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Some classical formulæ for curves and surfaces

Thomas Dedieu

Abstract. These notes have been taken on the occasion of the seminar Degenerazioni e
enumerazione di curve su una superficie run at Roma Tor Vergata 2015–2017. THIS IS
ONLY A PRELIMINARY VERSION, still largely to be completed; in particular many
references shall be added.
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Introduction

While only the topics in Section 2 have been discussed during the seminar, I have decided to
include much more material in these notes for further reference.

Notation

The polar of a hypersurface X = V (F ) with respect to a point P is denoted by DP X = V (DP F ).
We write pa and pg respectively for the arithmetic and geometric genera of a projective

variety.
For a plane curve C, we write δ and κ respectively of the number of its ordinary double

points and ordinary cuspidal double points, i.e. its A1 and A2 singularities. Notation δ̌, κ̌, etc.
Ordinary singularities are intended from the point of view of projective duality.

1 – Background material

1.1 – Projective duality

In this text we are chiefly concerned with the enumeration of hyperplanes with a prescribed
tangency pattern with a smooth surface in P3. To get started, let us recall some general results
in the framework of projective duality that we will use repeatedly in the course of the text. For
a more complete introduction, see [26, Chap. 1].

(1.1) Definition. Let X be a variety in PN . The dual variety of X is the Zariski closure X∨

in the dual projective space P̌N of the set of points ̟ ∈ P̌N such that the hyperplane ̟⊥ ⊂ PN

is tangent to X at one of its smooth points.

A central result is the following reflexivity theorem. See [16, Example 16.20] for an algebraic
proof, or [15, Chap. 1] for a proof using symplectic geometry.

(1.2) Theorem. Let X be a variety in PN . One has (X∨)∨ = X. More precisely, let p and ̟

be smooth points of X and X∨ respectively: The hyperplane ̟⊥ ⊂ PN is tangent to X at p if
and only if the hyperplane p⊥ ⊂ P̌N is tangent to X∨ at ̟.

This may be refined in the following way. For a proof, see [20], or [27, §14.1].

(1.3) Theorem. Suppose X is smooth and its dual is a hypersurface. A point ̟ ∈ X∨ is

smooth if and only if the hyperplane ̟ ⊂ PN is tangent to X in a unique point p, and ̟⊥ ∩ X
has an ordinary double point at p.

The general philosophy is that the singularity of the dual in a point ̟ reflects the tangency
scheme of the hyperplane ̟⊥ with X . I shall loosely refer to any result incarnating this phi-
losophy as a biduality statement. For instance, when X itself is a smooth hypersurface one has
the following result, see [9, Prop. 11.24].
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(1.4) Theorem. Let X be a smooth hypersurface in PN , and consider ̟ ∈ X∨ such that the

singular locus of ̟⊥ ∩ X consists of finitely many points p1, . . . , pr. Then the tangent cone to
X∨ at ̟ is the union of all hyperplanes p⊥

1 , . . . , p⊥
r , each counted with multiplicity µ(X, ̟, pi),

the Milnor number of the singularity of ̟⊥ ∩ X at pi.

Let us state one more general result before we move on to the more specific study of duality
for hypersurfaces. For the proof, see [26, Tm. 1.21]. Put simply it says that linear projections
and sections are operations dual to each other. Recall that by elementary linear algebra, if
W is a linear subspace of a vector space V , then the transpose of the projection V → V/W
canonically identifies with the injection W ⊥ →֒ V ∨. We shall use the notation P(V )/P(W ) for
P(V/W ).

(1.5) Proposition. Let X be a variety in PN , and Λ be a general linear subspace of codimension

m + 1 in PN . We consider the projection from Λ,

πΛ : PN
99K PN /Λ ∼= Pm.

i) If m > dim(X) and πΛ|X is an isomorphism on its image, then πΛ(X)∨ = Λ⊥ ∩ X∨.
ii) If m = dim(X), let B ⊂ Pm be the branch divisor of πΛ|X . One has B∨ = Λ⊥ ∩ X∨.
iii) If m < dim(X), consider X̃ → X the blow-up of X at Λ ∩ X, and π̃Λ : X̃ → Pm the
morphism induced by πΛ. Let ∆ ⊂ Pm be the discriminant of π̃Λ. One has ∆∨ = Λ⊥ ∩ X∨.

1.2 – Projective duality for hypersurfaces

When X is a hypersurface, much information on X∨ may be obtained by studying the defining
equation of X using polynomial calculus. We gather here a few facts relevant for us, and refer
to [10, Chap. 1] for a much more complete treatment. A key technical tool is polarity; the main
results are included in Appendix A.

In this subsection we always assume X to be a hypersurface in PN , defined by the degree n
homogeneous polynomial f in a system of homogeneous coordinates (x0 : . . . : xN ).

(1.6) Let p = (a0 : . . . : aN ) be a smooth point of X . By Euler’s formula, the equation of the
tangent hyperplane to X at p is

∂0f(a) · x0 + · · · + ∂N f(a) · xN = D(x0:...:xN )f(a) = 0.

In other words, the tangent hyperplane TpX is the hyperplane of those points q ∈ PN such
that Dqf(p) = 0.

(1.7) Gauss map and degree of the dual. Since there is a unique tangent hyperplane at
each smooth point of X , there is a dominant rational map

γX : X 99K X∨

called the Gauss map. If X∨ is a hypersurface, it follows from (1.3) that the Gauss map is
birational.

It follows from (1.6) that the Gauss map of X is the restriction to X of the map defined on
PN by the N -dimensional linear system of all first polars of X . The latter is a subsystem of
|OPN (n − 1)|, and it is base point free if and only if X is smooth.

In particular this gives a way to compute the degree of the dual of X , which is also called
the class of X . If X is smooth, then the degree of X∨ equals n(n − 1)N−1. If X is singular, this
has to be corrected by taking into account the base locus of the linear system of first polars.
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(1.8) Suppose X smooth for simplicity. Another consequence of (1.6) is that if p ∈ PN is a
general point, then DpX ∩ X is the locus of those points q ∈ X such that p sits on the tangent
hyperplane TqX .

Therefore DpX ∩ X is the ramification divisor of the projection πp : X → PN−1. It is called
the apparent boundary of X as seen from the point p. The cone projecting DpX ∩ X from p on
the other hand is called the circumscribed cone.

(1.9) Still assuming that X is smooth, the Hessian hypersurface Hess(X) cuts out on X the
locus of points p ∈ X such that the tangent section TpX ∩ X has a singularity at p worse than
an ordinary double point. The intersection X ∩Hess(X) is the ramification divisor of the Gauss
map γX : X → X∨.

1.3 – Plücker formulae for plane curves

As a first and fundamental application of the previous results, let us explain the classical Plücker
formulae for plane curves.

(1.10) Let C ⊂ P2 be a plane curve. It has a finite number of bitangent lines (i.e., lines tangent
to C in two distinct points) and inflection points, which give rise respectively to nodes and cusp
on the dual curve C∨ ⊂ P̌2: this can be seen for instance with Theorem (1.4). In general
there are no lines with a deeper tangent scheme with C, so that nodes and cusps are the only
singularities of C∨.

The reflexivity theorem (1.2) suggests that one could look for formulae linking numerical
characters of C and C∨ in a symmetric fashion. In this perspective one should allow C to have
nodes and cusps.

(1.11) Plückerian characters of a plane curve. We consider a plane curve C ⊂ P2 such

that both C and its dual C∨ ⊂ P̌2 have only ordinary double points (nodes) and ordinary cusps
as singularities. We call:
— n the degree of C;
— ň the degree of C∨;
— β the number of bitangents of C, which is also the number of nodes of C∨;
— ι the number of flexes of C, which is also the number of cusps of C∨;
— δ the number of nodes of C, which is also the number of bitangents of C∨;
— κ the number of cusps of C, which is also the number of flexes of C∨.

(1.12) Plücker formulae for plane curves. One has the following relations for a curve C
as in (1.11).

ň = n(n − 1) − 2δ − 3κ; n = ň(ň − 1) − 2β − 3ι;

ι = 3n(n − 2) − 6δ − 8κ; κ = 3ň(ň − 2) − 6β − 8ι,

We sketch the proof, as it is emblematic of our approach in this text, and refer to [14] for a
detailed and careful implementation.

One first computes the class of a plane curve with nodes and cusps, following (1.7); this gives
the two relations on the first line by applying it to both C and C∨. Let p ∈ P2 be a general
point. It follows from Theorem (A.8) that the first polar DpC passes through all nodes and
cusps of C, is smooth at these points, and has general tangent line at the nodes and tangent line
equal to the reduced tangent cone of C at the cusps. Hence DpC intersects C with multiplicity
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> 2 at the nodes and > 3 at the cusps, and in fact these are the actual intersection multiplicities.
The relation follows.

Then one computes the number of flexes of C by considering its intersection with its Hessian
(see (1.9)); this will give the two relations on the second row by applying it to C∨ as well. Again,
one has to substract the contribution of C ∩Hess(C) corresponding to the singularities of C and
not to actual inflection points. If q is a node of C, then the Hessian curve also has an ordinary
double point at q, with tangent cone equal to that of C. If q is a cusp of C, then the Hessian
curve has a triple point with two local branches at q, one smooth with general tangent, and
one cuspidal with tangent cone equal to that of C. It follows that C intersects its Hessian with
multiplicity > 6 at the nodes and > 8 at the cusps, and again these are the actual intersection
multiplicities, hence the formula.

2 – Double curves of the dual to a surface in P3

2.1 – Local geometry of a surface in P3 and its dual

We now start our study of surfaces in P3. Here we give a first description of the dual to a
smooth surface in P3, that will be refined later in Section 3.

We first take the occasion to introduce some necessary notions on the local geometry of a
surface in P3.

(2.1) Asymptotic tangent lines. Tangent cone of the tangent section, but also two lines
intersecting with multiplicity 3, hence TpS ∩ D2S(p).
(2.1.1) Flex tangent lines. On peut le voir en coordonnées locales. Localement,

(2.1.2) S ⊂ P3 : wd−1z + wd−2
(

xy + zf̃(x, y, z)
)

+ · · · = 0,

au point (0 : 0 : 0 : 1), le plan tangent est (z = 0), on suppose qu’on n’est pas en un point
parabolique1, cône tangent de la section par (z = 0) est (xy = 0). On regarde un plan Π
contenant une des droites de ce cône tangent, disons y = z = 0, donc

Π : ay + bz = 0 ❀ z = αy

(α 6= 0 si on ne veut pas le plan tangent lui-même). En substituant dans (2.1.2), il vient (je fais
w = 1)

αy + xy + α2yf̃(x, y, y) + · · · = 0.

En intersectant avec la droite tangente (y = 0), on trouve que le premier terme non nul est de
degré > 3, comme il fallait démontrer. ✷

(2.1.3) Biduality statement for asymptotic tangents.

(2.2) Parabolic points.

(2.3) Codimension 1 singular loci of the dual.

1c’est l’hypothèse ubiquitaire chez les géomètres projectifs différentiels, typiquement non satisfaite pour les
surfaces développables.
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2.2 – Degrees of the double curves

Formules apprises dans Gallarati Elles sont démontrées dans [19, VII], avec rigueur et des
conditions précises de validité. Je ne suis pas certain qu’à présent ma preuve soit beaucoup
moins rigoureuse.

Let S be a smooth surface of degree n in P3. For any point P ∈ P3, we let ΓP be the apparent
boundary of S from P (viz. the curve S∩DP S), and consider the plane curve γP ⊂ P2 projecting
ΓP from the point P . Harmoniser les notations.

(2.4) Plückerian characters of the branch curve. We let N be the degree of the branch

curve B ⊂ P2, Ň be its class, and δ, κ, β, ι be its other Plückerian characters as in (1.12).
These numbers may all be expressed as a polynomial in the degree of S:
— N = n(n − 1) ;

— Ň = n(n − 1)2 ;

— δ = 1
2 n(n − 1)(n − 2)(n − 3) ;

— κ = n(n − 1)(n − 2) ;

— ι = 4n(n − 1)(n − 2) ;

— β = 1
2 n(n − 1)(n − 2)(n3 − n2 + n − 12).

(2.5) A key observation is that on the one hand B is the birational projection from p of the
circumscribed curve CpS, and on the other hand it is the plane dual to the section of S∨ by the

plane p⊥ ⊂ P̌3.
This observation is enough to prove all formulae in (2.4). Indeed it implies that i) the degree

and class of B equal the degrees of CpS and S∨ respectively, which gives the formulae for N

and Ň (see (2.7) for details), and ii) that the geometric genus of B equals that of CpS, which
is easy to compute since the latter is a complete intersection. We can then derive all remaining
characters using the Plücker formulae together with the genus formula for plane curves. This is
carried out in a more general context in Subsection 5.3.

Moreover, the relation of B with the dual surface S∨ provides the following corollary.

(2.6) Corollary. The numbers of binodal and cuspidal curves in a general net of hyperplane
sections of S are respectively

1
2 n(n − 1)(n − 2)(n3 − n2 + n − 12) and 4n(n − 1)(n − 2).

These numbers are the degrees of the ordinary and cuspidal double curves of S∨ respectively.

(2.7) Besides the quick proof given in (2.5), all characters in (2.4) but β (although, see Re-
mark (2.8)) may be computed directly, and it is instructive to do so.

(2.7.1) Degree of B. We have seen that it equals the degree of the circumscribed curve CpS =
S ∩ DpS, that is deg(S) · deg(DpS).

(2.7.2) Class of B. We have seen that it equals the degree of S∨. By (1.7), this is deg(S) ·
deg(DpS)2.

(2.7.3) Nodes of B. The points of CpS are those points q ∈ S such that the line 〈p, q〉 is tangent
to S. The nodes of B correspond to unordered pairs of distinct points q, q′ ∈ CpS such that
p, q, q′ are aligned, hence to lines passing through p that are bitangent to S. This number may
be computed in a natural way, using resultants and elimination theory; this is explained in ref
avec Laurent [3].
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(2.7.4) Flexes. Since B is the branch curve of the projection of S from p, its flexes correspond
to hyperplane sections of S with a cusp.

This may be seen with the following local computation. Let q be a flex point of B, and
q′ ∈ CpS be the double point in its pull-back to S. Locally at q′, S may be described as
the hypersurface z2 = f(x, y) in affine coordinates (x, y, z), such that the projection from p is
(x, y, z) 7→ (x, y) and f(x, y) = 0 is an equation of B locally at q. Assume that the tangent to B
at q is y = 0. Then the section of S by its tangent plane at q′ is the hypersurface z2 = f(x, 0)
in affine coordinates (x, z), and since q is a flex of B, f(x, 0) vanishes to the third order at 0,
hence the curve z2 = f(x, 0) has a cusp at the origin, as we wanted to show. The converse is
proved in the same fashion.

It follows that the number of flexes of B is the number of hyperplanes passing through p
and tangent to S at one of its parabolic points. This is the number of intersection points of CpS
with the parabolic curve, and that is deg(S) · deg(DpS) · deg(Hess(S)).

(2.7.5) Cusps. The cusps of B correspond to the points q ∈ CpS such that the line 〈p, q〉 is
tangent to CpS at q.

Again, this may be seen with a local computation. Assume that CpS is described paramet-
rically by t 7→ (t, t2, t3) in affine coordinates centered at q. Then projecting from a point on the
tangent line amounts to forgetting the first coordinate, and one sees that this gives a cuspidal
image. The converse is proved in the same fashion.

In turn, by Lemma (2.9) the points q ∈ CpS such that the line 〈p, q〉 is tangent to CpS at
q are the intersection points of CpS with the second polar Dp2 S. Their number is therefore
deg(S) · deg(DpS) · deg(Dp2 S).

(2.8) Remark. In [25, §605–607], Salmon gives the construction of a polynomial defined from
the equation of S by rather elaborate elimination theory, and which cuts out on S the locus
of tangency points of all bitangent planes of S. As a by-product, this gives the number of
bitangents of B without resorting to the Plücker formulae. This is studied in details in [3].

(2.9) Lemma. The asymptotic tangent lines passing through p are tangent to the circumscribed
curve S ∩ DpS.

I shall give three different proofs of this result, as I believe that all three of them are
interesting with different respects.

(2.9.1) Proof by a local computation (cf. [6, Prop. 3.9]). S ⊂ P3 projetée sur P2 depuis p 6∈ S,
je dis que la courbe de branchement B a des cusps aux points correspondants aux droites par p
asymptotiquement tangentes à S.

On peut supposer projeter depuis p = (0 : 0 : 1 : 0) sur z = 0, ce qui correspond à
(x, y, z) 7→ (x, y) en affine, une surface passant par l’origine q = (0 : 0 : 0 : 1), soit le point
(0, 0, 0) en affine. On suppose que la droite 〈p, q〉 = (x = y = 0) est asymptotiquement tangente
à S. On peut supposer librement que le plan tangent à S en q est (y = 0). Alors l’équations
locales de S est (en affine (x, y, z))

F = y + f2(x, y, z) + O(3) = 0, avec f2(x, 0, z) = x(ax + bz).

La polaire par rapport à p est simplement

∂zF = ∂zf2 + O(2),

et il s’agit de voir que la droite (y = z = 0) lui est tangente, autrement dit que la partie linéaire
de l’équation ci-dessus s’annule le long de x = y = 0. C’est bien le cas, puisque

f2(x, y, z) = x(ax + bz) + yg(x, z)
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et donc
∂zf2 = bx + y∂zg.

✷

(2.9.2) Proof by abstract nonsense using polarity. Let q ∈ S ∩ DpS. The line 〈p, q〉 is an
asymptotic tangent to S if and only if q ∈ Dp2 S, equivalently p ∈ Dqd−2 S by polar symmetry.
We already know that 〈p, q〉 is tangent to S, i.e., p ∈ TqS = Dqd−1 S, so it suffices to prove
that p ∈ Tq(DpS) = Dqd−2pS = Dp(Dqd−2 S). This holds by Euler formula, since by assumption
p ∈ Dqd−2 S. ✷

(2.9.3) Proof by biduality. The condition that q ∈ S ∩ DpS ∩ Dp2 S is equivalent to the line

〈p, q〉 having intersection multiplicity 3 at q with S. Hence by biduality, also the line 〈p, q〉⊥

has intersection multiplicity 3 at q⊥ with S∨. In other words, the orthogonal of an asymptotic
tangent line is an asymptotic tangent line to the dual surface; we provide two direct proofs of
this fact, one by considering the differential of the Gauss map in Proposition (4.2), and the
other purely algebraic in [3, p:vanishing-2nd-polar].

The curve Bp is the plane dual to the section of S∨ by the hyperplane p⊥. Since the latter
contains the asymptotic tangent 〈p, q〉⊥, the hyperplane section S∨ ∩p⊥ has a flex along the line
〈p, q〉⊥, see ??, and correspondingly its dual Bp has a cusp at the image of q under projection
from p. ✷

3 – Zero-dimensional strata of the dual surface

In this section we study the zero-dimensional strata of the dual of a smooth surface S in P3,
and in particular compute the number of planes triply tangent to S. The general strategy is to
look at the cuspidal edges of the polar cone of S∨ with respect to a general point of P̌3.

3.1 – Local models

In this preliminary subsection, we build explicit local models for the dual of a smooth surface
at zero-dimensional strata of its Whitney stratification.

(3.1) Swallowtails.
(3.1.1) Semi-universal deformation of the tacnode.

y2 = x4 + ax2 + bx + x.

The equation of the discriminant locus is

(3.1.2) Disc(x4 + ax2 + bx + x) = 256c3 − 128a2c2 + 144ab2c − 27b4 + 16a4c − 4a3b2.

It may alternatively be obtained from the parametric description (x4 + ax2 + bx + x = (x −
u)2(x − v)(x + 2u + v))











a = −3u2 − 2uv − v2

b = 2u3 + 4u2v + 2uv2

c = −2u3v − u2v2

by eliminating u and v.
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(3.1.3) Parabolic curve. This time the only way I know to get the equation is to use the para-
metric description x4 + ax2 + bx + x = (x − u)3(x + 3u)











a = −6u2

b = 8u3

c = −3u4

It gives the ideal of equations
(a2 + 12c, 8a3 + 27b2).

(3.1.4) Node couple curve. x4 + ax2 + bx + x = (x − u)2(x + u)2











a = −2u2

b = 0

c = u4

gives the ideal of equations
(b, a2 − 4c).

(3.1.5) Intersection multiplicity of the two curves. One finds that the tangent cone of the inter-
section is defined by (b, c, a2) , so this multiplicity seems to be 2.

(3.2) Points of type γ. We look at the product of the semi-universal deformations of a node
and a cusp respectively, given by

y2 = x2 + a and y2 = x3 + bx + c.

(3.2.1) Discriminant. The discriminant is merely the product of the two discriminants, i.e.,

Disc(x2 + a) · Disc(x3 + bx + c) = a · (4b3 + 27c2).

(3.2.2) Parabolic curve. This is the curve parametrizing deformations such that the node smoothes
and the cusp is maintained, which has equations

b = c = 0.

(3.2.3) Node couple curve. This is the curve parametrizing deformations such that the node is
maintained and the cusp deforms to a node, which has equations

a = 4b3 + 27c2 = 0.

3.2 – Polar cones and their cuspidal edges

We set up the theory for surfaces in P3 with ordinary dual singularities. We shall apply it to
the case of the dual to a surface in the next subsection.

(3.3) Definition. Let X ⊂ P3 be a surface, and p ∈ P3 be a point off X. The polar cone DpX
of X with respect to p is the cone projecting from p over the curve X ∩ DpX.
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(3.4) Polar cones of a surface with ordinary dual singularities. Let us assume the
surface X ⊂ P3 to have a curve B of ordinary double points, a curve C of simple cuspidal
double points, and no other singularities (except from those arising from the singularities of the
curves B and C).

A local computation shows that the polar hypersurface DpX contains simply the curves B
and C, with tangent cone equal to that of X at the generic point of C. It follows that the polar
cone splits as the sum of three cones, namely the two cones over B and C with multiplicities 2
and 3 respectively, and the circumscribed cone TpX , i.e., the closure of the set of all lines in P3

through p, and tangent to X at some smooth point. We denote by A the curve (X ∩ TpX)red,
which we call the circumscribed curve.

We call a the degree of the circumscribed cone, and b and c the degrees of B and C respec-
tively. The degree of the polar cone DpX reads

(3.4.1) n(n − 1) = a + 2b + 3c.

(3.5) Intersection of the polar cone with the second polar. Now we list the various
kinds of points in the intersection X ∩ DpX ∩ Dp2 X . The lines joining p to these points are the
cuspidal edges of the polar cone DpX , since for q ∈ X ∩ DpX ∩ Dp2 X the line 〈p, q〉 intersects
X with multiplicity 3 at q by (A.6).

We let:
— κ the number of cuspidal edges of the circumscribed cone TpX ;
— ρ the number of intersection points between the circumscribed curve (X ∩ TpX)red (equiva-

lently, the curve residual to 2B + 3C in X ∩ DpX) and the ordinary double curve B;
— σ the number of intersection points between the circumscribed curve and the cuspidal double

curve C.
— β the number of intersection points between B and C at which C is cuspidal;
— γ the number of intersection points between the double curves B and C at which B is

cuspidal;
— t the number of triples points of the ordinary double curve B (note that these are also triple

points of the surface X).
We say that a curve Y is cuspidal in a point p if there is a point over p where the differential of
the normalization map Ȳ → Y vanishes; this is called a stationary point in classical terminology.

Some more notation is introduced later in (4.12) which is not relevant for the present con-
siderations.

À noter : — points κ: ne correspondent pas aux plans par p0 tangents en un point parabolique ; ces
derniers donnent des cusps à la duale de πp0

(Dp0
U ∩ U), et donc des “plans tangents stationnaires” au

cône circonscrit.

(3.6) Salmon gives the following formulae [25, §610], which describe separately the intersections
with the second polar Dp2 X of the three components of the polar cone DpX :

a(n − 2) = κ + ρ + 2σ ;(ef |)
b(n − 2) = ρ + 2β + 3γ + 3t ;(ef ¸)

c(n − 2) = 2σ + 4β + γ.(ef˙)

He comments: « The reader can see without difficulty that the points indicated in these formulæ
are included in the intersections of [Dp2 X with the three components of DpX ]; but it is not so
easy to see the reason for the numerical multipliers which are used in the formulæ. Although
it is probably not impossible to account for these constants by a priori reasoning, I prefer to
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explain the method by which I was led to them inductively. » The latter method consists in
considering the dual of a smooth cubic surface, for which all the quantities may be directly
computed, and then to tune the coefficients to make the formulae work.

Following Salmon’s example, I shall not give a rigorous proof of these formulae, although
I believe that this should be feasible by a careful local computation, using for instance Theo-
rem (A.8). Let me nevertheless give a few hints, in an attempt to render them plausible. Recall
that the points in DpX ∩ Dp2 X are those points q such that the line 〈p, q〉 intersects X with
multiplicity at least 3 in q.

(3.6.1) The appearance of κ in the first formula is tautological. If q is a point of type ρ, then
X has two transverse local sheets at q, and the line 〈p, q〉 is an honest tangent to one of them
for q belongs to X ∩ TpX . If q is a point of type σ, then X has only one, cuspidal, local sheet
at q, and the line 〈p, q〉 is contained in its tangent cone at q, for q belongs to X ∩ TpX .

(3.6.2) Let us look at the second formula. As above, points of type ρ are smooth points of B,
which happen to sit on Dp2 X ; the latter is smooth and transverse to B at such points. Points of
type t are triple for X , and it follows from Theorem (A.8) that Dp2 X is smooth and transverse
to B at such points; the multiplicity 3 in the formula follows from the multiplicity 3 of B at
these points.

For the swallowtail singularity (type β), I found a triple point with tangent cone a triple
plane. I deduce that the second polar is smooth at such a point, with tangent cone the tangent
cone of X . Hence it meets B with multiplicity 2, being B smooth, and C with multiplicity 4,
having C a cusp.

For points γ, one should find that the second polar is transverse to C, but tangent (in the
sense: contains the tangent cone) to B, hence the multiplicity 3.

Maybe could confirm this by the study of the intersection of the curves B and C? (although
I think this is only in the case of a dual surface; but should be the general case!)

(3.6.3) Points of type ρ. These are those points q ∈ B such that the line 〈p, q〉 is an honest
tangent to one of the two smooth local sheets of X at q, which we will call X ′

q. The first polar
DpX is smooth at q with the same tangent plane as X ′

q, and its intersection with X locally
at q consists of B and the circumscribed curve CpX , the latter entirely contained in X ′

q. The
second polar Dp2 X is smooth at q with general tangent plane, hence intersects both B and CpX
transversely at q.

This may be justified by the following local computation. Let q be the point (0 : 0 : 0 : 1) in
a homogeneous system of coordinates (x : y : z : w), and assume X is given locally at q by the
equation

f(x, y, z) = xy + f3(x, y, z) + · · · + fn(x, y, z) = 0

in the affine coordinates (x, y, z), where each fi is homogeneous of degree i. We may take
p = (1 : 0 : 0 : 0). Then

Dpf = y + ∂xf3 + · · · and Dp2 f = ∂2
xf3 + · · · ,

hence the above description holds.

(3.6.4) Points of type σ. These are those points q ∈ C such that the line 〈p, q〉 lies in the tangent
cone of the unique, cuspidal, local sheet of X at q. The first polar DpX has a double point at q
with tangent cone a double plane, whose reduced intersection with the tangent cone of X is the
tangent line to C at q. The circumscribed curve CpX is therefore tangent to C at q. The second
polar Dp2 X is smooth at q with tangent plane equal to the reduced tangent cone of DpX , hence
it is tangent to both curves C and CpX , which accounts for the multiplicities 2 in (ef |)and
(ef˙).
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In this case the local computation is the following. We keep q = (0 : 0 : 0 : 1) as in (3.6.3)
above, but consider the local equation

f(x, y, z) = y2 + x3 + f4(x, y, z) + · · · + fn(x, y, z) = 0.

We may again take p = (1 : 0 : 0 : 0), and then

Dpf = 3x2 + · · · and Dp2 f = 6x + · · · .

Note that the tangent cone of the curve f = Dpf = 0 is the quadruple line defined by x2 = y2 =
0; this curve indeed consists of C with multiplicity 3 and CpX .

(3.6.5) Points of type t. These are the points at which X has three transverse smooth local
sheets. The point p is general with respect to these points, so we may directly apply Theo-
rem (A.8). Let q be such a point. The first polar DpX has an ordinary double point at q, and
indeed this is necessary since DpX contains the curve B which has a space triple point at q.
The second polar Dp2 X is smooth with general tangent plane, hence intersects B transversely
at q: this gives the multiplicity 3 as q is a triple point of B.

(3.6.6) Points of type β. At these points X has a swallowtail singularity; in particular they are
triple points of X (hence lie on Dp2 X), at which the tangent cone of X is a triple plane. refer to
appropriate statement. The point p is general with respect to these points, so we may directly
apply Theorem (A.8). Let q be a point of type β. The first polar DpX has a double point at
q with tangent cone a double plane supported on (TCqX)red, and the second polar Dp2 X is
smooth with tangent plane equal to (TCqX)red.

The ordinary double curve B is smooth at points of type β, and the second polar is tangent
to it. This accounts for the multiplicity 2 in (ef |). For the same reason, since the cuspidal
double curve C has cusps at points of type β, it intersects with multiplicity > 3 at q with
Dp2 X . However, I claim that (TCqX)red is in fact the osculating plane of C at q, so that the
intersection multiplicity of C with Dp2 X is indeed 4.

To compute this intersection multiplicity (and hence prove the claim), we work on the nor-
malization of X . By biduality, we can think of this normalization as being given locally at q by
the Gauss map S → S∨ = X of a smooth surface S ⊂ P3 at a point q′ such that S ∩ Tq′ S has
a tacnode at q′. The preimage of C is the parabolic curve of S, and we want to compute its
intersection multiplicity with the tangent plane of S. The latter cuts out on S a curve with a
tacnode at q′ with tangent cone at q′ supported on the double flex tangent line of S at q′, and
the latter is by Lemma (4.4) the tangent line of the parabolic curve; this proves that S ∩ Tq′S
and S ∩ Hess(S) intersect with multiplicity 4 at q′, as required.

(3.6.7) Points of type γ. These are triple points q of X , at which X has two transverse local
sheets, one smooth: Xs

q, and the other cuspidal: Xc
q . The first polar DpX has a double point at

q, with tangent cone the sum of (TCqXc
q)red and a general plane containing the line (TCqB)red.

The second polar Dp2 X is smooth at q, with tangent plane a general plane containing the line
(TCqB)red. Therefore it intersects B, which is cuspidal at q, with multiplicity 3, and it is
transverse to C, which is smooth at q. This amounts for the multiplicities 3 and 1 in (ef ¸)
and (ef˙) respectively.

To clarify the situation, let us carry out the local computations proving the above assertions.
We let q = (0 : 0 : 0 : 1) and consider the two sheets Xs

q defined respectively by the equations

z + f2(x, y, z) + · · · = 0 and y2 + x3 + f4(x, y, z) + · · · = 0.

The curve B is the intersection of these two sheets, it has a cusp at q with tangent cone defined
by z = y2 = 0. The curve C is the singular locus of Xc

q , it is smooth at q with tangent line
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defined by y = x = 0. We may take p = (u0 : u1 : u2 : 0). Then, by Theorem (A.8) the tangent
cones of DpX and Dp2 X are defined respectively by

Dp(zy2) = y(2u1z + u2y) and Dp(zy2) = 2u1(u1z + 2u2y),

which proves our claims.

3.3 – Application to the case X = S∨

We now let S be a smooth, degree n, surface in P3, with dual a hypersurface X ⊂ P̌3. We
explore in this particular case the geometric landscape described above, using decoration with
a duality symbol to record that X = S∨. For instance, we let:
— ň = n(n − 1)2, the degree of X .

(3.7) The double curves B̌ and Č are the curves in S∨ parametrizing respectively the bitangent

and parabolic tangent planes to S. The Guassian map of S induces a 2 : 1 map KnS → B̌ from
the node-couple curve KnS ⊂ S, and a birational map HeS → Č from the Hessian curve
HeS ⊂ S. The degrees of the two double curves are (see):

— b̌ = 1
2 n(n − 1)(n − 2)(n3 − n2 + n − 12) ;

— č = 4n(n − 1)(n − 2).

(3.8) The point p̌ ∈ P̌3 corresponds to a hyperplane Hp̌ = (p̌)⊥ in P3. The circumscribed cone

Tp̌(S∨) is the dual in P̌3 to the plane curve Hp ∩ S ⊂ P3. This gives:
— ǎ = n(n − 1).

The values of ǎ, b̌, č fit with formula (3.4.1).
It also follows from the above description of Tp̌(S∨) that the cuspidal edges of type κ̌ of the

polar cone Dp̌S∨ are the lines orthogonals to the osculating tangent lines of the plane curve
Hp̌ ∩ S (i.e., the orthogonals of the flex tangents of Hp̌ ∩ S). Thus
— κ̌ = 3n(n − 2).

(3.9) The circumscribed curve (S∨ ∩Tp̌(S∨))red parametrizes hyperplanes in P3 tangent to S at
some point lying on Hp̌. It follows that the points of type ρ̌ (resp. σ̌) correspond to hyperplanes
that are tangent to S at some point on Hp̌ and at some other point (resp. at some point on
Hp̌ which is parabolic). Hence ρ̌ (resp. σ̌) is the degree of the intersection of Hp̌ with the
couple-nodal curve KnS (resp. with the Hessian curve HeS), and thus:
— ρ̌ = n(n − 2)(n3 − n2 + n − 12) ;
— σ̌ = 4n(n − 2).

(3.10) The points of type γ̌ correspond to planes H tangent to S at two points, one of which
is parabolic; correspondingly the curve H ∩ S has one cusp and one node. Points of type γ̌ are
honest points on Č, which accounts for the cusp. On the other hand, as a general point of B̌
moves towards a point of type γ̌, one sees a family of hyperplane sections of S with two nodes,
one of which degenerates to a cusp; this accounts for the fact that points of type γ̌ are cusps of
the ordinary double curve B̌. The number γ̌ shall be derived indirectly in (3.11) below.

The points of type β̌ correspond to planes H tangent to S at one point, such that the section
H ∩ S has a tacnode there. Indeed, points of type β̌ are cusps of Č, so that as a general point
of Č moves towards a point of type β̌, one must see a family of hyperplane sections of S with a
cusp which degenerates to a tacnode. Going to a point of type β̌ along B̌, one merely sees two
nodes tending to a common limit point; this is harmless for B̌, and indeed points β̌ are smooth
points of B̌.
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Those points q ∈ S such that TqS ∩ S has a tacnode at q are the intersection points of
the parabolic curve S ∩ Hess(S) with the flecnodal locus. The latter is cut out on S by a
homogeneous polynomial of degree 11n − 24, Référence avec Laurent [3]. but one has to take
into account the famous fact that the two surfaces defined by the Hessian and the flecnodal
polynomials are everywhere tangent. Sadly, I abandoned the idea of including a proof of this
fact here. Give reference however! Eventually, one thus finds:
— β̌ = 2n(n − 2)(11n − 24).

Eventually, the points of type ť correspond to the famous hyplerplanes tangent to S at three
points. Their number we shall derive using formula (ef ¸).

(3.11) Intersection of the two double curves. We now analyze the intersection of the two
curves B̌ and Č on X = S∨ in terms of the intersection of the node-couple KnS and Hessian
HeS curves on S. Recall that we have two maps KnS → B̌ and HeS → Č, the former a double
cover, and the latter birational.

To a point of type γ̌ there corresponds a section of S with one node and one cusp, which
gives two points on KnS , only one of which lies on HeS .

To a point of type β̌ there corresponds a point q ∈ S such that TqS ∩ S has a tacnode at

q. On the one hand, q belongs to KS and is a ramification point of KS → B̌, as TqS ∩ S may
be seen as a bi-nodal section of S with the two nodes coalesced. This implies that TqKnS is the
kernel of the differential of the Gauss map of S at q. On the other hand q is a ramification point
of HeS → Č as well, since Č has a cusp at (TqS)⊥, and this implies that TqHeS is the kernel of
the differential of the Gauss map of S at q (see also Lemma (4.4)). The upshot is that the two
curves KnS and HeS are tangent at q.

The intersection points of KnS and HeS all correspond to points of B̌ ∩ Č either of type β̌
or of type γ̌. We thus find that

(KnS · HeS) = (n − 2)(n3 − n2 + n − 12) · 4(n − 2) · n = 2β + γ.

(3.11.1) The above relation together with the formula for β̌ in (3.10) yields:
— γ̌ = 4n(n − 2)(n − 3)(n3 + 3n − 16).

(3.12) Formulae (ef) and the number of tritangent planes. First of all let me mention
that with the quantities we have been able to find so far, formulae (ef |) and (ef˙) are
indeed verified (beware that also n should be replaced by ň = n(n − 1)2).

Formula (ef ¸) on the other hands yields the number of tritangent planes to a smooth
surface of degree n in P3:
— t = 1

6 n(n − 2)(n7 − 4n6 + 7n5 − 45n4 + 114n3 − 111n2 + 548n − 960).

a:=n*(n-1);

b:=1/2*n*(n-1)*kn;

c:=he*(n-1);

nn:=n*(n-1)^2;

kappa:=3*n*(n-2);

rho:=n*(n-2)*(n^3-n^2+n-12);

sigma:=4*n*(n-2);

a*(nn-2)-kappa-rho-2*sigma;

expand(%);

0
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beta:=2*n*(n-2)*(11*n-24);

gamm:=(n-2)*(n^3-n^2+n-12)*4*n*(n-2)-2*b;

3

gamm := 4 n (n - 2) (n - 3) (n + 3 n - 16)

c*(nn-2)-2*sigma-4*beta-gamm;

expand(%);

0

t:=1/3*(b*(nn-2)-rho-2*beta-3*gamm);

factor(expand(t));

7 6 5 4 3 2

n (n - 2) (n - 4 n + 7 n - 45 n + 114 n - 111 n + 548 n - 960)

--------------------------------------------------------------------

6

4 – Hessian and node-couple developables

Given a curve Y traced on a surface S ⊂ P3, one may consider the developable surface ΣY ⊂ P3

corresponding to the family of planes tangent to S at points of Y . Let γS : S 99K S∨ be the
Gauss map of S. We are considering the family of planes parametrized by the curve γS(Y ) ⊂ P̌3;
the developable surface ΣY is then its dual (γS(Y ))∨ ⊂ P3. In classical terms, the developable
ΣY is the surface enveloped by the family of tangent planes to S at points of Y .

In this section we study this developable surface in the two cases when Y is either the Hessian
or parabolic curve HS = S ∩ Hess(S) or the node-couple curve KS. An important step in the
computation of the numerical characters of the latter will be the consideration of the ordinary
double edges of a general polar cone to S∨.

(4.1) The involution on P(TpS). Let p be a smooth, non-parabolic, point of S. There is
a self-map ιγ of the projective line P(TpS), which is defined as follows. Consider a tangent
direction u ∈ P(TpS) (if one prefers, a point of S infinitely near to p). The differential of the

Gauss map sends u to a direction γS(u) in P̌3 tangent to S∨ at the point (TpS)⊥, which spans
a line 〈γS(u)〉 contained in T(TpS)⊥S∨. Its orthogonal is a line contained in TpS ⊂ P3, hence
defines a point v ∈ P(TpS) which we take as the image of u by ιγ .

This may be rephrased as follows. The tangent direction γS(u) gives via the Gauss map a
tangent plane to S infinitely near to TpS. Then v = ιγ(u) corresponds to the line obtained as
the intersection of TpS with this infinitely near tangent plane, see (B.5).

(4.2) Proposition. The map ιγ is an involution of P(TpS), with fixed points the directions of
the two flex tangents of S at p.

This may be seen as a consequence of biduality, which tells us that the two Gauss maps γS

and γS∨ give the identity when composed one with another.

Proof. We consider homogeneous coordinates (x : y : z : w) in P3, such that p = (0 : 0 : 0 : 1)
and TpS is the plane z = 0. We write the equation of S in the form

f(x, y, z, w) = wn−1z + wn−2(ax2 + 2rxy + by2 + 2sxz + 2tyz + cz2) + f>3(x, y, z, w) = 0,

where each monomial of f>3 has degree at most n − 3 in w.
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The Gauss map of S sends the point (x : y : z : w) to the transpose of









∂xf
∂yf
∂zf
∂wf









=









wn−2(2ax + 2ry + 2sz) + · · ·
wn−2(2rx + 2by + 2tz) + · · ·

wn−1 + wn−2(2sx + 2ty + 2cz) + · · ·
(n − 1)wn−2z + · · ·









.

We write it in the affine chart w = 1; its differential at the origin (i.e., at p) is then

(4.2.1)









2a dx + 2r dy + 2s dz
2r dx + 2b dy + 2t dz
2s dx + 2t dy + 2c dz

(n − 1) dz









.

On the other hand, still in the affine chart w = 1, S is given by an implicit function
z = ϕ(x, y) with vanishing differential at the origin. We want to compose the differential at the
origin of (x, y) 7→ (x, y, ϕ(x, y)) with that of the Gauss map. This amounts to set dz = 0 in
(4.2.1).

The upshot is that the tangent plane to S at the point infinitely near to p in the direction
(u0 : u1) is given by the equation

(2au0 + 2ru1)x + (2ru0 + 2bu1)y + (2su0 + 2tu1)z = 0.

Therefore its intersection with TpS is given by

(2au0 + 2ru1)x + (2ru0 + 2bu1)y = 0,

hence ιγ is the involution

(4.2.2)

(

−r −b
a r

)

∈ PGL2(C);

note that the determinant of the latter matrix is up to sign that of the quadratic form ax2 +
2rxy + by2 which defines the tangent cone at p of S ∩ TpS, and thus is invertible because p is
not parabolic.

Eventually, a direct computation shows that for

ax2 + 2rxy + by2 = (αx + βy)(α′x + β′y),

T(−β, α) and T(−β′, α′) are eigenvectors of the matrix in (4.2.2). ✷

To wit:
(

a r

r b

)

=

(

αα′ 1
2
(αβ′ + βα′)

1
2
(αβ′ + βα′) ββ′

)

hence
(

−r −b

a r

) (

−β

α

)

=

(

−
1
2
(αβ′ + βα′) −ββ′

αα′ 1
2
(αβ′ + βα′)

) (

−β

α

)

=

(

1
2
αββ′ + 1

2
β2α′

− αββ′

−αβα′ + 1
2
α2β′ + 1

2
αβα′

)

=

(

−
1
2
αββ′ + 1

2
β2α′

−
1
2
αβα′ + 1

2
α2β′

)

= 1
2
(αβ

′

− βα
′)

(

−β

α

)

.
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4.1 – The Hessian developable surface

We study the family of planes in P3 tangent to S at its parabolic points, and the associated
developable surface in P3. A crucial point is to adapt the observations of (4.1) and (4.2) to the
case when p is a parabolic point.

(4.3) Proposition. If p is a parabolic point of S, the construction of ιγ in (4.1) defines a
contraction of P(TpS) to its point corresponding to the double flex tangent line at p.

By definition the point p is parabolic if the Hessian of S at p is degenerate; it has rank 1
for general p (unless S∨ is not a hypersurface) and we call double flex tangent line its isotropic
cone.

The content of the statement is that the image of the differential of the Gauss map at a
parabolic point is the orthogonal of the double flex tangent line. In addition, we shall see that
the kernel of this differential is the double flex tangent line itself.

This is a biduality statement, the analog of (2.1.3) for parabolic points. The flex tangent is
the line of maximum contact with S, and intersects S with multiplicity 3. Its orthogonal is the
line of maximum contact with S∨, namely the tangent line of the cuspidal edge, and intersects
S∨ with multiplicity 4 (intersection multiplicity is 2 for a general line, 3 for a general line in
the tangent cone, and 4 for the tangent of the cuspidal edge). I am surprised to see that the
intersection multiplicity is not the same on both sides.

Figure 1: The Gauss map around the parabolic curve

Proof. This follows from the computations carried out in the proof of Proposition (4.2) noting
that, in the notation introduced there, we may assume a = r = 0 since p parabolic. The double
flex tangent line is then defined by u1 = 0. ✷

(4.4) Lemma. Let p be a parabolic point of S. The tangent line at p to the curve S ∩ Hess(S)
coincides with the double flex tangent line of S at p if and only if the tangent section S ∩ TpS
has a tacnode at p (or a worse singularity).

This tells us in particular that the cuspidal double curve of S∨, which is the image of
S ∩ Hess(S) by the Gauss map, has cusps at points corresponding to tangent planes cutting out
a tacnodal curve on S. Moreover, for such points p the plane TpS (resp. p⊥ = (TC(TpS)⊥S∨)red)
is the osculating plane of the curve S ∩ Hess(S) (resp. of the cuspidal double curve of S∨), as
we have already observed in (3.6.7).

?! In general these points are the intersection points of S ∩Hess(S) with the flecnodal surface
of S [reference]. The latter cuts out on S the locus of points p such that there is a line intersecting
S with multiplicity 4 at p. For a general p on the flecnodal locus, the tangent section of S is
a nodal curve, with one of its local branches wich has a flex; for a parabolic p on the flecnodal
locus, this degenerates to a tacnode.

Proof of Lemma (4.4). Let us consider the equation of S given in the local form at p

f(x, y, z, w) = wn−1z + wn−2
(

1
2 y2 + axz + byz + 1

2 cz2
)

+ wn−3f3(x, y, z) + f>4(x, y, z, w) = 0,
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in a system of homogeneous coordinates (x : y : z : w) such that p = (0 : 0 : 0 : 1) (n is the
degree of S, and each monomial of f>3 has degree at most n − 4 in w). The tangent at p to the
Hessian curve is obtained by intersecting TpS, that is the plane z = 0, with the tangent plane
to the Hessian, which we find with formula (A.9.1).

In the affine chart w = 1, we have

∂xf = az + ∂xf3 + · · ·

∂yf = y + bz + ∂yf3 + · · · ,

∂zf = 1 + ax + by + cz + ∂zf3 + · · ·

so that up to a multiplicative constant Hess(f) is

∣

∣

∣

∣

∣

∣

∣

∣

n
n−1 (z + 1

2 y2 + · · · ) az + ∂xf3 + · · · y + bz + ∂yf3 + · · · 1 + ax + by + cz + ∂zf3 + · · ·

az + ∂xf3 + · · · ∂2
xf3 + · · · ∂x∂yf3 + · · · a + ∂x∂zf3 + · · ·

y + bz + ∂yf3 + · · · ∂x∂yf3 + · · · 1 + ∂2
yf3 + · · · b + ∂y∂zf3 + · · ·

1 + ax + by + cz + ∂zf3 + · · · a + ∂x∂zf3 + · · · b + ∂y∂zf3 + · · · c + ∂2
z f3 + · · ·

∣

∣

∣

∣

∣

∣

∣

∣

.

Plugging in z = 0 and keeping for each entry only the terms of order at most 1, we obtain
∣

∣

∣

∣

∣

∣

∣

∣

0 0 y 1 + ax + by
0 ∂2

xf3 ∂x∂yf3 a + ∂x∂zf3

y ∂x∂yf3 1 + ∂2
yf3 b + ∂y∂zf3

1 + ax + by a + ∂x∂zf3 b + ∂y∂zf3 c + ∂2
z f3

∣

∣

∣

∣

∣

∣

∣

∣

.

The only linear term in this determinant is ∂2
xf3, so the equations of the tangent line to S ∩

Hess(S) are

(4.4.1) z = ∂2
xf3 = 0.

It coincides with the double flex tangent line if and only if there is no term in x3 in f3, which
is equivalent to the tangent section of S at p having an equation of the form

1

2
y2 + y(a21x2 + a12xy + a03y2) + · · · = 0,

which is the local form of a tacnodal singularity. ✷

(4.5) Corollary. The generators of the Hessian developable surface are the double flex tangent
lines at parabolic points of S. Its stationary planes are the tangent planes to S at points where
the tangent section has a tacnode.

(4.5.1) Let us warn the reader that the Hessian developable surface is not the tangential surface
of the Hessian curve on S. The only points where the tangent to the Hessian curve coincides
with a generator of the Hessian developable are those parabolic points lying on the flecnodal
locus.

I don’t know of an explicit description of the regression edge of the Hessian developable.

We are now ready to compute the various numerical characters of the Hessian developable.

(4.6) Lemma. Let S, T be two surfaces in P3 of degrees s, t respectively. The degree of the
ruled surface generated by the flex tangents of S at the points of S ∩ T equals st(3s − 4).

Note that there is no reason that this ruled surface be developable in general, although it is
indeed when T = Hess(S).
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Proof. Let f, g be homogeneous equations of S and T respectively. The ruled surface we are
interested in is the projection on the first factor of the incidence graph

{

(p, p′) : p′ ∈ S ∩ T and p sits on a flex tangent to S at p′
}

which is the complete intersection in P3 × P3 defined by the four bihomogeneous polynomials
f(p′), g(p′), Dpf(p′), Dp2 f(p′), of bidegrees (0, s), (0, t), (1, s − 1), and (2, s − 2) in the variables
(p, p′) respectively.

It is therefore the hypersurface in P3 defined by the homogeneous equation

Ress,t,s−1,s−2

(

f, g, Dpf, Dp2 f
)

,

taken as a resultant of homogeneous polynomials in the variable p′, with coefficients homo-
geneous polynomials in the variable p. By standard homogeneity properties of the resultant
référence au texte avec Laurent [3] it is a homogeneous polynomial of degree

0 × t(s − 1)(s − 2) + 0 × s(s − 1)(s − 2) + 1 × st(s − 2) + 2 × st(s − 1) = st(3s − 4).

✷

(4.7) Corollary. The degree of the Hessian developable surface equals 2n(n − 2)(3n − 4).

This quantity is called the rank of the Hessian system in the classical terminology, cf. Ap-
pendix B.

Proof. We apply the above lemma with T = Hess(S). This gives the degree 4m(m − 2)(3m − 4),
which gets however divided by two, as the obtained equation is double in this case, being the
two flex tangents coincident at parabolic points. ✷

(4.8) The class of the Hessian developable is the number of planes tangent to S at a parabolic
point, and passing through a fixed general point in P3. It is therefore the intersection number
of S, Hess(S), and Dp′S for a general p′ ∈ P3, which equals 4n(n − 1)(n − 2).

(4.9) The number of stationary planes of the Hessian developable is by Corollary (4.5) the
number of points in the intersection of the parabolic curve S ∩Hess(S) with the flecnodal locus.
The latter is cut out on S by a homogeneous polynomial of degree 11n − 24, Référence avec
Laurent [3]. but one has to take into account the famous fact that the two surfaces defined by
the Hessian and the flecnodal polynomials are everywhere tangent. Sadly, I abandoned the idea
of including a proof of this fact here. Give reference however! Eventually, one thus finds the
number 2n(n − 2)(11n − 24).

(4.10) We may now find the remaining characteristic numbers using the formulae of Ap-
pendix B. We follow the notation of (B.4) and (B.14), with an additional decoration ’He’ to
avoid confusion; see also the warning below. We have found so far:
— rHe = 2n(n − 2)(3n − 4) ;
— nHe = 4n(n − 1)(n − 2) ;
— αHe = 2n(n − 2)(11n − 24).
Knowing three quantities is enough to derive all the others by a direct applications of the
formulae in (B.16) and (B.17). For instance, one finds as in [25, §608]:
— mHe = 4n(n − 2)(7n − 15) ;
— βHe = 10n(n − 2)(7n − 16) ;
— gHe = 2n(n − 2)(4n4 − 16n3 + 20n2 − 27n + 39) ;
— hHe = 2n(n − 2)(196n4 − 1232n3 + 2580n2 − 1861n + 137).
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(4.10.1) Warning. For ease of reference I have done my best to stick to Salmon’s notation, as
other have done before me, e.g., Piene [22], Ronga [24]. It sets however various little traps

one should be aware of, due to the exchanges performed by duality. For instance, αHe = β̌,
and gHe = ȟ. αHe and gHe appear in [25, §608], while β̌ and ȟ appear in [25, §612] and [25, §613]
respectively.

r := 2*n*(n-2)*(3*n-4);

nH := 4*n*(n-1)*(n-2);

alpha := 2*n*(n-2)*(11*n-24);

m:=

alpha-3*(nH-r);

4 n (n - 2) (7 n - 15)

beta:=

nH-3*(r-m);

10 n (n - 2) (7 n - 16)

g:=

1/2*(nH*(nH-1)-3*alpha-r);

4 3 2

4 n (n - 2) (4 n - 16 n + 20 n - 27 n + 39)

h:=

1/2*(m*(m-1)-3*beta-r);

4 3 2

dh := 4 n (n - 2) (196 n - 1232 n + 2580 n - 1861 n + 137)

4.2 – The node-couple developable surface

(4.11) Proposition. The generators of the node-couple developable surface are the lines joining
pairs of conjugated points of the node-couple curve, in other words the lines 〈p, q〉 such that there
exists a plane tangent to S at both p and q.

Proof. The node-couple developable is the dual of the curve γS(KS) ⊂ P̌3, so its generators are
the orthogonals to the tangents lines of γS(KS) (see subsection B.1). Let ̟ ∈ γS(KS) be a
general point. There are two points p, q ∈ S such that the plane H = ̟⊥ ⊂ P3 is tangent to S
at both p and q. The tangent line T̟(γS(KS)) is the intersection of the tangent planes to the
two local sheets of S∨ at ̟, respectively p⊥ and q⊥. Therefore,

T̟(γS(KS))⊥ = (p⊥ ∩ q⊥)⊥ = 〈p, q〉.

✷

To determine the numerical characters of the node-couple developable (in subsection 4.4)
we need the results of the following subsection 4.3. For the moment let us only mention the
interesting [7] in which the node-couple developable of a very general complex quartic surface
is carefuly studied.
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4.3 – Ordinary double edges of the polar cone

(4.12) We adopt once again the set-up of (3.4); the polar cone DpX of X with respect to
p ∈ P3 is the cone projecting from p over the curve X ∩ DpX . Its ordinary double edges are
the lines intersecting X with multiplicity 2 in two distinct points, and we have seen in 2.2 that
their contact points with X are in the number d(d − 1)(d − 2)(d − 3), all on the reducible curve
X ∩ DpX . We now list the various kinds of such contact points.

(4.13) Notation. We keep the notation from (3.5), and let in addition:
— δ the number of ordinary double edges of the circumscribed cone TpX (these are the honest

bitangent lines to X);
— k the number of apparent double points of the ordinary double curve B of X ;
— h the number of apparent double points of the cuspidal double curve C of X ;
Recall that the number of apparent double points of B (resp. C) is the number of double points
of its projection from the point p.

(4.14) For Y and Y ′ two distinct curves among A, B, C, we let [Y, Y ′]◦ be their number of
apparent only double points, which we define as the number of intersection points of their pro-
jections from p, πp(Y ) and πp(Y ′), that do not come from an actual intersection point of Y and
Y ′.

Of course the total number of intersection points of πp(Y ) and πp(Y ′) is deg(Y ) · deg(Y ′),
and we shall discuss below the quantities to be subtracted to obtain [Y, Y ′]◦.

(4.15) Salmon gives the formulae

a(n − 2)(n − 3) = 2δ + 2[A · B]◦ + 3[A · C]◦ ;(EPi |)
b(n − 2)(n − 3) = 4k + [A · B]◦ + 3[B · C]◦ ;(EPi ¸)

c(n − 2)(n − 3) = 6h + [A · C]◦ + 2[B · C]◦(EPi˙)

without any comment.
My understanding of these formulae is as follows. The number n(n − 1)(n − 2)(n − 3) =

(a + 2b + 3c)(n − 2)(n − 3) counts the contact points of the ordinary double edges of the polar
cone DpX with the curve X ∩DpX = A+2B +3C. Let Y, Y ′ be two curves (possibly the same)
among A, B, C, and mY , mY ′ their multiplicities in the cycle X ∩ DpX . An intersection point
between πp(Y ) and πp(Y ′) gives a double edge of the polar cone with multiplicity mY · mY ′ ,
hence two contact points y and y′ with X ∩ DpX with the same multiplicity. Taking into
account the multplicities of Y and Y ′ in X ∩ DpX , one finds that the polynomial of degree
(n − 2)(n − 3) cutting out the contact points should intersect Y with multiplicity mY ′ at y and
Y ′ with multiplicity mY at y′. This explains all the coefficients in the formulae. The actual
intersection points of A, B, C should not be counted, as they give rise to cuspidal double edges
of the polar cone, and not to ordinary double edges.

The polynomial of degree (n − 2)(n − 3) cutting out the contact points is constructed in
ref.w.Laurent [3]. I have not been able to derive a more rigorous proof of the above formulae.

(4.16) Number of apparent only intersection points. We now discuss the various contri-
butions to be removed from the total number of apparent double points to obtain the number
of apparent only intersection points. We use one more notation:
— i the number of intersection points of B and C smooth for both curves (when X = S∨ for a

smooth S, this number vanishes).
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The formulae are the following:

[A · B]◦ = ab − 2ρ ;(X|)
[A · C]◦ = ac − 3σ ;(X¸)

[B · C]◦ = bc − 3β − 2γ − i.(X˙)

Once more, Salmon takes them as self-evident.
In our setup, every actual intersection point of two curves among A, B, C is of one of the types

ρ, σ, β, γ, i, so only the coefficients are to be explained. They are the intersection multiplicities
at the corresponding points of the projections of the two curves under consideration. This is
straightforward for points of type i.

(4.16.1) Points of type ρ. These are the points q ∈ A∩B. At such a point, the surface X has two
smooth local sheets X ′

q and X ′′
q , B = X ′

q ∩X ′′
q and the circumscribed curve A is contained in one

of them, say X ′
q, and transverse to B. The curve A is the ramification curve of the projection

of X ′
q, hence the projections of A and B are tangent at the projection of q, and intersect with

multiplicity 2.

(4.16.2) Points of type σ. These are the points q ∈ A ∩ C. At such a point, the surface X
has one cuspidal local sheet Xq, and C = Sing(Xq). The curve A is the ramification curve of
the projection of Xq lifted to its normalization X̄q. We have seen in (3.6.4) that A and C are
smooth and tangent at q. The claim is that after the projection they intersect with multiplicity
3. I have not been able to produce a definitive direct proof of this fact. However the number
[A · C]◦ occurs only in (EPi |) and (EPi˙) which we may verify otherwise since we know all
the other numbers involved. This gives an indirect proof of Formula (X¸).

(4.16.3) Points of type β. These are the swallowtail singularities of X . At these points B is
smooth and C is cuspidal, and we can see on the local model in (3.1) that they have the same
reduced tangent cone. It follows that after projection they intersect with multiplicity 3 at these
points.

(4.16.4) Points of type γ. These are the points at which X has two transverse local sheets, one
smooth: Xs

q, and the other cuspidal: Xc
q . There C is smooth and B is cuspidal, and these two

curves have transverse reduced tangent cones. It follows that after projection they intersect
with multiplicity 2 at these points.

Figure 2: Local picture of X at a point of type γ

(4.17) Corollary. Putting together formulas (EPi) and (X) one obtains:

a(n − 2)(n − 3) = 2δ + 2ab + 3ac − 4ρ − 9σ ;(EPy |)
b(n − 2)(n − 3) = 4k + ab + 3bc − 9β − 6γ − 3i − 2ρ ;(EPy ¸)

c(n − 2)(n − 3) = 6h + ac + 2bc − 6β − 4γ − 2i − 3σ.(EPy˙)
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4.4 – Application to the case X = S∨

We now proceed as in Subsection 3.3, and maintain the setup introduced there, to apply the
formulae of Subsection 4.3 above to the case when X is the dual of a smooth, degree n, surface
in P3.

(4.18) As in (3.8), the circumscribed cone Tp̌(S∨) is the dual in P̌3 of the plane curve p̌⊥ ∩ S.

The number δ̌ of ordinary edges of this cone is therefore the number of bitangents of the plane
curve p̌⊥ ∩ S. Thus ref?
— δ̌ = 1

2 n(n − 2)(n − 3)(n + 3).

(4.19) The numbers ȟ and ǩ are the invariants g (introduced in (B.14)) of the Hessian and
node-couple developables respectively. The former has been computed in and the latter we don’t
know yet:
— h = gHe = 2n(n − 2)(4n4 − 16n3 + 20n2 − 27n + 39) ;
— k = gKn.

(4.20) The numbers ň, ǎ, b̌, č have been given in Subsection 3.3, and the numbers ρ̌, σ̌, β̌, γ̌ have
already been computed. As we mentioned earlier, the number ı̌ vanishes.

One may thus check by a direct computation that the first and third identities of (4.17) are
indeed verified. The second one on the other hand gives the formula:
— k = 1

8 n(n−2)(n10−6n9+16n8−54n7+164n6−288n5+547n4−1058n3+1068n2−1214n+1464).

2

nn := n (n - 1)

a := n (n - 1)

3 2

n (n - 1) (n - 2) (n - n + n - 12)

b:= ------------------------------------

2

c := 4 n (n - 2) (n - 1)

n (n - 2) (n - 3) (n + 3)

delta := -------------------------

2

3 2

rho := n (n - 2) (n - n + n - 12)

sigma := 4 n (n - 2)

a*(nn-2)*(nn-3)-2*delta-2*a*b-3*a*c+4*rho+9*sigma;

expand(%);

0

beta := 2 n (n - 2) (11 n - 24)

3

gamm := 4 n (n - 2) (n - 3) (n + 3 n - 16)
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4 3 2

h := 2 n (n - 2) (4 n - 16 n + 20 n - 27 n + 39)

c*(nn-2)*(nn-3)-6*h-a*c-2*b*c+6*beta+4*gamm+3*sigma;

factor(expand(%));

0

1/4*(b*(nn-2)*(nn-3)-a*b-3*b*c+9*beta+6*gamm+2*rho);

factor(expand(%));

10 9 8 7 6 5 4 3

n (n - 2) (n - 6 n + 16 n - 54 n + 164 n - 288 n + 547 n - 1058 n

2

+ 1068 n - 1214 n + 1464)/8

(4.21) Rank of the node-couple developable. We shall compute rKn with the formula
r = n(n − 1) − 2g − 3α from (B.16); the latter has to be adapted however, due to the presence
of triple points on the curve B̌, which plays the role of C in the context of (B.16). This may be
taken care of in various ways, but the idea is always the same, namely that an ordinary triple
point counts exactly as three nodes. The upshot is the following:

rKn = nKn(nKn − 1) − 2
(

gKn + 3#(triple points)
)

− 3αKn

= b̌(b̌ − 1) − 2ǩ − 6ť − 3γ̌,

which gives
— rKn = n(n − 2)(n − 3)(n2 + 2n − 4).

(4.22) Numerical characters of the node-couple developable. We have found the three

numerical characters nKn = b̌, gKn = ǩ and αKn = γ̌, so we are able to derive all the others using
the formula of Subsection B.3, suitably modified in order to take into account the presence of ť
ordinary triple points on the curve CKn = B̌ as in (4.21) above. We leave this as an exercise to
the not-tired-yet reader.

5 – Formulae for surfaces projected in P3

In this section, we provide enumerative formulae for the number of curves with particular features
in a possibly incomplete linear system of dimension 6 3 on a smooth surface.

(5.1) Setup. We consider a smooth surface S and a possibly incomplete linear system |V | of
dimension r 6 3 on S, with smooth irreducible general member. Up to adding a fixed part to
|V |, we may assume that it is a linear subsystem of a very ample linear system |V ♯|. We make
the further assumption that |V | is a general subsystem of |V ♯|, so that we may apply the general
projection theorem. Reference? If r > 1, this implies in particular that |V | is base point free.

We call:
— C the linear equivalence class of divisors in |V | (and sometimes a member of |V | by abuse of

notation) ;
— n the degree of |V |, that is n = C2 ;
— π the common arithmetic genus of all members of |V |.
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We shall frequently use the identity

(5.1.1) KS · C = 2π − 2 − n

given by the adjunction formula.

(5.2) Warm up: the 1-dimensional case. If r = 1, the generality assumption implies that
|V | has n simple base points, and its singular members are all 1-nodal curves. In this case, a
topological formula discussed in details at various other places in this volume gives the class ň
of |V |, that is the number of its singular members:
— ň = e(S) + n − e(C) · e(P1) = c2(S) + n + 4π − 4.

Next we treat somewhat unexpectedly the case r = 3 before the case r = 2: this is before
we shall use the geometric description of the former situation to comprehend the latter.

5.1 – The 3-dimensional case: surfaces with ordinary singularities

(5.3) If r = 3, the generality assumption implies that |V | defines a birational morphism from

S to a degree n surface S♭ ⊂ P3 with ordinary singularities, that is S♭ has an ordinary double
curve D with τ pinch points and t triple points: locally at a general point of D, S♭ looks like
the hypersurface xy = 0 in the affine space with coordinates x, y, z; locally at a pinch point it
has a Whitney umbrella singularity, that is it looks like the hypersurface x2 − zy2 = 0; locally
at a triple point it looks like the hypersurface xyz = 0, so these points are non-planar triple
points for D. We assume for simplicity that D is irreducible.

The morphism ν : S → S♭ is the normalization map. We let ∆ ⊂ S be the pre-image of
D ⊂ S♭; there is a double cover ∆ → D, which ramifies exactly over the τ pinch points. By
adjunction theory (see, e.g., [17, Exer. II.8.5]), one has ωS

∼= OS(−∆) � ν∗ωS♭ , and ν∗ωS =
ID|S♭ , where ID is the sheaf of ideals defining D in P3. Being S♭ a divisor in P3, we have
ωS♭

∼= ωP3(S♭)
∣

∣

S♭ = OS♭(n − 4).
We use the following notation, some of which has already been introduced:

— τ is the number of pinch points of S♭ ;
— t is the number of triple points of S♭ ;
— d is the degree of the double curve D ⊂ P3 ;
— ρ is the geometric genus of D ;
— Π is the geometric genus of ∆ ⊂ S.

(5.4) The curves C are represented in P3 as hyperplane sections of S♭, hence as degree n plane
curves with d nodes. Therefore one has

(5.4.1) π =

(

n − 1

2

)

− d.

(5.5) Effective degree of first polars. We compute the class ň of S♭, that is the number
of singular curbes in a general subpencil of |V |, following the method explained in (1.7). For a
general point p ∈ P3, the first polar DpS♭ is a degree n − 1 hypersurface passing simply through
D; moreover, the intersection DpS♭ ∩S♭ residual to D is a curve passing through all pinch points.
This follows from a local computation, which at this point we may leave to the reader.

Therefore, for a general pair of points p, q ∈ P3 the intersection of the two curves (DpS♭ ∩
S♭) − D and (DqS♭ ∩ S♭) − D consists of the τ pinch points of S♭ plus the ň points a such
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that p, q ∈ TaS. To compute this intersection number τ + ň, we pull-back the curves to the
normalization S. They are sections of

ID � OS♭(n − 1) ∼= ID � ωS♭ � OS♭(3),

hence pull-back to curves in the class KS + 3C. We thus find the identity

(5.5.1) ň + τ = (KS + 3C)2 = K2
S + 3n + 12π − 12,

using (5.1.1) to substitute the intersection number KS · C.

(KS + 3C)2 = K
2 + 9n + 6K · C

= K
2 + 9n + 6(2π − 2 − n)

= K
2 + 3n + 12π − 12

= p
(1) + 3n + 12π − 13.

(5.6) Genus of the curve of neutral pairs of |V |. One first observes that the curve ∆ has

3 nodes above each triple point of S♭, as is best understood looking at the picture below.

Figure 3: Normalization of S♭ at a triple point

Since it may be assumed to be otherwise smooth, one finds its arithmetic genus to be pa(∆) =
pg(∆) + 3t = Π + 3t. The latter may also be computed using the adjunction formula. We have
already seen the identity KS = (n − 4)C − ∆. One thus finds

(5.6.1) 2(Π + 3t) − 2 = (KS + ∆) · ∆ = (n − 4)C · ∆ = 2(n − 4)d,

equivalently

(5.6.2) pa(∆) = (n − 4)d + 1.

On the other hand, the map ∆ → D lifts to a 2 : 1 covering ∆̄ → D̄ between the normaliza-
tions of ∆ and D. It is ramified at τ points, so the Riemann–Hurwitz formula gives

(5.6.3) 2Π − 2 = 2(2ρ − 2) + τ.

(5.7) Intersections of circumscribed curves with the double curve. Let p ∈ P3 be a

general point. We consider the circumscribed curve CpS♭ := (DpS♭ ∩S♭)−D and its intersection
points with the curve D. To see clearly the situation, it is best to work on the normalization S.
One has

ν∗CpS♭ · ∆ = (KS + 3C) ·
(

(n − 4)C − KS

)

= −K2 + 2π(n − 7) + 2n2 − 7n + 14.

26



Geometrically this intersection amounts to the τ pinch points plus the points q ∈ D such that
the tangent plane to one of the two local sheets of S♭ at q passes through p. Let a be the number
of the latter points. It may be computed by considering the intersection of the second polar
Dp2 S♭ with D. It follows from Theorem (A.6) that this intersection consists of the a points we
are interested in plus the t triples points, and since those are triple for D one finds

a + 3t = (n − 2)d.

Eventually we end up with

(5.7.1) τ+
(

(n − 2)d − 3t
)

= −K2 + 2π(n − 7) + 2n2 − 7n + 14.2

(KS + 3C) ·

(

(n − 4)C − KS

)

= −K
2 + 3n(n − 4) + (n − 7)KC

= −K
2 + 3n(n − 4) + (n − 7)(2π − 2 − n)

= −K
2 + 2π(n − 7) + 3n

2
− 12n − (n2

− 5n − 14)

= −K
2 + 2π(n − 7) + 2n

2
− 7n + 14

= −p
(1) + 1 + 2π(n − 7) + 2n

2
− 7n + 14.

(5.8) Postulation formula. We shall also use the following formula for the arithmetic genus
of S, which we will discuss in the dedicated subsection 5.2.

(5.8.1) pa(S) =

(

n − 1

3

)

− (n − 4)d + ρ + 2t − 1.

(5.9) Conclusion. We may now express the quantities ň, τ , t, d, ρ, Π in terms of the four
invariants n, π, pa(S), K2

S . The formula for d is readily given by (5.4.1); we use it so substitute
for d in the five equations (5.5.1), (5.6.1), (5.6.3), (5.7.1), (5.8.1), thus obtaining













1 1
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3n + 12π + K2
S − 12

(n − 4)(n − 1)(n − 2) − 2(n − 4)π + 2
−2

− 1
2 n3 + 9

2 n2 − 11n + 16 − K2
S + π(3n − 16)

1
6 (n − 1)(n − 2)(−2n + 9) + π(n − 4) − pa(S) − 1













.

This eventually gives:
— ň = n + 4π + 12pa(S) − K2

S + 8 ;

— d = 1
2 (n − 1)(n − 2) − π ;

— ρ = 1
2 (n2 − 7n) + π(n − 12) + 9pa(S) − 2K2

S + 22 ;

— Π = n2 − 6n + 2π(n − 10) + 12pa(S) − 3K2
S + 33 ;

— t = 1
6 (n3 − 9n2 + 26n) − π(n − 8) − 4pa(S) + K2

S − 12 ;

— τ = 2n + 8π − 12pa(S) + 2K2
S − 20.

2There is a typo in [13, Formula (6), p. 175], but the final formulas on p. 176 agree with ours in (5.9).
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Start with






















































d =

(

n − 1
2

)

− π

ň + τ = K
2
S + 3n + 12π − 12

2(Π + 3t) − 2 = 2(n − 4)d

2Π − 2 = 2(2ρ − 2) + τ

τ+
(

(n − 2)d − 3t
)

= −K
2 + 2π(n − 7) + 2n

2
− 7n + 14

pa(S) =

(

n − 1
3

)

− (n − 4)d + ρ + 2t − 1.

Next substitute d, then leave the first equation aside, and rearrange the equations:














































ň + τ = K
2
S + 3n + 12π − 12

2Π + 6t = (n − 4)(n − 1)(n − 2) − 2(n − 4)π + 2

2Π − 4ρ − τ = −2

τ − 3t = −K
2 + 2π(n − 7) + 2n

2
− 7n + 14

− (n − 2)
(n − 1)(n − 2)

2
+ (n − 2)π

−ρ − 2t = −pa(S) +
1
6

(n − 1)(n − 2)(−2n + 9) + π(n − 4) − 1.

with(LinearAlgebra);

A:=Matrix(5,5,[

1 ,0, 0, 0, 1,

0, 2, 6, 0, 0,

0, 2, 0, -4, -1,

0, 0, -3, 0, 1,

0, 0, -2, -1, 0]);

invA:=MatrixInverse(A);

2*n^2-7*n+14-1/2*(n-1)*(n-2)^2;

factor(expand(%));

2 3

9/2 n - 11 n + 16 - 1/2 n

B:=Matrix(5,1,[

K+3*n+12*pi-12,

(n-4)*(n-1)*(n-2)-2*(n-4)*pi+2,

-2,

-K+pi*(3*n-16)+9/2*n^2-11*n+16-1/2*n^3,

-p+1/6*(n-1)*(n-2)*(-2*n+9)+pi*(n-4)-1

]);

X:=MatrixMatrixMultiply(invA,B);

ncheck

collect(X[1],n);

[n - K + 12 p + 4 pi + 8]
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Pi

eval(X[2],n=0);

[33 - 20 pi - 3 K + 12 p]

eval(X[2],[p=0,K=0]);collect(%,pi);

(2 n - 20) pi + ...

eval(X[2],[p=0,K=0,pi=0]);value(%[1]);

%-n^2+6*n-33;

expand(%);

0

t

value(X[3]);

K - 4 p + (-n + 8) pi +...

eval(%,[K=0,p=0,pi=0]);value(%[1]);expand(6*%);

3 2

n - 9 n + 26 n - 72

rho

(n - 12) pi + 9 p - 2 K ...

eval(X[4,1],[K=0,p=0,pi=0]);expand(2*%);

2

n - 7 n + 44

tau

factor(expand(X[5,1]));

2 K + 2 n - 12 p + 8 pi - 20

(5.10) Choice of four independent invariants. I have chosen to follow Enriques’ notation

for ease of reference. I have however substituted the old-fashioned linear genus p(1)(S) with K2
S .

Indeed, p(1)(S) is defined as the virtual genus of canonical sections of S, that is the genus of the
curves in |KS| obtained from the adjunction formula, even though |KS| may in fact be empty.
In other words p(1) is defined by the formula

2p(1) − 2 = (KS + KS) · KS ,

hence p(1) = K2
S + 1.

Nowadays the custom is to use C2, KS ·C, K2
S , c2(S) rather than n, π, pa(S), K2

S . To obtain
the above formulas in this form, simply use

(5.10.1) C2 = n; KS · C + C2 = 2π − 2; 1 + pa(S) =
1

12

(

K2
S + c2(S)

)

.

The former two relations we have already encountered, and the latter is the well-known Noether
formula (see [17, Example A.4.1.2] for instance).

5.2 – The postulation formula

This subsection is a digression about the postulation formula (5.8.1), which gives an expression
for the arithmetic genus pa(S) in terms of the projection S♭ in P3. A modern proof may be
found in [23]; here instead we explain the classical definition of the arithmetic genus, how it
gives Formula (5.8.1), and why it coincides with the modern definition. This may seem a bit
off-topic, I included it here nevertheless by lack of a suitable reference. The interested reader
may also wish to consult [28, Chap. III] in addition to [13, Cap. IV].
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(5.11) Recall that by definition, the arithmetic genus of a variety X is

pa(X) := (−1)dim X
(

χ(OX) − 1
)

.

If X is a degree d hypersurface in PN , one finds pa(X) = h0(OPN (d − N − 1)) =
(

d−1
N

)

. When
X is smooth, its geometric genus is by definition

pg(X) := h0(X, ωX).

(5.12) For a smooth curve there is no difference between the arithmetic and geometric genera;
it is an important point that the same does not hold in higher dimension. One defines the
geometric genus of an arbitrary curve to be the genus of its normalization.

Let X1 be a curve. One usually relates its arithmetic and geometric genera with an exact
sequence

(5.12.1) 0 → OX1 → ν∗OX̄1
→

⊕

p∈Sing(X1)(Cp)�δ(p) → 0,

where ν : X̄1 → X1 is the normalization map, and the third term is a skyscraper sheaf supported
on the singular locus of X1, with δ(p) an integer depending on the type of singularity. Taking
Euler characteristics in (5.12.1), one obtains

pg(X1) = pa(X1) −
∑

p∈Sing(X1) δ(p).

(5.12.2) Locally at a space triple point, the exact sequence (5.12.1) looks like

0 → C[x, y, z]/(xy, xz, yz) → C[x] � C[y] � C[z] → C2 → 0
(P, Q, R) 7→

(

P (0) − Q(0), Q(0) − R(0)
)

so that a space triple point make the genus drop by 2.

(5.13) The arithmetic genus of a smooth surface S may be computed in a similar fashion in

terms of a generic projection S♭ in P3 (we keep the notation from the previous Subsection 5.1).
There is indeed an exact sequence

0 → OS♭ → ν∗OS → ν∗O∆ → OD → 0,
(f1, f2) 7→ f1 − f2

which gives, taking Euler characteristics:

pa(S) = pa(S♭) − pa(∆) + pa(D).

Now, the arithmetic genus of S♭ is that of a degree n hypersurface in P3, see (5.11), that of ∆ is
given in (5.6.2), and that of D is ρ + 2t by (5.12.2), so we have obtained a first proof of Formula
(5.8.1).

To explain the classical definition of the arithmetic genus of a surface, we shall need the
following lemma. It uses in an essential way the relations between the canonical line bundles of
S, S♭, and P3, cf. (5.3).

(5.14) Lemma. For all i = 0, 1, 2, one has Hi(S, ωS) ∼= Hi(S♭, OS♭(n − 4) � ID).

Proof. By the projection formula, we have

(5.14.1) ν∗ωS = ν∗

(

ν∗OS♭(n − 4) � OS(−∆)
)

= OS♭(n − 4) � ID.

Moreover one has Riν∗(ωS) = 0 for all i = 1, 2, because ν is finite, so Hi(S, ωS) ∼= Hi(S♭, ν∗ωS)
for all i = 0, 1, 2 by Leray’s spectral sequence (or merely [17, Exer. III.8.1]), and the result
follows. ✷
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(5.15) As a corollary of Lemma (5.14), one has the following formula for the geometric genus
of S:

(5.15.1) pg(S) = h0(P3, OP3(n − 4) � ID),

i.e., the geometric genus of S is the number of independent degree n−4 hypersurfaces containing
D, in more classical words of degree n − 4 hypersurfaces adjoint to S♭.

To compute this number, one may consider the restriction exact sequence

(5.15.2) 0 → OP3 (n − 4) � ID → OP3 (n − 4) → OD(n − 4) → 0.

If the linear series cut out on D by |OP3 (n − 4)| is complete and non-special, one finds
h0(P3, OP3 (n − 4) � ID) to equal

h0
(

OP3(n − 4)
)

− h0
(

OD(n − 4)
)

=
(

n−3
3

)

−
(

1 − pa(D) + deg OD(n − 4)
)

(5.15.3)

=
(

n−3
3

)

− 1 + (ρ + 2t) + (n − 4)d(5.15.4)

(the first equality is given by the Riemann–Roch theorem, and the second one by the computa-
tion of pa(D) in (5.13)), which is the right-hand-side term in (5.8.1).

Classically, the arithmetic genus of S is defined as the virtual number of independent degree
n − 4 hypersurfaces adjoint to S♭, that is one defines pa(S) by the value (5.15.4) of pg(S) under
the postulation that the linear series cut out on D by |OP3(n − 4)| is complete and non-special
(hence the name “postulation formula”).

Cohomology provides a better understanding of this definition: in fact the exact sequence
(5.15.2) gives

χ
(

OP3(n − 4) � ID

)

= χ
(

OP3 (n − 4)
)

− χ
(

OD(n − 4)
)

(5.15.5)

=
(

n−3
3

)

− 1 + ρ + 2t + (n − 4)d(5.15.6)

regardless of any assumption on the linear series cut out on D by |OP3(n − 4)|. This leads to
the cohomological definition of the arithmetic genus, as I claim that

(5.15.7) χ
(

OP3 (n − 4) � ID

)

= χ(OS) − 1.

To prove this claim, consider the exact sequence

0 → ωP3
∼= OP3 (n − 4) � IS♭ → OP3 (n − 4) � ID → OS♭ (n − 4) � ID → 0,

with IS♭ the sheaf of ideals defining S♭ in P3. It implies

χ
(

OP3 (n − 4) � ID

)

= −1 + χ
(

OS(n − 4) � ID

)

.

Next, one has χ(S♭, OS♭ (n − 4) � ID) = χ(S, ωS) by Lemma (5.14), and eventually χ(S, ωS) =
χ(S, OS) by Serre duality. This proves the claim, and makes the link between the classical and
modern definitions of the arithmetic genus of a surface.

5.3 – The 2-dimensional case: multiple planes

(5.16) For any r 6 3, given the way we have set up the situation in (5.1) we may assume

that |V | is a linear subspace of the space of hyperplane sections of a surface S♭ ⊂ P3 as in
(5.3). Equivalently, the morphism S → Pr given by |V | is the projection of S♭ from a (3 − r)-
dimensional linear subspace of P3. We shall thus deduce our formulas from the study carried
out in Subsection 5.1.
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(5.17) As a warm up, we note that the formula given in (5.2) for the class of a 1-dimensional
linear system may be recovered with the formula for the class in (5.9). Indeed, the discriminant
of the 1-dimensional |V | is merely the section of that of the 3-dimensional |V | by a line in P̌3.
The identity

c2(S) + n + 4π − 4 = n + 4π + 12pa(S) − K2
S + 8

is equivalent to the Noether formula stated in (5.10.1).

(5.18) We now concentrate on the r = 2 case. The linear system defines an n : 1 covering

S → P2 with branch curve B ⊂ P2, which we assume to be the projection of S♭ ⊂ P3 from a
point p. We consider:
— N the degree of the branch curve B ⊂ P2 ;
— P the geometric genus of B ;
— κ the number of points q ∈ S such that there exist C, C′ ∈ |V | intersecting with multiplicity

> 3 at q ;
— ι the number of cuspidal members of |V | ;
— δ the number of unordered pairs q, q′ ∈ S such that there exist C, C′ ∈ |V | tangent at both

q and q′ ;
— β the number of 2-nodal members of |V |.
Of course the dual of B is the discriminant of |V |, so the class of B is ň, which always assume
the same value as in (5.2) and (5.9), see (5.17). Moreover, δ, κ, β, ι are respectively the numbers
of nodes, cusps, bitangents, flexes of B. Note that B and its dual have no other singularities by
our generality assumption.

(5.19) Characters of the circumscribed curve of S♭. The branch curve B is the image of

the circumscribed curve CpS♭ = (DpS♭ ∩ S♭) − D by the map S♭ → P2, and in fact CpS♭ is the
normalization of B.

This implies that N and P are respectively the degree and genus of CpS♭, and since we have
computed that its class in S is KS + 3C one finds:
— N = (KS + 3C) · C = 2n + 2π − 2 ;
— P = 9π + K2

S − 8.

2P − 2 = (2K + 3C) · (K + 3C) = 2K
2 + 9C

2 + 9K · C

= 2K
2 + 9n + 9(2π − 2 − n)

= 2(K2 + 9π − 9)

(5.20) Conclusion. Since we know in addition the class ň of B, we may derive all remaining
numerical characters by applying the Plücker formulae to B:

2δ + 3κ = N(N − 1) − ň; 2β + 3ι = ň(ň − 1) − N ;

2δ + 2κ = (N − 1)(N − 2) − 2P ; 2β + 2ι = (ň − 1)(ň − 2) − 2P ;

(while the identities on the first line are genuinely Plücker relations, those on the second line
come from the formula for the genus of a plane curve with nodes and cusps, written for B and
its dual which both have the same geometric genus P ). One thus finds:
— δ = 2

[

(n + π)2 − 5n − 17π − 2K2
S + 6pa(S) + 22

]

;

— κ = 3(n + 6π + K2
S − 4pa(S) − 10) ;

— β = 1
2

[

(n + 4π − K2
S + 12pa(S) − 1)2 + 15n − 6π − 17K2

S + 132pa(S) + 57
]

;
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— ι = 24(π + pa(S)).

κ = 2N + 2P − ň − 2; ι = 2ň + 2P − N − 2;

2δ = (N − 1)(N − 6) + 2ň − 6P ; 2β = (ň − 1)(ň − 6) + 2N − 6P.

nn:=n+4*pi+12*p-K+8;

N:=2*n+2*pi-2;

P:=9*pi+K-8;

kappa:=2*N+2*P-nn-2;

3 (n + 6 pi - 10 + K - 4 p)

delta:=1/2*((N-1)*(N-6)+2*nn-6*P);

1/2*%-(n+pi)^2;

-2 K - 5 n + 6 p - 17 pi + 22

iota:=2*nn+2*P-N-2;

24 pi + 24 p

beta:=1/2*((nn-1)*(nn-6)+2*N-6*P);

%-(n+4*pi+12*p-K-1)^2;

-17 K + 15 n + 132 p - 6 pi + 57

(5.21) Number of cuspidal curves in a net. It is possible to derive directly the quantity ι
by projective methods. We end this section by a sketch on how this goes.

The parabolic curve of S♭ and its circumscribed curve with respect to p intersect at the pinch
points, and at those points q on the parabolic curve such that the tangent plane at q contains
p; the number of the latter points is the quantity ι.

To find the intersection number of these two curves we compute the class of the pull-back
of the parabolic curve on S. A local computation shows that the Hessian hypersurface of S♭

contains the double curve D with multiplicity 4. Since the degree of the Hessian is 4(n − 2),
one finds as in (5.5) the class 4KS + 8C.

On the other hand, we claim that the two curves intersect with multiplicity 2 at each pinch
point. Indeed if q is a pinch point, with preimage q′ ∈ S, the members of |V | passing through
q′ form a pencil of curves all singular at q′. The condition to be cuspidal in such a pencil is
that the determinant of the 2 × 2 matrix of second derivatives vanishes, hence this is a degree
2 condition. We thus find 2 cuspidal curves at q′ in |V |, hence the claim.

Eventually, we have

(5.21.1) (KS + 3C) · (4KS + 8C) = ι + 2τ,

which indeed gives ι = 24(π + pa) with the expression for τ in (5.9).

A – Polarity

We give here a brief recap on polarity, so that the reader unfamiliar with this may conveniently
consult the relevant material. We refer the reader to [10, Chapter 1] and [2, § 5.4 and 5.6] for
more details.
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(A.1) The polar pairing. Let f be a complex homogeneous degree d polynomial in n + 1
variables (x0, . . . , xn). For a = (a0, . . . , an) ∈ Cn+1, we define

(A.1.1) Daf = a0∂0f + · · · an∂nf,

and for a1, . . . , ak ∈ Cn+1, we let

(A.1.2) Da1···ak
f = (Da1

◦ · · · ◦ Dak
)(f).

Extending (A.1.2) by C-linearity, one obtains a perfect bilinear pairing

D : Symk(Cn+1) � Symd(Čn+1) −→ Symd−k(Čn+1)

ξ � f 7−→ Dξf

extending the natural pairing between Cn+1 and Čn+1.

(A.2) Polar hypersurfaces. Consider the hypersurface X = V (f) ⊂ Pn. For â = (a0, . . . , an) ∈
Cn+1, and k ∈ N,

Dâk f =
(

a0∂0 + · · · + an∂n

)k
f,

may be viewed as a bihomogeneous polynomial of bidegree (k, d−k) in the variables (a0, . . . , an)
and (x0, . . . , xn). The hypersurface V (Dâk f) depends only on X and the point a = (a0 : . . . :
an) ∈ Pn, see [2, Thm. 5.4.2]; we call it the k-th polar of X with respect to a, and denote it by
Dak X . We will often abuse notation and consider â and a without distinction.

We shall also use the following useful notation: DkX(a), referred to as the polar k-ic of X
at a, is the hypersurface defined by the degree k polynomial in the variables (x0, . . . , xn),

Dkf(â) =
(

x0∂0 + · · · xn∂n

)k
f(a0, . . . , an).

It follows from Euler formula that if a ∈ X , then a ∈ Dak X for all k > 1. Also the converse
holds, as follows.

(A.3) Proposition. Assume d = deg(f) > 1, and let a ∈ Pn. Then,

a ∈ X ⇐⇒ ∃k ∈ [[1, d − 1]] : a ∈ Dak X.

Proof. One has Dak f(a) = d(d − 1) · · · (r − k + 1)f(a) by Euler formula. ✷

(A.4) Proposition (polar symmetry). Consider X ⊂ Pn a degree d hypersurface. Let a, b ∈
Pn, and k ∈ [[1, d − 1]]. One has the equivalence:

a ∈ Dbk X ⇐⇒ b ∈ Dad−kX.

This says that DkX(a) = Dad−k X . In case a is a singular point of Dbk X , we have the
following. Let k, l be positive integers such that k + l < d. If a is a point of multiplicity
> d − k − l + 1 of Dbl X , then b is a point of multiplicity > d − k − l + 1 of Dak X . The proof is
mere polynomial calculus.

(A.5) If b ∈ X = V (f) is a smooth point, then D1f(b) is “the” linear homogeneous polynomial
defining the tangent hyperplane to X at b. Therefore, for all a ∈ Pn,

X ∩ DaX = {x ∈ X : TxX ∋ a}.

This generalizes to the following fundamental property.
If X ⊂ Pn is a hypersurface and ℓ ⊂ Pn a line, for all p ∈ ℓ we let i(X, ℓ)p be the multiplicity

with which p appears in X ∩ ℓ.
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(A.6) Theorem. Let X be a degree d hypersurface, a ∈ X, and b ∈ Pn. For all integer s > 0,
one has

i
(

X, 〈a, b〉
)

a
> s + 1 ⇐⇒ ∀k 6 s, b ∈ Dad−kX

⇐⇒ ∀k 6 s, a ∈ DbkX.

It turns out that for a ∈ X , all polars of X with respect to a (equivalently, all DkX(a)) are
tangent at a. Actually, X and its polar k-ic at a, DkX(a) have the same polar s-ics at a for all
s 6 k, as the following identities show:

Ds
(

DkX(a)
)

(a) = Dak−s

(

DkX(a)
)

= Dak−s

(

Dad−k X
)

= Dad−sX = DsX(a).

This has the following remarkable consequence.

(A.7) Corollary. Let X be a hypersurface in Pn, and a a point of X. The n hypersurfaces
D1X(a), . . . , DnX(a) intersect with multiplicity at least n! at a.

Proof. We consider only the case in which all intersections are complete, otherwise the result is
trivial. Then the intersection D1X(a), . . . , Dn−1X(a) consists of (n − 1)! lines each intersecting
X with multiplicity at least n at a, as follows from Theorem (A.6). Since the polar k-ics at
a of DnX(a) are the same as those of X as indicated above, each of these lines also intersect
DnX(a) with multiplicity at least n at a, and the result follows. ✷

The polar hyperplane D1X(a) is well-defined only if a is a smooth point of X (otherwise its
equation is 0, and the more reasonable thing to do is to set D1X(a) = Pn). When a is singular,
the following holds.

(A.8) Theorem. Let X be a degree d hypersurface, and a ∈ X a point of multiplicity m. We
consider an integer r 6 d − m.
(A.8.1) The polar hypersurface Dar X has multiplicity m at a, and it has the same tangent cone
at a as X: TCa(Dar X) = TCa(X).
(A.8.2) Let b ∈ Pn − {a}. The polar hypersurface Dbr X has multiplicity > m − r at a; this
multiplicity is exactly m − r for general b ∈ Pn, and in this case the tangent cone of Dbr X at a
equals the r-th polar with respect to b of the tangent cone TCa(X):

TCa

(

Dbr X
)

= Dbr

(

TCa(X)
)

.

In particular, (A.8.2) tells us that Dbr X contains a if r 6 m − 1, and is singular at a if
r 6 m − 2.

We end this section by recalling the following definition.

(A.9) Hessian of a hypersurface. Let X be a hypersurface in Pn, defined by the homoge-
neous polynomial f ∈ C[x0, . . . , xn]. The Hessian hypersurface of X is the hypersurface Hess(X)
defined by the homogeneous polynomial

Hess(f) = det
(

∂i∂jf
)

06i,j6n
.
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Using the Euler formula and the standard properties of determinants, one may obtain the
alternative expression

(A.9.1) Hess(f) = (d−1)2

x2

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

d
d−1 · f ∂1f · · · ∂nf

∂1f ∂2
1f · · · ∂1∂nf

...
...

. . .
...

∂nf ∂1∂nf · · · ∂2
nf

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It is useful to study the intersection of X and Hess(X).

B – Developable surfaces

In this apendix we review the basic theory of developable surfaces in the projective space of
dimension 3. following the beautiful [11, Chap. V].

B.1 – Synthetic description

(B.1) Definition. A developable surface S ⊂ P3 is a ruled surface such that the tangent plane
to S is constant along the lines of the rulings. In other words, for all line Λ of the ruling, and
for all p, p′ ∈ Λ, one has TpS = Tp′S. An important aspect of developable surfaces is that they
are the surfaces that can be unfolded into the plane with no distortion; we will however not
consider this idea any farther in this text.

In classical terminology, if S is a ruled surface, the lines of the rulings are called generators,
and a generator Λ is said to be torsal if the tangent plane to S is constant along Λ. Thus
developable surfaces are those ruled surfaces for which all generators are torsal.

(B.2) Developable surfaces in P3 are exactly those surfaces having their dual which is not a
hypersurface, see [26, Thm. 1.18]. It therefore follows from biduality that any non-degenerate
developable surface is projective dual to a curve C in P̌3. In particular it has an ordinary double
curve, corresponding to bitangent planes to C, and a cuspidal double curve, corresponding to
osculating planes to C (unless C is degenerate, in which case S is a cone).

(We say that a plane H is bitangent [resp. osculating] to C if the intersection cycle H ∩ C
contains a subcycle of the form 2p + 2q [resp. 3p], p, q ∈ C).

This description may be refined as follows.

(B.3) The following fact refines the description of (B.2); a detailed proof can be found in [2,
5.8.14]. Also [18, §30] is very enlightening. Let S be a developable surface in P3. On every
generator there is a singular point, at which S does not have a well-defined tangent plane. If S
is not a cone, the locus of the singular points of the various generators is a curve Γ, called the
regression edge, which is none other than the cuspidal double curve of C∨ mentioned in (B.2).
At a general point p ∈ Γ, the tangent line TpΓ is the generator of S, and the osculating plane
OscpΓ is the plane tangent to S along the generator TpΓ.

This tells us that S is the tangential surface of Γ, namely

S = Tan(Γ) :=
⋃

p∈Γsm

TpΓ.

Moreover, the curve C = S∨ ⊂ P̌3 is what I call the oscdual curve of Γ ⊂ P3, namely

C =
⋃

p∈Γ◦
(OscpΓ)⊥,
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where Γ◦ denotes the open subset of Γ of points p such that OscpΓ is a plane, i.e., Γ and TpΓ
intersect with multiplicity exactly 2 at p.

The dual of Γ is a developable surface in P̌3, the generators of which are the lines TpΓ⊥ for
all smooth points p ∈ Γ. It follows from biduality and the above description that this is the
tangential surface of the curve C. In particular, Γ is the oscdual curve of C: this is a reflexivity
statement for oscduality.

B.2 – Analysis of contacts

We pursue our analysis of developable surfaces, building upon the description given in the previ-
ous subsection (in particular, we keep the same notation), and following the general philosophy
of biduality. We leave aside for the moment the peculiar behaviour that the curve Γ ⊂ P3 may
have at isolated points in some special situations.

(B.4) Characteristic numbers, I. We let
— m = deg Γ ;
— n = deg C ;
— r = deg

(

Tan(Γ)
)

.
Classically, developable surfaces were considered as systems packaging together three 1-

dimensional families in P3 of planes, points, and lines respectively; these are the planes para-
metrized by points of C, the points of Γ, and the tangent lines of Γ. In this perspective, m is
the number of points of the system contained in a general plane of P3, n is the number of planes
of the system passing through a general point of P3, and r is the number of lines of the system
meeting a general line of P3. The integers m, n, r are called respectively the order, class, and
rank of the system.

(B.5) Knowing the family of planes given by C ⊂ P̌3, one may find the generators of the
developable surface Tan(Γ) ⊂ P3 by taking the intersections in P3 of pairs of infinitely near
members of C.

Indeed, the generators of Tan(Γ) are the orthogonals of the tangent lines of C. Now for
p, q ∈ C, the orthogonal of the line 〈p, q〉 ⊂ P̌3 is the intersection of the two planes p⊥ and q⊥

in P3. Letting q tend to p yields the asserted statement.

(B.6) Let o and H be a general point and a general plane in P3. The duality between projections
and hyperplanes sections (see [26, Thm. 1.21]) tells us on the one hand that the projection of
Γ from o is dual as a plane curve to the hyperplane section of Γ∨ = Tan(C) by o⊥, and on the
other hand that the section of S = Tan(Γ) by H is dual to the projection of C by H⊥. This
may be established using the following elementary statement, see Proposition (B.8).

(B.7) Lemma. Let ̟ ∈ P̌3 be a point off C, and consider the projection π̟ : C → P̌3/̟ from
̟.
(i) An ordinary (resp. osculating) tangent plane H at p ∈ C gives rise to an ordinary tangent
(resp. a flex tangent) line π̟(H) at π̟(p) to the plane curve πo(C).
(ii) A point p ∈ C such that the line 〈̟, p〉 is tangent to C gives rise to a cusp of π̟(C) at
π̟(p).

Proof. This is a local computation that i will eventually include. ✷
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(B.7.1) Part (ii) of the lemma tells us that if we project from C a point ̟ lying on Tan(C), then
π̟(C) acquires one more cusp than if ̟ were general. Accordingly the number of flex points
of π̟(C) drops by 2: indeed, the number of flexes of a plane curve is given by its intersection
number with its Hessian minus 6δ + 8κ (in the usual notation), and acquiring one more cusp
means passing from (δ, κ) to (δ − 1, κ + 1) (note that the geometric genus of π̟(C) remains
unchanged, so “acquiring one more cusp” actually means that a node has become a cusp).

(B.8) Proposition. The section of Tan(Γ) by a plane H is the dual curve of the plane curve
πH⊥ (C).

Proof. Each point of Tan(Γ) ∩ H is a point y = H ∩ TxΓ for some x ∈ Γ. By biduality, the
orthogonal line (TxΓ)⊥ is the tangent to C at the point (OscxC)⊥. It follows that the plane y⊥

is tangent to C, as it contains (TxΓ)⊥; as it passes through H⊥, its projection is a tangent line
of πH⊥ (C). Conversely, all tangent lines to πH⊥ (C) are obtained in this way. ✷

(B.8.1) We now observe that everything fits well together. The plane curve H ∩ Tan(Γ) has
cusps at the points where H meets the cuspidal edge of Tan(Γ), which is Γ itself. Its dual
πH⊥ (C) correspondingly has flex points given by the osculating planes to C passing through
H⊥, i.e., the planes x⊥ for x ∈ H ∩ Γ.

(B.9) Proposition. The two tangential surfaces Tan(Γ) and Tan(C) have the same degree.

Proof. Let p ∈ P3 be a point off Tan(Γ). The projected curve πp(Γ) is the plane dual of the
hyperplane section p⊥ ∩ Γ∨ = Tan(C), so the degree of Tan(C) is the number of lines tangent
to πp(Γ) passing through a fixed point q ∈ P3/p, equivalently the number of planes tangent to
Γ containing the line 〈p, q〉 ⊂ P3. Now the planes tangent to Γ are those containing a generator
of Tan(Γ). Hence the number of planes tangent to Γ and containing 〈p, q〉 equals the number of
generators of Tan(Γ) meeting 〈p, q〉, which is none other than the degree of Tan(Γ). ✷

(B.9.1) Remark. Proposition (B.9) is a twisted version of the fact that the class of a (non-
developable) ruled surface equals its degree.

To compare the two situations, let’s recall the proof. Let S ⊂ P3 be a ruled surface, and
assume Š is a surface. The class of S is the number of planes tangent to S containing an
arbitrary prescribed line Λ ⊂ P3. Since Š is a surface, the planes tangent to S are exactly the
planes that contain a ruling of S. It follows that the class of S is the number of rulings of S
that meet Λ. But the latter number also equals the degree of S.

If S is developable, it is no longer true that its tangent planes are those containing a ruling
(indeed there is only one tangent plane per ruling), and the number of planes tangent to S
containing a line Λ is zero, as S∨ actually has codimension 2 in P̌3.

It is useful to analyze the sections of the developable surface by planes containing a generator.

(B.10) Lemma. Let the hyperplane H ⊂ P3 contain the line TxΓ for some x ∈ Γ, and write
H ∩Tan(Γ) as TxΓ+R. In general, the residual section R has one more flex and two less cusps
than the general plane section of Tan(Γ). The extra flex point is x, and TxR = TxΓ.

Proof. The point H⊥ sits on the line (TxΓ)⊥ which is tangent to C at the point (OscxΓ)⊥,
so the curve πH⊥ (C) has one more cusp and two less flexes than in the general situation, by
Lemma (B.7) (ii), and the comment after it. Dually, this gives the first assertion about R. Note
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one may also verify with similar considerations that the class of πH⊥ (C) drops by one with
respect to the general projection.

The tangent cone to πH⊥ (C) at its extra cusp is the projection from H⊥ of the plane
Osc(OscxΓ)⊥ C; its orthogonal is the extra flex of R, and it is the point x. By biduality, the
tangent to R at x is the orthogonal of the cuspidal point of πH⊥ (C); the latter is the projection
from H⊥ of the line (TxΓ)⊥, hence TxR equals TxΓ. ✷

(B.11) Corollary. The degree of the ordinary double curve of Tan(Γ) equals r − 4.

Proof. Consider the section of Tan(Γ) by a plane H containing a generator TxΓ as in Lemma (B.10):
it consists of the line line TxΓ and a residual curve R of degree r−1. They meet with multiplicity
3 at x, and at r − 4 further points x1, . . . , xr−4. ✷

Being Tan(Γ) ruled, its double points lie on two generators: if they are distinct then the
double point is on the ordinary double curve, otherwise it is on the cuspidal edge. The points
p1, . . . , pr−4 from the above proof are the intersection points of TpΓ and the ordinary double
curve of Tan(Γ) (in particular, they do not move as H varies in the pencil of planes containing
TpΓ). For all i = 1, . . . , r − 4, there is a point qi ∈ Γ such that pi = TpΓ ∩ Tqi

Γ. It follows that

the plane p⊥
i ⊂ P̌3 is tangent to C at the two points (OscpΓ)⊥ and (Oscqi

Γ)⊥, which explains
why it should be an ordinary double point of the surface Tan(Γ) = C∨ according to the general
biduality principles.

(B.12) Lemma. The section of Tan(Γ) by one of its tangent planes decomposes as 2TxΓ + R
for some x ∈ Γ, and the curve R is tangent to Tx at x.

Proof. Consider the plane H tangent to Tan(Γ) along the generator TxΓ. Then H = OscxΓ,
and the point H⊥ ∈ P̌3 sits on the curve C. Necessarily H ∩ Tan(Γ) = 2TxΓ + R, and R is the
plane dual of the projected curve πH⊥ (C). The latter in general is smooth at the point image of
H⊥, namely πH⊥ (TH⊥ C), with tangent line πH⊥ (OscH⊥ C). This gives x = (OscH⊥ C)⊥ ∈ R,
and TxR = (TH⊥ C)⊥ = TxΓ. ✷

(B.12.1) Moreover, the curve R passes through all the ordinary double points p1, . . . , pr−4 of
T an(Γ) along its generator TpΓ.

Indeed, recalling that pi = TpΓ ∩ Tqi
Γ, we have seen that the plane p⊥

i passes through
H⊥ = (OscpΓ)⊥ and is tangent to C at (Oscqi

Γ)⊥. Thus πH⊥ (p⊥
i ) is the tangent line to

πH⊥ (C) at πH⊥ ((Oscqi
Γ)⊥), hence pi ∈ R since the latter is the plane dual of πH⊥ (C). ✷

(B.12.2) Remark. It is interesting to convince oneself that the degree of R is indeed r − 2. Let
g be the genus of C. When it is projected from a general point of P3, it gives a nodal degree n
plane curve of genus g, which thus has δ = 1

2 (n−1)(n−2)−g nodes, hence class r = n(n−1)−2δ.
If however it gets projected from a general point on itself, it still gives a genus g nodal curve, but
with degree n − 1, so that the number of nodes becomes δ′ = 1

2 (n − 2)(n − 3) − g = δ − (n − 2).
The class of this curve is thus r − 2 as we want.

(B.13) Remark. Consider a generator Λ = TpΓ. Then the pencil of curves cut out on Tan(Γ)
by planes containing Λ is a family of plane curves with prescribed contact 3p + p1 + · · · + pr−4

with Λ, which degenerates to a curve containing Λ itself. This is exactly the situation considered
by Caporaso and Harris in [4] and studied in the first half of this volume.
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B.3 – Plücker formulae

We now explain how the Plücker formulae for plane curves may be used to derive relations
between the numerical characters of a developable surface, following an original idea of Cayley
[5]. As was already the case for plane curves, it turns out that the appropriate setup is to let
the curves Γ and C have various kinds of singularities. We thus consider a slightly more general
situation than what we did in Subsection B.2, by allowing the stationary behaviours indicated
below.

(B.14) Characteristic numbers, II. In addition to the quantities introduced in (B.4), we
let
— α the number of ordinary cusps of C, i.e., points at which C has a local parametrization of

the form t 7→ (t2, t3, t4) ;
— β the number of ordinary cusps of Γ ;
— x the degree of the ordinary double curve of Tan(Γ);
— y the degree of the ordinary double curve of Tan(C);
— g the number of apparent double points of C;
— h the number of apparent double points of Γ.
The quantities α and β are classically referred to respectively as the number of stationary planes
and points of the system. The quantity x is the number of points in a general plane H ⊂ P3

that lie on two distinct tangent lines of Γ, see (B.11); dually, y is the number of planes passing
through a general point, and containing two distinct tangent lines of Γ. The quantity g is the
number of lines lying in a general plane H ⊂ P3 that are contained in two osculating planes of
Γ, and h is merely the number of lines passing through a general point of P3 and meeting Γ in
two points.

(B.15) Lemma. Consider the osculatory Gauss map Γ → C, mapping a general point p ∈ Γ

to the point (OscpΓ)⊥ ∈ P̌3. It sends a point where Γ has a local parametrization of the form
t 7→ (t, t2, t4) (resp. t 7→ (t2, t3, t4)) to a point where C has a local parametrization of the form
t 7→ (t2, t3, t4) (resp. t 7→ (t, t2, t4)).

The upshot is that the osculatory Gauss map turns points of types α and β of Γ respectively
to points of types β and α of C.

Proof. This is a local computation: to a local branch of Γ parametrized by t ∈ C 7→ f(t) ∈ C4,
the osculatory Gauss maps associates the local branch of C parametrized by t ∈ C 7→

(

f ∧∂tf ∧

∂2
t f

)

(t) ∈
∧3 C4 ∼= Č4. In the former case, the result follows from the identity
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We leave the computation in the latter case to the reader. ✷

(B.16) Let us apply the Plücker formulae to a general hyperplane section H ∩ Tan(Γ), which
is a plane curve dual to πH⊥ (C). The former is a curve of degree r, with x nodes and m cusps,
and the latter has degree n and g nodes; for general H , its only cusps come from cusps of C,
which are in the number α. We thus get the following identities:

n = r(r − 1) − 2x − 3m; r = n(n − 1) − 2g − 3α;

α = 3r(r − 2) − 6x − 8m; m = 3n(n − 2) − 6g − 8α,
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hence

α − m = 3(n − r); 2(g − x) = (n − r)(n + r − 9).

(B.17) Dually, one may apply the Plücker formulae to the pair of dual plane curves πo(Γ) and

o⊥ ∩ Tan(C) for a general point o ∈ P3. This gives:

r = m(m − 1) − 2h − 3β; m = r(r − 1) − 2y − 3n;

n = 3m(m − 2) − 6h − 8β; β = 3r(r − 2) − 6y − 8n,

hence

n − β = 3(r − m) 2(y − h) = (r − m)(r + m − 9).

(B.18) Eventually, one may combine the identities from (B.16) and (B.17) to obtain:

α − β = 2(n − m), x − y = n − m,

2(g − h) = (n − m)(n + m − 7).

(B.19) It seems natural to allow the system to have stationary lines as well, i.e., the curve Γ
to have points at which it is locally parametrized by t 7→ (t, t3, t4). We do this only in a second
time, for leaving this feature aside allows a more straightforward application of the Plücker
formulae. A local computation as in the proof of (B.15) shows that the osculatory Gauss map
sends a point at which Γ has a stationary tangent line to a point at which C has a stationary
tangent line.

The essential modification induced by the presence of stationary lines is the content of the
following statement. One may take this into account to modify in a suitable way the previous
applications of the Plücker formulae; we leave this to the reader.

(B.19.1) The stationary lines of the system give cuspidal lines to both tangential surfaces Tan(Γ)
and Tan(C).

Proof. Let p ∈ Γ be a point at which Γ is locally parametrized by t 7→ (t, t3, t4), and Λ := TpΓ
be the corresponding (stationary) generator. We shall prove that for a general plane H ⊂ P3,
the section H ∩ Tan(Γ) has a cusp at the point H ∩ Λ, or equivalently the curve πH⊥ (C) has a
flex at πH⊥

(

(OscpΓ)⊥
)

along the line πH⊥ (Λ⊥).
As we have seen, the curve C has a local parametrization of the form t 7→ (t, t3, t4) at the

point (OscpΓ)⊥. Thus after projection from the general point H⊥, the curve πH⊥ (C) has a local
parametrization of the form t 7→ (t, t3). The result follows since Λ⊥ is the tangent line to C at
(OscpΓ)⊥. ✷

B.4 – Generalized Plücker formulae

In this last subsection I outline the generalization of the previous formulae to curves in a pro-
jective space of arbitrary dimension, which are due to Piene. This is not used in the course of
the text, but it would be a pity not to mention this.
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(B.20) So far we have only considered extrinsic invariants of the curve Γ ⊂ P3. Adding its
geometric genus pg in the picture, one finds:

(B.20.1) r = 2m + 2pg − 2 − β.

Proof. Let Λ ⊂ P3 be a general line. We want to compute the number of tangent lines to Γ
meeting Λ, or equivalently the number of planes tangent to Γ and containing Λ. To this end
we consider the projection from Λ and the degree n covering Γ̄ → P1 it induces, where Γ̄ is the
normalization of Γ. By the Riemann–Hurwitz formula, it has 2n + 2g − 2 ramification points,
of which α come from the ramification points of the normalization map of C. The other ones
correspond to planes tangent to Γ and containing Λ. ✷

(B.20.2) Remark. The same reasoning may be applied to the curve C; one gets in this way the
identity

r = 2n + 2pg − 2 − α.

Indeed, the osculatory Gauss map gives a birationality between Γ and C, so these two curves
have the same geometric genus, and r is the degree of both Tan(C) and Tan(Γ) by Prop. (B.9).

Putting the two identities together, one finds the formula 2(n − m) = α − β which we have
already gotten in (B.18).

(B.21) Question. What kind of stationary points does a general curve in P3 have? This
question doesn’t make any sense if one doesn’t first decide what is a genral curve in P3.
⊲ voir “Ordinary Ramification Theorem” [12, Thm. 2].

Curves in a projective space of higher dimension

(B.22) New setup. From now on, we consider a curve Γ ⊂ PN of degree m and geometric

genus pg. Let Γ̄ → Γ be its normalization, and f : Γ̄ → PN its composition with Γ →֒ PN . For
all p ∈ Γ one may choose a local parameter t at p on Γ̄ and a system of homogeneous coordinates
(x0 : x1 : . . . : xN ) on PN such that f : Γ̄ → PN is given locally by

t 7→
(

1 : t1+s1 : . . . : ti+s1+···+si : . . .
)

up to highesr order terms, where s1, . . . , sN are non-negative integers depending only on p (i.e.,
the i-th coordinate of f is a formal power series in t whose leading term is ti+s1+···+si ). The
point p is ordinary if s1 = · · · = sN = 0, and stationary or hyperosculating otherwise.

For all i = 0, . . . , N − 1, the i-th osculating subspace of Γ at p ∈ Γ̄, denoted Osci
p(Γ), is

the (N − i)-plane in PN defined by the equations xN = · · · = xN−i+1 = 0 in a system of
homogeneous coordinates as above. We shall consider the i-th osculating variety of Γ, denoted
Osci(Γ), that is the union of the i-th osculating subspaces of Γ at all the points of Γ̄. For i = 0
this is Γ itself, for i = 1 this is the tangential surface of Γ that we have considered in the previous
subsections; for i = N − 1 this fills the whole PN , hence it is best seen as a curve C ⊂ P̌N

which I call the osc-dual curve of Γ.

(B.23) The i-th ranks. For all i = 0, . . . , N − 1, let ri be i-th rank of Γ, that is the degree
of its i-th osculating variety; for i = N − 1 this is by definition the degree of the osc-dual curve
C ⊂ P̌N . We define integers ki by

ki :=
∑

p∈Γ
si(p),
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where si(p) is defined as in (B.22).
A standard computation on the Chern classes of the bundles of principal parts of the em-

bedding of Γ̄ in PN , see [10, Prop. 10.4.13], gives the following formulae:

ri = (i + 1)
(

m + i(pg − 1)
)

−
∑i

j=1

(

(i − j + 1)kj

)

for all i = 0, . . . , N − 1(B.23.1)

∑N

j=1

(

(N − j + 1)kj

)

= (N + 1)
(

m + N(pg − 1)
)

.(B.23.2)

Formula (B.23.1) for i = 0 is trivial, as r0 = deg(Γ) = m, and formula (B.23.2) has to be
understood as the incarnation for i = N of formula (B.23.1), setting rN = 0. For i = 1, one gets
a formula which is exactly (B.20.1). Eventually, note that formula (B.23.2) may be interpreted
as counting the stationary points of Γ, with the multiplicity

sN + 2sN−1 + · · · + (N − 1)s2 + Ns1.

For i = 1, 2, this gives

r1 = 2(m + pg − 1) − k1,(B.23.3)

r2 = 3(m + 2pg − 2) − 2k1 − k2.(B.23.4)

(B.24) Generalized Plücker formulae. As a straightforward corollary of the formulas in
(B.23), one has

(B.24.1) ri−1 − 2ri + ri+1 = 2pg − 2 − ki+1, for all i = 0, . . . , N − 1,

with the convention that rN = r−1 = 0.

(B.24.2) Plane curves. For N = 2, we are considering a plane curve Γ of degree m. The number
k1 (resp. k2) counts, with multiplicities, the cusps (resp. the flexes) of Γ, so we will call it κ
(resp. ι) as usual. Formula (B.24.1) gives the two identities

−2m + m̌ = 2pg − 2 − κ ; m − 2m̌ = 2pg − 2 − ι.

Assuming Γ has only δ nodes and κ cusps as singularities, these may be recovered from the
usual formulae

m̌ = m(m − 1) − 2δ − 3κ ; 2pg − 2 = m(m − 3) − 2δ − 2κ,

where the first one is the computation of the class using polars for a singular curve as in (1.12),
and the second one is the adjunction formula for a singular plane curve as in part on Enriques?.
For instance, one gets the first one by writing

m̌ − 2m = m(m − 1) − 2δ − 3κ − 2m = m(m − 3) − 2δ − 3κ = 2g − 2 − κ.

(B.24.3) Space curves. For N = 3 we are considering a space curve Γ ⊂ P3 as in the previous
subsections. In the notation therein, the ranks r0, r1, r2 are respectively the degree m, the rank
r, and the class n. On the other hand, k1, k2, k3 are respectively the number β of cusps of Γ, the
number of stationary lines (let us call it γ), and the number α of cusps of C. Formula (B.24.1)
gives the three identities

−2m + r = 2pg − 2 − β ; r − 2n = 2pg − 2 − α.

m − 2r + n = 2pg − 2 − γ ;
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(B.25) Piene duality [21, Thm. 5.1]. Let Γ ⊂ PN be a curve, and C ⊂ P̌N its osc-dual curve.
The osc-dual curve of C is Γ, and the following relations hold:

ri(C) = rN−i−1(Γ)(B.25.1)

ki(C) = kN−i−1(Γ).(B.25.2)

Formula (B.25.1) generalizes the fact that for N = 3 the two tangential surfaces Tan(Γ) and
Tan(C) have the same degree, see Prop. (B.9), and Formula (B.25.2) the fact that the osc-Gauss
map turns stationary planes, lines and points of Γ into stationary points, lines, and planes of C
respectively, see Lemma (B.15).

(B.26) Interpretation as strata of the dual hypersurface. Underlying the merely numer-
ical relations of (B.25) is the following geometric duality, generalizing (B.3).

For all i > 0, we say that a hyperplane H ⊂ PN is i-osculating to Γ at p ∈ Γ̄ if it contains
Osci

p(Γ). If p ∈ Γ̄ is an ordinary point of Γ, this is equivalent to the divisor f∗H − (i + 1)p on

Γ̄ being effective. We let Γ∨
i ⊂ P̌N be the closed subset parametrizing hyperplanes i-osculating

to Γ at some point on Γ̄; thus Γ∨
1 is the plain dual hypersurface Γ∨, and Γ∨

N−1 is the osc-dual
curve C.

One has Γ∨
i = OscN−1−i(C) for all i = 1, . . . , N − 1, as follows from biduality see statement

= Dimca?. Moreover, one has (Osci(Γ))∨ = Γ∨
i+1. In fact, for p ∈ Γ̄ the linear space Osci

p(Γ)⊥

is the (N − 1 − i)-th osculating space of C at p (note that the map p ∈ Γ̄ 7→ [Oscn−1
p (Γ)] ∈ P̌N

is the normalization of C).
Thus if we let fi : Γ̄ → G(PN , i) (resp. f∨

N−1−i : Γ̄ → G(P̌N , N − 1 − i)) be the map to

sending p ∈ Γ̄ to the i-th osculating space to Γ at p (resp. to the (N − 1 − i)-th osculating
space of C at p) seen as a point of the Grassmannian, then f∨

N−1−i equals the composition of fi

with the orthogonality map Λ ∈ G(PN , i) 7→ Λ⊥ ∈ G(P̌N , N − 1 − i). It follows that the two
curves fi(Γ̄) and f∨

N−1−i(Γ̄) have the same degree under the Plücker embeddings of G(PN , i)

and G(P̌N , N − 1 − i) respectively, and these are ri(Γ) and rN−1−i(C) respectively (see, e.g.,
[16, Example 19.11]).

B.5 – De Jonquières’ formula

The next result is even more general than the previous ones. See [1, Chap. VIII] for a proof and
pointers to the previous literature.

(B.27) Theorem (de Jonquières’ formula). Let m be a positive integer, and m1, . . . , ma non–
negative integers such that m =

∑

16s6a s · ms. The virtual number of divisors having ms

points of multiplicity s for all s = 1, . . . , a in a given linear series of degree m and dimension
i =

∑

16s6a(s − 1) · ms on a smooth, genus g curve is the coefficient of the tm1

1 · · · tma
a term in

the formal power series

(

1 + 12t1 + 22t2 + · · · + a2ta

)g
·
(

1 + 1 t1 + 2t2 + · · · + ata

)m−i−g
.

(B.28) Link with the i-th ranks. We now show how the de Jonquières’ formula may be used

to derive the i-th ranks of a curve Γ ⊂ PN of degree m and geometric genus g as in (B.22), thus
recovering formula (B.23.1).
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The key observation is that by (B.25) and (B.26),

ri(Γ) = rN−1−i(C) = deg
(

OscN−1−i(C)
)

= deg
(

Γ∨
i

)

,

hence ri(Γ) is the number of hyperplanes i-osculating to Γ in a general i-dimensional linear
subsystem of |OΓ(1)|.

By de Jonquières’ formula, the number of hyperplanes H such that f∗H −(i+1)p is effective
for some p ∈ Γ̄ in a general i-dimensional linear subsystem of |OΓ(1)| is the coefficient of the
monomial tm−i−1

1 ti+1 in

(

1 + 12t1 + 22t2 + · · · + (i + 1)2ti+1

)g
·
(

1 + 1 t1 + 2t2 + · · · + (i + 1)ti+1

)m−i−g
.

This is also the coefficient of tm−i−1
1 ti+1 in

(

1 + 12t1 + (i + 1)2ti+1

)g
·
(

1 + 1 t1 + (i + 1)ti+1

)m−i−g

=
(

1 + 12t1 + [(i + 1) + i(i + 1)]ti+1

)g
·
(

1 + 1 t1 + (i + 1)ti+1

)m−i−g

=

g
∑

j=0

(

g

j

)

(

1 + t1 + (i + 1)ti+1

)(g−j)+m−i−g
·
(

i(i + 1)ti+1

)j
,

which amounts to the coefficient of tm−i−1
1 ti+1 in

(

1 + t1 + (i + 1)ti+1

)m−i
+ i(i + 1)ti+1 · g

(

1 + t1 + (i + 1)ti+1

)m−i−1
,

that is

(B.28.1) (m − i)(i + 1) + i(i + 1) · g = (i + 1)
(

m + (g − 1)i
)

.

To obtain ri from the number (B.28.1) one ought to subtract the excess contributions of the
various stationary points of Γ. For i = 1 for instance, for all cusp p of Γ (i.e., for all p ∈ Γ̄ such
that s1(p) > 0), the whole p⊥ ⊂ P̌N gives rise to hyperplanes contributing to (B.28.1), so that
the latter number actually is the degree of the reducible hypersurface sum of Γ∨

1 and the various
p⊥ for all cusps p of Γ. One thus finds r1 from (B.28.1) as in (B.20).

For i = 2, also the points p ∈ Γ̄ such that s1(p) = 0 and s2(p) > 0 contribute to (B.28.1),
to the effect that (Osc1

p(Γ))⊥ occurs together with Γ∨
2 . In general, all p ∈ Γ̄ such that sj(p) > 0

for some j 6 i contribute to (B.28.1), and to conclude we need to show that each contributes
with the multiplicity

si + 2 si−1 + · · · + i s1

in de Jonquières’ formula. I have not found this particular computation in the literature, and
will leave this as an open exercise to the reader.

C – Biduality for asymptotic tangents by enumerative means

Let Λ be a line (asymptotic) tangent to a surface S at a smooth point p. In this appendix,
we identify the line Λ⊥ as an (asymptotic) tangent to the dual surface S∨ by computing the
intersection multiplicity of Λ⊥ and S∨ at the point (TpS)⊥. To do so we consider the pencil
of hyperplane sections parametrized by Λ⊥ and count its singular members with a topological
formula on Euler numbers we have encoutered several times before, see [8, subsec. s:pencil].
Then the intersection multiplicity we are looking for is the multiplicity of the tangent section
TpS ∩ S as a singular member of this pencil (indeed the singular members of Λ⊥ correspond to
the intersection of Λ⊥ with S∨). This gives the following lemma.
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(C.1) Lemma. Let S ⊂ P3 be a smooth surface, Λ be a line, and H be a hyperplane containing

Λ. Consider S̃ → S the minimal sequence of blow-ups at reduced points such that the proper
transform Λ̃ of the pencil Λ⊥ is base-point-free. Let C̃H and C̃gen be the members of Λ̃ corre-
sponding respectively to CH := H ∩ S and a general member Cgen of Λ⊥. Then the intersection
multiplicity of Λ⊥ and S∨ at H⊥ equals the difference in Euler numbers e(C̃) − e(C̃gen).

The assumption that S is smooth is only to simplify matters and may be removed without
having to change the method. The lemma follows from a direct application of [8, Lemma l:pencil]
to the morphism S̃ → P1 given by Λ̃.

With this tool at hand, we shall prove the following biduality statement.

(C.2) Theorem. Let S ⊂ P3 be a smooth surface, and p ∈ S. The orthogonal line to
(i) a tangent at p;
(ii) one of the two asymptotic tangents at a non-parabolic p;
(iii) the asymptotic tangent at a general parabolic point p;
(iv) the asymptotic tangent at a parabolic point p of type β;
is
(i) a tangent at (TpS)⊥;
(ii) one of the two asymptotic tangents at (TpS)⊥;
(iii) the tangent at (TpS)⊥ of the cuspidal double curve of S∨;
(iv) the common reduced tangent cone at (TpS)⊥ of both the ordinary and cuspidal double curves
of S∨.

Proof. We proceed to a case by case analysis, along the lines described at the beginning of the
appendix. We use similar notation (and abuse of notation) in all cases; we introduce it in the
first case, and use it freely in the others.

(i) Let Λ be a general tangent line to S, and call p the contact point. Then all members
of Λ⊥ are tangent at p, and we have to blow-up twice at p to resolve the base points, that is
we first consider ε1 : S1 → S the blow-up at p, with exceptional divisor E1, then ε2 : S2 → S1

the blow-up at the point p1 ∈ E1 corresponding to the tangent direction at p ∈ S defined by Λ,
with exceptional divisor E2.

Locally over p ∈ S, the S̃ → S of Lemma (C.1) is ε = ε2 ◦ ε1 : S2 → S. Let C be the
hyperplane class on S. Forgetting about the base points of Λ⊥ away from p, the base-point-free
pencil Λ̃ of Lemma (C.1) is the complete linear system |ε∗C − ε∗

2E1 − E2|. Our task now is to
compute the transform of the curve C0 = S ∩ TpS in this pencil.

Since C0 has a double point at p, we have

ε∗
1C0 = C0 + 2E1,

where by abuse of notation C0 also denotes the proper transform of C0 in S1. Next, one has

ε∗C0 = ε∗
2(C0 + 2E1) = C0 + 2E1 + 2E2,

with the same abuse of notation this time for both C0 and E1. Eventually, we find

C̃0 = ε∗C0 − ε∗
2E1 − E2 = ε∗C0 − (E1 + E2) − E2 = C0 + E1.

This is a reduced curve with two ordinary double points, hence it counts with multiplicity 2 as a
singular member of Λ⊥ (see [8, subsec. s:pencil] for the details of the computation). It follows
that Λ⊥ is tangent to S∨ at (TpS)⊥.
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Figure 4: Pencil with base locus an ordinary tangent line Λ

(ii) Let Λ be an asymptotic tangent at a general point p. Then the members of Λ⊥ are all
osculating at the order 3 at p (in fact, we know they all have a flex along Λ), and we need
to blow-up three times to resolve the base points, with exceptional divisors E3, E2, E1. The
base-point-free pencil is

|ε∗C − ε∗
3ε∗

2E1 − ε∗
3E2 − E3| = |ε∗C − ε∗E1 − ε∗E2 − E3| = |ε∗C − E1 − 2E2 − 3E3|,

where we introduce yet another abuse of notation, to the effect that ε denotes whatever the
appropriate composition of the various εi’s is.

Now the curve C0 = S ∩TpS has an ordinary double point at p, with one local branch simply
tangent to Λ. We thus have successively

ε∗
1C0 = C0 + 2E1

ε∗
2ε∗

1C0 = C0 + 2E1 + 3E2

ε∗
3ε∗

2ε∗
1C0 = C0 + 2E1 + 3E2 + 3E3,

so that
C̃0 = ε∗C0 − E1 − 2E2 − 3E3 = C0 + E1 + E2

is reduced with 3 nodes, hence counts with multiplicity 3 as a singular member of Λ⊥. This
shows that Λ⊥ is an asymptotic tangent to S∨.

Figure 5: Pencil with base locus an asymptotic tangent line Λ

(iii) Let Λ be an asymptotic tangent at a general parabolic point p. The situation is the
same as in case (ii), except that the tangent section C0 = S ∩ TpS now has a cusp at p, with
tangent cone supported on Λ. We have

ε∗
1C0 = C0 + 2E1

ε∗
2ε∗

1C0 = C0 + 2E1 + 3E2

ε∗
3ε∗

2ε∗
1C0 = C0 + 2E1 + 3E2 + 3E3

as in case (ii), so that again the relevant curve is

C̃0 = ε∗C0 − E1 − 2E2 − 3E3 = C0 + E1 + E2.

But this time it has a triple point, hence counts with multiplicity 4 by [8, Lemma l:pencil-mult].
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Figure 6: Pencil with base locus the double asymptotic tangent Λ at a parabolic point

The point Λ⊥ is on the cuspidal double curve of S∨. A general line through Λ⊥ intersects
S∨ with multiplicity 2, a general line in the tangent cone of S∨ with multiplicity 3, and the
tangent line of the cuspidal double curve with multiplicity 4. Hence Λ⊥ is the latter line.

(iv) Eventually, we consider a point p such that C0 = S ∩ TpS has a tacnode at p, and Λ
the asymptotic tangent of S at p, which is also the support of the tangent cone of C0 at p. The
base-point-free pencil is defined as in cases (ii) and (iii). The computations now give

ε∗
1C0 = C0 + 2E1

ε∗
2ε∗

1C0 = C0 + 2E1 + 4E2

ε∗
3ε∗

2ε∗
1C0 = C0 + 2E1 + 4E2 + 4E3

so that
C̃0 = ε∗C0 − E1 − 2E2 − 3E3 = C0 + E1 + 2E2 + E3.

This time the curve is not reduced. However this is not a reason for the topological formula
behind Lemma (C.1) to fail, and the latter is still valid. The only caution is that the computation
of e(C̃0) is no longer liable for [8, Lemma l:pencil-mult]; we compute it directly as the Euler
number of (C̃0)red, as indeed the topological formula doesn’t see multiplicities.

Figure 7: Pencil with base locus the double asymptotic tangent Λ at a swallowtail point

Since the curve C0 ⊂ S has a tacnode, its proper transform in S̃ has genus g − 2, where g
stands for the genus of a general member of Λ⊥. It then follows from the additivity of the Euler
number as in the proof of [8, Lemma l:pencil-mult], that

e(C0 + E1 + E2 + E3) = e(C0) + e(E1) + e(E2) + e(E3) − 4

=
(

2 − 2(g − 2)
)

+ 2 + 2 + 2 − 4 = e(Cgen) + 6.

One then argues as in case (iii), remembering the local swallowtail model of S∨ at (TpS)⊥

given in (3.1). The point (TpS)⊥ is triple for S∨, and the only line through this point intersecting
S∨ with multiplicity strictly larger than 4 is the support of the tangent cones of the double curves
of S∨. ✷

(C.2.1) Remark. In the swallowtail model of (3.1), the support of the tangent cones of the
double curves of S∨ is the line b = c = 0, which is straight out contained in the discriminant
hypersurface (3.1.2). Of course it is not the case however that in the notation of (iv), the line
Λ⊥ is contained S∨.
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