included in Y (the fresco
domain), and whether it does not overlap the other domains
Ttk ,θk (Xk),∀k , j. Practically, to take into account some im-
precision in the geometrical transformation estimation as well
as its reliability, the previous tests are implemented as follows.
The relative overlapping area between Tt j,θ j (X j) and Y

A
(
Tt j,θ j (X j) ∩ Y

)
A

(
X j

) ∈ [0, 1], (1)

(A denotes the area of a set) shall be greater than a given thresh-
old (denoted by ωin ∈ [0, 1]). Similarly, we relax the over-
lapping constraint so that the relative overlapping area between
Tt j,θ j (X j) and Ttk ,θk (Xk), for any (k, j) ∈ {1, . . . , ]F }2, s.t. ∀k , j

A
(
Tt j,θ j (X j) ∩ Ttk ,θk (Xk)

)
min

{
A

(
Tt j,θ j (X j)

)
,A

(
Ttk ,θk (Xk)

)} ∈ [0, 1], (2)

shall be lower than a given threshold (denoted by ωovl ∈ [0, 1]).

2.4. Overall algorithm
The steps of the proposed algorithm are illustrated and sum-

marized in Fig. 1 for the fragment marked by a cyan cross.
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Firstly, keypoint area maps providing rough locations of frag-
ments (without regards to their rotation) are computed in par-
allel for all fragment images { f j}

]F
j=1 with respect to the fresco

image I (see Section 2.1).
Secondly, the set of keypointsK and their descriptors are ex-

tracted on the extrapolated grayscale fresco image; keypoints
and descriptors are then extracted for all extrapolated fragment
images { f j}

]F
j=1 in parallel (see Section 2.2). FAST [14] and

BRISK [15] were empirically evaluated as best candidates for
feature detector and descriptor, respectively. For FAST, the pa-
rameter controlling the minimum accepted quality of corners
is denoted by ηmqc ∈ [0, 1] while the parameter controlling the
minimum intensity difference between corner and surrounding
region is denoted by ηmc ∈]0, 1[. For BRISK, default values
of the parameters are used. For each fragment f j, let K j ⊂ K

be the subset of keypoints lying in the jth keypoint area map.
Matches are then searched between fragment keypoints and K j

elements (i.e. color filtered fresco keypoints). The strongest
matches are selected with a threshold denoted by ρmt ∈]0, 100].
Ambiguous matches are rejected with a parameter denoted by
ρmr ∈]0, 1]. The geometric transformation matrix is estimated
based matched keypoints pairs using SVD and RANSAC algo-
rithms with default parameters to remove remaining outliers.

Finally, once geometric transforms of all fragments are gath-
ered, they are sequentially processed in decreasing order of
their number of matched keypoints pairs and greedily placed
to form the recomposed fresco Ĩ if they lie inside the fresco and
do not significantly overlap with previously placed fragments
(see Eq. (1) and Eq. (2) in Section 2.3).

Relying on pattern matching, fresco reconstruction involves
the following stages: for each fragment, (i) determine its lo-
cation in the whole fresco domain, (ii) evaluate if the derived
solution (possibly empty) is reliable enough. With respect to
the proposed algorithm steps, the fragment location estimation
is carried by constraining keypoint matching based on keypoint
area maps (derived from confidence maps), and solution rele-
vance is both controlled during keypoint matching (ρm parame-
ter, RANSAC criterion) and taken into account during sequen-
tial placement of segments.

The results presented in next section have been derived by
setting the parameters as follows: α = 0.5, N = 3, B = 16,
τcm = 0.85 (confidence maps), ηmqc = 0.03, ηmc = 0.01 (fea-
tures detection thresholds), ρmr = 0.6, ρmt = 50 (matching),
and ωin = 0.9, ωovl = 0.1 (constraints). Bilinear interpolation is
also used for generating the recomposed fresco.

3. Experimental results

3.1. Dataset

The experiments use the DB1 dataset designed for the
DAFNE challenge 2, composed of 55 frescoes. For each fresco,
its high resolution image along with a set of fragment images
is provided. The set of fragments results from a random plane

2https://vision.unipv.it/DAFchallenge/DAFNE_dataset/

tessellation with suitable statistics followed by an erosion pro-
cess applied to each fragment. For each fresco, 18 distinct sets
of fragments are available, therefore providing a total of 990
instances. This dataset is designed to be realistic, natural and
challenging for the cultural heritage domain in terms of resolu-
tion, diversity in scenes and pictorial assets. The characteristics
of this dataset are summarized in Table 1. For each instance, the
list of fragments of the ideal reconstructed fresco is also avail-
able as well as the “ground truth” translation and the angle of
rotation of any fragment composing it.

3.2. Evaluation protocol

To evaluate the performance of the proposed approach and
the alternative ones, five metrics are considered: accuracy
(ACC), F-measure (FM), Mean Translation Error (MTE), Mean
Orientation Error (MOE) and Relative Cover Rate (RCR).
Given the set of fragment images F , let us define S =

(ti, θi, li)
]F
i=1 and S′ = (t′i , θ

′
i , l
′
i)
]F
i=1 as the solution obtained by

some approach and the ground truth, respectively. Any frag-
ment i ∈ {1, . . . , ]F } is part of S (resp. S′) if and only if
li = 1 (resp. l′i = 1). For convenience, for any fragment
i ∈ {1, . . . , ]F } such that li = 0 or l′i = 0, a dummy translation
(i.e. ti = t′i = (0, 0)T ) and a dummy orientation (i.e. θi = θ′i = 0)
is introduced.

For some non-negative tolerance thresholds τt ∈ R≥0 and
τr ∈ R≥0 on translation and orientation respectively, accu-
racy and F-measure are respectively denoted by ACCτr

τt (S,S
′) ∈

[0, 100] and FMτr
τt (S,S′) ∈ [0, 100]. In the latter metrics, any

fragment i ∈ {1, . . . , ]F } in S is considered to be a true positive
with respect to S′ if and only if the distance between ti and t′i
is smaller than τt and the distance between θi and θ′i is smaller
than τr. False positives, true negatives and false negatives can
then be deduced. Other (parameter-free) metrics are defined as

MT E(S,S′) =

∑]F
i=1 lil′i‖tk − t′k‖2∑]F

i=1 lil′i
∈ R≥0,

MOE(S,S′) =

∑]F
i=1 lil′i min

(
|θi − θ

′
i |, 2π − |θi − θ

′
i |
)

∑]F
i=1 lil′i

∈ R≥0,

RCR(S,S′) =

∣∣∣∣∣A(∪ i∈F
li=1
Tti,θi (Xi)) −A(∪ i∈F

l′i =1
Tt′i ,θ

′
i
(Xi))

∣∣∣∣∣
A(∪ i∈F

l′i =1
Tt′i ,θ

′
i
(Xi))

∈ R≥0.

3.3. Comparison against alternative approaches

Beyond the comparison with various approaches proposed
by different authors which has been performed through the
DAFNE challenge, here we focus on the two following alterna-
tives to the proposed method that we implemented for testing.

The first one is based on DeepMatch [7]. As explained in
Section 1, it is a powerful approach widely used in pattern
matching such as for optical flow estimation [16]. Thanks to
the consideration of independent patches, DeepMatch allows
for correspondences between non rigid objects. In our case,
since fragments are rigid, this feature will be used instead for
transformation validation. Indeed, the output of DeepMatch is
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a set of matched patches so that their geometrical consistency
can be evaluated along with the global transformation estima-
tion. Practically, the set of the matched patches contains nu-
merous outliers so that we cannot reconstruct the fresco with-
out filtering them. For this, firstly the tried-and-tested method
that is RANSAC [17] has been applied for affine transforma-
tion estimation. Secondly, we perform a filtering based on the
scale parameter constraint after estimating this latter assuming
the conservation of distances (true in our case of affine transfor-
mation applied to rigid objects). .

The second alternative is based on Normalized Cross-
Correlation (NCC) maps derived using Fast Fourier Transforms
(FFT). [18] proposes a NCC computation that takes into ac-
count the masked feature of some areas in the images. It allows
us to relax the constraint of tile shape for the fragments, and
also to mask the areas of the fresco where previously processed
fragments have been placed. However, if NCC is a powerful
criterion to estimate the translation, it is very sensitive to ori-
entation, so that this latter has to be estimated beforehand. We
turned to a solution based on the comparison of histograms of
gradient orientations, using a histogram distance robust to oc-
clusion, namely [19] distance.

The comparison has been done on a subset of the DB1 dataset
consisting of 5 frescoes having varying features (see Fig. 2 cap-
tion). The results are presented in Fig. 2 and Tab. 2. The fres-
coes are presented by rough order of complexity in terms of
total number of fragments and number of spurious fragments.

First of all, we note that the proposed approach is systemat-
ically superior according to ACC and FM indicators. We also
notice that, irrespective of the considered approach, ACC (or
FM) values achieved for varying thresholds (τt and τr) are very
close, meaning that when fragments are placed, the estimated
transformation is very precise. Comparing the approaches, one
can notice that the “DeepMatch approach” is more cautious
since it places a lower number of fragments (lower ACC and
FM values), allowing for lower MTE and MOE in some cases.
It generally entails a lower RCR value except for fresco ]19,
which means that most false negative fragments are very small
fragments. Finally, note that the “Dense approach” achieves
lower performance than the proposed one for every selected
fresco. It exhibits a clearly lower performance than DeepMatch
for fresco ]20 but provides a better result for fresco ]38.

In summary, this comparison confirms the challenge results,
namely the performance of the proposed approach with respect
to alternative ones (here based on different principles). Finally,
let us mention that the alternative approaches are far slower in
terms of execution times.

3.4. Performance analysis
Statistics of performance metrics for reconstructed frescoes

from the entire DB1 dataset are summarized in Tab. 3 with tol-
erance thresholds in translation and rotation of τt = 10 pix-
els and τr = 5 degrees. Globally, the proposed approach of-
fers good performance for 34 instances out of 990 for which
ACC = FM = 100% and RCR = 0% (20 instances among
them contain spurious fragments).

However, since one can observe a high variability from one
fresco to another, we specify the performance per fresco. Fig-

ure 3 shows the ACC and MTE box plots when varying the
set of fragments. It allows us to visualize the impact of the
image content not only on the reconstruction performance but
also on its robustness with respect to the fragment sets. Re-
gardless of the fragmentation of the fresco, this shows the poor
performance achieved on frescoes ]13, ]19 and ]36. Indeed,
these frescoes exhibit repetitive patterns, hence making difficult
matching of feature descriptors.

To further investigate the features impacting performance,
we analyzed the fragment characteristics for the four clusters of
TP, FP, TN or FN fragments. Tested characteristics include for
each fragment, the number of keypoints, the number of matched
keypoints, the size and the ‘contrast’ (measured by mean stan-
dard deviation over color channels). Unsurprisingly, some fea-
tures are at least roughly correlated like the number of keypoints
and the fragment size. Also unsurprisingly, most FN present
very low contrast, size and therefore keypoint numbers. Fig-
ure 4 shows a typical example of obtained plots. It has been
drawn for fresco ]45 and for independent features ‘contrast’ and
‘size’. We note that the four clusters partly overlap (the overlap
being dependent on the considered fresco), but the impact of
fragment features on the cluster membership is unquestionable.

Fig. 4. Example of clusters TP, FP, TN and FN of fragments according to
their (contrast, size) features concerning the fresco ]45.

Finally, the global complexity of the whole algorithm is dif-
ficult to estimate theoretically since it depends not only on the
pixel number (that is known) but also on the keypoint number
(that is unknown). However, thanks to the representativeness
of the DAFNE database, we are able to derive empirical values
and main tendencies of the proposed algorithm. Then, Fig. 5
depicts how the execution time is affected by the number of
fragments and their size for a 16-cores Intel i7-6900K CPU @
3.2GHz with 64GB of RAM running MATLAB R2017b. Exe-
cution times range from about 9 secs to 18 mins with a median
value of lower than a minute.
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] Proposed approach DeepMatch approach Dense approach Ground truth

31

48

38

36

20

Fig. 2. Qualitative comparison between the proposed approach and the alternative ones. Fresco size varies from 850×1231 pixels (fresco ]48) to 5193×2926
pixels (]20), number of fragments varies from 299 (]48) to 856 (]20), percentage of spurious fragments varies from 0% (]20, ]31) to 15.8% (]36), and area
of missing fragments varies from 17.4% (]20) to 55.5% (]36).

Table 1. Summary of the characteristics of the entire DB1 dataset.
Fresco size
(in pixels)

] fragments
Ratio of true

fragments (%)
Ratio of spurious

fragments (%)
Cover of true
fragments (%)

Cover of spurious
fragments (%)

Min. 730 × 826 101 60.74 0 26.38 0
Max. 4933×3856 2196 100 39.25 88.03 8.01

Median 2123 × 821 418 93.45 6.55 64.54 1.32

Table 2. Quantitative comparison between proposed approach and alternative ones on a subset of frescoes. ACC and FM measurements are given with
and without brackets for (τt = 10, τr = 5) and (τt = 20, τr = 10), respectively. Best measurements are shown in bold for each metric and each instance.

Proposed approach DeepMatch approach Dense approach
ACC FM MTE MOE RCR ACC FM MTE MOE RCR ACC FM MTE MOE RCR

31 91.75 (91.75) 95.7 (95.7) 2.03 0.56 1.48 74.00 (74.30) 85.00 (85.20) 0.92 2.13 7.80 82.22 (84.44) 90.24 (91.57) 1.86 2.46 15.70
48 84.28 (84.28) 89.72 (89.72) 5.16 1.64 6.31 64.50 (64.50) 73.50 (73.50) 1.64 1.05 24.14 60.87 (64.55) 71.53 (74.88) 40.34 12.70 20.33
38 92.22 (92.22) 95.29 (95.29) 3.83 1.25 1.99 69.70 (70.90) 78.80 (79.80) 9.05 2.17 17.10 82.13 (83.86) 88.81 (90.00) 5.30 3.31 11.32
36 90.24 (90.5) 93.78 (93.96) 21.5 3.16 2.03 76.50 (76.70) 83.70 (83.90) 1.00 0.53 9.72 72.49 (74.34) 82.31 (83.70) 23.86 6.03 7.36
20 100 (100) 100 (100) 1.93 0.05 0 77.50 (77.70) 87.40 (87.40) 5.39 0.82 11.00 73.71 (75.12) 84.87 (85.79) 21.91 2.76 24.29
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Fig. 3. ACC (%) and MTE (in pixels) box plot varying the set of fragments (18 sets per fresco) versus the considered fresco (among the 55 ones).

Fig. 5. Overall execution time (in seconds) of the proposed approach per
instance of the entire DB1 dataset in function of both the mean size of
fragments and the total number of fragments.

Table 3. Reconstruction performance of the proposed approach on the en-
tire DB1 dataset with tolerance thresholds in translation and rotation of
τt = 10 pixels and τr = 5 degrees, respectively.

ACC FM MTE MOE RCR
Min. 71.38 81.36 1.70 0.05 0.00
Max. 100.00 100.00 30.66 6.88 22.58
Median 91.96 95.40 2.12 0.81 2.25
Mean 91.28 95.00 3.66 1.04 3.69
Std 6.05 3.55 3.31 0.88 4.05

4. Conclusion

In this paper, we have proposed a fast and efficient proce-
dure for automatically reconstructing frescoes. While benefit-
ing from previous developments in pattern matching, the exper-
iments exhibit excellent results, are fully competitive against
other approaches and provide an analysis of failure cases.

For future work, we plan to extend our approach to deal with
affine geometrical transformations and then apply it to real data
acquired under controlled conditions. But mostly, we plan to
address the more difficult case where the fresco image is par-
tially corrupted or even absent. Specifically, we will turn to-
wards Markov Point Processes for the modeling of the priors
between neighboring fragments, which is essential in this case.
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