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The calculation of wave radiation in exterior domains by finite element methods can lead to large computations even if we consider linear problems in the frequency domain as in this article. Here, we study two-dimensional acoustics described by the Helmholtz equation. A large part of the exterior domain is meshed and this computational domain is truncated at some distance where local or global boundary conditions are imposed at this artificial boundary. These conditions at finite distance must simulate as closely as possible the exact radiation condition at infinity and are generally obtained by discretizing an operator on the boundary.

Here, we propose a different approach, still based on the finite element method. Instead of finding an absorbing operator and then discretizing it, we will estimate the absorbing operator directly at the discrete level and build a sparse matrix approximating the absorbing condition. This discrete absorbing matrix is added to the dynamic stiffness matrix of the problem which is then solved in a classical way. The coefficients of the absorbing matrix are found from the solutions of small size linear systems for each node on the radiating boundary. This is done using a set of radiating functions for which a boundary condition is written. The precision of the method is estimated from the number of functions in the test set and from the number of coefficients allowed in the sparse matrix. Finally, some examples are computed to validate the method.

Introduction

Solving the Helmholtz equation in unbounded domains is important in many problems of mechanics and physics, for instance for the acoustic radiation or diffraction around a body immersed in a fluid. Using the finite element method to solve this problem, one has to define a finite truncated domain whose solution should be as close as possible to the solution on the unbounded domain. For this, it is necessary to define a boundary condition at the exterior of this truncated domain. This condition at finite distance must simulate as closely as possible the exact radiation condition at infinity. This boundary condition could be global or local depending if all the degrees of freedom on the boundary are connected or if a given node is only coupled to a limited number of nodes around it.

Among the global approaches we find the Dirichlet to Neumann (DtN) condition proposed by [START_REF] Keller | Exact non-reflecting boundary conditions[END_REF][START_REF] Givoli | A finite element method for large domains[END_REF], mainly for simple exterior geometries such as circles or spheres for which the solution in the exterior domain is solved analytically, or the boundary element method described in many classical textbooks like [START_REF] Brebbia | Boundary Element Techniques in Engineering[END_REF][START_REF] Ciskowski | Boundary element methods in acoustics[END_REF][START_REF] Chen | Boundary element methods[END_REF][START_REF] Bonnet | Boundary Integral Equation Methods for Solids and Fluids[END_REF]. These methods give accurate results but need full matrices and consequently lead to heavy computations. So they will not be considered in this article and we will concentrate on methods preserving the sparsity of the finite element formulation.

In local methods, on the contrary, the condition at a boundary node involves only a limited number of neighbouring nodes. They can be classified into mainly three sets: those involving only the degrees of freedom of the domain, those with additional degrees of freedom at nodes on the boundary and those with an additional domain. Concerning the absorption conditions which do not involve additional variables or domains, a first possibility is using infinite elements as proposed by [START_REF] Bettess | Infinite elements[END_REF][START_REF] Bettess | More on infinite elements[END_REF][START_REF] Bettess | Infinite Elements[END_REF][START_REF] Burnett | A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion[END_REF][START_REF] Astley | Infinite elements for wave problems: a review of current formulations and an assessment of accuracy[END_REF][START_REF] Gerdes | A review of infinite element methods for exterior helmholtz problems[END_REF]. These are elements extending at infinity and satisfying the Sommerfeld radiation condition. However, it needs the development of special elements based on functions with outwarding propagation wave-like behaviour in the radial direction and its efficiency is limited. Other absorbing boundary conditions involving differential operators of different orders on the boundary were proposed by different authors [START_REF] Engquist | Absorbing boundary conditions for numerical simulation of waves[END_REF][START_REF] Engquist | Absorbing boundary conditions for numerical simulation of waves[END_REF][START_REF] Clayton | Absorbing boundary conditions for acoustic and elastic wave equations[END_REF][START_REF] Reynolds | Boundary conditions for the numerical solution of wave propagation problems[END_REF]. These relations were improved by Bayliss and Turkel [START_REF] Bayliss | Radiation boundary conditions for wave-like equations[END_REF][START_REF] Bayliss | Boundary conditions for the numerical solution of elliptic equations in exterior regions[END_REF] using sequences of local non-reflecting boundary conditions in spherical and cylindrical coordinates. Comparisons between infinite elements and these absorbing boundary conditions were also made by [START_REF] Shirron | A comparison of approximate boundary conditions and infinite element methods for exterior helmholtz problems[END_REF]. Finally [START_REF] Higdon | Absorbing boundary conditions for difference approximations to the multidimensional wave equation[END_REF][START_REF] Higdon | Numerical absorbing boundary conditions for the wave equation[END_REF] modified the conditions to get absorbing conditions for waves at some discrete angles from the normal. However, all these conditions are difficult to implement above the second order because of the high order derivatives involved in their formulations and can have difficulties at corners [START_REF] Engquist | Radiation boundary conditions for acoustic and elastic wave calculations[END_REF].

More efficient boundary conditions can be obtained by the addition of variables on the exterior surface as in [START_REF] Collino | High-order absorbing boundary conditions for wave propagation models. straight line boundary and corner cases[END_REF][START_REF] Hagstrom | A formulation of asymptotic and exact boundary conditions using local operators[END_REF] or more recently by [START_REF] Lee | Absorbing boundary condition for scalar-wave propagation problems in infinite media based on a root-finding algorithm[END_REF]. A review of these methods is made by [START_REF] Givoli | High-order local non-reflecting boundary conditions: a review[END_REF]. They involve only second order derivatives of the auxiliary variables and so can be efficiently implemented. However, they need additional degrees of freedom and a special treatment of the differential operators on the boundary.

Another possibility is the surrounding of the computational domain by absorbing layers as was first considered by [START_REF] Cerjan | A nonreflecting boundary condition for discrete acoustic and elastic wave equations[END_REF][START_REF] Sochacki | Absorbing boundary conditions and surface waves[END_REF]. This was improved by [START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF][START_REF] Berenger | Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[END_REF] who proposed the perfectly matched layer by surrounding the computational domain with a layer of elements in which the wave equation is analytically continued into complex coordinates. With a correct choice of the size of the layer and the parameters of the absorbing layer, very efficient absorptions of waves can be obtained. This however can add a non negligible number of degrees of freedom to the problem and the optimal parameters in the absorbing layer are not so easy to find. Several developments of the method and its optimisation can be found in [START_REF] Collino | Optimizing the perfectly matched layer[END_REF][START_REF] Asvadurov | On optimal finite-difference approximation of PML[END_REF]. Comparisons between high-order boundary conditions, perfectly matched layers and different absorbing conditions were studied for instance by the review papers of [START_REF] Givoli | Non-reflecting boundary conditions[END_REF][START_REF] Rabinovich | Comparison of high-order absorbing boundary conditions and perfectly matched layers in the frequency domain[END_REF][START_REF] Gao | Comparison of artificial absorbing boundaries for acoustic wave equation modelling[END_REF].

Most of the precedent absorbing boundary conditions are written at the continuous level, but it can be interesting to write them at the discrete level. For instance, boundary conditions at the discrete level using the properties of periodic media were proposed by [START_REF] Duhamel | Finite element computation of absorbing boundary conditions for time-harmonic wave problems[END_REF]. In [START_REF] Thirunavukkarasu | Absorbing boundary conditions for time harmonic wave propagation in discretized domains[END_REF] boundary conditions based on the PLM were written after discretisation of the equations and were found to be more efficient than their continuous versions. In [START_REF] Givoli | Discrete Dirichlet-to-Neumann maps for unbounded domains[END_REF] the authors proposed to build a discrete version of the DtN map. They obtained efficient results but the matrix giving the boundary condition is full in term of degrees of freedom on the boundary. Such a discrete approach is used in this paper in the aim of building an approximate absorbing boundary condition leading to a sparse matrix which can be efficiently integrated into the dynamic stiffness matrix of the problem. The following section presents the problem formulation and the building of the discrete absorbing matrix. Then some examples are presented before the conclusion. Helmholtz equation with a Neumann boundary condition on Γ i and a radiation condition at infinity is

∆p + k 2 p = f on Ω e ∂p ∂n = g on Γ i ∂p ∂r -ikp = o( 1 √ r ) when r → ∞ (1) 
with f and g given functions representing the sources in the domain and at the boundary respectively. The domain Ω e is truncated at some finite distance by the boundary Γ e and the discrete problem is posed on the bounded domain Ω located between the surfaces Γ e and Γ i . Its variational formulation is

Ω (∆p + k 2 p)qdx = Ω f qdx (2) 
-

Γ i ∂p ∂n qds + Γe ∂p ∂n qds + Ω (-∇p.∇q + k 2 pq)dx = Ω f qdx (3) 
with q an arbitrary chosen test function and the exterior normals n at surfaces Γ i and Γ e . One assumes that the absorbing boundary condition can be written on the surface Γ e as ∂p ∂n = Ap (4

)
where A is an operator acting on the pressure p inside Ω. So the variational formulation is now

Γe (Ap)qds + Ω (-∇p.∇q + k 2 pq)dx = Ω f qdx + Γ i gqds (5) 
Unlike the usual absorbing boundary conditions, here the operator A is not limited to the boundary but involves points inside the domain Ω. One can expect a larger freedom to build a good absorbing operator. The purpose of this article is to build such an operator at the discrete level with limited computational costs and such that the matrix describing this operator at the discrete level is sparse.

Discretization of the absorbing operator

The absorbing operator is such that

Γe ∂p ∂n (s)q(s)ds = Γe (Ap)(s)q(s)ds = Γe Ω a(s, x)p(x)q(s)dxds (6) 
where the operator A is defined by (Ap)(s) = Γe a(s, x)p(x)dx. Denoting by N s j (s) the shape functions on the boundary and N v i (x) the shape functions on the domain Ω, the discrete functions are such that

q(s) = j=ns j=1 q j N s j (s) ∂p ∂n (s) = j=ns j=1 ( ∂p ∂n ) j N s j (s) a(s, x) = j=ns j=1 i=nv i=1 A ji N s j (s)N v i (x) (7) 
with n s the number of degrees of freedom on the boundary and n v the number in the domain Ω. Thus we make the assumption that the kernel a(s, x) can be approximated at the discrete level using the coefficients A ji defining a matrix A. The purpose of the article is to find a good matrix A in the following such that the boundary condition ( 4) is absorbing. So relation ( 6) can be written as 

Γe j=ns j=1 ( ∂p ∂n ) j N s j (s) l=ns l=1 q l N s l (s)ds = Γe Ω j=ns j=1 i=nv i=1 A ji N s j (s)N v i (x) l=ns l=1 m=nv m=1 p m N v m (x)q l N s l (s)dxds (8) 
M s lj A ji M v im p m q l (9) 
with

M s lj = Γe N s l (s)N s j (s)ds M v im = Ω N v i (x)N v m (x)dx (10) 
As relation ( 9) is true for an arbitrary q l , one gets

j=ns j=1 M s lj ( ∂p ∂n ) j = j=ns j=1 i=nv i=1 m=nv m=1 M s lj A ji M v im p m (11) 
so that in matrix form, one has

M s d = M s AM v p (12) 
with d the vector of the normal derivatives of the pressure at the nodes of Γ e , p the vector of the pressures at nodes in Ω and A the matrix made of the A ji coefficients. From relation [START_REF] Gerdes | A review of infinite element methods for exterior helmholtz problems[END_REF], one can remove the invertible mass matrix M s and finally the vectors p and d are linked by

d = AM v p (13) 
and one has to identify the absorbing matrix à = AM v .

Determination of the absorbing matrix

The solution of the problem can be expanded as

p(r, θ) = +∞ -∞ a n H n (kr)e inθ (14) 
The completeness of this expansion on the boundary was proved by [START_REF] Colton | Runges theorem and far field patterns for the impedance boundary value problem in acoustic wave propagation[END_REF][START_REF] Millar | On the completeness of sets of solutions to the helmholtz equation[END_REF][START_REF] Liu | On the completeness and the linear dependence of the cartesian multipole series in representing the solution to the helmholtz equation[END_REF].

One now has to find an approximation of the matrix à = AM v . One looks for a discrete operator acting on the pressure at nodes inside Ω such that the matrix à is sparse and the relation ( 13) is satisfied for outgoing waves such as those involved in the expansion [START_REF] Engquist | Absorbing boundary conditions for numerical simulation of waves[END_REF].

For a node i at point x i on the boundary, one considers N i nodes i j at points x i j in Ω with j = 1...N i in the neighbourhood of x i and such that x i 1 = x i . So the line i of the matrix à will have non zero coefficients only at nodes i j . To find these coefficients, one writes equation [START_REF] Engquist | Absorbing boundary conditions for numerical simulation of waves[END_REF] for Hankel functions of different orders n. Choosing a point o interior to Ω i as the origin for the expansion [START_REF] Engquist | Absorbing boundary conditions for numerical simulation of waves[END_REF], one should have

∂ ∂n i (H n (k|x i -o|)e inθ i ) = j=1...N i a i j (H n (k|x i j -o|)e inθ i j ) (15) 
for -N ≤ n ≤ N, n i the exterior normal at node i, a i j the coefficients of the matrix à to be found and θ i j the angular coordinate of x i j in polar coordinates. We define the vectors [START_REF] Reynolds | Boundary conditions for the numerical solution of wave propagation problems[END_REF] and the matrix

f i =               ∂ ∂n i (H -N (k|x i -o|)e -iN θ i ) ... ∂ ∂n i (H 0 (k|x i -o|)) ... ∂ ∂n i (H N (k|x i -o|)e iN θ i )               , a i =        a i i 1 ... a i i N i       
H i =               H -N (k|x i 1 -o|)e -iN θ i 1 ... H -N (k|x i N i -o|)e -iN θ i N i ... ... H 0 (k|x i 1 -o|) ... H 0 (k|x i N i -o|) ... ... H N (k|x i 1 -o|)e iN θ i 1 ... H N (k|x i N i -o|)e iN θ i N i               (17) 
Relation ( 15) can be put under the form

f i = H i a i (18) 
Its approximate solution is given by

a i = (H * i H i ) -1 H * i f i ( 19 
)
with * denoting the hermitian transpose of a matrix. The vector a i gives the ith line of the matrix Ã. As the matrix to be inverted can be ill conditioned the following regularisation is done

a i = (H * i H i + ǫI) -1 H * i f i (20) 
with ǫ a small parameter and I the identity matrix. Considering these relations for all nodes at the boundary, one gets the sparse matrix à describing an approximate absorbing boundary condition on Γ e . More precisely, the computation of M s à is done element by element by decomposing as Γe (Ap)(s)q(s)ds = m Γ m e (Ap)(s)q(s)ds [START_REF] Higdon | Numerical absorbing boundary conditions for the wave equation[END_REF] and the matrix à is computed on each element Γ m e at Gauss points and is added to the global matrix by discrete integration. The discretisation of the other parts of the variation formulation (5) leads to the final discrete equation.

(K -M s à -k 2 M)p = F (22) 
which can be solved by classical solvers. F is the load vector resulting from the discretization of the right-hand side of relation [START_REF] Chen | Boundary element methods[END_REF]. M is the mass matrix while K is the stiffness matrix.

If we compare for instance to infinite elements, they involve only nodes on the boundary. Here some nodes inside the domain are involved in the computation of the absorbing matrix. We can expect a better accuracy.

3 Numerical examples

Test problem

As a first example we consider an annular domain limited by an interior circle of radius 0.15m and an exterior circle of radius 0.3m, see Fig. 2(a) for the geometry and Fig. 2(b) for the mesh. The sound velocity is c = 340m/s. The mesh is made of 11138 linear triangular elements with a total of 5765 nodes. This leads to ten nodes by wavelength up to the frequency 3500Hz. A boundary condition is defined at the interior circle as the normal derivative of the sound pressure generated by a point source located at point x s = (0.1m, 0) and is given by

g(x) = - ik 4 n.(x -x s ) |x -x s | H 1 (k|x -x s |) (23) 
with x the position of a node on the interior boundary Γ i , x s the position of the point source and n the normal at the boundary. The analytical solution is given by

p ana (x) = i 4 H 0 (k|x -x s |) (24) 
and will be compared to various numerical solutions.

We define the errors e g on the whole domain Ω and e b on the exterior boundary Γ e by

e 2 g = i node in Ω |p num i -p ana i | 2 i node in Ω |p ana i | 2 e 2 b = i node in Γe |p num i -p ana i | 2 i node in Γe |p ana i | 2 (25) 
with the superscripts ana and num denoting respectively the analytical and numerical solutions.

Selection of points to build the matrix Ã

Different possibilities exist for choosing the N i points to build the i th line of matrix Ã. For instance, one can choose the N i closest nodes to the boundary node associated to line i. One can also take these points at random inside the domain Ω or take a mix of the two precedent possibilities taking for instance N i /2 points close to the boundary node and N i /2 points at random. The errors associated to these possibilities are given in table 1 for the frequency 100Hz and the value N i = 20. So for N ≤ 1 we choose the strategy of taking the N i nodes closest to the boundary node while for N ≥ 2 we adopt the mix strategy. Fig. 3 presents the nodes associated to a reference node on the boundary for these three possible choices. 1 Boundary error e b for N i = 20 points for different strategies for choosing the nodes in Ã

Influence of different parameters

In Fig. 4 four solutions in term of modulus of the pressure are plotted for different truncation orders N. The first three solutions are obtained by the present method with respectively N = 0, N = 1, N = 2 and the last one is the analytical solution for the frequency 100Hz. These solutions are obtained by taking N i = 20 coefficients for each boundary node in the building of the matrix Ã. It can be seen that these solutions are a good approximation of the analytical solution even for the crudest solution with N = 0.

The numerical errors on the boundary and in the domain are given in table 2 for N between 0 and 4. Increasing N leads to a lower error as can be expected. The boundary error is a little larger than the domain error. One can see that the value N = 1 leads to good results. This value will be taken in the following unless otherwise specified. In Fig. 5 the solution is plotted versus the number of points N i used to build à with N = 1. Using N i = 2 is clearly not enough. However, one can see that N i = 5 gives a rather good solution which is still improved by using more points. Numerical values associated to the figure 5 are given in table 3. As excepted the error is decreasing when N i increases as more nodes can be involved in definition of the absorbing operator which becomes more accurate. One see that the error at the boundary is a little larger than the error on the whole domain. For a given value of N these errors should be limited and would still decrease if N is increased.

Number of nodes global error boundary error

N i = 2
0.459 0.522 Finally Fig. 6 compares the analytical solutions and the numerical ones for different frequencies. Only N i = 2 points are used which leads to crude estimates. While the solution at 100Hz shows important errors, the results at 300Hz and 1000Hz are much better. This shows that the condition for a limited number N i of nodes is more efficient as the frequency increases as for other usual absorbing boundary conditions.

N i =

Comparison with other absorbing conditions

We will compare the solution of the present method to the computations obtained by the use of the following local and global boundary conditions

• Sommerfeld (S) ∂p ∂n = ikp
• First order Bayliss and Turkel (FBT) (see [START_REF] Bayliss | Radiation boundary conditions for wave-like equations[END_REF])

∂p ∂n = (ik -1 2R )p
• Second order Bayliss and Turkel (SBT) (see [START_REF] Bayliss | Radiation boundary conditions for wave-like equations[END_REF][START_REF] Gan | Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain[END_REF])

∂p ∂n = -1 2(ik-1 R ) (2k 2 + 3ik R -5 4R 2 + 1 R 2 ∂ 2 ∂θ 2 )p
• Second order Feng (SF) (see [START_REF] Feng | Finite element method and natural boundary reduction[END_REF])

∂p ∂n = (ik -1 2R + i 8kR 2 + i 2kR 2 ∂ 2 ∂θ 2 )p
• DtN boundary condition on a circle given by (see [START_REF] Keller | Exact non-reflecting boundary conditions[END_REF])

∂p ∂n = - ∞ n=0 ′ 2π 0 m n (θ -θ ′ )p(R, θ ′ )dθ ′ m n (θ -θ ′ ) = - k π H (1) ′ n (kR) H (1) 
n (kR) cos n(θ -θ ′ )
where the prime close to the sum means that a factor 1 2 multiplies the term with n = 0. This condition should be very accurate and will provide a reference solution. For the following examples 11 terms are kept in the sum which was found to be sufficient for the frequency 2000Hz. However the computing time is much longer than for the other boundary conditions.

The boundary condition with the present method is obtained for N i = 20 and N = 1. Table 4 presents the errors in the domain for these different boundary conditions. It can be seen that the Sommerfeld condition is inaccurate except for high frequencies as it would be expected. The present method is denoted DLAC (Discrete Level Absorbing Condition). For DLAC1 the parameters are N = 1 and N i = 20. For DLAC2, one has N = 4 and N i = 100. The error 4 Error e g in the domain for different boundary conditions with DLAC1 method is stable over the whole frequency range and is especially much better than the other local boundary conditions for low and medium frequencies. The condition is not as accurate as the DtN condition but it is much faster. For 2000Hz the density of the mesh is the principal factor limiting the accuracy of the solution. For DLAC2, one recovers a precision close to the DtN with still a much faster solution except for high frequencies for which a simpler condition is better to avoid conditionning problems. This is described in relation [START_REF] Higdon | Absorbing boundary conditions for difference approximations to the multidimensional wave equation[END_REF]. The matrix to be inverted suffers some conditioning problems. Another balancing of the matrix allows to reduce the error to 1.5 10 -3 . The optimal balancing of the matrix according to the number of points and the frequency needs further study.

Sparsity of matrices

Without absorbing boundary conditions one has to solve a problem with the matrix K while with absorbing boundary conditions the problem is solved with the matrix K -M v Ã. In table 5, we compare the number of non zero elements in the matrix M v à for different values of N i and for the frequency 100Hz. The case N i = 0 means that we consider the matrix K only.

We see that even for the case N i = 20 the increase in the number of non zeros element is limited to 10% and is only 1.9% for N i = 5. If we consider the half bandwidth the increase is more noticeable. Fig. 7 presents the sparsity patterns for matrices K and K -M v à for the case N i = 10. The reverse Cuthill-McKee ordering has been applied to make the matrices closer to the matrix used in the matlab solver. One can see that matrix M v à adds only a limited numbers of non zero elements. 

Case of domains with corners

We consider now the case of a square of size 0.6m × 0.6m centred on the origin as an example of a domain with corners, see Fig. 8(a). The square is fully meshed (see Fig. 8(b)) and the absorbing condition is put on the exterior boundary. A unit point source is located at point (0.1m, 0) such that the analytical solution is still given by formula [START_REF] Hagstrom | A formulation of asymptotic and exact boundary conditions using local operators[END_REF]. The computation is done for N = 1 and N i = 20. The mesh is made of 52567 nodes and 104456 elements. 6 Error e b on the boundary of the square for different frequencies be seen that the proposed method leads to low errors at low and medium frequencies. The precedent Bayliss and Turkel method or Feng method would nor be efficient on this type of boundary with straight lines. Figure 9 shows the comparison between the numerical and analytical solutions for the frequencies 50 Hz and 1000Hz. In both cases one can see that the numerical solution is very close to the analytical one

Conclusion

A new numerical method has been presented for computing absorbing boundary conditions for the Helmholtz equation. It builds a discrete absorbing matrix directly from the finite element discretisation of the problem. This can be applied to any shape and does not require additional variables or additional domains. So the number of degrees of freedom is the same as for the problem without absorbing boundary conditions. Examples show the accuracy of the method. So, among the methods which do not increase the number of degrees of freedom, this method can be more efficient than those presently used and is rather simple to implement. It is more accurate than these methods and much faster than global methods like the DtN. Similar approaches could be used for other wave propagation problems such as for the propagation of elastic waves. 

2 Problem formulation 2 . 1 Fig. 1 .

 211 Fig. 1. Exterior domain.

Fig. 2 .

 2 Fig. 2. (a) Annular domain and (b) its mesh.

Fig. 3 .Fig. 4 . 2 (b) N i = 5 (c) N i = 10 -N i = 20 Fig. 5 .

 342510205 Fig. 3. Nodes associated to a reference node for the three possible strategies: (a) Closest nodes, (b) random nodes and (c) mixed strategy. The reference node on the boundary is noted by x, the nodes on the boundary are green and the nodes inside the domains are black.

  Fig. 6. Solutions for different frequencies

Fig. 7 .

 7 Fig. 7. Non zeros elements for the matrices K and K -M v Ã

Fig. 8 .

 8 Fig. 8. (a) Square domain and (b) its mesh.

Fig. 9 .

 9 Fig. 9. Solutions for a square at 50Hz and 1000Hz

  

  6. Solutions for different frequencies

	Frequency	S	FBT SBT	SF	DtN	DLAC1 DLAC2
	10 Hz	4.527 0.455 0.542 0.845 7.56 10 -5	0.003	1.37 10 -4
	50 Hz	1.200 0.266 0.386 0.390 8.35 10 -5	0.003	1.40 10 -4
	100 Hz	0.665 0.162 0.286 0.176 9.66 10 -5	0.003	1.45 10 -4
	500 Hz	0.160 0.041 0.028 0.018 3.59 10 -4	0.004	4.59 10 -4
	1000 Hz	0.086 0.036 0.006 0.008 1.14 10 -3	0.003	1.59 10 -3
	2000 Hz	0.050 0.033 0.006 0.007	0.006	0.007	0.022
	Table					

  Number nnz(K -M v Ã) % of non zeros Number of non zeros elements in the matrix K -M v à for different N i

				Average
	of nodes		coefficients	half bandwidth
	N i = 0	39571	0.12%	1.6%
	N i = 2	39586	0.12%	1.6%
	N i = 5	40327	0.12%	1.9%
	N i = 10	41401	0.12%	2.0%
	N i = 20	43886	0.13%	2.9%
	Table 5			

Table 6

 6 presents the error on the boundary versus the frequency. It can still 20

	Frequency DLAC1
	10 Hz	0.006
	50 Hz	0.005
	100 Hz	0.005
	500 Hz	0.008
	1000 Hz	0.012
	2000 Hz	0.017
	Table