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Abstract 26 

1. Assessing the state and trend of biodiversity in the face of anthropogenic threats requires 27 

large-scale and long-time monitoring, for which new recording methods offer interesting 28 

possibilities. Reduced costs and a huge increase in storage capacity of acoustic recorders has 29 

resulted in an exponential use of Passive Acoustic Monitoring (PAM) on a wide range of 30 

animal groups in recent years. PAM has led to a rapid growth in the quantity of acoustic data, 31 

making manual identification increasingly time-consuming. Therefore, software detecting 32 

sound events, extracting numerous features, and automatically identifying species have been 33 

developed. However, automated identification generates identification errors, which could 34 

influence analyses which looks at the ecological response of species. Taking the case of bats 35 

for which PAM constitutes an efficient tool, we propose a cautious method to account for 36 

errors in acoustic identifications of any taxa without excessive manual checking of recordings. 37 

2. We propose to check a representative sample of the outputs of a software commonly used 38 

in acoustic surveys (Tadarida), to model the identification success probability of 10 species 39 

and 2 species groups as a function of the confidence score provided for each automated 40 

identification. Using this relationship, we then investigated the effect of setting different False 41 

Positive Tolerances (FPTs), from a 50% to 10% false positive rate, above which data are 42 

discarded, by repeating a large-scale analysis of bat response to environmental variables and 43 

checking for consistency in the results. 44 

3. Considering estimates, standard errors and significance of species response to 45 

environmental variables, the main changes occurred between the naive (i.e. raw data) and 46 

robust analyses (i.e. using FPTs). Responses were highly stable between FPTs. 47 

4. We conclude it was essential to, at least, remove data above 50% FPT to minimize false 48 

positives. We recommend systematically checking the consistency of responses for at least 49 

two contrasting FPTs (e.g. 50% and 10%), in order to ensure robustness, and only going on to 50 



conclusive interpretation when these are consistent. This study provides a huge saving of time 51 

for manual checking, which will facilitate the improvement of large-scale monitoring, and 52 

ultimately our understanding of ecological responses. 53 
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Introduction 58 

 59 

With few exceptions, the rate of biodiversity loss does not appear to be slowing down 60 

(Butchart et al., 2010). In 2010, the 10th Conference of Parties to the Convention on 61 

Biological Diversity adopted a new 2011–2020 global Strategic Plan for Biodiversity, and in 62 

turn, the European Union launched a new Biodiversity Strategy (2011/2307). This strategy 63 

aims to halt biodiversity loss and the degradation of ecosystem services by 2020. Such 64 

objectives require large-scale and long-time studies using adapted monitoring methods for 65 

surveying and understanding biodiversity changes (Fisher, Frank, & Leggett, 2010) in 66 

response to anthropogenic pressures and environmental policies. The implementation of such 67 

studies is highly constrained by the time and cost induced. Interestingly, the development of 68 

new recording methods, such as Passive Acoustic Monitoring (PAM), offers interesting 69 

possibilities and are taking an increasing place in monitoring (Gibb, Browning, Glover-70 

Kapfer, & Jones, 2018). 71 

The reduced costs of acoustic recorders and the huge increase in storage capacity has resulted 72 

in an exponential increase in the use of PAM on a very wide range of species groups within a 73 

few years (e.g. Stahlschmidt & Brühl, 2012; Froidevaux, Zellweger, Bollmann, & Obrist, 74 

2014; Kalan et al., 2015; Jeliazkov et al., 2016; Nowacek, Christiansen, Bejder, Goldbogen, & 75 

Friedlaender, 2016; Frommolt, 2017). Such approaches are already widely used by 76 

researchers as well as by people working for environmental consultancies and government 77 

agencies for various biodiversity evaluation (Adams, Jantzen, Hamilton, & Fenton, 2012). 78 

PAM can be particularly useful to carry out surveys on cryptic taxa such as nocturnal fauna 79 

(Delport, Kemp, & Ferguson, 2002; Newson, Evans, & Gillings, 2015; Jeliazkov et al., 2016), 80 

and to monitor pristine habitats which are otherwise difficult to access and survey by other 81 

approaches (Gasc, Sueur, Pavoine, Pellens, & Grandcolas, 2013). PAM is also mobilized in 82 



citizen science programs, for which it is an efficient tool for the implementation of large-scale 83 

biodiversity monitoring (Newson et al., 2015; Jeliazkov et al., 2016; Kerbiriou, Azam, et al., 84 

2018; Penone, Kerbiriou, Julien, Marmet, & Le Viol, 2018).  85 

Despite rapid and exciting developments in acoustic monitoring, there have been substantial 86 

challenges in developing this technology into a cost-effective, scalable monitoring tool. 87 

Perhaps the biggest and most complex issue facing acoustic monitoring has been the objective 88 

and statistical taxonomic identification of bioacoustic signals. With the arrival on the market 89 

of a new generation of affordable acoustic recorders, which allow for continuous recordings 90 

over several days, such volumes of acoustic data cannot be processed manually (Newson et 91 

al., 2015; Bas, Bas, & Julien, 2017).  92 

In parallel to the development of PAM, several methods for detecting sound events, extracting 93 

numerous features, and automatically identifying species have been developed (Parsons & 94 

Jones, 2000; Britzke, Duchamp, Murray, Swihart, & Robbins, 2011; Adams et al., 2012; Bas 95 

et al., 2017; Ovaskainen, Moliterno de Camargo, & Somervuo, 2018). However, automated 96 

identification software have been criticised due to significant error rates, suggesting cautious 97 

and limited use (Russo & Voigt, 2016; Rydell, Nyman, Eklöf, Jones, & Russo, 2017), which 98 

heavily reduces the advantages of automated algorithms. Nonetheless, authors have 99 

highlighted the potential for combining automated classifiers with manual validation to help 100 

overcome error risks associated with automated identification, and so saving a huge amount 101 

of work in reducing the extent of manual checking required (López-Baucells et al., 2019). 102 

Moreover, most available software provides confidence scores associated with each 103 

automated identification in the form of probabilities or other numerical indexes (Obrist, 104 

Boesch, & Fluckiger, 2004; Waters & Barlow, 2013), which unlike the error rate is not 105 

dependent of the relative abundance of the species. The confidence scores provided by 106 

software aim to be an indicator of the true success probabilities of automated identifications, 107 



and are strongly species-dependant. There is thus an implicit relationship between the error 108 

rate and confidence scores and most software manuals advocate using confidence thresholds 109 

below which data should be discarded to minimise the error rate, e.g. Tadarida (Bas et al., 110 

2017), SonoChiro (Biotope, 2013) and BatClassify (Scott & Altringham, 2017). Regardless of 111 

the software used, the relationship between the error rate and confidence scores is an 112 

important part of the automated identification performance, yet it has never been directly 113 

assessed in previous methodological studies (Fritsch & Bruckner 2014; Rydell et al. 2017). 114 

Consequently, the level at which confidence thresholds should be set is unclear to most users, 115 

which has limited the use of automated identification in ecological studies. A threshold that is 116 

too cautious could lead to high generated false negative rates (i.e. by discarding a large 117 

proportion of data containing true positives below a given confidence score), which could 118 

result in a lack of statistical power. In contrast, a threshold that is not cautious enough could 119 

lead to high false positive rates (i.e. fails in automated identifications), particularly through 120 

the inclusion of records of species which are most similar acoustically, which involve 121 

statistical noise. Moreover, errors (generated false negative rates or false positive rates) could 122 

also be spatially clustered by environmental conditions that alter the quality of the signal 123 

(Denzinger & Schnitzler, 2013), which potentially induce statistical biases in relation with 124 

confidence measure provided by the software. False positive rates and generated false 125 

negative rates thus induce different caveats for which there is not a unique way to set 126 

confidence thresholds. Given the wide range of taxa for which PAM is increasingly being 127 

used, there is a need to account for these caveats using a method generalizable to any 128 

acoustically surveyed taxa. 129 

In this study we propose a method for assessing the effect of using confidence thresholds in 130 

acoustic automated identification on the detection of species responses to environmental 131 

variables. This method can be applied to any acoustic taxa for which automated identification 132 



software and acoustic signature knowledges are already developed, and where confidence 133 

scores are provided. Taking the case of bats, we first manually checked a representative 134 

sample of a large number of bat recordings identified using an automated identification 135 

software (Tadarida; Bas et al., 2017) commonly used in bat studies (Barré, Le Viol, Julliard, 136 

Chiron, & Kerbiriou, 2017; Barré, Le Viol, Bas, Julliard, & Kerbiriou, 2018; Claireau et al., 137 

2018; Pinaud, Claireau, Leuchtmann, & Kerbiriou, 2018; Pauwels et al., 2019). Using this 138 

sample, we then modelled the identification success for 10 species and 2 species groups of 139 

bats in relation to the confidence score provided by the software. This allowed us to define the 140 

minimum confidence score needed to ensure a given False Positive Tolerance (FPT). We then 141 

examined how setting different FPTs, from 50% to 10% maximum false positive rate, above 142 

which data are discarded, may affect a statistical inference by repeating a large-scale analysis 143 

of the response of species and species groups activity to five environmental variables, and 144 

looking at consistency of the results among FPTs.  145 

146 



Materials and methods 147 

 148 

Bat survey 149 

We used an acoustic dataset collected previously to study the effect of wind turbines on bat 150 

activity (Barré et al., 2018) because it was based on a random sampling design with high 151 

variability and no confounding effects in terms of environmental variables (Fig. S1). The 152 

following environmental variables are known as good predictors of bat activity: type of site 153 

i.e., hedgerow vs. open area habitat located at an average of 86 m (Standard Deviation: 70 m) 154 

away from any hedgerow (Verboom & Huitema, 1997; Lacoeuilhe, Machon, Julien, & 155 

Kerbiriou, 2016), the distance in meters to a forest (mean=700, SD=506; Boughey et al. 2011; 156 

Frey-Ehrenbold et al. 2013), the distance to an urban area (mean=335, SD=170; Azam et al. 157 

2016), the distance to a wetland (mean=579, SD=363; Sirami et al. 2013; Santos et al. 2013) 158 

and the total length of hedgerows in meters within a 1000 m radius (mean=3439, SD=1622; 159 

Verboom & Huitema, 1997; Lacoeuilhe et al., 2016). The latter four variables presented 160 

important environmental variability, and a similar gradient between sites located close to 161 

hedgerows and those in open areas (Fig. S1).  162 

Bats were recorded at 337 sites (one complete night per site, with 207 sites close to 163 

hedgerows and 130 sites in open area) in northwest France (Fig. 1) dominated by agriculture 164 

(82%) and forest (11%) areas. Recordings were carried out over 23 complete nights, recording 165 

from 30 minutes before sunset until 30 minutes after sunrise, from the 7th of September to the 166 

8th of October 2016.  167 

We simultaneously sampled 11-15 survey sites per night separated by at least 300 m (Fig.1). 168 

Echolocation calls were recorded using one automatic acoustic recorder per site survey (Song 169 

Meter SM2Bat+, Wildlife Acoustics Inc., Concord, MA, USA). The detectors automatically 170 

recorded all ultrasounds using predefined settings as recommended by the French bat 171 



monitoring program “Vigie-Chiro” (trigger level set to 6 dB Signal Noise Ratio and set to 172 

continue recording until 2.0 seconds after last trigger event, 384 kHz sampling rate; for 173 

further details see Azam et al., 2018; Barré et al., 2018; Claireau et al., 2018; Pauwels et al., 174 

2019). Whilst continuous recording is typically used for monitoring birds and several other 175 

species groups, for bats which echolocate at high frequency, and so produce heavy sound 176 

files, it is necessary to use triggered recording, to be able to manage and store the data and 177 

process the recordings. In addition, these trigger settings are very sensitive (6 dB of signal-to-178 

noise ratio) and detect the majority of bats which would have been detected if recording were 179 

continuous. As recommended by Millon et al. (2015) and Kerbiriou et al. (2018), we retained 180 

one bat pass per five-second interval, which is the mean duration of all bat species passes. 181 

 182 

Step 1: manual checking of a subset of the data 183 

The identification process performed in the first step was divided in two sub-steps (Fig. 1). In 184 

the first sub-step, echolocation calls were detected and classified to the closest taxonomic 185 

level using the Tadarida software (Bas et al., 2017) (hereafter named primary identification), 186 

which assigns a species and confidence score (continuous values between 0 and 1) to each 187 

recorded bat pass (212 347 in total). In the second sub-step, we selected a representative 188 

sample by a stratified random sampling of 25 primary identifications for each 0.1 class of 189 

confidence score (i.e. 10 classes in total) for each species and groups for manual checking, 190 

except for Rhinolophus species for which all identifications were selected due to their low 191 

number. We performed a double manual checking (KB and YB) on this stratified random 192 

selection of 1 910 bat passes (hereafter names checked dataset or manual checking), using 193 

BatSound© software (Pettersson Elektronik AB, Sweden) and Syrinx software (John Burt, 194 

Seattle, WA, USA) for 10 species and two groups (Myotis spp. and Plecotus spp.) (Table 1), 195 

by visual inspection and measurement of discriminating characteristics of calls on 196 



spectrograms (Barataud, 2015). Species groups were used for genera within which species are 197 

difficult to identify from one another, except for one species of Myotis spp., Myotis nattereri, 198 

for which echolocation calls are very characteristic (Obrist et al., 2004; Barataud, 2015). We 199 

made the choice to separate two species which are commonly grouped because of their 200 

frequency overlap: Pipistrellus kuhlii and Pipistrellus nathusii. We manually separated these 201 

species by combining measurements of energy peak, final frequency, call duration, bandwidth 202 

and time between calls as discussed in Barataud (2015). In relatively open habitats like in our 203 

study, P. nathusii emit very commonly very short bandwidth, and higher frequencies than P. 204 

kuhlii when emitting such kind of calls (i.e. quasi-constant frequency). P. kuhlii very often use 205 

a short frequency modulation at the end of the call and this is very rare in P. nathusii calls. 206 

Finally, we randomly checked 500 sound files identified as not containing bats to assess 207 

missed bat events. 208 

We assumed that manual checking provided the most conservative species assignations, 209 

which allowed us to accurately assign to each primary identification a true positive (i.e. a 210 

correct automated identification of the species), a false positive (i.e. a fail in automated 211 

identification of the species) or a false negative (i.e. defined in this study as a pass of the 212 

species automatically identified as another one) in the checked dataset.  213 

The efficiency of the automated identification may be spatially heterogeneous due to habitat 214 

structure (Denzinger & Schnitzler, 2013). We tested for the dependence of false positives (i.e. 215 

a binomial response variable: failure or success of the automated identification) and false 216 

negative ones (i.e. a binomial response variable: automatically identified as another species or 217 

correct identification) on the five tested environmental variables. We performed generalized 218 

linear mixed models (binomial response variables; logit link) with the environmental variables 219 

as explanatory variables, using date as random effect to control for inter-night variations. 220 

 221 



Step 2: false positive rate modelling  222 

The success probability, defined as the success or failure of the automated species 223 

identification, was used as the response variable to perform generalized linear models 224 

(binomial response variable; logit link) using the confidence score provided by the automated 225 

identification software as the explanatory variable (see step 2 in Fig.1; Fig. 2). Using these 226 

models, we could predict the confidence score corresponding to a given success probability of 227 

the automated identification. Thus, predicted confidence score constitutes the minimum one 228 

required to ensure a given False Positive Tolerance (FPT, i.e. one minus the success 229 

probability) in the whole dataset (i.e. including all checked and non-checked primary 230 

identifications; Fig.1; Table 2). We selected all FPTs starting from the highest acceptable one 231 

(0.5, i.e. a maximum false positive rate of 50%, which expected to give an approximately 232 

balanced number of false negatives and false positives) to the lower one (0.1, i.e. a maximum 233 

false positive rate of 10%) by 0.1 classes (i.e. 0.5, 0.4, 0.3, 0.2 and 0.1 FPTs).  234 

 235 

Step 3: data thresholding and consistency of model outputs regarding false positive rate 236 

After predicting the required confidence score to ensure a given FPT in the automated 237 

identification, we filtered the whole dataset on the five predicted confidence scores 238 

corresponding to the five FPT (see step 3 in Fig.1; Fig. 3; Table 2). This allowed us to 239 

calculate for each FPT in the whole dataset, the remaining number of bat passes, occurrences, 240 

and an estimation of false positive rate and generated false negative rate by reducing the FPT 241 

(Table 2). In order to assess the trade-off between false positive rates and generated false 242 

negative rates generated by reducing FPT, for each FPT, we estimated for the whole dataset 243 

the false positive rate (i.e. incorrect primary identifications) and generated false negative rate 244 

(i.e. as a consequence of discarding true positives because of reducing FPT) from equations 245 

used to model the false positive rate in step 2. For each bat pass BP of a given species S, we 246 



first computed the probability of there being a true positive (TP, equation 1) and a false 247 

positive (FP, equation 2) as follows: 248 

 Eq. 1 249 

 250 

 Eq. 2 251 

where a corresponds to the estimated parameter from the logistic regression between manual 252 

checking (i.e. the response variable: success/fail in automated identification; step 2 in Fig. 1, 253 

Fig. 2) with the confidence score provided by the software (i.e. the explanatory variable), x is 254 

the confidence score of the bat pass provided by the automated identification software and b is 255 

the intercept of the logistic regression (Fig. S2). 256 

This allowed us to estimate the generated false negative rate (FNR, equation 3) for a given 257 

species S and a given threshold of false positive tolerance FPT in the whole dataset, by 258 

averaging all probabilities to have a true positive TP from bat passes BP discarded by 259 

reducing FPT (i.e. between the targeted FPT and the maximum FPT of 1) as follows: 260 

              Eq. 3 261 

where n is the total number of bat passes BP of the species S. 262 

We were also able to estimate the false positive rate (FPR, equation 4) for a given species S 263 

and a given threshold of false positive tolerance FPT in the whole dataset, by averaging 264 

probabilities to have a false positive FP from bat passes BP between the minimum FPT (i.e. 265 

zero) and the targeted FPT as follows: 266 

              Eq. 4 267 

where n is the number of bat passes BP between the minimum FPT (i.e. zero tolerance of false 268 

positives) and the targeted FPT of a given species S.  269 

TP
BP,S 

 

FP
BP,S 

 



Finally, we evaluated the automated classification efficiency by drawing Receiver Operating 270 

Characteristic (ROC) curves between confidence scores of presences and absences of each 271 

species, and computing Area Under Curve (AUC) with the R package PRROC (Fig. S3). 272 

For each species and species groups, we then performed Generalized Linear Mixed Models 273 

(GLMM, R package lme4) using as a response variable the number of bat passes filtered on 274 

one of the five FPTs or the raw number of primary identifications without thresholding (i.e. 275 

whole dataset) (six GLMMs in total performed on 0.5,0.4, 0.3, 0.2, 0.1 FPTs and on the whole 276 

dataset). Environmental variables were included as fixed effects, among which quantitative 277 

ones were scaled. According to the sampling design (i.e. 11-15 simultaneous recording sites 278 

per night), we included date as a random effect to control for inter-night variation in weather 279 

conditions and landscape context. We applied a Poisson error or a Negative binomial error 280 

distribution to GLMMs in order to minimize issues in the overdispersion ratio in models (i.e. 281 

as close as possible to 1; Zuur, Ieno, Walker, Saveliev, & Smith, 2009). All explanatory 282 

variables showed a Variance Inflation Factor value under 1.5, meaning there was no strong 283 

evidence of multicollinearity (Chatterjee & Hadi, 2006). 284 

We then compared the estimates of each environmental variable among fitted models to check 285 

the consistency in the response of bats to environmental variables in relation to the different 286 

FPTs. 287 

288 



Results 289 

 290 

Automated identification and manual checking  291 

Over the 23 nights sampled, among the 212 347 bat passes recorded, 167 504 (79%) were 292 

assigned to Pipistrellus pipistrellus, 28 589 (13 %) to Pipistrellus kuhlii, 6 430 (3%) to Myotis 293 

spp. and 5 835 (3%) to Barbastella barbastellus (Table 1). A stratified random sample of 294 

1 910 bat passes were manually checked (Table 1). False positive rates varied a lot among 295 

species, from 0.0% for Rhinolophus ferrumequinum to 69.4% for Nyctalus noctula (Table 1). 296 

The largest number of errors detected in manual checks was for N. noctula confused with 297 

social calls of P. pipistrellus (only one location involved) and non-bat noises, and. calls of 298 

Pipistrellus nathusii were confused with P. kuhlii, P. pipistrellus and non-bat noises (Table 299 

S1). Concerning the random checking of 500 sound files identified as non-bat by the software, 300 

we found that three (0.6%) contained bat events. 301 

 302 

Checking for environmental biases in identification errors 303 

Using the dataset on which manual checks were carried out, we investigated a potential 304 

variation in automated identification errors due the environmental variables. The probability 305 

of these being false positives was significantly affected by only one environmental variable 306 

(habitat type of survey sites: hedgerow vs. open area) and for one species only, N. noctula (P 307 

< 0.001; Table S2). All other environmental variables were not found to affect the probability 308 

of there being false negatives for any species (Table S3). 309 

 310 

False positive rate modelling 311 

Success and failure in automated identification assessed through manual checking were 312 

modelled in relation to the confidence score provided by the software, allowing us to predict 313 



the required confidence score to ensure a given FPT (Fig. 2). Confidence scores required to 314 

ensure FPTs (i.e. 0.5, 0.4, 0.3, 0.2 and 0.1) did not vary much for species such as B. 315 

barbastellus (0.12-0.20), Eptesicus serotinus (0.18-0.29) and Rhinolophus hipposideros (0.39-316 

0.45), but more for others, e.g. Nyctalus leisleri (0.29-0.59), P. kuhlii (0.16-0.44) and Plecotus 317 

ssp. (0.18-0.36) (Table 2). In addition, these FPTs confidence scores were low for B. 318 

barbastellus, E. serotinus, P. kuhlii, Plecotus spp., Myotis spp., and higher for P. nathusii and 319 

N. noctula (Table 2).   320 

For P. pipistrellus errors were rare thus the lowest possible confidence score (0.096) 321 

corresponded to a FPT lower than 0.2. In contrast, for P. nathusii, the highest possible 322 

confidence score (0.971) corresponded to a FPT greater than 0.1, i.e. more than one in ten 323 

chance of failure (Table 2). Moreover, no errors were found in the sample for R. 324 

ferrumequinum, which prevented the modelling of error rate for this species (Table 2).  325 

Low FPTs (i.e. removing data below a high confidence score) often led to an important 326 

decrease in activity measures (Table 2). For example, Myotis spp. and N. leisleri activity 327 

decreased by 27.8 % and 82.1 %, respectively, between 0.5 FPT and 0.1 FPT (Table 2). 328 

However, such high decreases in activity resulted in a little decrease in occurrence for these 329 

species: 6.7% for the Myotis spp. group and 10.7% for N. leisleri (Table 2). For other species, 330 

the activity and occurrence were more stable across FPTs, including for B. barbastellus, E. 331 

serotinus, P. kuhlii, Plecotus spp. and R. hipposideros (Table 2). 332 

At the highest FPT (0.5), the estimated false positive rate was high (>21%) for three species 333 

(N. leisleri, N. noctula and P. nathusii), and very low (<5%) for six species (B. barbastellus, 334 

E. serotinus, P. kuhlii, P. pipistrellus, R. ferrumequinum and R. hipposideros) (Table 2). 335 

However, at the lowest FPT (0.1), all species showed an estimated false positive rate under 336 

0.05, except for N. leisleri (0.08) and P. nathusii for which no data satisfied a FPT lower than 337 

0.1 (Table 2). 338 



Estimating the generated false negative rate (i.e. true positives discarded by reducing the FPT) 339 

was very low (<4%) at 0.5 FPT for most species except N. leisleri (0.19) and P. nathusii 340 

(0.28) (Table 2). This rate became more important at 0.1 FPT, with null values for P. 341 

pipistrellus and R. ferrumequinum; with very low values (<10%) for five species (B. 342 

barbastellus, E. serotinus, N. noctula, P. kuhlii, and R. hipposideros); and with high values 343 

for N. leisleri (0.425) and P. nathusii (0.377) (Table 2). The average AUC from ROC curves 344 

was 0.93 (range: 0.73-1.00; Fig. S3). 345 

 346 

Consistency of activity patterns across error rate tolerance gradient 347 

To study the influence of confidence score thresholding according to FPTs below which data 348 

were discarded (i.e. changes in amount of data, species occurrence, estimated false positive 349 

rate and estimated rate of generated false negative), modelling of the bat response (i.e. the 350 

number of bat passes according to selected FPT) to environmental variables was performed at 351 

all FPTs. 352 

When comparing model outputs from naive (i.e. raw data) to robust analyses (i.e. FPTs), a 353 

loss or a gain of significance occurred for the open areas vs. hedgerows variable for N. 354 

leisleri, the distance to forest for Myotis spp. and N. leisleri, the length of hedgerows for N. 355 

leisleri and the distance to urban areas for N. noctula (Table 3). In addition, for significant 356 

variables, an inversion of the direction of the estimate for the open areas vs. hedgerows 357 

variable occurred for N. noctula and P. nathusii (Table 3). In all other cases, no changes were 358 

found (Table 3). 359 

However, we did not detect any major changes in model outputs between the 0.5, 0.4, 0.3, 0.2 360 

and 0.1 FPTs for which response estimates and standard errors remained highly stable (Table 361 

3). In only two cases, we detected a loss of significance: for N. noctula with FPTs lower than 362 

0.2 and 0.3 for the distance to forests and the length of hedgerows variables, respectively 363 



(Table 3). However, for this species, the open areas vs. hedgerows variable remained 364 

significant and highly stable at all FPTs (Table 3). 365 

All species had at least one significant habitat variable response irrespective of the used FPTs, 366 

except N. leisleri. Hedgerows had a significantly higher bat activity (i.e. number of bat 367 

passes) associated with them than open areas for seven species or groups (B. barbastellus, M. 368 

nattereri, Myotis spp., P. kuhlii, P. pipistrellus, Plecotus spp. and R. hipposideros) and a 369 

significantly lower bat activity for two species (N. noctula and P. nathusii) (Table 3). We also 370 

found a significant negative relationship between bat activity and i) the distance to urban 371 

areas variable for two species or groups (E. serotinus and Plecotus spp.; Table 3); ii) with the 372 

distance to forest variable for two species (N. noctula and R. ferrumequinum; Table 3); iii) 373 

with the distance to wetlands variable for R. ferrumequinum; and iv) with the length of 374 

hedgerows variable for N. noctula, P. pipistrellus and R. ferrumequinum (Table 3) but a 375 

significant positive relationship with the distance to wetlands variable for P. kuhlii (Table 3). 376 

377 



Discussion 378 

 379 

This study demonstrates that automated acoustic identification of bats, as well as by extension 380 

all other taxa acoustically identifiable by software, coupled with partial manual checking and 381 

false positive rate modelling (i.e. semi-automated identification; Newson et al. 2015), is a key 382 

tool for improving reliability of studies based on acoustic data. Indeed, robust ecological 383 

responses could be produced even in cases where false positive rates were so far considered 384 

too high (Rydell et al. 2017). This new and robust framework takes advantage of confidence 385 

scores provided by the automated identification software and its ability for distinguishing true 386 

positives and false positives (Fig. S3), controlling for False Positive Tolerances (FPTs), and 387 

checking for potential biases induced by identification errors.  388 

 389 

Using confidence thresholding 390 

Minimum confidence scores required to ensure a given FPT according to species exhibited 391 

low to moderate variation across the 0.5 to 0.1 FPTs (Table 2). To investigate the effect of the 392 

automated identification errors on bat activity patterns in relation with FPTs, we studied the 393 

response of bat activity to several environmental variables known to impact bats. Depending 394 

on species, the most significant responses to environmental variables were consistent with 395 

known patterns of bat activity: a negative effect of open areas vs. hedgerows and of 396 

decreasing length of hedgerows (Verboom & Huitema, 1997; Lacoeuilhe et al., 2016), of 397 

distance to forest (Boughey et al., 2011; Frey-Ehrenbold et al., 2013), to urban areas 398 

(Mckinney, 2005; Jung & Threlfall, 2016) and to distance to wetlands (Santos et al., 2013; 399 

Sirami et al., 2013).  400 

A comparison of the relationship between environmental variables and bat activity between 401 

using the raw data (i.e. using the whole dataset regardless of the confidence score) and FPTs -402 



selected data (i.e. removing data above defined FPT to minimize the false positive rate) 403 

showed some discrepancies. We sometimes found opposite significant responses, for example 404 

the effect of open areas vs. hedgerows on N. noctula and P. nathusii, when comparing results 405 

from raw data and FPTs (Table 3). This demonstrates that analyses conducted on raw 406 

automated identification data could be severely biased. In this respect, removing data above a 407 

0.5 FPT (i.e. removing data with a low success probability) is essential, in accordance with 408 

concerns expressed by Russo & Voigt (2016). 409 

Logically these biases due to false positives mostly seem to impact uncommon species which 410 

are acoustically similar to commoner ones. Here the most impacted species is P. nathusii 411 

which suffers from a high false positive rate due to the local abundance of P. kuhlii and P. 412 

pipistrellus (Tables 1 & 2). Consequently, an analysis conducted on raw automatically 413 

identified data for this species seems to be driven by the response of the two other Pipistrelles. 414 

 415 

Assessing robustness of ecological inferences 416 

We assessed the robustness of ecological inferences by studying the consistency of bat 417 

responses to environmental variables among FPTs. However, for P. nathusii it was not 418 

possible to ensure such a robustness due a lack of data from 0.4 FPT (Table 2). This 419 

framework thus showed that this was not possible to produce robust ecological inferences on 420 

this species due to a high false positive rate in this dataset. In addition, for N. noctula, we lost 421 

significance of the response to the distance to the forest and the length of hedgerows from 0.2 422 

and 0.3 FPTs respectively (Table 3). Such loss of significance could be linked to a high loss 423 

of bat passes and occurrences by reducing the FPTs, or linked to environmental biases 424 

affecting spatial distribution of false positive or generated false negative rates. Thus, given the 425 

uncertainty about the mechanism involved, it was also not possible to produce robust 426 



inferences for this species given high losses of bat passes and occurrence, and high estimated 427 

false positive rates by reducing the FPTs (Table 2). 428 

At the other end of the spectrum, the estimated false positive rate was always extremely low 429 

or even zero whatever the confidence score in the automated identification for P. pipistrellus 430 

and R. ferrumequinum (Table 1), thus not raising any problem of error risk. 431 

For all nine other species or species groups, 15 of the 18 significant responses to 432 

environmental variables were robust with a high stability of model outputs while reducing the 433 

FPT from 0.5 to 0.1 (Table 3). In addition, despite a decrease in bat activity measures due to 434 

thresholding at FPTs, the occurrence of species remained highly stable whilst retaining 435 

statistical power among FPTs. Our study thus demonstrates that using our approach many 436 

ecological inferences could be robust against identification errors. 437 

 438 

Survey recommendations and limitations 439 

This study proposes a cautious method to account for identification errors in acoustic surveys 440 

aimed at studying the response of bats in relation to environmental variables, such as 441 

anthropogenic pressures, without the need for exhaustive checking of recordings. 442 

The FPT of 0.5 is a threshold for which false negatives and false positives are expected to be 443 

approximately balanced. However, false positives are more likely to produce biases because 444 

their rate is strongly driven by the activity pattern of other species. In contrast, the FPT of 0.1 445 

minimises the false positive rate, but at the cost of losing potentially a lot of data, so a high 446 

generated false negative rate by discarding true positives (Table 2). Rather than looking for a 447 

possible optimal threshold, we recommend that researchers systematically check the 448 

consistency of responses for at least two significantly different thresholds (e.g. 0.5 and 0.1 449 

FPTs), in order to assess the robustness of the results and only going on to conclusive 450 

interpretation when these are consistent.  451 



A lack of consistency is most likely to occur for rare species with very low 452 

abundance/occurrence, and for uncommon species which are acoustically similar to 453 

commoner ones such as P. nathusii here which is acoustically similar to P. kuhlii (Obrist et 454 

al., 2004). The efficiency of the automated identification of P. nathusii and N. lesleiri was 455 

lowest (AUC of 0.73 for both; Fig. S3) due to particular context of the study where these 456 

species were much rarer than their acoustically closest relative (P. kuhlii and E. serotinus, 457 

respectively; Table 1). For these species, either systematic manual checking or an important 458 

improvement in automated identification efficiency is needed to conduct robust analyses. 459 

However, our framework of error rate modelling is already sufficient to effectively identify 460 

these problematic species and should prevent users of automated identification to draw 461 

conclusions that are not robust. In addition, another prerequisite for drawing robust 462 

conclusions from this framework is to ensure that error types (i.e. false negatives and false 463 

positives) are not correlated with the variables tested in the study. In our study case, we only 464 

detected one significant dependence for the open area vs. hedgerows for the false positives of 465 

N. noctula (Table S2). For this species, automated identification was more efficient (i.e. lower 466 

number of false positives) for survey sites located in open areas than close to hedgerows 467 

where calls are more difficult to identify due to frequency modulation (Obrist et al., 2004; 468 

Barataud, 2015). It is not surprising that the false positive rate of a rare species like N. noctula 469 

could be influenced by local habitat type because this variable is expected to have different 470 

effects on other species, and thus influence false positive rate through the relative density 471 

between N. noctula and other bat species. Thus, we expect a bias in the measure of activity 472 

towards open areas in this case. Hence, the significant positive response of this species to 473 

open areas compared to hedgerows should be considered unreliable to make any ecological 474 

inference (Table 3). 475 



This method can be applied to any ecological studies with standardized sampling but, of 476 

course, cannot help for surveys where no error can be tolerated, e.g. for producing species 477 

inventories for protected species, as required for environmental impact assessments (Russo & 478 

Voigt 2016). However, in this case, automated identification can still indicate what bat passes 479 

should be manually checked in order to identify species presence at the site scale, by selecting 480 

passes with the highest confidence scores, and thus saving time for the user. 481 

Finally, the proposed method can be applied to any acoustic taxa for which automated 482 

identification software are developed and where confidence scores are provided. A crucial 483 

advantage of this method is that manual checking of a relatively small subset of the dataset (< 484 

1% in this study) is sufficient to assess error rates associated with species identification. This 485 

is especially true given that checking all data is very time-consuming and virtually impossible 486 

for such a large dataset. 487 

488 
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Table 1. Total bat passes assigned to each species by the automated identification per 658 

confidence score classes, number of bat passes manually double checked and false positives 659 

noted (step 1 in Fig. 1). See Table S1 for species composition in false positives. 660 

Species 
Upper limits of confidence score classes of the automated identification Total 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  

Barbastella barbastellus            

 Total passes 3 52 144 242 297 671 940 1312 1596 578 5835 
 Checked passes 3 25 25 25 25 25 25 25 25 25 228 
 False positives 3 5 1 0 0 0 0 0 0 0 3.9 % 

Eptesicus serotinus            

 Total passes 1 55 102 149 268 461 218 79 10 0 1343 
 Checked passes 1 25 25 25 25 25 25 25 9 0 185 
 False positives 1 13 7 0 0 0 0 0 0 0 11.4 % 

Myotis nattereri            

 Total passes 9 166 211 223 225 411 269 180 247 47 1988 
 Checked passes 9 9 3 6 8 2 2 10 23 25 97 
 False positives 8 5 1 2 1 0 0 0 0 0 17.5 % 

Myotis spp            

 Total passes 20 534 815 770 701 1708 1132 445 258 47 6430 
 Checked passes 20 25 25 25 25 25 25 25 25 25 245 
 False positives 19 14 6 6 4 0 0 0 0 0 20.0 % 

Nyctalus leisleri            

 Total passes 3 47 41 33 11 8 9 1 0 0 153 
 Checked passes 3 25 25 25 11 8 9 1 0 0 107 
 False positives 2 16 14 13 4 0 0 0 0 0 45.8 % 

Nyctalus noctula            

 Total passes 0 113 110 82 24 43 16 6 1 0 395 
 Checked passes 0 25 25 25 24 25 16 6 1 0 147 
 False positives 0 25 23 24 23 7 0 0 0 0 69.4 % 

Pipistrellus kuhlii            

 Total passes 12 223 401 667 1142 4026 6654 10222 5240 2 28589 
 Checked passes 12 25 25 25 25 25 25 25 25 2 214 
 False positives 11 10 8 4 2 2 1 0 0 0 17.8 % 

Pipistrellus nathusii            

 Total passes 0 12 33 37 93 183 153 61 5 0 577 
 Checked passes 0 12 25 25 25 25 25 25 5 0 167 
 False positives 0 11 20 20 19 17 15 9 1 0 67.1 % 

Pipistrellus pipistrellus            

 Total passes 2 303 760 1636 3298 8311 14221 27205 83744 28024 167504 
 Checked passes 2 25 25 25 25 25 25 25 25 25 227 
 False positives 1 2 0 1 1 0 0 1 0 0 2.6 % 

Plecotus spp            

 Total passes 8 139 176 194 174 250 206 145 56 4 1352 
 Checked passes 8 30 26 25 28 25 25 25 25 4 221 
 False positives 5 19 8 2 1 1 0 0 0 0 16.3 % 

Rhinolophus ferrumequinum            

 Total passes 0 0 0 0 1 6 5 28 1 0 41 
 Checked passes 0 0 0 0 1 6 5 28 1 0 41 
 False positives 0 0 0 0 0 0 0 0 0 0 0.0 % 

Rhinolophus hipposideros            

 Total passes 0 1 1 10 8 16 26 62 4 0 128 
 Checked passes 0 1 1 10 8 16 26 62 4 0 128 
 False positives 0 1 1 7 1 0 0 0 0 0 7.8 % 

 661 



Table 2. Minimum confidence scores needed to ensure False Positive Tolerances (step 2 in 662 

Fig. 1), associated changes in the number of bat passes, the occurrence (presence rate among 663 

sites), the estimated false positive rate and the generated false negative rate estimated for the 664 

whole dataset (212 347 bat passes; step 3 in Fig. 1). 665 

Species 
False Positive Tolerance 

Raw data 0.5 0.4 0.3 0.2 0.1 
Barbastella barbastellus       

Confidence score / 0.119 0.133 0.148 0.167 0.195 
 No. of bat passes 5835 5828 5824 5822 5809 5787 
 Occurrences 0.694 0.694 0.694 0.694 0.694 0.694 
 Estimated false positive rate 0.003 0.002 0.002 0.002 0.001 0.001 

 Estimated false negative rate 0 <0.001 <0.001 0.001 0.003 0.006 

Eptesicus serotinus       

Confidence score / 0.180 0.200 0.221 0.246 0.285 
 No. of bat passes 1343 1297 1287 1273 1255 1205 
 Occurrences 0.373 0.339 0.336 0.333 0.324 0.312 
 Estimated false positive rate 0.044 0.022 0.019 0.015 0.012 0.006 

 Estimated false negative rate 0 0.011 0.016 0.023 0.031 0.065 

Myotis nattereri       

Confidence score / 0.229 0.271 0.317 0.373 0.458 
 No. of bat passes 1986 1759 1659 1562 1436 1239 
 Occurrences 0.688 0.648 0.624 0.609 0.578 0.529 
 Estimated false positive rate 0.136 0.081 0.064 0.049 0.034 0.021 

 Estimated false negative rate 0 0.036 0.059 0.087 0.132 0.199 

Myotis spp.        

 Confidence score / 0.212 0.250 0.291 0.341 0.416 
 No. of bat passes 6428 5783 5483 5135 4747 4173 
 Occurrences 0.798 0.792 0.786 0.774 0.765 0.716 
 Estimated false positive rate 0.145 0.092 0.073 0.054 0.038 0.024 

 Estimated false negative rate 0 0.036 0.062 0.099 0.145 0.219 

Nyctalus leisleri       

Confidence score / 0.286 0.342 0.402 0.476 0.587 
 No. of bat passes 153 67 43 28 22 12 
 Occurrences 0.211 0.138 0.104 0.070 0.055 0.031 
 Estimated false positive rate 0.502 0.305 0.222 0.149 0.115 0.075 

 Estimated false negative rate 0 0.193 0.279 0.337 0.370 0.425 

Nyctalus noctula       

Confidence score / 0.507 0.527 0.548 0.574 0.613 
 No. of bat passes 395 61 50 41 29 22 
 Occurrences 0.220 0.080 0.067 0.058 0.046 0.040 
 Estimated false positive rate 0.850 0.212 0.158 0.120 0.066 0.042 

 Estimated false negative rate 0 0.029 0.044 0.054 0.082 0.097 

Pipistrellus kuhlii       

Confidence score / 0.164 0.216 0.272 0.341 0.444 
 No. of bat passes 28588 28456 28305 28077 27737 26854 
 Occurrences 0.899 0.899 0.890 0.884 0.881 0.875 
 Estimated false positive rate 0.033 0.030 0.028 0.026 0.023 0.019 

 Estimated false negative rate 0 0.002 0.005 0.010 0.019 0.045 

Pipistrellus nathusii       

Confidence score / 0.668 0.756 0.853 0.971 / 
 No. of bat passes 577 101 18 0 0 0 
 Occurrences 0.404 0.116 0.031 0.000 0.000 0.000 
 Estimated false positive rate 0.623 0.437 0.370 / / / 

 Estimated false negative rate 0 0.275 0.355 0.377 / / 

Pipistrellus pipistrellus       

Confidence score / 0.000 0.000 0.000 0.000 0.096 
 No. of bat passes 167503 167503 167503 167503 167503 167502 
 Occurrences 0.954 0.954 0.954 0.954 0.954 0.954 
 Estimated false positive rate 0.007 0.007 0.007 0.007 0.007 0.007 

 Estimated false negative rate 0.000 0.000 0.000 0.000 0.000 0.000 

Plecotus spp.       

Confidence score / 0.184 0.217 0.253 0.298 0.364 
 No. of bat passes 1352 1229 1185 1129 1034 909 
 Occurrences 0.615 0.599 0.596 0.596 0.584 0.544 
 Estimated false positive rate 0.128 0.079 0.065 0.051 0.034 0.019 

 Estimated false negative rate 0 0.034 0.053 0.080 0.131 0.211 

Rhinolophus ferrumequinum       

Confidence score / 0.000 0.000 0.000 0.000 0.000 
 No. of bat passes 41 41 41 41 41 41 
 Occurrences 0.046 0.046 0.046 0.046 0.046 0.046 
 Estimated false positive rate 0.000 0.000 0.000 0.000 0.000 0.000 

 Estimated false negative rate 0.000 0.000 0.000 0.000 0.000 0.000 

Rhinolophus hipposideros       

Confidence score / 0.385 0.398 0.411 0.427 0.452 
 No. of bat passes 128 117 116 116 116 113 

 Occurrences 0.113 0.107 0.104 0.104 0.104 0.104 
 Estimated false positive rate 0.078 0.011 0.007 0.007 0.007 0.003 

 Estimated false negative rate 0 0.018 0.022 0.022 0.022 0.199 
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Table 3. Species response to environmental variables (estimates, standard errors and p-values) 667 

according to the False Positive Tolerances (*** P < 0.001, ** P < 0.01, * P < 0.05, . P < 0.1). 668 

Species 
Environmental 

variables 

False Positive Tolerance 

Raw data 0.5 0.4 0.3 0.2 0.1 

Barbastella 

barbastellus 

Open areas vs. hedgerows -2.81±0.24 *** -2.81±0.24 *** -2.81±0.24 *** -2.81±0.24 *** -2.81±0.24 *** -2.81±0.24 *** 

Dist. to forest 0.08±0.12  0.08±0.13  0.08±0.13  0.08±0.13  0.08±0.13  0.08±0.13  

  Dist. to wetland -0.03±0.12  -0.03±0.12  -0.03±0.12  -0.03±0.12  -0.03±0.12  -0.04±0.12  

  Dist. to urban 0.01±0.1  0.01±0.1  0.01±0.1  0.01±0.1  0.01±0.1  0.02±0.1  

  Length of hedgerows 0.17±0.12  0.17±0.12  0.17±0.12  0.17±0.12  0.17±0.12  0.17±0.12  

Eptesicus 

serotinus 

Open areas vs. hedgerows -0.57±0.38  -0.43±0.4  -0.44±0.4  -0.45±0.41  -0.43±0.42  -0.35±0.42  

Dist. to forest -0.07±0.23  -0.15±0.24  -0.15±0.25  -0.16±0.25  -0.15±0.25  -0.13±0.26  

  Dist. to wetland 0.08±0.19  0.12±0.2  0.12±0.2  0.12±0.2  0.12±0.21  0.08±0.21  

  Dist. to urban -0.7±0.19 *** -0.8±0.21 *** -0.79±0.21 *** -0.78±0.21 *** -0.77±0.21 *** -0.77±0.22 *** 

  Length of hedgerows 0.2±0.23  0.2±0.24  0.21±0.24  0.21±0.24  0.19±0.25  0.16±0.25  

Myotis 

nattereri 

Open areas vs. hedgerows -1.16±0.21 *** -1.14±0.22 *** -1.12±0.23 *** -1.05±0.23 *** -1.01±0.24 *** -1.03±0.27 *** 

Dist. to forest 0.16±0.13  0.13±0.13  0.14±0.13  0.15±0.14  0.1±0.14  0.11±0.15  

  Dist. to wetland 0.17±0.11  0.21±0.12 . 0.23±0.12 . 0.24±0.12 . 0.22±0.13 . 0.21±0.13  

  Dist. to urban 0.07±0.1  0.08±0.11  0.09±0.11  0.11±0.12  0.11±0.12  0.13±0.13  

  Length of hedgerows 0.18±0.12  0.22±0.13 . 0.24±0.13 . 0.27±0.14 . 0.32±0.14 * 0.3±0.16 . 

Myotis spp 

Open areas vs. hedgerows -1.66±0.19 *** -1.64±0.19 *** -1.6±0.19 *** -1.55±0.19 *** -1.54±0.19 *** -1.61±0.26 *** 

Dist. to forest 0.24±0.12 * 0.22±0.12 . 0.22±0.12 . 0.22±0.12 . 0.22±0.13 . 0.20±0.13 

  Dist. to wetland 0.1±0.1  0.11±0.11  0.1±0.11  0.11±0.11  0.1±0.11  0.10±0.11 

  Dist. to urban -0.07±0.09  -0.08±0.09  -0.08±0.1  -0.06±0.1  -0.05±0.1  -0.03±0.1  

  Length of hedgerows 0.13±0.12  0.15±0.12  0.15±0.12  0.17±0.12  0.18±0.12  0.21±0.13 

Nyctalus 

leisleri 

Open areas vs. hedgerows -0.8±0.22 *** -0.26±0.29  -0.23±0.35  0.43±0.4  0.69±0.45  1.1±0.64  

Dist. to forest 0.34±0.13 ** 0.16±0.17  0.21±0.21  0.08±0.26  0.14±0.28  0.49±0.35  

  Dist. to wetland 0.07±0.1  -0.09±0.15  -0.02±0.19  -0.12±0.26  -0.21±0.3  -0.17±0.42  

  Dist. to urban -0.1±0.1  -0.19±0.15  -0.01±0.18  0.08±0.23  0.23±0.26  0.43±0.35  

  Length of hedgerows 0.35±0.12 ** 0.23±0.16  0.23±0.21  0.27±0.25  0.28±0.29  0.22±0.41  

Nyctalus 

noctula 

Open areas vs. hedgerows -1.19±0.17 *** 1.46±0.31 *** 1.7±0.36 *** 1.83±0.4 *** 1.37±0.44 ** 1.28±0.49 * 

Dist. to forest -0.55±0.11 *** -0.68±0.23 ** -0.66±0.26 * -0.7±0.29 * -0.26±0.32  -0.12±0.35  

  Dist. to wetland -0.07±0.06  0.02±0.18  0.16±0.21  0.25±0.24  0.3±0.27  0.34±0.34  

  Dist. to urban 0.25±0.07 *** -0.07±0.18  -0.1±0.21  -0.12±0.23  -0.01±0.25  -0.04±0.29  

  Length of hedgerows 0.34±0.08 *** 0.43±0.21 * 0.49±0.25 * 0.52±0.28 . 0.16±0.31  -0.03±0.36  

Pipistrellus 

kuhlii 

Open areas vs. Hedgerows -1.98±0.26 *** -1.98±0.26 *** -1.98±0.27 *** -1.98±0.27 *** -1.98±0.27 *** -1.98±0.27 *** 

Dist. to forest 0.09±0.13  0.09±0.13  0.09±0.13  0.09±0.14  0.09±0.14  0.1±0.14  

  Dist. to wetland 0.25±0.13 * 0.25±0.13 * 0.26±0.13 * 0.25±0.13* 0.26±0.13* 0.26±0.13* 

  Dist. to urban 0.07±0.13  0.07±0.13  0.07±0.13  0.08±0.13  0.08±0.13  0.08±0.13  

  Length of hedgerows 0.07±0.15  0.06±0.15  0.06±0.15  0.06±0.15  0.06±0.15  0.06±0.15  

Pipistrellus 

nathusii 

Open areas vs. Hedgerows -0.37±0.24  1.02±0.38 ** 2.57±0.84 **  /  /  / 

Dist. to forest 0.1±0.16  0.28±0.23  0.81±0.46 .  /  /  / 

  Dist. to wetland 0.06±0.13  0.02±0.2  0.53±0.42   /  /  / 

  Dist. to urban -0.05±0.13  0.09±0.21  0±0.44   /  /  / 

  Length of hedgerows 0.11±0.16  0.42±0.24 . 0.88±0.54   /  /  / 

Pipistrellus 

pipistrellus 

Open areas vs. Hedgerows -2.87±0.19 *** -2.87±0.19 *** -2.87±0.19 *** -2.87±0.19 *** -2.87±0.19 *** -2.87±0.19 *** 

Dist. to forest 0.13±0.13  0.13±0.13  0.13±0.13  0.13±0.13  0.13±0.13  0.13±0.13  

  Dist. to wetland 0.04±0.11  0.04±0.11  0.04±0.11  0.04±0.11  0.04±0.11  0.04±0.11  

  Dist. to urban -0.13±0.1  -0.13±0.1  -0.13±0.1  -0.13±0.1  -0.13±0.1  -0.13±0.1  

  Length of hedgerows 0.35±0.12 ** 0.35±0.12 ** 0.35±0.12 ** 0.35±0.12 ** 0.35±0.12 ** 0.35±0.12 ** 

Plecotus spp. 
Open areas vs. Hedgerows -0.91±0.19 *** -0.85±0.19 *** -0.87±0.19 *** -0.87±0.19 *** -0.85±0.19 *** -0.79±0.2 *** 

Dist. to forest 0.08±0.12  0.1±0.12  0.11±0.12  0.1±0.12  0.09±0.12  0.08±0.13  

  Dist. to wetland -0.16±0.11  -0.14±0.11  -0.15±0.11  -0.15±0.11  -0.14±0.11  -0.17±0.12  

  Dist. to urban -0.25±0.1 ** -0.25±0.1 * -0.26±0.1 ** -0.25±0.1 ** -0.25±0.1 * -0.23±0.1 * 

  Length of hedgerows 0.1±0.12  0.09±0.12  0.09±0.12  0.08±0.12  0.11±0.12  0.11±0.13  

Rhinolophus 

ferrumequinum 

Open areas vs. Hedgerows 0.26±0.39  0.26±0.39  0.26±0.39  0.26±0.39  0.26±0.39  0.26±0.39  

Dist. to forest 0.74±0.25 ** 0.74±0.25 ** 0.74±0.25 ** 0.74±0.25 ** 0.74±0.25 ** 0.74±0.25 ** 

  Dist. to wetland -1.2±0.29 *** -1.20±0.29 *** -1.20±0.29 *** -1.20±0.29 *** -1.20±0.29 *** -1.20±0.29 *** 

  Dist. to urban -0.21±0.26  -0.21±0.26  -0.21±0.26  -0.21±0.26  -0.21±0.26  -0.21±0.26  

  Length of hedgerows 0.83±0.29 ** 0.83±0.29 ** 0.83±0.29 ** 0.83±0.29 ** 0.83±0.29 ** 0.83±0.29 ** 

Rhinolophus 

hipposideros 

Open areas vs. Hedgerows -3.08±0.74 *** -2.92±0.73 *** -2.92±0.74 *** -2.92±0.74 *** -2.92±0.74 *** -2.89±0.73 *** 

Dist. to forest 0.09±0.3  -0.47±0.36  -0.5±0.37  -0.5±0.37  -0.5±0.37  -0.51±0.36  

  Dist. to wetland -0.33±0.26  -0.45±0.26 . -0.49±0.27 . -0.49±0.27 . -0.49±0.27 . -0.46±0.28 . 

  Dist. to urban -0.18±0.26  -0.17±0.26  -0.14±0.27  -0.14±0.27  -0.14±0.27  -0.15±0.27  

  
Length of hedgerows 0.03±0.3  0.06±0.3  0.07±0.3  0.07±0.3  0.07±0.3  0.08±0.3  
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Fig. 1. Schematic and chronological representation of the steps used to study the relationship 670 

between automated identification errors in acoustic data and the detected relationship between 671 

bat activity and environmental variables. 672 

 673 



Fig. 2. Logistic regressions between the success probability and the confidence score of the 674 

automated identification. The success probability was predicted from a subset manually 675 

checked assigning a success or a failure in automated identifications. Horizontal dotted lines 676 

show success probabilities in automated identification used for thresholding (i.e. False 677 

Positive Tolerances: 0.5, 0.4, 0.3, 0.2 and 0.1) to remove data in the total dataset below the 678 

corresponding confidence scores (vertical lines). 679 

680 



Fig. 3. Number of bat passes in the total dataset according to confidence scores provided by 681 

the automated identification. Vertical lines show the threshold below which data were 682 

removed to ensure a given False Positive Tolerance (from black to grey: 0.5, 0.4, 0.3, 0.2 and 683 

0.1).  684 
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