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Abstract

Although the solution of hyperbolic partial differential equations in elastic-plastic media is of major importance in
solid mechanics, the mathematical complexity of such problems increases with the space dimensionality. As a result,
the development of analytical solutions is in general not possible. Whereas the wave structure resulting from given
external loads is known and well understood for one-dimensional problems, several gaps still need to be filled for prob-
lems with more space dimensions. Indeed, the literature related to the propagation of simple waves in elastic-plastic
solids is rather sparse since only particular two-dimensional and three-dimensional problems have been considered.
Following the general three-dimensional framework of Mandel (1962), the object of the paper is to construct the
loading paths followed inside the simple waves under plane strain and plane stress conditions. It is believed that the
mathematical and numerical studies of the waves presented here could help define the characteristic structure involved
in a Riemann problem.

Keywords: Hyperbolic problems; Elastic-plastic solids; Simple waves; Loading paths; Characteristic analysis.

1. Introduction

A wide variety of engineering problems including acoustics, aerodynamics or impacts, are modeled with hyper-
bolic systems of conservation laws. Applications such as high-speed metal forming techniques or crash-proof design
moreover involve elastic-plastic solids, whose response depends on history effects. The irreversible deformations oc-
curring in this class of solids, which are related to the evolution of the microstructure of the material, are of primary
importance to finally access to residual strains and stresses. Therefore, the waves arising in the solutions of hyperbolic
systems in elastic-plastic materials, as well as their interactions with each other, must be precisely followed so that
the sequence of propagated states can be connected to residual states.

Even though calculating the exact solutions of this class of problems is in general not possible for elastic-plastic
media, they are known in particular cases. Until the 50s, research on dynamic problems in those solids were focused
on uni-axial stress or strain, pure bending or pure torsion loading conditions [1, 2], and were carried out for material
characterization purposes. Then, Rakhmatulin [3] and Cristescu [4] investigated the response of linearly hardening
solids to combined shear and pressure dynamic loads. These early works on plane stress impacts in the plastic
regime led to the conclusion that elastic waves, as well as plastic combined-stress simple waves, can propagate in
two-dimensional solids. While the former were well-known, the latter were shown to fall into two families: the fast
waves and the slow waves. The analysis of the solution to general three-dimensional problems by Mandel [5] and
Hill [6] confirmed the existence of those families by providing a complete characterization of the wave speeds and
the formulation of the jump conditions across the elastic-plastic boundaries.



Later, Bleich and Nelson [7] considered superimposed plane and shear waves in an ideally elastic-plastic material
submitted to step loads. It has then been highlighted that different loading cases yield different characteristic structures
of the solution in problems defined in a semi-infinite medium with prescribed traction forces and initial conditions (the
so-called Picard problem). The results of Bleich and Nelson thus revealed the complexity of plastic flows in multi-
dimensional solids undergoing dynamic loadings. The same conclusions have been drawn by Clifton [8] for hardening
materials under tension-torsion, who furthermore studied the influence of plastic pre-loading on the solution. This
contribution highlighted the combined-stress wave nature lying in Ordinary Differential Equations (ODEs) that arise
from the characteristic analysis of the hyperbolic system and govern the evolution of stress components within the
simple waves. The integration of these equations allows the building of curves that connect the applied stress state in
the Picard problem to the initial state of the medium. It has been for instance shown that if a solid is acted upon by
a pure shear traction beyond the elastic domain, only an elastic shear discontinuity, followed by a slow simple wave,
propagates. Conversely, other loading conditions may lead to the combination of an elastic pressure discontinuity
and a fast wave, possibly followed by a slow wave. Another notable conclusion is that the loading paths followed
inside plastic simple waves are not necessarily radial even if a von-Mises flow rule is considered. Experimental data
collected on a thin-walled tube submitted to a dynamic tensile load [9, 10] confirmed the existence of two distinct
families of simple waves, both involving combined stress paths. Ting and Nan [11] then generalized the work of
Bleich and Nelson to hardening materials and Ting [12] widened that of Clifton to more complex loadings, that is,
a superimposition of one plane wave and two shear waves. Once again, the mathematical study of the ODE system
governing the stress evolution inside fast and slow simple waves led to the construction of loading paths in the stress
space. A review of the governing equations for all the cases depending on one space dimension considered above can
be found in [13].

Besides the above works on the simple wave solutions, several authors studied the existence of plastic shocks in
solids under plane wave assumptions [5, 14, 15, 16, 17, 18, 19]. These references nevertheless consider hydro-elastic-
plastic solids for which the hydrostatic part of the behavior follows some particular convex state law for the pressure,
which can lead to plastic shock solutions. On the contrary, provided a classical Hooke elastic compressibility, only
plastic simple waves can occur in the solution of Picard problems.

Research conducted on plastic waves enable the derivation of exact solutions for problems with simple geometries
and loadings. For more complex problems however, approximate solutions can be computed through the use of nu-
merical approaches. In particular, the family of Godunov’s methods [20] allows to take into account the characteristic
structure of the solution of hyperbolic problems so as to accurately capture waves. These methods are based on the
solution of a Riemann problem whose construction requires to know the wave pattern a priori, which is not possi-
ble for elastic-plastic solids. For the thin-walled tube problem, Lin and Ballman overtook this difficulty by defining
elementary stress paths from Clifton’s results [21]. Those paths can be used in order to relate some guessed station-
ary state of the Riemann problem to its initial conditions through the waves involved and hence to deduce the wave
pattern. By iteratively following that procedure until convergence, the Riemann problem can be solved.

The purpose of the present work is the determination of the loading paths followed inside the plastic simple waves
involved in two-dimensional elastic-plastic media. This contribution can therefore be seen as an extension of the work
of Clifton [8] to more general two-dimensional problems in order to deduce loading paths from the characteristic
structure of the hyperbolic system. As we shall see, the stress states considered lead to paths that are very different
from those observed in one-dimensional problems. The long-term goal of that research is the extension to general
two-dimensional problems of the approach of Lin and Ballman.

In what follows, the characteristic analysis of the governing equations of dynamics in elastic-plastic solids is
carried out and some important results of Mandel [5] are recalled in section 2. Then, the equations are particularized to
two-dimensional problems so that the method of characteristics is applied in section 4 in order to derive the equations
of integral curves. Those curves, once projected into the stress space, correspond to the loading paths that have been
already identified for other problems. Section 5 is devoted to the mathematical properties of the aforementioned
loading paths which, given the complexity of the equations, is supplemented with numerical results presented in
section 6.
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2. Hyperbolic system in elastic-plastic media

In this section, the governing equations of general dynamic problems in elastic-plastic solids are first written
with a tensorial formalism based on the fourth-order stiffness tensor. This framework leads on the one hand to the
same characteristic structure as in [22, 23], so that well known results can be used. On the other hand, it allows
easy specialization to problems involving less than three space dimensions, such as the one-dimensional ones already
treated in the literature. Second, the spectral analysis of the hyperbolic system written in an arbitrary direction is
performed, which is motivated by the solution of Riemann problems in one space dimension in numerical schemes
such as the Finite Volume Method (FVM) [24, 25]. That approach furthermore avoids the seeking of bi-characteristics
as proposed by Clifton in order to build elastoplastic finite difference schemes [26]. It must be emphasized that the
present work aims at highlighting a sufficient amount of information so as to enable numerical schemes to mimic the
analytical behavior, and does not require the complete bi-characteristic structure.

2.1. Governing equations
We consider the isothermal deformation of a solid body of mass density ρ in the linearized geometrical framework.

The balance equation of linear momentum with neglected body forces, and the geometrical balance equations [27, 28]
are:

ρv̇ − ∇ · σ = 0

ε̇ − ∇ ·
(

v ⊗ I + I � v
2

)
= 0

(1)

where the operator � refers to the transpose on second and third indices of the classical tensor product, namely:
I � v = δikv jei ⊗ e j ⊗ ek. Furthermore, I, v, σ and ε denote respectively the second-order identity tensor, the velocity
vector, the Cauchy stress tensor and the linearized strain tensor. The latter additively decomposes into an elastic strain
εe and a plastic strain εp in the small strain case. Assuming Cartesian coordinates, system (1) can be written as:

∂U

∂t
+
∂F · ei

∂xi
= 0 (2)

with the vector of conserved quantities U and the flux vectors Fi = F · ei:

U =

[
ρv
ε

]
; Fi =

[ −σ · ei

− v⊗ei+ei⊗v
2

]

Alternatively, the introduction of an auxiliary vector of conserved quantities Q allows rewriting equation (2) as a
quasi-linear form by means of the chain rule [29]:

∂Q

∂t
+ Ai ∂Q

∂xi
= 0 (3)

In particular, by setting Q =

[
v
σ

]
, one writes:

Ai =

(
∂U

∂Q

)−1
∂Fi

∂Q
= −


02 1

ρ

(
I⊗ei+ei⊗I

2

)

H · ei 04

 ,

0q being a qth-order zero tensor and H = ∂σ
∂ε the fourth-order tangent modulus tensor. It then appears that the

characteristic structure of the hyperbolic problem, which is driven by the matrices Ai, depends on the nature of the
deformation (i.e. elastic or elastic-plastic) through the tangent modulus.

Following the Generalized Standard Material framework [30], the elastic-plastic constitutive response is described
by a Helmholtz free-energy ψ, convex with respect to ε and the set of additional internal variables V, and a yield
surface f in the case of associative plasticity. Assuming elastic isotropy, reversible evolutions are governed by the
elastic law derived from Helmholtz’s free energy:

σ = C : εe = 2µεe + λ trace εe I (4)
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in which (λ, µ) are Lamé’s parameters. The inverse constitutive law can also be written based on Young’s modulus
and Poisson’s ratio (E, ν):

εe = C−1 : σ =
1 + ν

E
σ − ν

E
trace σ I (5)

Next, restricting ourselves to isotropic hardening, the set V consists of the cumulated plastic strain p. In addition,
the von-Mises yield surface is considered:

f (σ,R) =

√
3
2
‖s‖ − (R(p) + σy) ≤ 0 (6)

where s denotes the deviatoric part of the Cauchy stress tensor, σy is the yield stress in tension, and −R(p) is the
thermodynamical force conjugate to the cumulated plastic strain through some hardening law. The evolution of the
plastic strain tensor and the cumulated plastic strain are governed by the following flow rule and hardening law
respectively:

ε̇p = λ
∂ f
∂σ

(7)

ṗ = −λ∂ f
∂R

(8)

where the plastic multiplier λ and the yield surface obey the Kuhn-Tucker complementarity conditions:

λ ≥ 0 ; f ≤ 0 ; λ f = 0

along with the consistency condition:
λ ḟ = 0

Therefore, combining equations (7) and (8), the flow rule can be rewritten as:

ε̇p = ṗ

√
3
2

s
‖s‖ (9)

Given this description of internal processes, the thermodynamical framework then leads to the elastic-plastic
constitutive equations during irreversible deformations by combining the elastic law (4), the additive decomposition
of the strain tensor and the plastic flow rule (9) [31]:

σ̇ = Cep : ε̇ = (C − β s ⊗ s) : ε̇ (10)

β =
6µ2

3µ + R′
× 1

s : s

where the elastoplastic tangent modulus Cep can be decomposed into the elasticity tensor C and another part depending
on the direction of the plastic flow. Therefore, plastic evolutions involve H ≡ Cep while elastic ones involve H ≡ C.

2.2. Spectral analysis

Considering an arbitrary direction of space n, the quasi-linear form (3) reads:

∂Q

∂t
+ J

∂Q

∂xn
= 0 (11)

where xn = x · n and J = niAi is the Jacobian matrix. Simple waves are solutions for which the vector Q is constant
along each curve of the one-parameter family ηK(xn, t) = const. For such self-similar solutions, system (11) reads:

(
J − cK I

)
Q′(ηK) = 0 (12)
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where I is the 9 × 9 identity matrix and cK = − ∂ηK

∂t /
∂ηK

∂xn
appears to be the Kth eigenvalue of the Jacobian matrix. The

problem therefore admits nontrivial solutions if J has real eigenvalues and distinct left eigenvectors LK =
[
vK , σK

]

satisfying:
LK (J − cK I) = 0 K = 1, · · · , 9

Thus, for non-zero eigenvalues one gets:

− σK : (H · n) − cKvK = 0 (13)

− 1
ρ

vK ⊗ n− cKσ
K = 0 (14)

Substitution of σK obtained from (14) in (13) leads to:

(vK ⊗ n) : (H · n) − ρc2
KvK = 0 (15)

which is the left eigensystem of the acoustic tensor Ai j = nkHik jlnl. Due to the symmetry of A, system (15) is
equivalent to the right eigensystem: (

nkHik jlnl − ρc2
Kδi j

)
vK

j = 0

or alternatively, with the eigenvalues ωp and associated left eigenvectors of the acoustic tensor lq (q = 1, 2, 3):

lq ·
(
A − ωqI

)
= 0 (16)

The condition for system (11) to be hyperbolic (real eigenvalues and independent eigenvectors) is thus ensured by the
positive definiteness of the acoustic tensor, also known as the strong ellipticity condition [32]:

(m⊗ n) : H : (n⊗ m) > 0 ∀n,m ∈ R3 ; n,m , 0

If the condition holds, the acoustic tensor admits 3 couples of eigenvalue–eigenvector {ωq, lq} leading to 6 couples
{cK ,L

K} for the Jacobian matrix, the 3 other eigenvalues being null [33]. The couples {cK ,L
K} are referred to as

the left characteristic fields. Notice that since the elastic stiffness tensor C or the elastoplastic tangent modulus Cep

may be involved in equation (3), three left characteristic fields are obviously associated with elastic and elastic-plastic
evolutions respectively. The left eigenvectors related to the non-zero eigenvalues of the Jacobian matrix are obtained
by using equation (14) so that the following 6 eigenfields of the quasi-linear form (11) can be defined:

{
±

√
ωq

ρ0
;
[
±ρ0

√
ωq

ρ0
lq,−lq ⊗ n

]}
, q = 1, 2, 3 (17)

At last, three independent left eigenvectors associated with the null eigenvalue of multiplicity 3 can be found by
solving equation (13) for the null eigenvalue:

σK : (H · n) = 0, K = 1, ..., 3 (18)

Since the above formulation is based on the elastoplastic stiffnesses rather than compliances, it differs from those
of Bleich [7], Clifton [8], and hence from these of Ting and Nan [11] and Ting [12]. The use of the tangent modulus
H enables the specialization of equations (17) and (18) to the plane strain and the plane stress cases, as we shall see
in section 3.

2.3. Known properties of the plastic waves

Let us now recall some of the important results of Mandel [5, 34] for which proofs can also be found in [23].
Denoting the elastic acoustic tensor as Ae = n · C · n, the eigenvalue problem (16) can be rewritten as:

lq · (B − βa ⊗ a) = 0 (19)
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in which B = Ae −ωqI and a = s · n. Then, assuming that the coordinate axes coincide with the eigenbasis of Ae, the
determinant of system (19) reads:

F(ωq) = (Ae
1−ωq)(Ae

2−ωq)(Ae
3−ωq)−β

[
(Ae

2 − ωq)(Ae
3 − ωq)a2

1 + (Ae
1 − ωq)(Ae

3 − ωq)a2
2 + (Ae

1 − ωq)(Ae
2 − ωq)a2

3

]
= 0

With β > 0 and the eigenvalues of Ae satisfying Ae
1 ≥ Ae

2 ≥ Ae
3, it comes out that:

F
(
Ae

1

)
≤ 0 ; F

(
Ae

2

)
≥ 0 ; F(Ae

3) ≤ 0 ; F(∞) < 0

from which the following conclusion is drawn.

Property 1 (First Mandel’s inequality). For a unit normal vector n, the speeds of plastic waves cp
I ≥ cp

II ≥ cp
III are

bounded by the elastic speeds ce
I ≥ ce

II ≥ ce
III according to:

ce
I ≥ cp

I ≥ ce
II ≥ cp

II ≥ ce
III ≥ cp

III

Consider now equation (12), from which one gets for plastic evolutions:

σ′ = − 1
cK

H :
(
n⊗ v′

)
(20)

(
Aep − ρc2

K I
)

v′ = 0 (21)

If one of the plastic speed is equal to an elastic speed, the expansion of equation (21) leads to:

βa · v′ = 0 (22)

Then, the projection of the variation σ′ from equation (20) onto the normal to the yield surface is:

∂ f
∂σ

: σ′ =
1

cK

√
3
2
µ − β ‖s‖
‖s‖ a · v′ = 0

Hence, if condition (22) is satisfied, the stress increment is tangent to the yield surface.

Property 2. A plastic wave traveling with the speed of an elastic wave results in a stress path that is tangent to the
yield surface in the stress space. Such a wave is called a neutral wave.

3. The eigen-value problem in two space dimensions

We now focus on the solid domain (x1, x2, x3) ∈ [0,∞[×[−h, h]× [−e, e] in a Cartesian coordinate system, where e
and h are arbitrary lengths. It is assumed that all quantities depend solely on x1 and x2 except the velocity component
v3 that may depend on x3. In particular, this is the case for e � h. Furthermore, only plastic simple waves are
considered from now on.

The solid is under the plane strain condition ε · e3 = 0 if the velocity v does not depend on x3 and if v3 vanishes.
Thus, combining the additive partition of the infinitesimal strain tensor: ε = εe + εp, with the elastic law (5) and the
kinematic condition ε33 = 0, one gets for isotropic materials:

σ33 = ν (σ11 + σ22) − Eεp
33 (23)

Hence, the quasi-linear form (11) reduces for plane strain problems to a system of dimension 5 for the unknowns
v1, v2, σ11, σ12, and σ22.

The plane stress state σ · e3 = 0 is assumed if the planes x3 = ±h are traction free and e � h. In that case the
stress component σ33 is removed from system (11). Nevertheless, the tangent modulus must account for the vanishing
out-of-plane stress component by specializing equation (10) to σ33:

σ̇33 = Cep
33i jε̇i j = 0
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and therefore:
Cep

3333ε̇33 = −Cep
33i jε̇i j i, j = {1, 2}

since ε13 = ε23 = 0 also in plane stress. Hence, the constitutive equations are rewritten by means of a two-dimensional
tangent modulus C̃ep:

σ̇i j =

C
ep
i jkl −

Cep
i j33Cep

33kl

Cep
3333

 ε̇kl = C̃ep
i jklε̇kl i, j, k, l = {1, 2}

The characteristic structure of the problem is then governed by the associated acoustic tensor Ã
ep

= n · C̃ep · n.
The removal of σ33 from system (11) for both plane strain and plane stress situations allows solving the problem

in a two-dimensional setting. Then, generically denoting the acoustic tensor by A, the characteristic structures are
given by the eigenvalues:

ω1 =
A11 + A22 +

√
(A11 − A22)2 + 4A12

2

2
(24)

ω2 =
A11 + A22 −

√
(A11 − A22)2 + 4A12

2

2
(25)

and the associated left eigenvectors:

l1 = [A22 − ω1 , −A12] ; l2 = [−A12 , A11 − ω2] (26)

From equation (17), we see that two families of waves with celerities c f = ±√
ω1/ρ and cs = ±√

ω2/ρ may travel in
the domain. These waves are respectively referred to as fast and slow waves. One easily shows that property 1 can be
particularized to two-dimensional problems and yields: c1 ≥ c f ≥ c2 ≥ cs, where c1 and c2 are the speeds of elastic
pressure and shear waves respectively.

Remark 1. Given the non-linearity of Cep and the mathematical complexity of equations (24) and (25), the following
assumptions are made in what follows:

(i) c f and cs monotonically decrease with the hardening of the material,

(ii) the computational domain is in an initial natural, plastic strain free state.

Given the eigenvalues (24) and (25), the four left eigenfields of the Jacobian matrix read:
{
±c f ; Lc±f =

[
±ρc f l1,−l1 ⊗ n

]}
{
±cs; Lc±s =

[
±ρcs l2,−l2 ⊗ n

]}

where Lc+
f and Lc−f are associated with the right-going and left-going fast waves respectively. The same goes for Lc+

s

and Lc−s . Furthermore, one stationary wave associated with the zero eigenvalue of the Jacobian matrix, and whose left
eigenvector satisfies equation (18), has to be added:

L0T
=



0

0
(
C121iC222 j −C221iC122 j

)
nin j

(
C111iC122 j −C112iC121 j

)
nin j

(
C112iC221 j −C111iC222 j

) nin j

2



=



0
0
α11
α22
α12


(27)

with C = Cep for plane strain and C = C̃ep for plane stress situations. The above eigenfields are used in the next
section in order to derive the simple wave solutions by means of the method of characteristics [35].

7



4. Integral curves for two-dimensional problems

Solving the hyperbolic system (11) amounts to construct hyper-surfaces Q(xn, t), or integral surfaces, given some
initial values Q(xn, 0), which is in general difficult. Nevertheless, the projection of system (11) onto the left eigenbasis
leads to the set of characteristic equations [35]:

LK · dQ = 0 (28)

where dQ is related to the directional derivative of Q along the Kth characteristic curve with slope xn/t = cK in
the (xn, t) plane. The integration of the set of ODEs (28) yields integral curves that enable, through the method of
characteristics, the calculation of self-similar solutions.

In what follows, the construction of the integral curves as well as the application of the method of characteristics
are developed for general two-dimensional problems as a first result of the present paper.

The projection of the quasilinear form (11) onto the left eigenbasis developed in the previous section yields for the
fast waves:

ρc f l1 · dv − l1i n jdσi j = 0 , xn/t = c f (29)

−ρc f l1 · dv − l1i n jdσi j = 0 , xn/t = −c f (30)

for the slow waves:

ρcs l2 · dv − l2i n jdσi j = 0 , xn/t = cs (31)

−ρcs l2 · dv − l2i n jdσi j = 0 , xn/t = −cs (32)

and at last, for the stationary wave:

α11dσ11 + α12dσ12 + α22dσ22 = 0 , xn/t = 0 (33)

Analogously to [8], the method of characteristics is applied by combining equations (29) to (33). The approach

xn

t

c0
s (Head)

cs (Tail)

P c f
−c f

−cs

(a) Slow simple wave

xn

t

c0
f (Head)

c f (Tail)

P

c fcs −cs

(b) Fast simple wave

Figure 1: The method of characteristics through slow and fast simple waves in the (xn, t) plane.

consists in tracing every characteristic from some downstream point of a wave where the state vector Q is known, to
an upstream point where the solution is sought. Figures 1a and 1b schematically illustrate the method for slow and
fast simple waves in which the state is known along the head wave and is looked for at the point P lying on the tail
wave.

The right-going slow waves are first looked at by adding equations (29) and (30):

l1i n jdσi j = 0

8



Given the geometry of the problem, the vector n may be reduced to e1 or e2. It therefore comes out:

dσ11 = − l12
l11

dσ12 = ψs
1dσ12 for n = e1 (34)

dσ22 = − l11
l12

dσ12 = ψs
2dσ12 for n = e2 (35)

where ψs
1 and ψs

2 are functions of all components of σ. Note that the s and f superscripts stand for slow and fast waves
respectively in the following. Next, the characteristic equation related to the contact wave (33) reads:

dσ22 = −ψ
s
1α11 + α12

α22
dσ12 for n = e1 (36)

dσ11 = −ψ
s
2α22 + α12

α11
dσ12 for n = e2 (37)

in which the αi j’s are defined in (27). The sets of equations (34)-(36) and (35)-(37) show the combined-stress nature
of slow simple waves since both longitudinal and transverse components vary, in contrast with elastic waves. On the
other hand, the subtraction of equations (29) and (30) leads to:

dv1 = ψs
1dv2 =

1
ψs

2
dv2

which, once combined with equations (34)-(35) and introduced in (32), yields after simplifications:

dv1 = −dσ11

ρc2
s

; dv2 = −dσ12

ρc2
s

for n = e1 (38)

dv1 = −dσ12

ρc2
s

; dv2 = −dσ22

ρc2
s

for n = e2 (39)

Remark 2. The ODEs through a left-going slow wave result from the combination of equations (34)-(35) introduced
in (31) rather than (32). Therefore, the only difference lies in the signs in equations (38) and (39).

Similar results are obtained for right-going fast simple waves by using l2 instead of l1 and c f rather than cs. Hence,
the evolution in slow and fast waves is governed by the loading functions:

ψs
1 = − l12

l11

∣∣∣∣∣∣
n=e1

, ψs
2 = − l11

l12

∣∣∣∣∣∣
n=e2

ψ
f
1 = − l22

l21

∣∣∣∣∣∣
n=e1

, ψ
f
2 = − l21

l22

∣∣∣∣∣∣
n=e2

(40)

The ODEs satisfied across right-going slow and fast simple waves depending on the direction considered are summa-
rized in table 1 for directions e1 and e2.

The complete solution is given by the integral curves that result from the integration of those ODEs. For instance,
through a right-going wave in the direction e1, the velocity obeys:

v1 = v0
1 −

∫ σ

σ0

dσ11

ρc2 ; v2 = v0
2 −

∫ σ

σ0

dσ12

ρc2 (41)

where the zero superscript denotes the downstream state. As emphasized by Clifton [8], the integrals depend on
the loading path and hence, the simple waves involved. It is therefore crucial to identify the stress path followed to
properly compute integrals (41).
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Right-going slow wave Right-going fast wave
n = e1 n = e2 n = e1 n = e2

dv1 = − dσ11
ρc2

s
dv1 = − dσ12

ρc2
s

dv1 = − dσ11
ρc2

f
dv1 = − dσ12

ρc2
f

dv2 = − dσ12
ρc2

s
dv2 = − dσ22

ρc2
s

dv2 = − dσ12
ρc2

f
dv2 = − dσ22

ρc2
f

dσ11 = ψs
1dσ12 dσ11 = −ψs

2α22+α12

α11
dσ12 dσ11 = ψ

f
1dσ12 dσ11 = −ψ

f
2α22+α12

α11
dσ12

dσ22 = −ψs
1α11+α12

α22
dσ12 dσ22 = ψs

2dσ12 dσ22 = −ψ
f
1α11+α12

α22
dσ12 dσ22 = ψ

f
2dσ12

Table 1: Summary of the ODEs satisfied inside right-going slow and fast simple waves.

Remark 3. Considering the elastic stiffness tensor in the above developments, the equations of elasticity, for which
cs = c2 and c f = c1, can be derived. In that case, one shows that ψs

1 = ψs
2 = 0 and ψ

f
1 = ψ

f
2 = ∞, so that the

equations of table 1 greatly simplify. As a result, jump conditions associated with discontinuous contact waves are
written rather than integral curves such as (41) linked to rarefaction waves, which is due to the path-independent
constitutive equations. It then turns out that a pressure wave carries jump discontinuities of σnn, σtt and vn, where n
and t denote normal and transverse components of the propagation direction, whereas a shear wave propagates jump
discontinuities in σnt and vt (see table 2).

Right-going shear wave Right-going pressure wave
n = e1 n = e2 n = e1 n = e2

Jv1K = 0 Jv1K = − Jσ12K
ρc2

2
Jv1K = − Jσ11K

ρc2
1

Jv1K = 0

Jv2K = − Jσ12K
ρc2

2
Jv2K = 0 Jv2K = 0 Jv2K = − Jσ22K

ρc2
1

Jσ11K = 0 Jσ11K = 0 Jσ12K = 0 Jσ12K = 0

Jσ22K = 0 Jσ22K = 0 Jσ22K = −α11
α22

Jσ11K Jσ11K = −α22
α11

Jσ22K

Table 2: Summary of the jump conditions across right-going elastic shear and pressure waves.

5. Some properties of the loading paths for several cases

It has been highlighted that the complete solution of a hyperbolic system in elastic-plastic solids requires to know
a priori the wave structure. The object of this section is to study the mathematical properties of the loading functions
(40) in order to get some clues about the stress paths. It is believed that the information thus earned could be used to
accurately approximate the integration of equations (41). First, general properties holding regardless of the loading
conditions are highlighted. Next, the equations are specialized to plane stress and plane strain cases.

5.1. The general case

To begin with, let us look at the product of the two loading functions in a direction of space. Given the left
eigenvectors of the acoustic tensor in equation (26), one has for instance:

ψs
1ψ

f
1 =

l12
l11

l22
l21

Since the eigenvectors of symmetric second-order tensors all satisfy l1 · l2 = 0, it comes out that the above product is
equal to −1. Hence, the loading paths resulting from the integration of the ODEs involving ψs

1 and ψ f
1 are perpendicular
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in the stress space. The same goes for ψs
2 and ψ f

2 . Although this orthogonality has already been noticed for particular
plane strain and plane stress cases [8, 11], the generic formulation proposed here shows that this is valid for all
problems in two space dimensions. As a result, the study can be restricted to one function in each direction, say ψs

1
and ψs

2.
Second, if the function ψs

1 vanishes at some point of the stress space, the projection in the (σ11, σ12) plane of the
loading path followed within a slow wave is vertical according to the ODE (34) (i.e dσ11 = 0). Conversely, if ψs

1 → ∞,
the loading path is horizontal in the (σ11, σ12) plane (i.e dσ12 = 0). These situations respectively correspond to:

ψs
1 = 0⇔ A12 = 0

ψs
1 → ∞⇔ A22 − ω1 = 0

In particular, if A12 = 0 the denominator of ψs
1 reads:

A22 − ω1 =
1
2

(
A22 − A11 −

√
(A11 − A22)2 + 4A2

12

)
=

1
2

(
A22 − A11 − |A11 − A22|

)
= − 〈A11 − A22〉

where 〈•〉 = 1
2 (• + |•|) denotes the positive part operator. Therefore, if A12 = 0 and A11 , A22, one has ψs

1 = 0
and hence ψ f

1 → −∞ by orthogonality. If moreover A11 = A22, both components of the eigenvectors vanish and
the functions ψs

1 and ψ f
1 are undetermined. Note also that in this case, the characteristic speeds of simple waves are

identical according to equations (24) and (25). As a result, the situation c f = cs corresponds to a loss of hyperbolicity
of the system.

Analogously, the function ψs
2 is such that:

ψs
2 → ∞⇔ A12 = 0
ψs

2 = 0⇔ A22 − ω1 = 0

Therefore, if both conditions A12 = 0 and A11 = A22 are satisfied, the system is no longer hyperbolic with characteristic
speeds of fast and slow waves that are identical.

According to the ODEs of table 1, the particular values of the loading functions ψs, f
i through the simple waves

propagating in direction ei for i = {1, 2}, provide information about the loading paths in the stress space. First, ψs, f
i = 0

leads to dσii = 0 (no sum on i) so that the longitudinal stress is constant within the simple wave. Conversely, with the
loading functions tending to infinity, the stress σ12 does not vary. Notice that the coefficients αi j of the left eigenvector
of the Jacobian matrix associated with the zero eigenvalue (27) also have to be regarded. Nevertheless, those terms
resulting from products of the components of the elastoplastic tangent modulus have complex expressions and are
assumed to have non-zero values in the remainder of the paper.

The above discussions are now specified to the plane strain and plane stress cases, for which loading conditions
leading to A12 = 0 and A11 − A22 = 0 are identified.

5.2. The plane strain case
The case of plane strain is first considered by using the elastoplastic tangent modulus so that the components of

the acoustic tensor for n = e1 read:

Aep
11 = Cep

1111 = λ + 2µ − βs2
11 (42)

Aep
22 = Cep

2121 = µ − βs2
12 (43)

Aep
12 = Cep

1121 = −βs11s12 (44)

The associated eigenvalues are then:

ρc2
s = −

√[
λ + µ − β(s2

11 − s2
12)

]2
+ 4(βs11s12)2

2
+
λ + 3µ − β(s2

11 + s2
12)

2
(45)

ρc2
f =

√[
λ + µ − β(s2

11 − s2
12)

]2
+ 4(βs11s12)2

2
+
λ + 3µ − β(s2

11 + s2
12)

2
(46)
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Subtracting equations (42) and (43), one gets: Aep
11 − Aep

22 = λ + µ − β
(
s2

11 − s2
12

)
. Hence, the equation Aep

11 − Aep
22 = 0

admits a set of solutions in the deviatoric stress space. On the other hand, we see from equation (44) that Aep
12 vanishes

for s12 = 0 or s11 = 0. Each solution is studied in more details below.

5.2.1. Condition s12 = 0
According to equations (45) and (46), the eigenvalues of the acoustic tensor become:

ρc2
s =

1
2

(
λ + 3µ − βs2

11 −
∣∣∣λ + µ − βs2

11

∣∣∣
)

ρc2
f =

1
2

(
λ + 3µ − βs2

11 +
∣∣∣λ + µ − βs2

11

∣∣∣
)

Two cases are to be considered:

(i) if βs2
11 < λ + µ, the expression further reduces to:

ρc2
s = µ

ρc2
f = λ + 2µ − βs2

11

The characteristic speed of slow waves is therefore equivalent to that of elastic shear waves for plane strain
cs = c2 =

√
µ/ρ.

(ii) if λ + µ − βs2
11 < 0, the characteristic speeds read:

ρc2
s = λ + 2µ − βs2

11

ρc2
f = µ

Therefore, the celerity of fast waves reduces to that of elastic shear waves. Note, however, that the characteristic
speed of slow waves remains real if and only if λ + 2µ > βs2

11. One then gets the following bounds: λ + 2µ >
βs2

11 > λ + µ.

Note that the two above situations lead to the propagation of one neutral wave in the medium.
At last, the equality βs2

11 = λ + µ leads to Aep
11 − Aep

22 = 0 and hence, to undetermined loading functions.

5.2.2. Condition s11 = 0
Considering the relation (23) between the stress components for plane strain, one writes:

s11 =
2
3
σ11 − 1

3
(σ22 + ν(σ11 + σ22) − Eεp

33)

so that s11 = 0 is equivalent to:

σ11 =
1 + ν

2 − νσ22 − Eεp
33 (47)

In contrast to what has been seen previously, the functions ψs, f cannot be undetermined in the case s11 = 0 since the
equation Aep

11 − Aep
22 = λ + µ + βs2

12 = 0 does not admit real solutions. Nevertheless, the stress state (47) yields the
following characteristic speeds:

ρc2
s = µ − βs2

12

ρc2
f = λ + 2µ

so that the celerity of fast waves identifies with that of elastic pressure waves under plane strain c f = c1 =
√

(λ + 2µ)/ρ.
Once again, this case corresponds to the propagation of a neutral wave.

12



The same analysis can be carried out in the direction n = e2 by considering the following acoustic tensor components:

Aep
11 = Cep

1212 = µ − βs2
12

Aep
22 = Cep

2222 = λ + 2µ − βs2
22

Aep
12 = Cep

1222 = −βs22s12

The characteristic speeds are then:

ρc2
s = −

√[
λ + µ − β(s2

22 − s2
12)

]2
+ 4(βs22s12)2

2
+
λ + 3µ − β(s2

22 + s2
12)

2

ρc2
f =

√[
λ + µ − β(s2

22 − s2
12)

]2
+ 4(βs22s12)2

2
+
λ + 3µ − β(s2

22 + s2
12)

2

With these expressions, the same remarks as for n = e1 can obviously be made by replacing s11 with s22.
Among the above results, the most significant arises from the condition s12 = 0. Indeed, it has been seen that

Aep
12 = 0 leads to ψs

1 = 0 and ψs
2 → ∞ in such a way that the corresponding loading paths in the (σ11, σ12) plane

are respectively vertical and horizontal. Under the orthogonality property of the loading functions, the stress path
followed in a fast wave propagating in the direction e1 is horizontal in the same plane. Hence, if the path through a
fast wave intersects the plane σ12 = 0, the shear stress component remains constant afterwards. The same result holds
for the slow wave propagating in the direction e2. The above conclusion are summarized in table 3.

Stress path in (σ11, σ12) plane for σ12 = 0

n = e1 (i = 1) n = e2 (i = 2)

Slow wave: dσii
dσ12

= ψs
i (i = {1, 2} no sum on i) ψs

1 = 0⇒ vertical path ψs
2 → ∞⇒ horizontal path

Fast wave: dσii
dσ12

= ψ
f
i (i = {1, 2} no sum on i) ψ

f
1 → ∞⇒ horizontal path ψ

f
2 = 0⇒ vertical path

Table 3: Loading paths projected on the (σ11, σ12) plane followed across slow and fast simple waves, under the
condition σ12 = 0 assuming that Aep

11 − Aep
22 , 0.

5.3. The plane stress case

As mentioned in section 3, a suitable elastoplastic tangent modulus C̃ep is now under consideration. Let’s first
focus on ψs

1 related to the vector n = e1. Thus:

Ãep
11 = Cep

1111 −
(Cep

1133)2

Cep
3333

= λ + 2µ − βs2
11 −

(λ − βs11s33)2

λ + 2µ − βs2
33

(48)

Ãep
22 = Cep

2121 −
(Cep

2133)2

Cep
3333

= µ − βs2
12 −

(βs12s33)2

λ + 2µ − βs2
33

(49)

Ãep
12 = Cep

1121 −
Cep

1133Cep
1233

Cep
3333

= βs12
λs33 − (λ + 2µ)s11

λ + 2µ − βs2
33

(50)

In order to ensure the hyperbolicity of the system, the components of the acoustic tensor also have to be defined, that
is Cep

3333 > 0, which leads to:

λ + 2µ − βs2
33 > 0 ⇔ s2

33 <
λ + 2µ
β

13



Second, from equation (50), Ãep
12 admits two roots in terms of the components of the deviatoric stress tensor, namely:

s12 = 0 ; s11 =
λ

λ + 2µ
s33

In terms of the components of the Cauchy stress tensor, these conditions read:

σ12 = 0 ; σ11 =
2µ

3λ + 4µ
σ22

If on the other hand the vector n = e2 is considered, the acoustic tensor components read:

Ãep
11 = Cep

1212 −
(Cep

1233)2

Cep
3333

= µ − βs2
12 −

(λ − βs12s33)2

λ + 2µ − βs2
33

Ãep
22 = Cep

2222 −
(Cep

2233)2

Cep
3333

= λ + 2µ − βs2
22 −

(βs22s33)2

λ + 2µ − βs2
33

Ãep
12 = Cep

1222 −
Cep

1233Cep
2233

Cep
3333

= βs12
λs33 − (λ + 2µ)s22

λ + 2µ − βs2
33

These expressions are similar to those obtained before with s22 instead of s11. It comes out that Ãep
12 admits two roots

in the case n = e2:

σ12 = 0 ; σ22 =
2µ

3λ + 4µ
σ11

The complexity introduced by the plane stress tangent modulus prevents finding other singular configurations for
the hyperbolic system. In particular, it is difficult to deal with the equation Ãep

11 = Ãep
22 due to the expressions given in

equations (48) and (49). Nevertheless, since the stress state s12 = 0 also constitutes a singular point for plane stress,
the same remarks as those made for the plane strain loading path hold. Namely, σ12 becomes constant if it falls to zero
along the loading path followed inside a fast (resp. slow) wave propagating in direction e1 (resp. e2), as summarized
in table 3.

6. Numerical integration of stress paths

Although some properties of the simple waves have been emphasized in section 5, the complexity of the equations
prevents the complete characterization of the loading paths followed. In order to get additional information about the
evolution of the stress states, the systems of ODEs gathered in table 1 are here numerically integrated for plane stress
and plane strain loadings. Only linear isotropic hardening is considered by setting R(p) = Cp so that R′ = C, with
C the hardening modulus. Then, the thin-walled tube problem considered by Clifton [8] is first looked at so that
the above developments can be validated. Next, the plane stress and plane strain cases are treated. The values of the
elastic and plastic properties considered are summarized in table 4.

E = 2 × 1011 Pa σy = 1 × 108Pa

ν = 0.3 C = 108Pa

ρ0 = 7800 kg.m−3

Table 4: Values of the elastic and plastic parameters.

For the following analysis, it is convenient to introduce two quantities that account for the evolution of the speeds
of plastic waves:

ξ f =
c f − c2

c1 − c2
; ξs =

cs

c2

Given the intervals c1 ≥ c f ≥ c2 and c2 ≥ cs > 0, it is seen that ξ f ∈ [0, 1] and ξs ∈ ] 0, 1].
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6.1. The thin-walled tube problem
Consider the semi-infinite domain in the Cartesian coordinate system: (x1, x2, x3) ∈ [0,∞[×[−h, h]× [−e, e], being

acted upon by a traction vector Td at x1 = 0 and free surfaces x2 = ±h and x3 = ±e. Only the first two components of
Td are non-null so that the stress and strain tensors within the medium are of the form:

σ =


σ11 σ12 0

0 0
sym 0

 ; ε =


ε11 ε12 0

ε22 0
sym ε33



By using the following mapping of coordinates: (1, 2, 3) 7→ (z, θ, r), such a state also corresponds to that holding
in a hollow cylinder with radius and length much bigger than its thickness, submitted to combined longitudinal and
torsional loads. As a particular plane stress case, the set of ODEs along characteristics derived in section 5 applies by
taking into account the vanishing stress component σ22:

σ̇22 = C̃ep
22i jε̇i j = 0 i, j = {1, 2}

⇒ C̃ep
2222ε̇22 = −C̃ep

22i jε̇i j i j = {11, 12, 21}
where C̃ep is the plane stress tangent modulus already used and based on the property ε13 = ε23 = 0. Thus, inverting
the above equation and introducing it in the constitutive equation, we are left with the following law:

σ̇i j = C̃ep
i jklε̇kl −

C̃ep
i j22C̃ep

22kl

C̃ep
2222

ε̇kl = Ĉep
i jklε̇kl

for i j, kl = {11, 12, 21}
(51)

The characteristic analysis of the hyperbolic system based on this tangent modulus also leads to loading paths followed
across slow and fast waves, involving however two components of stress rather than three. For the sake of simplicity,
the stress components are denoted by σ11 = σ and σ12 = τ.

Thus, the ODEs governing the evolution of stress components inside the waves of combined-stress read:

dσ = ψs, f dτ (52)

where the loading functions ψs, f depend on the components of the acoustic tensor that corresponds to the tangent
modulus (51). Equations (52) as well as those of Clifton [8] have been numerically integrated, starting from several
arbitrary points lying on the initial yield surface. Since the loading functions are odd functions of σ and τ [8], τ(σ)
and σ(τ) are even functions and hence, the loading paths exhibit symmetries with respect to τ and σ axes. Therefore,
the study is restricted to the quarter-plane (σ > 0, τ > 0).

Figure 2 shows one stress path resulting from the integration of the ODE related to right-going fast waves with
σ used as a driving parameter. The initial stress state lies on the yield surface at σ = 0 and the ODE is discretized
by means of the backward Euler method, the integration being performed until the stress reaches the value σ = σy.
The path is depicted in the stress space and in the deviatoric plane in figures 2a and 2b respectively. The deviatoric
plane projection is obtained by drawing the paths in the eigenstress space (σ1, σ2, σ3) and projecting them onto the
plane perpendicular to the hydrostatic axis σ1 = σ2 = σ3. In this plane, the von-Mises yield surface is a circle drawn
with dashed lines. As observed by Clifton, the path inside fast waves first follows the initial yield surface up to the
intersection with the σ-axis. Then, the loading path is such that dτ = 0 while σ increases as far as hyperbolicity
holds, that is for c f > c2 =

√
µ/ρ [8]. Notice that these conclusions are similar to those made in the previous section.

The ODEs derived in section 5 for plane stress, once adapted to the thin walled-tube problem, then yield the solution
originally proposed by Clifton.

Adopting the same approach with τ as driving parameter, some stress paths through slow waves have been reported
in figure 3. Since fast waves lead to loading paths following the initial yield surface, the orthogonality property of
the loading functions implies that those of slow waves move away from it perpendicularly. This is seen in figure 3a.
However, this property holds in the (σ, τ) plane but not in the deviatoric plane, as can be seen in figure 3b, since the
quasi-linear form (11) and in turn, the ODEs, are not written in terms of s1, s2, s3. As a result, although the loading
paths in the deviatoric plane move away from the initial yield surface, those curves are not radial. Generally speaking,
these results also show that the equations derived in the present paper are in excellent agreement with the works of
Clifton.
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Figure 2: Stress path followed in a fast simple wave for the thin-walled tube problem. Comparison between the results
obtained from equations (52) and these of [8].
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Figure 3: Loading paths in a slow wave for the thin-walled tube problem. Comparison between the results obtained
from equations (52) (cross markers) and those of [8] (solid lines).

6.2. Plane stress
We now move on to a more general plane stress case for which the stress component σ22 is not zero. Although

the equations of section 5 have been derived for two directions of propagation, attention is paid here to n = e1 only.
Thus, the system of ODEs considered reads (see table 1):

dσ11 = ψ
s, f
1 dσ12

dσ22 = −ψ
s, f
1 α11 + α12

α22
dσ12

(53)

Since the plastic simple waves arise once the plastic threshold has been reached, elastic pressure and shear discontinu-
ities must be considered to bring the stress state on the initial yield surface. As written in table 2, elastic shear waves
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have an influence on the shear component σ12 only while elastic pressure waves carry jump discontinuities Jσ11K and
Jσ22K satisfying:

Jσ22K =
λ

2(λ + µ)
Jσ11K (54)

Furthermore, the yield function (6) can be written for plane stress as:
√

3σ2
12 + (σ2

11 + σ2
22 − σ11σ22) − (σy + C p) = 0

Then, inverting the above equation allows expressing σ12 as a function of the other components on the boundary of
the elastic convex:

σ12 = ±
√

1
3

√
(σy + C p)2 −

(
σ2

11 + σ2
22 − σ11σ22

)
(55)

Thus, combining the conditions (54) and (55), one can define stress states lying on the initial yield surface by only
setting σ11. The initial values set for σ11, and hence these of σ22, form in what follows a symmetrical set with
respect to zero. From such states, the ODEs (53) are implicitly integrated with σ12 used as a driving parameter and
by restricting ourselves to the semi-space σ12 > 0 for the initial conditions.

6.2.1. Fast waves
Following the above approach, the equations holding inside fast waves are first integrated until σ12 vanishes. The

resulting loading paths are depicted in figure 4 in the (σ11, σ12) and (σ22, σ12) planes, and in the deviatoric plane in
figure 5. Note that the curves are numbered so as to facilitate the mapping between the three different planes and the
initial yield surface is depicted in dashed line in figure 5. The evolution of the characteristic speed associated with
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ξ f

Figure 4: Loading paths in a fast simple wave under plane stress conditions in the stress planes (σ11, σ12) and
(σ22, σ12).

the fast wave along the path can also be seen in the figures by means of a color gradient on the variable ξ f . Thus,
for the loadings under consideration, the wave celerity is a decreasing function of the stress so that the simple wave
solutions are valid.

First, the negative and positive initial values allow highlighting that σ12 is an even function of σ11 and σ22, though
it is not shown mathematically. Indeed, a symmetry with respect to the σ12-axis can be observed in both (σ11, σ12)
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Figure 5: Loading path in a fast simple wave under plane stress conditions in the deviatoric plane.

and (σ22, σ12) planes. On the other hand, the symmetry property is also seen in the deviatoric plane in figure 5 in
which positive (resp. negative) initial values yield clockwise (resp. counterclockwise) loading paths. In addition, as
for the thin-walled tube problem, the stress curves follow the initial yield surface up to a direction of pure shear in
the deviatoric plane. At that point, the speed of elastic shear waves c2 is achieved since ξ f = 0. Therefore, it seems
that all the loading paths followed in a fast wave aim at reaching a direction of pure shear in the deviatoric plane and
cannot be extended further.

6.2.2. Slow waves
We now focus on the stress evolution inside slow waves. The same procedure is followed for several starting

points on the initial yield surface by increasing σ12. The loading paths thus obtained are depicted in figures 6 and 7,
for which projections in the stress space and the deviatoric plane are shown respectively. The evolution of ξs along the
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Figure 6: Loading paths in a slow simple wave under plane stress conditions in the stress planes (σ11, σ12) and
(σ22, σ12) for several starting points lying on the initial yield surface.

paths in the stress space can also be seen by means of a color gradient. Once again, the simple wave solution appears
to be valid with the considered loading conditions. Moreover, no neutral waves are considered since ξs < 1.

First, generally speaking, the same symmetry properties of the loading paths as for the fast waves can be seen in
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Figure 7: Loading paths in a slow simple wave under plane stress conditions in the deviatoric plane for several starting
points lying on the initial yield surface.

the figures. Second, while the projections of the curves in the (σ11, σ12) plane can be pretty well approximated with
straight lines, it is not the case in the (σ22, σ12) plane. Indeed, in the latter case, the variations first mainly concern
σ22 and next, the slopes of the curves roughly change so that the paths are almost vertical. On the other hand, the
projections in the deviatoric plane in figure 7 show that the paths start turning around the initial yield surface up to
some points where the direction changes. Once the flow direction has changed, the stress state continues moving away
from the initial yield surface without following a radial direction. These solutions are much more complex than those
of the thin-walled cylinder problem.

Although the slope breaks are not identified by looking at the mathematical properties of the loading function ψs
1,

one can show numerically that the inflections occur for each path once the condition σ11 = 2σ22 is achieved. As a
matter of fact, this condition results from the vanishing partial derivative of equation (55) with respect to σ22:

∂σ12

∂σ22
= ±2σ22 − σ11

6σ12
= 0 (56)

Considering one slice σ11 = constant in the stress space, the condition (56) corresponds to the extremum values taken
by σ12 along the current yield surface. For the von-Mises function, such slices in the (σ22, σ12) plane are ellipses
whose vertices satisfy the condition (56). Figure 8 shows the initial yield surface in the stress space as well as the
set of points satisfying the condition (56), which is referred to as the maximum-shear-stress line. The loading paths
studied above are also reported in the figure in such a way that it can be seen that all the integral curves aim at reaching
the maximum-shear-stress line. It is worth noticing that the paths are not restricted to the initial yield surface in the
case of slow waves so that the corresponding curves do not intersect the black line in figure 8. However, since the
isotropic hardening has only homothetic effects on the yield surface, the maximum-shear-stress line moves in the
direction of increasing σ12 with the plastic flow, and then seems to intersect the loading paths. In order to confirm
these observations, the above discussion is supplemented with other results depicted in figure 9.

First, the ratio 2σ22
σ11

is plotted versus the Cauchy stress component σ22 along the loading paths in figure 9a. The
same response as that shown in figure 6b is observed, namely, a first phase during which σ22 varies significantly
followed by a second one characterized by a lower variation. This is in particular obvious by looking at the paths 1
and 6. The transition between the two phases occurs at 2σ22

σ11
= 1. Next, the mapping with the deviatoric plane can be

made by looking at the Lode parameter defined as [36]:

cos(3Θ) = 9

√
2
3

det s
‖s‖3

The Lode parameter is related to the angular position in the deviatoric plane so that its variation along the loading
paths gives information about the plastic flow direction. Figure 9b shows the evolution of the ratio 2σ22

σ11
with respect

to the Lode parameter. It can be seen that the Lode parameter varies monotonically until condition (56) is fulfilled.
After that point, the Lode parameter roughly changes, which explains the breaks in the slope of the curves in figure
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Figure 8: Loading paths through slow waves under plane stress conditions along with the maximum-shear-stress line
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Figure 9: Evolution of the ratio 2σ22
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along slow wave loading paths.

7. Note that the inflections that can be seen at the beginning of paths 1 and 6 are due to the evenness of the cosine
function. The curves depicted in figure 9 moreover highlight that once the direction of the paths roughly changes, the
maximum-shear-stress condition remains valid, in such a way that a slow wave aims at following a maximum-shear-
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stress evolution.
The response emphasized before nevertheless differs for a higher hardening modulus. Therefore, the hardening

parameter is momentarily set to C = 1010Pa and the same procedure as before is carried out. Figure 10 shows the
loading paths resulting from the same initial setup in the deviatoric plane, and the evolution of the ratio 2σ22

σ11
is depicted

in figure 11. It turns out that increasing the hardening modulus smooth the loading paths so that figure 10 does not
exhibit the slope breaks that were seen in figure 7. On the other hand, figure 11 shows that as for the previous case, the
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Figure 10: Loading paths in a slow simple wave under plane stress conditions in the deviatoric plane for several
starting points lying on the initial yield surface with an increased hardening modulus.

Lode parameter does not vary monotonically along the loading paths. It is however worth noticing that the evolution
of the Lode parameter reverses before the maximum-shear-stress condition is achieved. It furthermore appears that
the paths only tend to the aforementioned condition rather than reaching it.
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Figure 11: Evolution of the ratio 2σ22
σ11

along slow wave loading paths with an increased hardening modulus.

Even though the loading paths are influenced by the value of the hardening modulus, the above results show that
the plane stress condition leads to solutions that are very different from those of the thin-walled tube problem for slow
waves. However, valuable information have been provided by the numerical results presented above.
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6.3. Plane strain
Assuming that a solid initially at rest undergoes external loads leading to a plane strain case, the previous approach

is now repeated. However, the derivation of the hyperbolic system in a two-dimensional setting relies on the writing
of the out-of-plane stress component as a function of plastic strain. Hence, the integral curves associated with simple
waves are integrated implicitly, along with the plastic flow. To do so, the consistency condition of the von-Mises yield
surface (6) is combined with the plastic flow rule (9):

ε̇p =
3

2C
s ⊗ s
‖s‖2 : σ̇

Thus, the system of ODEs consists of the equations of table 1:

dσ11 = ψ
s, f
1 dσ12

dσ22 = −ψ
s, f
1 α11 + α12

α22
dσ12

supplemented with the ODE related to the out-of-plane component which follows from the time derivative of equation
(23):

dσ33 = ν (dσ11 + dσ22) − Edεp
33

Once again, we consider that elastic pressure and shear waves precede plastic ones. Therefore, according to the
equations summarized in table 2, the components σ11 and σ22 are coupled through the pressure wave under plane
strain such that:

Jσ22K =
λ

λ + 2µ
Jσ11K

In addition, one shows that specializing the yield surface to plane strain, by accounting for the expression of the
out-of-plane stress (23), leads to:

√
3σ2

12 + (σ2
11 + σ2

22)(ν2 − ν + 1) + σ11σ22(2ν2 − 2ν − 1) + Eεp
33

[
(σ11 + σ22)(1 − 2ν) + Eεp

33

]
− (σy + Cp) = 0

Thus, initial stress states lying on the initial yield surface can be set for several values ofσ11 and by enforcing f (σ) = 0
through the choice of σ12, namely:

σ12 = ±

√
(σy + Cp)2 − (σ2

11 + σ2
22)(ν2 − ν + 1) − σ11σ22(2ν2 − 2ν − 1) + Eεp

33

[
(σ11 + σ22)(1 − 2ν) + Eεp

33

]

3
(57)

for p = 0 and ε
p
33 = 0. As previously, the initial values of σ11 form a symmetrical set with respect to zero. The

numerical integration in then made with σ12 used as a driving parameter and again by considering the semi-space
σ12 > 0 for the initial stress state.

6.3.1. Fast waves
The loading paths followed in a fast wave are first looked at by decreasing the shear stress component σ12. Anal-

ogously to what has been done before, figure 12 shows the paths in two planes of the stress space, while the same
paths are depicted in the deviatoric plane in figure 13. Once again, the evolution of the characteristic speed associated
with fast waves is depicted in the figures by means of a color gradient, which confirms that the simple wave solution
is valid.

First, the curves depicted in figure 12 show the symmetry of σ12 with respect to the σ12-axis. Second, as for the
plane stress situation, the loading paths followed inside fast waves are smooth. Notice however that the curves do not
overlap in the (σ11, σ12) plane as it was the case before. At last, it appears that all the paths tend to the σ11-axis which,
as predicted by the analytical results in table 3, would lead to curves that follow the axis.

On the other hand, the paths projected in the deviatoric plane show once again that the von-Mises circle is traced
by the integral curves. Moreover, opposite signs for the initial values of σ11 lead to curves that are symmetric with
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Figure 12: Loading paths through a fast simple wave under plane strain conditions in the stress planes (σ11, σ12) and
(σ22, σ12) for several starting points lying on the initial yield surface.
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Figure 13: Loading paths through a fast simple wave under plane strain conditions in the deviatoric plane for several
starting points lying on the initial yield surface.

respect to the horizontal axis. Unlike the plane stress case, for which the fast wave loading paths reach a direction
of pure shear in the deviatoric plane, the curves in figure 13 all exhibit a cusp so that the paths tend to a direction of
pure tension/compression after crossing it. Increasing the hardening modulus to C = 1010 Pa enables emphasizing
this phenomenon, as depicted in figure 14. After being restricted to the initial yield surface beyond a direction of pure
tension/compression, the paths all branch off towards the latter. It then seems that once this direction is achieved, the
plastic flow is radial. However, since no singular behavior is seen in the stress space in figure 12, it is difficult to
identify the stress states that are responsible for that response.

6.3.2. Slow waves
We finish this section by considering the loading paths in a slow wave under plane strain conditions. The integra-

tion of the corresponding ODEs is performed by using σ12 as a driving parameter.
First, figure 15 shows two projections of the paths in the stress space. Analogously to plane stress problems, the

curves projected in the (σ11, σ12) plane can be pretty well approximated with straight lines. Moreover, both projections
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Figure 14: Loading paths through a fast simple wave under plane strain conditions in the deviatoric plane for several
starting points lying on the yield surface with an increased hardening modulus.

emphasize some symmetry with respect to the σ12-axis. In addition, rough slope changes occur in the (σ22, σ12) plane
(see the paths 3 and 4 in figure 15b). Once again, these inflections are due to the reaching of the maximum shear stress
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Figure 15: Loading paths through a slow simple wave under plane strain conditions in the stress planes (σ11, σ12) and
(σ22, σ12)for different starting points on the initial yield surface.

σ12 for a given state (σ11, σ33) on the current yield surface. Indeed, requiring that the partial derivative of equation
(57) with respect to σ22 vanishes, one writes:

2σ22 − σ̄ = 0 (58)

with σ̄ =
σ11(2ν2 − 2ν − 1) + Eεp

33(1 − 2ν)
ν − ν2 − 1

Figure 16 shows the evolution of the ratio 2σ22/σ̄with respect to σ12 and σ22 for all the loading paths, though particu-
lar attention must be paid to the paths 3 and 4. To begin with, the plotting of 2σ22/σ̄ as a function of σ12 in figure 16a
confirms the symmetry observed above since symmetrical initial values with respect to zero yield overlapping curves.
Next, it can be seen that the ratio tends to unity for the paths 3 and 4 while it is not the case for the others. As soon
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as that value is reached, 2σ22/σ̄ stop varying even though σ12 continues increasing. Looking at figure 16b, in which
the evolution of the ratio with respect to σ22 is depicted, one sees that the limit 2σ22/σ̄ = 1 also corresponds to an
upper bound for σ22. Indeed, the curves corresponding to paths 3 and 4 are monotone up to the maximum-shear-stress
condition (58) is fulfilled. After this, all the points overlap so that both 2σ22/σ̄ and σ22 are constant. This discussion
once again highlights the shearing nature of slow waves.
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Figure 16: Evolution of the ratio 2σ22
σ̄

along the loading paths through a slow wave under plane strain conditions.

We now focus on the projections of the loading paths in the deviatoric plane in figure 17. The projections of the
stress paths in the deviatoric plane in figure 17a is supplemented with the evolution of the ratio 2σ22

σ̄
with respect to the

Lode parameter in figure 17b. Despite the non-zero out-of-plane stress component that leads to loading paths taking
values in the whole space (σ1, σ2, σ3), the paths are not more complex than for plane stress. Indeed, the paths are
much simpler since they all follow the initial yield surface up to a direction of pure shear, and next follow the radial
direction. On the other hand, figure 17b enables to better distinguish the curves that are superimposed in figure 17a.
It also highlights that the slope breaks which are observed in the deviatoric plane do not correspond to the maximum
shear stress condition (58). As a matter of fact, the loading paths 2, 3, 4 and 5 become radial for cos(3Θ) ≡ 0, which
occurs before the value 2σ22

σ̄
= 1 is achieved.

As for the results presented for fast waves, increasing the hardening parameter to C = 1010Pa allows smoothing the
curves. Furthermore, considering a higher hardening modulus enables to integrate the loading paths further without
numerical issues related to a growing characteristic speed. Thus, figure 18 shows the stress paths resulting from the
integration driven by σ12 as well as the evolution of condition (58) with respect to the Lode parameter. It can then be
seen in figure 18a that the loading paths are no longer restricted to the initial yield surface but start moving away from
it quasi-instantaneously. Moreover, all the curves converge to the direction of pure shear. The main difference with
the results depicted in figure 17 arises in figure 18b. The maximum-shear-stress condition (58) is now satisfied at the
very end of the numerical integration, once the direction of pure shear is reached in all the loading paths. Therefore,
the results of figure 17b must be considered carefully depending on the value of the hardening modulus. Similar
conclusions have been also drawn for plane stress problems in section 6.2.
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Figure 18: Study of the loading paths through slow simple waves in the principal deviatoric stress space with an
increased hardening modulus.

7. Conclusion

7.1. Summary of the important contributions

In this paper, the characteristic structure of the solution of hyperbolic problems in elastic-plastic solids in two
space dimensions has been highlighted. First, a thermodynamically-consistent formulation leading to the writing of
a hyperbolic system involving the fourth-order elastic-plastic stiffness tensor as been proposed. The aforementioned
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tensor can be easily specialized to plane stress and plane strain problems in such a way that the quasi-linear form
derived provides a generic framework for the study of all mechanical problems in two space dimensions.

Second, the characteristic analysis of the hyperbolic plane strain and plane stress problems has been carried out.
As already emphasized for simpler two-dimensional problems in prior works [3, 4] the solutions involve slow and fast
simple waves. The characteristic equations governing the evolution of the system inside the simple waves have then
been derived as a set of ODEs by applying the method of characteristics.

Third, some mathematical properties of these characteristic equations have been highlighted for plane strain and
plane stress, despite the complexity of the equations. As an interesting result of this work, it has been shown that the
loading paths followed inside slow and fast waves are perpendicular in the stress space. Although this feature has
been already emphasized in [8] for a combined longitudinal and torsional loading, the property is in fact due to the
symmetry of the acoustic tensor and is therefore valid for all two-dimensional problems.

At last, to overcome the mathematical complexity of the characteristic equations, numerical investigations have
been proposed. The loading paths depicted in the stress space or in the deviatoric plane then enable the identification
of symmetry properties that are not proofed mathematically. Moreover, the integral curves holding inside fast waves
are restricted to the initial yield surface for both plane stress and plane strain situations. In the former case, the paths
end as soon as a direction of pure shear is reached in the deviatoric plane, whereas in the latter one, the paths appears to
be radial once a direction of pure tension/compression is achieved. On the other hand, the loading through the simple
waves exhibit rough changes regardless of the kinematic considered for low hardening moduli (i.e. C = O(108)). It has
moreover been shown numerically that this inflection corresponds, for plane stress, to the reaching of the maximum
shear stress on the current yield surface for a given longitudinal stress. For plane strain, a similar response is also seen
but before the maximum-shear-stress condition is achieved. Nevertheless, increasing the hardening modulus leads to
loading paths whose direction changes before the maximum-shear-stress condition is achieved for plane stress, and
which reach a direction of pure shear at the same time as the maximum shear stress.

7.2. Concluding remarks

The results of the present paper allow a better understanding of the physical response of linearly hardening elastic-
plastic solids to dynamic loadings. However, the singularities that have been highlighted numerically still need to be
identified mathematically. Notice that kinematic hardening should yield identical results for the monotonic loadings
considered here, but would greatly influence the response for unloading or reverse plastic loading. These waves must
also be the object of an analysis for two-dimensional problems in order to construct the solution of the Riemann
problem. As a more long-term perspective, the elementary loading paths studied here could be used in order to enrich
numerical methods based on the use of Riemann solvers. In fact, following the idea of Lin and Ballman [21], a
numerical procedure that accounts for both elastic and plastic characteristics can be developed in order to improve the
tracking of waves in elastic-plastic solids.
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