
HAL Id: hal-02914822
https://hal.science/hal-02914822

Submitted on 11 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formalized Architecture-Centric Evolution Process
For Component-based Software System

Huaxi (Yulin) Zhang, Lei Zhang, Quan Xu, Christelle Urtado, Sylvain
Vauttier, Marianne Huchard

To cite this version:
Huaxi (Yulin) Zhang, Lei Zhang, Quan Xu, Christelle Urtado, Sylvain Vauttier, et al.. A Formalized
Architecture-Centric Evolution Process For Component-based Software System. WCICA 2014 - 11th
World Congress on Intelligent Control and Automation, Jun 2014, Shenyang, China. pp.3461-3466,
�10.1109/WCICA.2014.7053291�. �hal-02914822�

https://hal.science/hal-02914822
https://hal.archives-ouvertes.fr


A Formalized Architecture-Centric Evolution Process
For Component-based Software System

Huaxi (Yulin) Zhang∗, Lei Zhang† , Quan Xu†, Christelle Urtado‡, Sylvain Vauttier‡, and Marianne Huchard§
∗Ecole Normal Supérieure de Lyon - INRIA, Lyon, France

Email: huaxi.zhang@ens-lyon.fr
†SKLSPAI, Research Center of Automation, Northeastern University, Shenyang, China

Email: zl.org.cn@gmail.com, quanxu@mail.neu.edu.cn
‡LGI2P / Ecole des Mines d’Alès, Nı̂mes, France

Email: Christelle.Urtado, Sylvain.Vauttier@mines-ales.fr
§LIRMM, UMR 5506, CNRS and Univ. Montpellier 2, Montpellier, France

Email: huchard@lirmm.fr

Abstract—System quality is key part of software system
in industry. It not only directly affects the customers/users’
satisfaction, but also influences the entire lifecycle of system
products from requirement to maintenance. Many quality as-
surance development methodologies and standards are proposed.
However, software evolution as an another important part in
software system lifecycle is less studied from the viewpoint of
software quality assurance. Architectures, as the most basic and
important factor in modern software engineering, are key to
guarantee software system quality by replacing codes. Thus, in
this paper, we propose a controlled evolution process based on
ADLs and formalized by SPEM standard.

I. INTRODUCTION

Software quality is a major challenge in software indus-
try, as it directly affects customer satisfaction and system
acceptance. Software quality is the degree to which software
possesses a desired combination of attributes [1]. To control
software quality, many different quality assurance develop-
ments are proposed, such as Safety lifecycle [2] and RUP [3].

Software evolution as a poster-part of software lifecycle,
spends at least 60% of software lifecycle cost. Furthermore,
software changes often decline software quality, owing to un-
controlled and unverified software evolution. From architecture
viewpoint, the most common phenomena of this quality decli-
nation is architecture mismatches [4]. Architecture mismatches
are error-prone and especially affect software maintainability
for component-based software. Thus how to guarantee soft-
ware quality during software evolution is an issue raised.

Software quality can be assured from two viewpoints:
the viewpoint of software quality itself and the viewpoint
of quality management. From the viewpoint of software it-
self, software architectures are commonly used to control
software quality. Software architectures play as the logical
underlying to guide software evolution [5]. A well-defined

Lei ZHANG to whom all correspondence should be addressed.
This work was supported by the National Natural Science Foundation

of China under Grant No. 61300020, the Scientific Research Funds for
Introduced Talents of Northeastern University under Grant No. 28720524,
the Fundamental Research Funds for the Central Universities under Grant
No. N120408002 and Natural Science & Technology Pillar Program Grant
#2012BAF19G00.

software architecture can better guarantee software quality
like maintainability, performance and reliability. The mostly
used formal way to define and model software architectures is
architecture description languages (ADLs).

From the viewpoint of quality management, quality is
managed or controlled by well-defined development pro-
cesses. Many different standards formalize software processes
to ameliorate software quality, such as ISO/IEC9126 [6],
ISO/IEC25010 [7], CMMI [8], SPEM2.0 [9], BPMN [10], etc. A
lot of software development processes such as RUP and Safety
lifecycle [11] are formalized using these standards to manage
software processes and thus to control software quality.

However, existing ADLs that support architecture-centric
evolution mostly focus their attention on how to support a
dynamic software evolution. But merely an ADL orients to
study a complete and formalized architecture-centric evolution
process which can be used to manage and control quality
of software evolution process and prevent the declination of
software quality after software evolution.

Thus, in this paper, we propose a controlled architecture-
centric evolution process formalized using SPEM standard,
which is based on Dedal ADL. Our proposed process has
twofold. Firstly, an architecture-centric evolution can be better
preserve software quality after evolution. Secondly, a SPEM-
formalized and well-defined evolution process also meets the
Maturity Level 3 of CMMI-DEV.

The remaining of this paper is organized as follows.
Section II presents the context of Architecture-centric software
process. Section III discusses existing ADLs how they cover
architecture-centric evolution process and the objectives of this
paper. Section IV presents our proposed architecture-centric
evolution process which is formalized using SPEM. Section V
concludes with future work directions.

II. CONTEXT AND BACKGROUND

In this section, we firstly introduce some basic concepts
and their definitions related to our works.

A. Related concepts



1) Software Architectures: A software systems architecture
is the set of principal design decisions about the system [12].
Precisely, it describes the constituent elements of this system,
their relationships and furthermore, some important software
design decisions including functional behaviors, interactions
and so on.

2) ADL: Architecture description languages: ADL is a
modeling notation of software architecture, which is widely
used in software architecture modeling. Using ADLs, an ar-
chitecture can be formally described and thus its different
consistency and consistency can be checked to ensure software
quality.

3) Component-based software development (CBSD):
Component-based software engineering (CBSE) is an approach
to software development that relies on software reuse [13].
Component-based software development is characterized by
its implementation of the “reuse in the large” principle.
Reusing existing (off-the-shelf) software components therefore
becomes the central concern during development. Furthermore,
the “reuse in the large” principle implies that component-based
software development is architecture-centric, as software ar-
chitectures capture the “principle” design decisions of software
systems based on components [14].

B. Software Evolution in CBSE

The lifecycle of software’s systems is not finished after
the development. The systems are always required to evolve
themselves after the release, in order to correct the bugs,
improve their performance, etc. Software evolution is also
tightly linked with software architectures. The evolution that
concerns a collection of software architectural activities to
change a software from its older version to the new version and
is activated by architecture changes, is defined as architecture-
centric evolution. These architectural activities can be the
modifications of software architecture models or their runtime
software counterparts [4].

During the architecture-centric evolution, the architectures
of a system should be modified at the same time and synchro-
nized. Unfortunately, this does not always happen in practice.
Instead, one architecture (often runtime system – assembly
architecture) is often directly modified without accounting for
the impact relative to the other levels of the architectures. This
resulting discrepancy between a system’s architectures is re-
ferred to as architecture mismatches. Architecture mismatches
covers three related phenomena: architecture drift [15] [12],
architecture erosion [15] [12] and architecture pendency [4].

• Architectural drift is introduction of principal design
decisions into a system’s lower level of software
architecture that (a) are not included in, encompassed
by, or implied by the higher level of architecture.

• Architectural erosion is the introduction of architec-
ture design decisions into a system’s lower level of
architecture that violate its higher level of architecture.

• Architecture pendency is the introduction of new de-
sign decisions into a higher level of architecture that
are not implemented by its lower level architecture.

All these three architecture mismatches are often dangerous
and expensive, that means the quality of the architecture is

much reduced. The quality of the architecture is easily affected
by an architecture change. The newer architecture cannot
automatically be considered to have the same quality as the
older architecture.

Thus, the claim of this paper is: A planned and controlled
evolution process based on the ADL is necessary and a re-
verification or deduction of the newer architecture should be
executed during this evolution process.

III. THE STATE OF THE ART AND OBJECTIVES

A. The State of the Art

We use a taxonomy [4] as shown in Table I how existing
ADLs support evolution process1 We select six representative
ADLs from many existing ADLs, as they all support architec-
ture evolution and are widely used or studied.

TABLE I. THE CHARACTERISTICS AND ACTIVITIES OF ARCHITECTURE
CHANGE WITH THEIR POSSIBLE VALUES

Activities of architecture
change

Value

Consistency checking −behavior, −interaction,
−refinement consistency
checking

Impact analysis −vertical impact, −horizontal
impact

Evolution test −yes, −no
Change propagation −vertical propagation,

−horizontal propagation
Versioning −state-based versioning,

−change-based versioning
(extensional, or intentional)

• Consistency checking. All existing ADLs support con-
sistency checking, as it’s the most important effect
of architectures in software evolution. However, the
support of these ADLs is incomplete, because none
of them checks all kinds of architecture consistencies:
name, behavior, interface, interaction and refinement.
They more or less particularly concentrate one or two
kinds of consistencies, like C2 [17], [18] focuses on
refinement consistency, Wright [19] focuses on dead-
lock, Darwin [20], [21] on State, and SOFA2.0 [22],
[23] on behavior.

• Impact analysis. Impact analysis in existing ADLs is
rarely supported, except Darwin. In Darwin, the im-
pact analysis is held in the same time with consistency
checking, as the changes in configuration level will
be propagated to runtime level to check the state
consistency before enabling the changes.

• Evolution test. Most of them do not support evolution
test except MAE [24], [25]. This is an ignored point
of ADLs as they often focus on checking changes
in architecture logical point of view. MAE tests the
component substitution at runtime system, however
the other operations of changes are not tested like
component addition and removal.

1The details of taxonomy can be found in Zhang et al. 2010 [4] and a
taxonomy of Jamshidi et al. 2013 [16] inspired from the previous taxonomy.



TABLE II. THE COMPARISON OF CHARACTERS AND ACTIVITIES OF CHANGE IN EXISTING ADLS

Activities of
architecture
change

C2 Darwin Dynamic
Wright

SOFA2.0 xADL2.0 MAE

Consistency
checking

Refinement
consistency
checking

State
consistency
checking

Name,
interaction and
deadlock
consistency
checking

Behavior
consistency
checking

— Sub-type
consistency
checking

Impact analysis — Horizontal
impact analysis

— — — —

Evolution test — – — — — Perfective test
for component
substitution

Change
propagation

Horizontal
propagation
(top-down)

Horizontal
propagation
(to-down)

— — Horizontal
propagation
(top-donw)

—

Versioning — — — State-based
versioning

— Change-based
versioning

• Change propagation. As ADLs are used to model
the configuration of system, thus most existing ADLs
support top-down propagation from configuration level
to runtime system, like xADL2.0 [26], [27], Darwin,
C2. However, none of them support a bottom-up
propagation.

• Versioning. Few ADLs enable to version architectures,
except MAE supporting change-based versionning and
SOFA2.0 [22], [23] supporting state-based versioning.

From the process management viewpoint, architecture-
centric evolution processes in these ADLs are not explicitly
defined. None of these ADLs has a formalized architecture-
centric evolution process which can be used to follow and
control the quality of software evolution.

In conclusion, the above studied ADLs supply a support to
software architecture-centric evolution to some extent, however
there are some common weak points in these works: (1)
lacking a complete evolution process covering from evolution
planning, test, implementation, propagation to its re-versioning
and (2) missing a well defined and formalized architecture-
centric evolution process.

B. Objectives

The objectives of this paper is to propose a formalized
architecture-centric evolution process based on Dedal2.

• Fully support the architecture-centric evolution activ-
ities identified in our proposed taxonomy.

• Formalize the process with SPEM2.0 standard to make
it enable to follow and control the quality of software
evolution. We choose SPEM2.0 to formalize our pro-
posed process, because SPEM2.0 has a tool support
Eclipse Process Framework (EPF) tool support. The
formalized process can be easily used as a template
for software maintainers.

IV. EVOLUTION PROCESS

In this section, we present an architecture-centric evolution
process based on Dedal for component-based software (as

2The evolution process is based on component-based software development
supported by Dedal. The details can be found in [5].

shown in Fig. 1). Architecture evolution can be triggered
from any representation level in Dedal. Moreover, both top-
down (re-factoring) and bottom-up (re-engineering) evolution
processes are supported. In a classical top-down evolution
process, evolution operations at a representation level are
controlled in order to enforce its conformance with upper
(more abstract) representation levels. Conversely, changes are
propagated to lower representation levels in order to update
them and maintain their consistency to upper representation
levels. Our approach allows bottom-up evolution too, in which
transitional non-conform architectures can be created to ex-
periment new solutions [28]. After a successful test, changes
are committed and propagated to the other representation
dimensions in order to restore consistency. Combined top-
down and bottom-up evolution aims to address the issues of
architecture mismatches [15].

Fig. 1. Architecture centric evolution process for component-based software

The above evolution process is formalized in SPEM
2.0 [9]3. The evolution process contains three phases:

1) Evolution planning phase to analyze the change im-
pact and check its consistency in each abstraction
level of software,

2) Evolution implementation phase to prepare, test the
change and implement it in its implementation envi-
ronment,

3The process template is also created as an evolution process library in EPF,
which can find in http://www.irit.fr/ Yulin.Zhang/Dedal.html



3) Evolution re-engineering phase to propagate the
change to unchanged levels and version software
architectures if necessary.

This evolution process is controlled by evolution man-
agement which contains architecture evolution management
module and implementation evolution management module to
govern architecture models and implementation respectively.

Fig. 2. Architecture centric evolution process based on SPEM 2.0

A. Evolution Planning Phase

Evolution planning is the first phase of software evolution,
to decide how to apply the change. It is composed by two
activities: impact analysis to analyze the change impact and
consistency check to check the completeness and consistency
of the target architecture as shown in Fig. 3.

1) Impact Analysis Activity: During the impact analysis,
the architecture evolution management module produces the
change lists from its input change request. A change list is the
list of changes which should be performed by the evolution
manager to modify the architectures. A change request can
produce three change lists for architecture specification, archi-
tecture configuration and component assembly separately.

• Vertical Analysis Task Definition. Firstly, the request
change is analyzed vertically and changes are gen-
erated for the architecture level in which the change
request is performed.

• Horizontal Analysis Task Definition. Secondly, this
change list is analysed horizontally to produce two
propagated change lists for the other two levels. To
propagate changes, we restraint the propagation only
authorizes between the successive levels (see Fig. 4).

2) Consistency Checking Activity: Consistency is an inter-
nal property of an architecture model, which intends to ensure
that different elements of that model do not contradict with
one another [12]. The aim of consistency checking is to predict
whether changes induce inconsistencies inside and among the
three dimensions of a given architecture. We talk about intra-
dimension consistency checks and inter-dimension consistency
checks. If changes preserve consistency, the thought evolution
will be permitted. If not, it will either be forbidden or trigger
the derivation of a new architecture version for which consis-
tency will be ensured.

Consistency check checks at specification and configura-
tion (interface and behavior consistency checking), assembly

Architecture 
specification 

Architecture 
configuration

Software 
assembly

Component role addition, 
removal and substitution

SC

CA AC

CS

Component class addition, 
removal and substitution

Component instance addition, 
removal and substitution

Architecture evolution Description level

SA AS

Fig. 4. The propagation relationship between the three architectural levels

(attribute consistency checking), among three levels (map
consistency checking). Name and interaction inconsistencies
reuse the definitions of Taylor [12].

• Interface Inconsistency Task Definition. Interface in-
consistencies are detected using the component spe-
cialization rule that suits new component connec-
tion or component substitution. Interfaces consistency
calculus can be automated as previously studied in
Arévalo et al. [29], for example. These inconsistencies
are searched for during intra-dimension consistency
checks and inter-dimension consistency checks.

• Behavior Inconsistency Task Definition. Behavior in-
consistency detection reuses the work of Plasil et
al. [30] on various behavior protocol comparisons.
These inconsistencies are searched for during intra-
dimension consistency checks and inter-dimension
consistency checks.

• Attributes Inconsistency Task Definition. Attributes
inconsistencies are detected automatically using in-
trospection capabilities on component classes and in-
stances. These inconsistencies are searched for solely
during inter-dimension consistency checks.

• Mapping Inconsistency Task Definition. Mapping in-
consistencies occur between two successive levels of
the description of level software architectures4. This
is an inter-level consistency checking.

B. Evolution Implementation Phase

Evolution implementation phase aims to test evolution at
runtime to assure the feasibility of changes for the running
system. It can be considered as a sub evolution process based
on runtime systems, called gradual evolution process [32],
[28]. It is controlled by the implementation evolution manager.
The main idea is to get the original system evolve into a
target system through a transitional step. During the transi-
tional step, a transitional assembly is produced to test the
proposed changes in the real execution environment and either
validate the evolution or invalidate it to return to the original
state. There are three activities (shown in Fig. 5): evolution
preparation, evolution test and evolution committing.

1) Evolution Preparation Activity: The objective of the
evolution preparing step is to change the original system into
the transitional system. The change description list in the
assembly level is transformed into change transactions. Change
transactions are the executive programs that operate on a

4The rules can be found in [31].



Fig. 3. The evolution planning phase

Fig. 5. The evolution implementation phase

system to make changes. It is composed of basic operations:
deploy (deploy the component into runtime environment),
mutate (mutate the component instances according to the
assembly rules from the assembly level or directly from old
existing component instance), add, delete, connect, disconnect.

2) Evolution Test Activity: Evolution test uses the
connector-driven gradual assembly evolution process [32],
[28]. One of the main ideas exposed in gradual evolution
process is to have the original assembly of the system evolved
into an objective assembly through a transitional assembly. The
transitional assembly is transformed from the original assem-
bly by merging changes into the assembly without deleting any
system elements. For example, to replace one component with
its new version, the transitional assembly makes two versions
of the component co-existing and connecting in the system
at the same time. The transitional assembly aims to test new
component versions and either validate the evolution (commit
changes) or invalidate it to rollback to the original state.

3) Evolution Committing Activity: If the changes are val-
idated by the implementation evolution management module
after evolution has been tested, changes will be committed in
the running software system.

C. Evolution Re-engineering Phase

The evolution re-engineering involves modifying architec-
ture descriptions, versioning the modified architectures, as
shown in Fig. 6.

1) Change Propagation Activity: Architecture evolution
manager module treats the thought evolution as being part
of a new architecture version. This is solved using change
propagation techniques [33]. The changes imply in each level
of software architectures according impact analysis results. The
new architecture version is derived and its content inferred so
as to be consistent with the thought change. The information
necessary to derive new versions on each of its levels is
extracted from lower to higher levels.

2) Reversion Activity: In this activity, the modified archi-
tecture models are reversioned with new versionID and the
changes applied to these models. These changes preserved
in new versioned architecture models comprise the given,
generated and propagated changes that represent the delta
between two versions.

V. CONCLUSION

In this paper, we firstly define a taxonomy of architecture-
centric evolution activities which can be used to evaluates
different ADLs on how they support evolution process. Then
based on this taxonomy, we select six representative ADLs to
analyze their architecture-centric evolution process. However,
there is merely an ADL that fully cover all the necessary
architecture-centric evolution activities and has a formalized
evolution process to ensure the quality of software evolution.

In order to control the quality of software evolution and
prevent the declination of software quality after evolution,
we propose a full architecture-centric evolution process which
covers all the necessary evolution activities, based on Dedal,



Fig. 6. The evolution Re-engineering phase

and furthermore we formalize the process using SPEM2.0
standards.

The process templates has been implemented in EPF
(Eclipse) with SPEM2.0. However, the complete functional
editor of Dedal is an independent editor, our objective is to
immigrate Dedal as an eclipse editor, to make evolution pro-
cess management and Dedal architecture evolution activities
can be collaborated and synchronized automatically.

REFERENCES

[1] E. Iee, “IEEE Std 1061-1998,” IEEE Standard for a Software Quality
Metrics Methodology, 1998.

[2] I. S. . IEC 61508, Functional safety of electrical/ elec-
tronic/programmable electronic safetyrelated systems, International
Electrotechnical Commission Std., 2000.

[3] P. Kruchten, The rational unified process: an introduction. Addison-
Wesley Professional, 2004.

[4] H. Y. Zhang, “A multi-dimensional architecture description language
for forward and reverse evolution of component-based software,” Ph.D.
dissertation, Montpellier Uiniversity II, 2010.

[5] H. Y. Zhang, L. Zhang, C. Urtado, S. Vauttier, and M. Huchard,
“A three-level component model in component based software
development,” SIGPLAN Not., vol. 48, no. 3, pp. 70–79, Sep. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2480361.2371412

[6] ISO/IEC, ISO/IEC 9126. Software engineering – Product quality.
ISO/IEC, 2001.

[7] ISO/IEC, “ISO/IEC 25010 - Systems and software engineering - Sys-
tems and software Quality Requirements and Evaluation (SQuaRE) -
System and software quality models,” Tech. Rep., 2010.

[8] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI Guidlines for Process
Integration and Product Improvement. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2003.

[9] Software & Systems Process Engineering Meta-Model Specification,
OMG, 2008.

[10] Business Process Model and Notation (BPMN) Version 2.0, OMG, 2011.
[11] Y. Zhang, B. Hamid, and D. Gouteux, “A metamodel for representing

safety lifecycle development process,” in ICSEA 2011, The Sixth In-
ternational Conference on Software Engineering Advances, 2011, pp.
550–556.

[12] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons, January 2009.

[13] I. Sommerville, Software Engineering, 8th ed. Addison Wesley, 2006.

[14] I. Crnkovic and M. Larsson, Eds., Building Reliable Component-Based
Software Systems. Artech House Publishers, 2002.

[15] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17,
no. 4, pp. 40–52, 1992.

[16] P. Jamshidi, M. Ghafari, A. Ahmad, and C. Pahl, “A framework
for classifying and comparing architecture-centric software evolution
research,” in CSMR, 2013, pp. 305–314.

[17] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A language and
environment for architecture-based software development and evolu-
tion,” in Proceedings of the 21st International Conference on Software
Engineering (ICSE’99), Los Angeles, CA, May 1999, pp. 44–53.

[18] N. Medvidovic, D. S. Rosenblum, , and R. N. Taylor, “A type theory
for software architectures,” Department of Information and Computer
Science, University of California, Irvine, Tech. Rep. UCI-ICS-98-14,
1998.

[19] R. Allen, R. Douence, and D. Garlan, “Specifying and analyzing
dynamic software architectures,” in Proceedings of the 1998 Confer-
ence on Fundamental Approaches to Software Engineering (FASE’98),
Lisbon, Portugal, March 1998, pp. 21–37.

[20] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, “Specifying dis-
tributed software architectures,” in Proceedings of the 5th European
Software Engineering Conference, Sitges, Spain, September 1995, pp.
137–153.

[21] J. Magee and J. Kramer, “Dynamic structure in software architectures,”
SIGSOFT Softw. Eng. Notes, vol. 21, no. 6, pp. 3–14, 1996.

[22] T. Bures, P. Hnetynka, and F. Plasil, “Sofa 2.0: Balancing advanced fea-
tures in a hierarchical component model,” in SERA ’06: Proceedings of
the Fourth International Conference on Software Engineering Research,
Management and Applications. Seattle, USA: IEEE Computer Society,
2006, pp. 40–48.

[23] P. Hnetynka, F. Plasil, T. Bures, V. Mencl, and L. Kapova, “Sofa 2.0
metamodel,” Dep. of SW Engineering, Charles University, Tech. Rep.,
December 2005.

[24] R. Roshandel, A. V. D. Hoek, M. Mikic-Rakic, and N. Medvidovic,
“Mae–a system model and environment for managing architectural evo-
lution,” ACM Transactions on Software Engineering and Methodology,
vol. 13, no. 2, pp. 240–276, 2004.

[25] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and N. Medvidovic,
“Taming architectural evolution,” SIGSOFT Softw. Eng. Notes, vol. 26,
no. 5, pp. 1–10, 2001.

[26] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “A comprehensive
approach for the development of modular software architecture descrip-
tion languages,” ACM Trans. Softw. Eng. Methodol., vol. 14, no. 2, pp.
199–245, 2005.

[27] E. M. Dashofy, A. V. der Hoek, and R. N. Taylor, “A highly-extensible,
xml-based architecture description language,” in WICSA ’01: Proceed-
ings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA’01), Washington, DC, USA, 2001, pp. 103–112.

[28] H. Y. Zhang, C. Urtado, and S. Vauttier, “Connector-driven process for
the gradual evolution of component-based software,” in Proceedings of
the 20th Australian Software Engineering Conference (ASWEC2009),
Gold Coast, Australia, April 2009.

[29] G. Arévalo, N. Desnos, M. Huchard, C. Urtado, and S. Vauttier,
“Formal concept analysis-based service classification to dynamically
build efficient software component directories,” International Journal
of General Systems, vol. 38, no. 4, pp. 427–453, May 2009.

[30] F. Plasil and S. Visnovsky, “Behavior protocols for software compo-
nents,” IEEE Trans. Softw. Eng., vol. 28, no. 11, pp. 1056–1076, 2002.

[31] H. Y. Zhang, C. Urtado, and S. Vauttier, “Architecture-centric
component-based development needs a three-level ADL,” in Proceed-
ings of the 4th European Conference on Software Architecture, ser.
LNCS, M. A. Babar and I. Gorton, Eds., vol. 6285. Copenhagen,
Denmark: Springer, August 2010, pp. 295–310.

[32] ——, “Connector-driven gradual and dynamic software assembly evo-
lution,” in Proceedings of the International Conference on Innovation
in Software Engineering (ISE08), Vienna, Austria, December 2008.

[33] J. Rumbaugh, “Controlling propagation of operations using attributes on
relations,” in Proc. of the Int. Conf. on Object-Oriented Programming
Systems, Languages and Applications, 1988, pp. 285–296.


