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Abstract: We performed and studied cascaded Third-Harmonic Generation in a quasi-

periodically poled KTP (QPPKTP) crystal allowing simultaneous phase-matching of the two 

cascading steps ω + ω → 2ω and 2ω + ω → 3ω. The phase-matching was achieved at the 

fundamental wavelength λω = 1587 nm when the QPPKTP crystal was heated to 95°C. The 

energy conversion efficiency reached 40% in the picosecond regime for a fundamental energy 

of 20 µJ that corresponds to an intensity of 1.5 GW/cm2. It is the highest value of THG 

efficiency ever reported to the best of our knowledge. The modeling in the case of the depleted 

pump regime accurately described the experiments. 

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Extending the bandwidth of laser sources is a huge field of application of parametric nonlinear 

optics starting from the pioneering work on Second-harmonic Generation (SHG) [1] and 

Optical Parametric Oscillators (OPO) [2].  Third-Harmonic Generation (THG) is also of strong 

interest in this frame of frequency conversion since it is often used as a pump source of OPO 

[3], but it is also at the heart of nuclear reactions [4] and optical processing [5] for example. 

Quantum optics is another area of interest for THG since it can lead to the generation of 

squeezed light [6,7]. 

THG can be performed using a direct third order nonlinear process, i.e. ω + ω + ω → 3ω 

that is governed by the third-order nonlinear electric susceptibility χ(3) [8]. While third-order 

susceptibility is present in all materials, it is usually very small, causing conversion efficiency 

of THG to be low and requires very high pump intensities. Another approach is by cascading 

two processes driven by the second-order susceptibility χ(2) : ω + ω → 2ω, which corresponds 

to SHG, and THG it-self  , i.e. 2ω + ω → 3ω creating the third harmonic. These two steps can 

be successive [4] or simultaneous [7,9,10,11]. 

The second-order susceptibility is available only for non-centrosymmetric materials, but it 

can be a few orders of magnitude higher than the third-order susceptibility, so that the second-

order processes are generally more efficient. Direct as well as cascaded THG can be achieved 

in phase-matched birefringent crystals of volume [8,10,12] or waveguide [11, 13] dimensions. 

But periodically-poled nonlinear crystals are also a good alternative because of their relatively 

high non-linearity and their phase-matching flexibility [6,7,14]. Note that the simultaneous 

cascading configuration had led to the highest THG conversion efficiencies using birefringent 

phase-matching [10] as well as quasi-phase-matching [9,11].  

The present study deals with this latter configuration. We developed theoretical and 

experimental methods for designing an efficient cascaded THG using a single quasi-

periodically poled KTiOPO4 crystal (QPPKTP). KTP crystals are widely used for frequency 
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conversion and quantum optics, they have a high second-order susceptibility and are 

commercially available. Quasi periodic structures in KTP have shown to be strong contenders 

for achieving high conversion efficiencies [9,15,16]. Our objective is then to go beyond these 

pioneering works by developing a model of THG in the depleted pump regime and by 

experimentally optimizing the conversion efficiency, in particular in the visible around 0.5 μm. 

This last point is of prime importance in the more general framework of the generation of new 

quantum states of light, where the exact reverse of cascaded THG, i.e. 3ω → ω + 2ω coupled 

with 2ω → ω + ω, is a way to produce three highly correlated photons at ω [17]. The target is 

then to perform this Triple-Photon Generation (TPG) in the telecom range for quantum 

information, which means λω around 1.5 μm and so λ3ω around 0.5 μm. Since TPG and THG 

exhibit the same phase-matching properties, the optimization of one then leads to the 

optimization of the other.            

 

2. Crystal design  

Tailoring the second-order susceptibility of nonlinear crystals can be performed by electric field 

poling, a process that can flip the sign of some 𝜒(2) coefficients. The most common use of this 

is for quasi-phase matching, where a periodic change in the sign of the susceptibility with period 

Λ can compensate phase mismatch, leading to high conversion efficiencies in crystals and 

processes that were inefficient otherwise. But not only periodic structures can be created, also 

2D modulations have been shown to be useful for beam shaping [18] as well as for general 

frequency control [19].  

One interesting way of designing nonlinear crystals is by imposing a quasi-periodic 

structure [20,21], where multiple periods are combined in the same crystal. This enables to 

phase-match multiple processes simultaneously through different Fourier components of the 

crystal modulation. These crystals are designed to have a few discrete peaks in their Fourier 

spectrum, each corresponding to the phase-matching requirements of each process. This 

concept was originally based on a Fibonacci tiling of the crystal [9,22], although only specific 

wave-vectors, whose ratio depends on the Fibonacci golden ratio, are available for phase 

matching in this type of system. The theory was later extended to provide an arbitrary set of 

wave vectors with the use of the De Brujin’s Dual-Grid Method [20,23], which enables to 

phase-match an arbitrary combination of multiple nonlinear processes, in one dimension 

[20,21] as well as two dimensions [24].  

 



 

Fig. 1. (a) A schematic picture of the cascaded processes; (x,y,z) refers to the dielectric frame ; 

kω,2ω,3ω stands for the wave vectors and 𝛥𝑘𝑆𝐻𝐺,𝑇𝐻𝐺 for the phase-mismatches, with no metric 

matching between the vector sizes and the pattern in the background. (b) Microscopy picture of 

the PPQKTP crystal exhibiting the poling pattern; the yellow scale bar is 28 µm long. (c) Far 
field diffraction pattern from the crystal. In orange are the peaks that correspond to the designed 

peaks. (d) Fourier Transform of the nonlinear modulation pattern, exhibiting two peaks at the 

mismatch frequencies, i.e. 10.24441
SHG

k m − =  for the SHG and 10.22031
THG

k m − =  for the 

THG. 

In order to simultaneously phase-match SHG and THG, we used a quasiperiodic modulation 

in a KTP crystal. We chose the third-harmonic to be 𝜆3𝜔  =  527 𝑛𝑚, so that the lower 

harmonics are 𝜆2𝜔  =  790.5 𝑛𝑚, and 𝜆𝜔 = 1581 𝑛𝑚. We considered the following cascading 

processes: type 0 SHG (all fields are z-polarized) 1581(𝑧)  +  1581(𝑧)  →  790.5(𝑧) followed 

by type II THG (input signal is (z) polarized and the rest are (y) polarized) 790.5(𝑧)  +

 1581(𝑦)  →  527(𝑦) where y and z stand for the direction of polarization of the waves 

propagating along the x-axis, (x, y, z) being the crystalline axes. We then calculated the 

corresponding phase-mismatch values, i.e.: 
2 2SHGk k k − =  and 

3 2THGk k k k  − − =  , where 

2 ( ) /i i ik n  =  is the wave vector. Using the refractive indices of KTP as a function of 

temperature [25,26] at 100°C, we obtained 10.24441SHGk m − =  and 10.22031THGk m − = . 

The flexibility of our design method [20,21] allows us to tailor the nonlinear response of the 

crystal so that it will provide phase-matching at these two spatial frequencies, with the tiling 

vectors / 14.1836SHGk m  =  and / 12.7849THGk m  = , respectively. We fabricated a 1-

cm-long QPPKTP crystal, where the width of the poled zone is 1mm. A microscopy image of 

the selectively etched surface of the fabricated crystal and the associated Fourier spectrum are 

shown in Fig.1. 

 

3. Phase-matching conditions 

We experimentally determined the phase-matching wavelengths and the corresponding 

temperatures of the SHG and THG steps in the 1-cm-long QPPKTP sample described in the 

previous section. The fundamental beam at 𝜆𝜔, that is used for pumping the QPPKTP crystal, 

was emitted by a tunable TOPAS Optical Parametric Generator (OPG) with a repetition rate of 



10 Hz, a pulse duration of  𝜏𝜔 = 15𝑝𝑠 (Full-width at 1/e2), and a wavelength tunability with an 

accuracy of ± 1 nm. The QPPKTP was placed in an oven whose temperature can be tuned from 

room temperature to 140°C with an accuracy of ± 0.5°C. The longitudinal thermal gradient 

between the center of the crystal and the entrance or exit face is equal to 0.7°C, while the 

transverse gradient was estimated to be 0.3 °C. The temperature of the QPPKTP crystal can be 

assumed to be nearly homogeneous since such a gradient may affect the fifth decimal place of 

the refractive indices, which cannot modify the phase-matching conditions. The fundamental 

pump beam is focused inside the crystal with a focal lens f = 50 cm; its waist radius measured 

at the center of the crystal is then equal to  𝑤𝜔 = 205 ±  21 µ𝑚 (Full-width at 1/e2), which 

leads to a Rayleigh length of ~15 cm, much longer than the crystal length, ensuring propagation 

in the parallel beam limit. The experiment design enabled to independently measure the energy 

of the second-harmonic (SH) and third-harmonic (TH) waves. The two corresponding beams 

were separated using a HR 800 mirror: the energy at λ2ω was measured by a J3S10 Molectron 

Joulemeter (MJ) placed behind a notch filter at 532-nm, and the energy at λ3ω using also a J3S10 

MJ behind a prism. The energy of the incident beam at λω was measured before the QPPKTP 

crystal using a J305 MJ behind a flip mirror. A half-waveplate installed in the input beam path 

before the QPPKTP allowed us to adjust the polarization of the beam at λω according to the 

required phase-matching condition, i.e. that of a pure SHG or that of THG. 

By tuning the OPG wavelength λω and the QPPKTP temperature T, we identified several 

situations for which SHG and THG were phase-matched simultaneously, as shown in Fig. 2(a). 

In this example, the temperature of the QPPKTP crystal was fixed at T = 90.7 °C, and the 2ω 

and 3ω peaks are centered at λω = 1587 nm and λω = 1586 nm, respectively. The shift between 

these two wavelengths was within the measurement accuracy, i.e. ± 1 nm. 

Fig. 2(a) shows that a concomitant phase-matching exists in the QPPKTP crystal on the one 

hand, and that the corresponding values of the phase-matching parameters are close to the 

theoretical ones, i.e. λω = 1581 nm and T = 100°C, on the other hand. This agreement between 

calculations and experiments validates the design of the quasi-periodic grating as well as of the 

values of the refractive indices as a function of wavelength and temperature. 

 

 

(a)                                                                                 (b) 

Fig. 2. (a) Normalized intensities of the second-harmonic (SH) wave and third-harmonic (TH) waves as a 
function of the QPPKTP temperature when the waves propagate along the x-axis, the quantities (y) and (z) 

referring to the polarization directions of the interacting waves; the dots correspond to experimental data and 

the dashed lines to fits. (b) Normalized intensities of the SH and TH waves as a function of the polarization 
angle α defined in the right insert. The fundamental intensity was lower than 0.5 GW.cm-2, hence pump 

depletion is negligible here. 



There is also a satisfying agreement at the level of the wavelength acceptance, 
 , that is 

defined as the full width of the phase-matching peak at 0.405 of its maximum. The 

experimentally measured bandwidths of 𝛿𝜆𝜔 𝑒𝑥𝑝
𝑆𝐻𝐺 = 3.4 𝑛𝑚 and 𝛿𝜆𝜔 𝑒𝑥𝑝

𝑇𝐻𝐺 = 2.3 𝑛𝑚, according to 

Fig.2(a), are slightly wider than the theoretical values, i.e. 𝛿𝜆𝜔𝑐𝑎𝑙𝑐
𝑆𝐻𝐺 = 2.2 𝑛𝑚 and  𝛿𝜆𝜔𝑐𝑎𝑙𝑐

𝑇𝐻𝐺 =

1.8 𝑛𝑚. This weak discrepancy is probably mainly due to some small imperfections in 

fabrication. Since the product of the interacting length by the acceptance is constant, we 

conclude that the effective interaction length for the SHG and THG,  𝐿𝑒𝑓𝑓
𝑆𝐻𝐺   and 𝐿𝑒𝑓𝑓

𝑇𝐻𝐺 

respectively, are slightly smaller than the geometrical length = 1𝑐𝑚 , i.e. 

( )exp/ 6.6SHG SHG SHG

eff calcL L mm  = =  and ( )exp/ 7.8THG THG THG

eff calcL L mm  = = . 

A final optimization led to a maximal THG conversion efficiency reached for λω = 1587 nm 

and T = 95°C. The corresponding polarization curves are shown in Fig.2(b) where α is the angle 

between the polarization of the fundamental wave and the y-axis of the QPPKTP crystal. There 

is a perfect agreement between calculation and measurement, the optimal angle for a Type 0 

SHG being found at α = 90°, while it is α = 54° for THG. Note that these two values of angle 

can be easily calculated in the Undepleted Pump Approximation (UPA) because the SH 

intensity is simply proportional to the square of the fundamental intensity, which gives 

( )2
4sinI   , and the cascaded TH intensity depends on the product of the fundamental and 

SH intensities, i.e. ( ) ( )3
4 2cossinI    . These values of optimal polarization angles 

obviously remain the same in the depleted pump regime. 

These latter experimental conditions of temperature, wavelength and polarization were kept 

for measuring the SHG and THG conversion efficiencies, as described in the next section. 

 

4. Conversion efficiencies  

The conversion efficiencies, expressed as the power ratios 
2 2( ) / (0)SHG L   =  and 

3 ( ) / (0)THG L   = , were measured using the experimental setup described in the previous 

section. First, we considered SHG alone, so the polarization angle α was fixed at 90°. Second, 

we performed THG, which can be achieved for α=54°. In this situation, while ηSHG decreased 

to the value of 17% as shown in Fig. 3(a), whereas THG was optimized, the conversion 

efficiency ηTHG reaching a maximal value of 40% from a fundamental intensity of about 1.5 

GW/cm2 that corresponds to a fundamental energy of 20µJ. The normalized conversion 

efficiency with respect to the peak power defined as ( )
2

3 ( ) / (0)L LP P 
  

 is 43.1 % /MW.cm2. 

Figure 3(a) shows that the SH wave was depleted when the THG was optimized since the 

corresponding SHG energy conversion efficiency dropped from 45%, to 17%. 

The comparison with theory was performed using a numerical calculation of the following 

coupled system of equations relative to real amplitudes, i.e. the moduli of the complex 

amplitudes of the electric fields of the interacting waves written |𝐸𝜔,2𝜔,3𝜔|. It is assumed that 

SHG and THG are quasi-phase-matched along the x-axis of the QPPKTP crystal. Therefore, 

we consider only a single Fourier component for each one of these two processes, so that the 

effective nonlinear coefficient is given by the product of the material's second-order 

susceptibility 𝜒(2) with the corresponding Fourier coefficient F. This system of equations can 

be written as: 
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Here the quantity X is the longitudinal coordinate along the x-axis, the superscripts y and z 

stand for the directions of the electric fields, and the wavelengths are the optimal ones derived 

experimentally, i.e. 𝜆𝜔 = 1587.0𝑛𝑚, 𝜆2𝜔 = 793.5𝑛𝑚 and 𝜆3𝜔 = 529.0𝑛𝑚. The values of the 

principal refractive indices 𝑛𝑦(𝜆𝜔/3𝜔) and 𝑛𝑧(𝜆𝜔/2𝜔) are given in Table 1; they are calculated 

according to the considered wavelengths at the working temperature from the dispersion 

equations of references [25,26]. The second-order nonlinear coefficients 𝜒24
(2)

 and 𝜒33
(2)

, also 

given in Table 1, are calculated from the data at room temperature of reference [27] using Miller 

rule. The Fourier amplitudes 𝐹𝑆𝐻𝐺 and 𝐹𝑇𝐻𝐺 can be calculated using the method outlined in ref 

[20], but here they are adjustment parameters for fitting the experimental data. Since there is 

no analytical solution to Eqs. (1), the comparison with theory was performed using a parametric 

numerical resolution based on the Runge-Kutta method. 

The study of the wavelength acceptances described in the previous section shows that the 

effective interaction length is slightly smaller than the geometrical length of the QPPKTP 

crystal, and that this effective length is not the same for SHG and THG. Then the numerical 

integration of Eqs. (1) was made from 𝑋 = 0, i.e. the entrance of the crystal, and 𝑋 = 𝑙𝑒𝑓𝑓
𝑆𝐻𝐺 =

6.6 𝑚𝑚 for SHG, and 𝑋 = 𝑙𝑒𝑓𝑓
𝑇𝐻𝐺 = 7.8𝑚𝑚 for THG. 

 

 

(a)                                                                                 (b) 

Fig. 3. SHG (a) and THG (b) energy conversion efficiencies as a function of the total incident fundamental 

intensity. The dots correspond to experimental data and the continuous lines stand for the interpolations. 



Table 1. Wavelengths 𝛌𝛚𝐢
where 𝛚𝐢 stands for the frequencies 𝛚, 𝟐𝛚 or 𝟑𝛚, pulse durations 𝛕𝛚𝐢

, principal 

refractive indices𝐧𝐲(𝛌𝛚/𝟑𝛚) and 𝐧𝐲(𝛌𝛚/𝟑𝛚) [26], beam wait radii 𝐰𝛚𝐢
, Fresnel transmissions 𝐓𝛚𝐢

𝐲,𝐳
 and nonlinear 

coefficients 𝛘𝐢𝐣
(𝟐)

 used for the numerical integration of Eqs. (1) [27]. 

 𝝀𝝎𝒊
 

[nm] 

𝝉𝝎𝒊
 

[ps] 

𝒏𝒚(𝝀𝝎𝒊
) 𝒏𝒛(𝝀𝝎𝒊

) 𝒘𝝎𝒊
 

[µm] 
𝑇𝜔𝑖

𝑧  𝑇𝜔𝑖

𝑦
 𝜒33

(2)
 

[pmV-1] 

𝜒24
(2)

 

[pmV-1] 

𝝎 1587 15.0 1.7363 1.8150 205 0.917 0.929 16.1 3.8 

𝟐𝝎 793.5 10.6 - - 145 0.912 - 19.2 4.8 

𝟑𝝎 529 8.7 1.7907 1.8445 118 - 0.920 - 5.3 

 

The electric fields in Eqs.(1) are the internal fields inside the QPPKTP crystal. The values 

of the moduli of the complex amplitudes of the fundamental electric fields at the entrance of 

the crystal, i.e. |𝐸𝜔
𝑦

(𝑋 = 0)| and |𝐸𝜔
𝑧 (𝑋 = 0)| that have to be taken for the integration of Eqs.(1) 

are linked to the total experimental energy of the incident fundamental beam 𝜀𝜔
𝑡𝑜𝑡(𝑋 = 0) by the 

following equations (assuming plane waves with temporal and transverse Gaussian profiles): 
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The quantities 𝑇𝜔
𝑦,𝑧

 correspond to the Fresnel transmission in normal incidence, the light 

being polarized along the y-axis or z-axis respectively, and α=90° for the SHG alone and α=54° 

for the optimized THG. The quantity 𝜏𝜔 corresponds to the pulse duration and 𝑤𝜔 to the beam 

radii. 

In the same way, the calculated energy of the generated SH and TH waves at the exit of the 

QPPKTP crystal, i.e. 𝜀2𝜔(𝑋 = 𝐿) and  𝜀3𝜔(𝑋 = 𝐿), are linked to the moduli of the calculated 

SH and TH complex amplitudes, i.e. |𝐸2𝜔
𝑧 (𝑋 = 𝐿)| and |𝐸3𝜔

𝑦
(𝑋 = 𝐿)|, by: 
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where the Gaussian relations apply regarding the pulse durations 𝜏𝜔,𝜏2𝜔 and 𝜏3𝜔 as well as the 

beam radii 𝑤𝜔, 𝑤2𝜔 and 𝑤3𝜔, i.e.: 
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     (6) 

The numerical values of the Fresnel transmissions, beam waist radii and pulse durations are 

given in Table 1. 

The system of Eqs. (1) was first solved for the SHG case only by taking α=90°. We 

performed a parameter adjustment on the Fourier coefficient 𝐹𝑆𝐻𝐺. The best fit was found for 

𝐹𝑆𝐻𝐺 = 0.28, which is 30% lower than the theoretical value. The shape of the fitting curve is 

in excellent agreement with the experimental data as shown by the red curve of Fig. (3)a. 

Afterwards, this value of 𝐹𝑆𝐻𝐺 was taken for the second step of integration where the whole 

system has been considered, i.e. for α=54°. The Fourier coefficient 𝐹𝑇𝐻𝐺 was then taken also 

as a fitting parameter and ended up only 8% smaller than its theoretical value, i.e. 𝐹𝑇𝐻𝐺 =
0.368. These deviations from the theoretical Fourier coefficient are thought to be due to 

fabrication defaults. But the agreement remains very good between the theoretical and 

experimental curves as shown by the black curves of Fig.3(a) and by Fig.3(b). Note that the 

high values of the conversion efficiency for both SHG and THG are well corroborated by the 

behaviors of the curves of Figs. (3), which undoubtedly indicate that SHG as well as THG are 

achieved in the depleted pump regime. 

 

5. Conclusion 

We demonstrated a 40% THG energy conversion efficiency in a quasi-periodically poled KTP 

crystal pumped with an energy as low as 20 µJ. This is the highest THG efficiency ever reported 

to the best of our knowledge. Previous records using also a quasi-periodic poling structure were 

23% [9], and 30.7% in a single KDP crystal allowing simultaneous birefringent phase-matching 

[12]. Note that using 𝜒(3) interactions for THG results in efficiencies of single percent only [8]. 

Our work opens the way to exciting developments regarding frequency up-conversion for 

numerous applications, in particular for the generation in the ultra-violet range around 330 nm 

starting from a laser around 1 μm. Moreover, it opens new possibilities in quantum optics for 

TPG by a 𝜒(2)  cascaded spontaneous parametric down conversion [17] of a 527 nm pump for 

generating a three-photon state at 1581 nm in a compact single nonlinear crystal, which is an 

alternative of using a 𝜒(3)  process in a birefringent crystal [28]. Intracavity quasi-phase-

matching may also be interesting in this context [29]. 
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