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Abstract

The calculation of wave radiation in exterior domains by finite element methods
can lead to large computations even if we consider linear problems in the frequency
domain as in this article. Here, we study two-dimensional acoustics described by
the Helmholtz equation. A large part of the exterior domain is meshed and this
computational domain is truncated at some distance where local or global boundary
conditions are imposed at this artificial boundary. These conditions at finite distance
must simulate as closely as possible the exact radiation condition at infinity and are
generally obtained by discretizing an operator on the boundary.

Here, we propose a different approach, still based on the finite element method.
Instead of finding an absorbing operator and then discretizing it, we will estimate
the absorbing operator directly at the discrete level and build a sparse matrix ap-
proximating the absorbing condition. This discrete absorbing matrix is added to
the dynamic stiffness matrix of the problem which is then solved in a classical way.
The coefficients of the absorbing matrix are found from the solutions of small size
linear systems for each node on the radiating boundary. This is done using a set
of radiating functions for which a boundary condition is written. The precision of
the method is estimated from the number of functions in the test set and from
the number of coefficients allowed in the sparse matrix. Finally, some examples are
computed to validate the method.

Key words: Finite Element, absorbing boundary, acoustics, Helmholtz equation,
frequency domain, exterior domain

1 Introduction

Solving the Helmholtz equation in unbounded domains is important in many
problems of mechanics and physics, for instance for the acoustic radiation
or diffraction around a body immersed in a fluid. Using the finite element
method to solve this problem, one has to define a finite truncated domain
whose solution should be as close as possible to the solution on the unbounded
domain. For this, it is necessary to define a boundary condition at the exterior
of this truncated domain. This condition at finite distance must simulate as
closely as possible the exact radiation condition at infinity. This boundary
condition could be global or local depending if all the degrees of freedom on
the boundary are connected or if a given node is only coupled to a limited
number of nodes around it.

Among the global approaches we find the Dirichlet to Neumann (DtN) condi-
tion proposed by [1,2], mainly for simple exterior geometries such as circles or
spheres for which the solution in the exterior domain is solved analytically, or
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the boundary element method described in many classical textbooks like [3–6].
These methods give accurate results but need full matrices and consequently
lead to heavy computations. So they will not be considered in this article and
we will concentrate on methods preserving the sparsity of the finite element
formulation.

In local methods, on the contrary, the condition at a boundary node involves
only a limited number of neighbouring nodes. They can be classified into
mainly three sets: those involving only the degrees of freedom of the domain,
those with additional degrees of freedom at nodes on the boundary and those
with an additional domain. Concerning the absorption conditions which do
not involve additional variables or domains, a first possibility is using infinite
elements as proposed by [7–12]. These are elements extending at infinity and
satisfying the Sommerfeld radiation condition. However, it needs the devel-
opment of special elements based on functions with outwarding propagation
wave-like behaviour in the radial direction and its efficiency is limited. Other
absorbing boundary conditions involving differential operators of different or-
ders on the boundary were proposed by different authors [13–16]. These re-
lations were improved by Bayliss and Turkel [17,18] using sequences of local
non-reflecting boundary conditions in spherical and cylindrical coordinates.
Comparisons between infinite elements and these absorbing boundary condi-
tions were also made by [19]. Finally [20,21] modified the conditions to get
absorbing conditions for waves at some discrete angles from the normal. How-
ever, all these conditions are difficult to implement above the second order
because of the high order derivatives involved in their formulations and can
have difficulties at corners [22].

More efficient boundary conditions can be obtained by the addition of variables
on the exterior surface as in [23,24] or more recently by [25]. A review of
these methods is made by [26]. They involve only second order derivatives of
the auxiliary variables and so can be efficiently implemented. However, they
need additional degrees of freedom and a special treatment of the differential
operators on the boundary.

Another possibility is the surrounding of the computational domain by ab-
sorbing layers as was first considered by [27,28]. This was improved by [29,30]
who proposed the perfectly matched layer by surrounding the computational
domain with a layer of elements in which the wave equation is analytically
continued into complex coordinates. With a correct choice of the size of the
layer and the parameters of the absorbing layer, very efficient absorptions of
waves can be obtained. This however can add a non negligible number of de-
grees of freedom to the problem and the optimal parameters in the absorbing
layer are not so easy to find. Several developments of the method and its opti-
misation can be found in [31,32]. Comparisons between high-order boundary
conditions, perfectly matched layers and different absorbing conditions were
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studied for instance by the review papers of [33–35].

Most of the precedent absorbing boundary conditions are written at the con-
tinuous level, but it can be interesting to write them at the discrete level.
For instance, boundary conditions at the discrete level using the properties of
periodic media were proposed by [36]. In [37] boundary conditions based on
the PLM were written after discretisation of the equations and were found to
be more efficient than their continuous versions. In [38] the authors proposed
to build a discrete version of the DtN map. They obtained efficient results but
the matrix giving the boundary condition is full in term of degrees of freedom
on the boundary. Such a discrete approach is used in this paper in the aim
of building an approximate absorbing boundary condition leading to a sparse
matrix which can be efficiently integrated into the dynamic stiffness matrix of
the problem. The following section presents the problem formulation and the
building of the discrete absorbing matrix. Then some examples are presented
before the conclusion.

2 Problem formulation

2.1 Helmholtz equation

We consider the two-dimensional acoustic equation in the frequency domain
in the exterior Ωe of a bounded domain Ωi of boundary Γi, see Fig.1. The

Γ

Γ

Ω

e

i

Ωi

n

nΩe

Fig. 1. Exterior domain.

Helmholtz equation with a Neumann boundary condition on Γi and a radiation
condition at infinity is
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∆p + k2p= f on Ωe

∂p

∂n
= g on Γi

∂p

∂r
− ikp= o(

1√
r
) when r → ∞ (1)

with f and g given functions representing the sources in the domain and at
the boundary respectively. The domain Ωe is truncated at some finite distance
by the boundary Γe and the discrete problem is posed on the bounded domain
Ω located between the surfaces Γe and Γi. Its variational formulation is

∫

Ω
(∆p + k2p)qdx =

∫

Ω
fqdx (2)

−
∫

Γi

∂p

∂n
qds+

∫

Γe

∂p

∂n
qds+

∫

Ω
(−∇p.∇q + k2pq)dx =

∫

Ω
fqdx (3)

with q an arbitrary chosen test function and the exterior normals n at surfaces
Γi and Γe. One assumes that the absorbing boundary condition can be written
on the surface Γe as

∂p

∂n
= Ap (4)

where A is an operator acting on the pressure p inside Ω. So the variational
formulation is now

∫

Γe

(Ap)qds+
∫

Ω
(−∇p.∇q + k2pq)dx =

∫

Ω
fqdx+

∫

Γi

gqds (5)

Unlike the usual absorbing boundary conditions, here the operator A is not
limited to the boundary but involves points inside the domain Ω. One can
expect a larger freedom to build a good absorbing operator. The purpose
of this article is to build such an operator at the discrete level with limited
computational costs and such that the matrix describing this operator at the
discrete level is sparse.

2.2 Discretization of the absorbing operator

The absorbing operator is such that

∫

Γe

∂p

∂n
(s)q(s)ds=

∫

Γe

(Ap)(s)q(s)ds

=
∫

Γe

∫

Ω
a(s, x)p(x)q(s)dxds (6)

where the operator A is defined by (Ap)(s) =
∫

Γe
a(s, x)p(x)dx. Denoting by

N s
j (s) the shape functions on the boundary and Nv

i (x) the shape functions on
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the domain Ω, the discrete functions are such that

q(s)=
j=ns
∑

j=1

qjN
s
j (s)

∂p

∂n
(s) =

j=ns
∑

j=1

(
∂p

∂n
)jN

s
j (s)

a(s, x) =
j=ns
∑

j=1

i=nv
∑

i=1

AjiN
s
j (s)N

v
i (x) (7)

with ns the number of degrees of freedom on the boundary and nv the number
in the domain Ω. Thus we make the assumption that the kernel a(s, x) can be
approximated at the discrete level using the coefficients Aji defining a matrix
A. The purpose of the article is to find a good matrix A in the following such
that the boundary condition (4) is absorbing. So relation (6) can be written
as

∫

Γe

j=ns
∑

j=1

(
∂p

∂n
)jN

s
j (s)

l=ns
∑

l=1

qlN
s
l (s)ds=

∫

Γe

∫

Ω

j=ns
∑

j=1

i=nv
∑

i=1

AjiN
s
j (s)N

v
i (x)

l=ns
∑

l=1

m=nv
∑

m=1

pmN
v
m(x)qlN

s
l (s)dxds (8)

leading to

l=ns
∑

l=1

j=ns
∑

j=1

Ms
ljql(

∂p

∂n
)j =

l=ns
∑

l=1

j=ns
∑

j=1

i=nv
∑

i=1

m=nv
∑

m=1

Ms
ljAjiM

v
impmql (9)

with

Ms
lj =

∫

Γe

N s
l (s)N

s
j (s)ds

Mv
im =

∫

Ω
Nv

i (x)N
v
m(x)dx (10)

As relation (9) is true for an arbitrary ql, one gets

j=ns
∑

j=1

Ms
lj(

∂p

∂n
)j =

j=ns
∑

j=1

i=nv
∑

i=1

m=nv
∑

m=1

Ms
ljAjiM

v
impm (11)

so that in matrix form, one has

Msd = MsAMvp (12)
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with d the vector of the normal derivatives of the pressure at the nodes of Γe,
p the vector of the pressures at nodes in Ω and A the matrix made of the Aji

coefficients. From relation (12), one can remove the invertible mass matrix Ms

and finally the vectors p and d are linked by

d = AMvp (13)

and one has to identify the absorbing matrix Ã = AM
v
.

2.3 Determination of the absorbing matrix

The solution of the problem can be expanded as

p(r, θ) =
+∞
∑

−∞

anHn(kr)e
inθ (14)

The completeness of this expansion on the boundary was proved by [39–41].
One now has to find an approximation of the matrix Ã = AMv. One looks
for a discrete operator acting on the pressure at nodes inside Ω such that the
matrix Ã is sparse and the relation (13) is satisfied for outgoing waves such
as those involved in the expansion (14).

For a node i at point xi on the boundary, one considers Ni nodes ij at points
xij in Ω with j = 1...Ni in the neighbourhood of xi and such that xi1 = xi.

So the line i of the matrix Ã will have non zero coefficients only at nodes
ij . To find these coefficients, one writes equation (13) for Hankel functions
of different orders n. Choosing a point o interior to Ωi as the origin for the
expansion (14), one should have

∂

∂ni

(Hn(k|xi − o|)einθi) =
∑

j=1...Ni

aij(Hn(k|xij − o|)einθij ) (15)

for −N ≤ n ≤ N , ni the exterior normal at node i, aij the coefficients of the

matrix Ã to be found and θij the angular coordinate of xij in polar coordinates.
We define the vectors

fi =





























∂
∂ni

(H−N(k|xi − o|)e−iNθi)

...

∂
∂ni

(H0(k|xi − o|))
...

∂
∂ni

(HN(k|xi − o|)eiNθi)





























, ai =















aii1

...

aiiNi















(16)
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and the matrix

Hi =





























H−N(k|xi1 − o|)e−iNθi1 ... H−N(k|xiNi
− o|)e−iNθiNi

... ...

H0(k|xi1 − o|) ... H0(k|xiNi
− o|)

... ...

HN(k|xi1 − o|)eiNθi1 ... HN(k|xiNi
− o|)eiNθiNi





























(17)

Relation (15) can be put under the form

fi = Hiai (18)

Its approximate solution is given by

ai = (H∗

iHi)
−1H∗

i fi (19)

with ∗ denoting the hermitian transpose of a matrix. The vector ai gives the
ith line of the matrix Ã. As the matrix to be inverted can be ill conditioned
the following regularisation is done

ai = (H∗

iHi + ǫI)−1H∗

i fi (20)

with ǫ a small parameter and I the identity matrix. Considering these rela-
tions for all nodes at the boundary, one gets the sparse matrix Ã describing
an approximate absorbing boundary condition on Γe. More precisely, the com-
putation of MsÃ is done element by element by decomposing as

∫

Γe

(Ap)(s)q(s)ds =
∑

m

∫

Γm
e

(Ap)(s)q(s)ds (21)

and the matrix Ã is computed on each element Γm
e at Gauss points and is

added to the global matrix by discrete integration.

The discretisation of the other parts of the variation formulation (5) leads to
the final discrete equation.

(K−MsÃ− k2M)p = F (22)

which can be solved by classical solvers. F is the load vector resulting from
the discretization of the right-hand side of relation (5). M is the mass matrix
while K is the stiffness matrix.

If we compare for instance to infinite elements, they involve only nodes on the
boundary. Here some nodes inside the domain are involved in the computation
of the absorbing matrix. We can expect a better accuracy.
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3 Numerical examples

3.1 Test problem

As a first example we consider an annular domain limited by an interior cir-
cle of radius 0.15m and an exterior circle of radius 0.3m, see Fig.2(a) for the
geometry and Fig.2(b) for the mesh. The sound velocity is c = 340m/s. The
mesh is made of 11138 linear triangular elements with a total of 5765 nodes.
This leads to ten nodes by wavelength up to the frequency 3500Hz. A bound-
ary condition is defined at the interior circle as the normal derivative of the
sound pressure generated by a point source located at point xs = (0.1m, 0)
and is given by

g(x) = −ik

4

n.(x− xs)

|x− xs|
H1(k|x− xs|) (23)

with x the position of a node on the interior boundary Γi, xs the position of
the point source and n the normal at the boundary. The analytical solution is
given by

pana(x) =
i

4
H0(k|x− xs|) (24)

and will be compared to various numerical solutions.

We define the errors eg on the whole domain Ω and eb on the exterior boundary
Γe by

e2g =

∑

i node in Ω

|pnumi − panai |2
∑

i node in Ω

|panai |2

e2b =

∑

i node in Γe

|pnumi − panai |2

∑

i node in Γe

|panai |2
(25)

with the superscripts ana and num denoting respectively the analytical and
numerical solutions.

3.2 Selection of points to build the matrix Ã

Different possibilities exist for choosing the Ni points to build the ith line of
matrix Ã. For instance, one can choose the Ni closest nodes to the boundary
node associated to line i. One can also take these points at random inside the
domain Ω or take a mix of the two precedent possibilities taking for instance
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Γ

Ω

e

Γ
i

0.30m

0.15m

x0.10m
x

y

s

(a)

(b)

Fig. 2. (a) Annular domain and (b) its mesh.

Ni/2 points close to the boundary node and Ni/2 points at random. The errors
associated to these possibilities are given in table 1 for the frequency 100Hz
and the value Ni = 20. So for N ≤ 1 we choose the strategy of taking the Ni

nodes closest to the boundary node while for N ≥ 2 we adopt the mix strategy.
Fig.3 presents the nodes associated to a reference node on the boundary for
these three possible choices.
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Value of N close to node at random mix of close and random

N=0 0.078 0.304 0.149

N=1 0.005 0.029 0.018

N=2 0.042 0.007 0.003

N=3 0.357 0.002 0.001

N=4 0.360 0.0007 0.0007

Table 1
Boundary error eb for Ni = 20 points for different strategies for choosing the nodes
in Ã

3.3 Influence of different parameters

In Fig.4 four solutions in term of modulus of the pressure are plotted for
different truncation orders N . The first three solutions are obtained by the
present method with respectively N = 0, N = 1, N = 2 and the last one is
the analytical solution for the frequency 100Hz. These solutions are obtained
by taking Ni = 20 coefficients for each boundary node in the building of the
matrix Ã. It can be seen that these solutions are a good approximation of the
analytical solution even for the crudest solution with N = 0.

The numerical errors on the boundary and in the domain are given in table 2
for N between 0 and 4. Increasing N leads to a lower error as can be expected.
The boundary error is a little larger than the domain error. One can see that
the value N = 1 leads to good results. This value will be taken in the following
unless otherwise specified.

Value of N global error boundary error

N=0 0.0585 0.0780

N=1 0.0033 0.0054

N=2 0.0017 0.0037

N=3 0.0005 0.0009

N=4 0.0003 0.0005

Table 2
Domain and boundary errors for different values of N at 100Hz

In Fig.5 the solution is plotted versus the number of points Ni used to build
Ã with N = 1. Using Ni = 2 is clearly not enough. However, one can see
that Ni = 5 gives a rather good solution which is still improved by using
more points. Numerical values associated to the figure 5 are given in table 3.
As excepted the error is decreasing when Ni increases as more nodes can be
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involved in definition of the absorbing operator which becomes more accurate.
One see that the error at the boundary is a little larger than the error on the
whole domain. For a given value of N these errors should be limited and would
still decrease if N is increased.

Number of nodes global error boundary error

Ni = 2 0.459 0.522

Ni = 5 0.010 0.013

Ni = 10 0.005 0.006

Ni = 20 0.003 0.005

Table 3
Error for different numbers of nodes used to build the matrix Ã
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-0.295 -0.29 -0.285 -0.28 -0.275 -0.27 -0.265 -0.26
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(b)
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0.15
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0.25

(c)

Fig. 3. Nodes associated to a reference node for the three possible strategies: (a)
Closest nodes, (b) random nodes and (c) mixed strategy. The reference node on the
boundary is noted by x, the nodes on the boundary are green and the nodes inside
the domains are black.
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-0.15 0.175 0.5

Pres_mod

(a) N = 0

-0.15 0.175 0.5

Pres_mod

(b) N = 1

-0.15 0.175 0.5

Pres_mod

(c) N = 2 (d) Analytical solution at 100Hz

Fig. 4. Comparison of solutions at 100Hz for different N
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(a) Ni = 2 (b) Ni = 5

(c) Ni = 10

-0.15 0.175 0.5

Pres_mod

(d) Ni = 20

Fig. 5. Solutions for different numbers Ni of nodes used to define the matrix Ã
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Finally Fig.6 compares the analytical solutions and the numerical ones for
different frequencies. Only Ni = 2 points are used which leads to crude es-
timates. While the solution at 100Hz shows important errors, the results at
300Hz and 1000Hz are much better. This shows that the condition for a lim-
ited number Ni of nodes is more efficient as the frequency increases as for
other usual absorbing boundary conditions.

3.4 Comparison with other absorbing conditions

We will compare the solution of the present method to the computations
obtained by the use of the following local and global boundary conditions

• Sommerfeld (S)
∂p

∂n
= ikp

• First order Bayliss and Turkel (FBT) (see [17])
∂p

∂n
= (ik − 1

2R
)p

• Second order Bayliss and Turkel (SBT) (see [17,42])
∂p

∂n
= − 1

2(ik− 1

R
)
(2k2 + 3ik

R
− 5

4R2 +
1
R2

∂2

∂θ2
)p

• Second order Feng (SF) (see [43])
∂p

∂n
= (ik − 1

2R
+ i

8kR2 +
i

2kR2

∂2

∂θ2
)p

• DtN boundary condition on a circle given by (see [1])

∂p

∂n
= −

∞
∑

n=0

′

∫ 2π

0
mn(θ − θ′)p(R, θ′)dθ′

mn(θ − θ′) = −k

π

H(1)′

n (kR)

H
(1)
n (kR)

cos n(θ − θ′)

where the prime close to the sum means that a factor 1
2
multiplies the term

with n = 0. This condition should be very accurate and will provide a reference
solution. For the following examples 11 terms are kept in the sum which was
found to be sufficient for the frequency 2000Hz. However the computing time
is much longer than for the other boundary conditions.

The boundary condition with the present method is obtained for Ni = 20 and
N = 1. Table 4 presents the errors in the domain for these different boundary
conditions. It can be seen that the Sommerfeld condition is inaccurate except
for high frequencies as it would be expected. The present method is denoted
DLAC (Discrete Level Absorbing Condition). For DLAC1 the parameters are
N = 1 and Ni = 20. For DLAC2, one has N = 4 and Ni = 100. The error
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(a) Analytical solution 100Hz (b) Numerical solution 100 Hz

(c) Analytical solution 300Hz (d) Numerical solution 300 Hz

(e) Analytical solution 1000Hz (f) Numerical solution 1000 Hz

Fig. 6. Solutions for different frequencies
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Frequency S FBT SBT SF DtN DLAC1 DLAC2

10 Hz 4.527 0.455 0.542 0.845 7.56 10−5 0.003 1.37 10−4

50 Hz 1.200 0.266 0.386 0.390 8.35 10−5 0.003 1.40 10−4

100 Hz 0.665 0.162 0.286 0.176 9.66 10−5 0.003 1.45 10−4

500 Hz 0.160 0.041 0.028 0.018 3.59 10−4 0.004 4.59 10−4

1000 Hz 0.086 0.036 0.006 0.008 1.14 10−3 0.003 1.59 10−3

2000 Hz 0.050 0.033 0.006 0.007 0.006 0.007 0.022

Table 4
Error eg in the domain for different boundary conditions

with DLAC1 method is stable over the whole frequency range and is especially
much better than the other local boundary conditions for low and medium
frequencies. The condition is not as accurate as the DtN condition but it is
much faster. For 2000Hz the density of the mesh is the principal factor limiting
the accuracy of the solution. For DLAC2, one recovers a precision close to the
DtN with still a much faster solution except for high frequencies for which a
simpler condition is better to avoid conditionning problems. This is described
in relation (20). The matrix to be inverted suffers some conditioning problems.
Another balancing of the matrix allows to reduce the error to 1.5 10−3. The
optimal balancing of the matrix according to the number of points and the
frequency needs further study.

3.5 Sparsity of matrices

Without absorbing boundary conditions one has to solve a problem with the
matrix K while with absorbing boundary conditions the problem is solved
with the matrix K−MvÃ. In table 5, we compare the number of non zero
elements in the matrix MvÃ for different values of Ni and for the frequency
100Hz. The case Ni = 0 means that we consider the matrix K only.

We see that even for the case Ni = 20 the increase in the number of non
zeros element is limited to 10% and is only 1.9% for Ni = 5. If we consider
the half bandwidth the increase is more noticeable. Fig.7 presents the sparsity
patterns for matrices K and K−MvÃ for the case Ni = 10. The reverse
Cuthill-McKee ordering has been applied to make the matrices closer to the
matrix used in the matlab solver. One can see that matrix MvÃ adds only a
limited numbers of non zero elements.
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Number nnz(K−M
v
Ã) % of non zeros Average

of nodes coefficients half bandwidth

Ni = 0 39571 0.12% 1.6%

Ni = 2 39586 0.12% 1.6%

Ni = 5 40327 0.12% 1.9%

Ni = 10 41401 0.12% 2.0%

Ni = 20 43886 0.13% 2.9%

Table 5
Number of non zeros elements in the matrix K−M

v
Ã for different Ni
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(a) Matrix K
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(b) Zoom on matrix K
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(d) Zoom on matrix K−M
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Ã

Fig. 7. Non zeros elements for the matrices K and K−M
v
Ã

19



3.6 Case of domains with corners

We consider now the case of a square of size 0.6m × 0.6m centred on the
origin as an example of a domain with corners, see Fig.8(a). The square is

x
x

s

0.30m

0.10m
y

(a)

(b)

Fig. 8. (a) Square domain and (b) its mesh.

fully meshed (see Fig.8(b)) and the absorbing condition is put on the exterior
boundary. A unit point source is located at point (0.1m, 0) such that the
analytical solution is still given by formula (24). The computation is done for
N = 1 and Ni = 20. The mesh is made of 52567 nodes and 104456 elements.
Table 6 presents the error on the boundary versus the frequency. It can still
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Frequency DLAC1

10 Hz 0.006

50 Hz 0.005

100 Hz 0.005

500 Hz 0.008

1000 Hz 0.012

2000 Hz 0.017

Table 6
Error eb on the boundary of the square for different frequencies

be seen that the proposed method leads to low errors at low and medium
frequencies. The precedent Bayliss and Turkel method or Feng method would
nor be efficient on this type of boundary with straight lines. Figure 9 shows the
comparison between the numerical and analytical solutions for the frequencies
50 Hz and 1000Hz. In both cases one can see that the numerical solution is
very close to the analytical one

4 Conclusion

A new numerical method has been presented for computing absorbing bound-
ary conditions for the Helmholtz equation. It builds a discrete absorbing ma-
trix directly from the finite element discretisation of the problem. This can be
applied to any shape and does not require additional variables or additional
domains. So the number of degrees of freedom is the same as for the problem
without absorbing boundary conditions. Examples show the accuracy of the
method. So, among the methods which do not increase the number of degrees
of freedom, this method can be more efficient than those presently used and is
rather simple to implement. It is more accurate than these methods and much
faster than global methods like the DtN. Similar approaches could be used for
other wave propagation problems such as for the propagation of elastic waves.
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