
HAL Id: hal-02914535
https://hal.science/hal-02914535

Submitted on 3 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

PyR@TE 3
Lohan Sartore, Ingo Schienbein

To cite this version:
Lohan Sartore, Ingo Schienbein. PyR@TE 3. Comput.Phys.Commun., 2021, 261, pp.107819.
�10.1016/j.cpc.2020.107819�. �hal-02914535�

https://hal.science/hal-02914535
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

PyR@TE 3

Lohan Sartorea,∗, Ingo Schienbeina

aLaboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, 53 Avenue des
Martyrs, 38026 Grenoble, France

Abstract

We present a new version of PyR@TE, a Python tool for the computation of renormalization
group equations for general, non-supersymmetric gauge theories. Its new core relies on a recent
paper by Poole & Thomsen [1] to compute the β-functions. In this framework, gauge kinetic
mixing is naturally implemented, and the Weyl consistency relations between gauge, quartic and
Yukawa couplings are automatically satisfied. One of the main new features is the possibility for
the user to compute the gauge coupling β-functions up to the three-loop order. Large parts of the
PyR@TE code have been rewritten and improved, including the group theory module PyLie. As
a results, the overall performance in terms of computation speed was drastically improved and
the model file is more flexible and user-friendly.

Keywords: Renormalization group equations, quantum field theory, running coupling
constants, model building, physics beyond the Standard Model

NEW VERSION PROGRAM SUMMARY

Program Title: PyR@TE 3
Licensing provisions: GPLv3
Programming language: Python 3
Journal reference of previous version: PyR@TE [1], PyR@TE 2 [2]
Does the new version supersede the previous version?: Yes.
Reasons for new version: The software was essentially rewritten and new functionalities were added. The
performance in terms of computation speed was improved by a factor of 100 to 10000 compared to the
previous version. The code now relies on Python 3 instead of the deprecated Python 2.
Summary of revisions: The core of the software was rewritten, based on a new formalism. One of the major
new features is the possibility of computing the 3-loop RGEs for gauge couplings. The structure and the
syntax of the model file were enhanced. The output of the software was improved.
Nature of problem : Computing the renormalization group equations for any renormalizable, 4-dimensional,
non-supersymmetric quantum field theory.
Solution method : Group theory, tensor algebra
[1] F. Lyonnet, I. Schienbein, F. Staub, A. Wingerter, PyR@TE: Renormalization group equations for general gauge

theories 185 (3) 1130–1152. doi:10.1016/j.cpc.2013.12.002.
[2] F. Lyonnet, I. Schienbein, PyR@TE 2: A Python tool for computing RGEs at two-loop 213 181–196.

doi:10.1016/j.cpc.2016.12.003.

∗Corresponding author.
Email addresses: sartore@lpsc.in2p3.fr (Lohan Sartore), schien@lpsc.in2p3.fr (Ingo Schienbein)

Preprint submitted to Computer Physics Communications November 1, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0010465520304124
Manuscript_332194bb77919aa94f1a892dd0a64df7

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0010465520304124
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0010465520304124

1. Introduction

Renormalization group equations (RGEs) are an essential tool for modern high energy physics,
as they provide the link between various energy scales in the framework of a given gauge the-
ory. They allow, for instance, the study of vacuum stability, gauge coupling unification in the
context of Grand Unified Theories (GUT), or any kind of high scale boundary conditions. Most
generally, their importance is expected to keep growing in the field of high energy physics where
probed scales are ever increasing compared to the electroweak (EW) scale. Thus, in the era of
precision physics, the effect of the running couplings may tend to be systematically considered,
either when it comes to perform precision tests of the Standard Model (SM) or to accurately
constrain physics beyond the Standard Model (BSM).

RGEs for general gauge theories have been known for almost forty years at two-loop accu-
racy [2, 3, 4, 5, 6, 7, 8]. Since the derivation of the RGEs for specific models is often tedious and
error prone in practice, these general expressions were implemented in the Mathematica package
SARAH [9] and in the Python software PyR@TE [10, 11] allowing for an automatized computa-
tion of the β-functions. Over the years, the formalism was extended to take into account Abelian
kinetic mixing [12, 13] and scalar mixing [14]. The application of the dummy field method,
allowing for the determination of dimensionful couplings RGEs, was carried out rigorously and
extensively reviewed in [14]. In addition, various mistakes and misprints were uncovered.

Recently, a new formalism for the RGEs of a general gauge theory was presented in [1]. In
addition to systematically taking into account kinetic and scalar mixing, the full set of 3-loop
β-functions for the gauge couplings was computed for the first time in the framework of a theory
with a semi-simple gauge group (3-loop gauge coupling RGEs for theories based on a simple
gauge group were first presented in [15]). The method used in this work relies on the local
renormalization group [16, 17, 18] which reveals relations between the β-functions of gauge,
Yukawa and scalar quartic couplings at different loop-orders: the so-called Weyl consistency
conditions [17, 19, 20]. These relations constitute not only a powerful way of cross-checking
existing results, but also provide a new tool for the determination of still unknown higher-loop
order β-functions, as demonstrated in [21] where the 4-loop gauge β-functions of the Standard
Model were computed for the first time. For these reasons we believe that this modern formalism
might become the new paradigm in the field, thus motivating its implementation in the new
version of PyR@TE. For this purpose, it is also necessary to know the RGEs for the dimensionful
parameters in this formalism which can be found in [22].

In addition to the possibility of computing the gauge couplings RGEs up to the 3-loop or-
der, inherent to the formalism described above, many improvements were made to the PyR@TE
code. The latter was essentially rewritten, driven by the intention of improving its performances
and overall ease of use. Several new features were also developed and will be extensively re-
viewed in the following.

The rest of this paper is organized as follows. Section 2 provides an introduction to the
theoretical framework implemented in the new version of the software. Section 3 aims at serv-
ing as a self-contained user manual explaining how to download, install, and use PyR@TE 3.
Next, in Sec. 4, we use various models for which we compare the β-functions obtained with
PyR@TE 3 with results in the literature or from PyR@TE 2. With very few exceptions, we find
perfect agreement which validates our new tool which henceforth replaces the older versions of
PyR@TE. Finally, in Sec. 5, we summarize the main new features of PyR@TE 3 and draw our
conclusions. Some technical details have been relegated to the Appendix. In particular, we dis-

2

cuss the gauge kinetic mixing in more detail in Appendix A, the complete SM model file is listed
in Appendix B, and a description of the group theory functionalities of PyR@TE 3 is provided
in Appendix C.

2. Presentation of the formalism

We present in this section a brief overview of the adopted formalism as implemented in
PyR@TE 3. The interested reader is invited to refer to [1] for any further details.

2.1. Definitions
Let us consider a general theory containing fermions and scalars transforming under various

representations of a given semi-simple gauge group G. Independently of the exact nature of
the fermions (Dirac, Majorana or Weyl spinors) and scalars (complex or real) of the theory, we
may always split them into their individual components and, without loss of generality, rearrange
them in the form of two vectors ψi and φa, of Weyl fermions and real scalars, respectively. The
fermionic index i ranges from 1 to n f and the scalar index a from 1 to ns. In this context, the
non-kinetic part of the Lagrangian density may be written as

L = −
1
2

(
Yai jψiψ j φa + h.c.

)
−

1
2

(
Mi jψiψ j + h.c.

)
−

1
2
µabφaφb −

1
3!

tabcφaφbφc −
1
4!
λabcdφaφbφcφd .

(1)

Closely following [1], we further generalize the notation defining the Majorana spinor

Ψi ≡

(
ψ
ψ†

)
i
, (2)

and the associated Yukawa and fermion mass couplings tensors

yai j ≡

(
Ya 0
0 Y∗a

)
i j
, mi j ≡

(
M 0
0 M∗

)
i j
. (3)

In the two definitions above and from now on, the fermionic indices range from 1 to 2n f since
they run on both fermions and antifermions of the model. The Lagrangian density (1) now takes
the form

L = −
1
2

yai jΨiΨ j φa −
1
2

mi jΨiΨ j

−
1
2
µabφaφb −

1
3!

tabcφaφbφc −
1
4!
λabcdφaφbφcφd .

(4)

Now turning to the gauge sector of the theory, we introduce the compact and very convenient
notation developed in [1], starting from the decomposition of the semi-simple gauge group in its
N individual gauge factors :

G =

N∏
u=1

Gu , (5)

where the Gu’s are compact Lie groups with dimension du. Absorbing the coupling constants
gu in the definition of the gauge fields (the procedure in the case of Abelian kinetic mixing is

3

detailed in Appendix A), the covariant derivatives of the Weyl fermions ψi and real scalars φa are
defined as

Dµψi = ∂µψi − i
N∑

u=1

du∑
Au=1

VAu
µ

(
T Au
ψ

)
i j
ψ j , (6)

Dµφa = ∂µφa − i
N∑

u=1

du∑
Au=1

VAu
µ

(
T Au
φ

)
ab
φb . (7)

For fermions, we make use of the definition (2) to define the gauge generators in the new
(2n f)-dimensional fermionic space:

(
T Au

)
i j
≡

T Au
ψ 0
0 −

(
T Au
ψ

)∗
i j

, (8)

such that the covariant derivative of Ψi reads

DµΨi = ∂µΨi − i
N∑

u=1

du∑
Au=1

VAu
µ

(
T Au

)
i j

Ψ j . (9)

Another object that we need to define, and which we will make an extensive use of, is the
gauge-coupling matrix G2

AB. In a theory without kinetic mixing in the Abelian sector (i.e. with
at most one U(1) gauge factor), the latter is simply defined as the diagonal matrix

G2
AB = g2

u δ
AuBu , (10)

where we used the convention [1] ∑
A

=
∑

u

du∑
Au

. (11)

Now considering the most general theory with p Abelian gauge factors, the matrix G2 devel-
ops off-diagonal components and has the following form

G2
AB =

h11 · · · h1p
...

. . .
...

hp1 · · · hpp

g2
p+1

. . .

g2
n

AB

≡

(
H2 0
0 G2

na

)
AB

. (12)

In the above parametrization, G2
na is simply a diagonal matrix populated by the non-Abelian

gauge couplings (see eq. (10)) and H2 = GmixGT
mix. As explained in Appendix A, without loss

of generality, we will in practice express Gmix as an upper-triangular p × p matrix. For instance,
if the Abelian sector of the theory is U(1)Y × U(1)B−L, PyR@TE will internally construct the
matrix Gmix such that

Gmix =

(
gU1Y g12

0 gU1BL

)
, (13)

4

and compute the β-functions of the p(p + 1)/2 = 3 gauge couplings defined thereby. We empha-
size that, independently of the presence of Abelian mixing in the gauge sector, the matrix G2

AB is
always symmetric and positive definite.

To conclude this section, we eventually present the full form of the most general Lagrangian
density [1]:

L = −
1
4

(
G −2

)
AB

FA
µνF

Bµν +
1
2

(Dµφ)a(D µφ)a +
i
2

ΨT
(

0 σ µ

σ̄ µ 0

)
DµΨ

−
1
2

yai jΨiΨ j φa −
1
2

mi jΨiΨ j

−
1
2
µabφaφb −

1
3!

tabcφaφbφc −
1
4!
λabcdφaφbφcφd .

(14)

2.2. β-functions
The expressions of the β-functions for the dimensionless (marginal) couplings are given by

[1]:

βAB ≡
dG2

AB

dt
=

1
2

∑
perm

∑
`

1
(4π)2` G2

AC β
(`)
CD G2

DB , (15)

βai j ≡
dyai j

dt
=

1
2

∑
perm

∑
`

1
(4π)2` β

(`)
ai j , (16)

βabcd ≡
dλabcd

dt
=

1
4!

∑
perm

∑
`

1
(4π)2` β

(`)
abcd , (17)

where t = ln µ/µ0, µ standing for the renormalization scale and µ0 some fixed, arbitrary energy
scale. The permutations are respectively understood to be taken among the two gauge indices,
the two fermionic indices of the Yukawa couplings and the four scalar indices of the quartic
couplings. As usual, the β-functions are given in the form of a perturbative expansion with `
denoting the loop-order. Based on a diagrammatic approach, the β(`) are expressed as a sum of
individual contributions, each weighted by a coefficient (see Eq. (5.2) in [1]) whose actual value
depends on the renormalization scheme. For instance, at the 1-loop order, β(1)

AB is expressed as

β(1)
AB = g(1)

1 [C2(G)]AB + g(1)
2 [S 2(F)]AB + g(1)

3 [S 2(S)]AB , (18)

where the numerical coefficients are given in the MS scheme by

g(1)
1 = −

22
3
, g(1)

2 =
2
3
, g(1)

3 =
1
3
, (19)

and where the three tensor structures encode the model-dependent contributions from the gauge
boson, fermion and scalar loops, respectively. Their definitions are given in Appendix A of [1],
which we reproduce here for completeness:

[C2(G)]AB = f ACD f CDB, [S 2(F)]AB = Tr
[
T AT B

]
, [S 2(S)]AB = Tr

[
T A
φ T B

φ

]
. (20)

Evaluating Eq. (18) in a model based on a simple gauge group with coupling g yields the well-
known expression (valid for two-component fermions)

dg2

dt
=

g4

(4π)2

(
−

22
3

C2(G) +
4
3

S 2(F) +
1
3

S 2(S)
)
. (21)

5

The full set of gauge, Yukawa and quartic RGEs in this formalism is presented, up to the
respective loop orders 3-2-2, in Appendix A of [1] along with the list of numerical coefficients
given in the MS scheme. These expressions were directly implemented in PyR@TE 3 and consti-
tute the core of the algorithm used to produce the (dimensionless) β-functions of a given model.

2.3. Dimensionful couplings

Thanks to a proper application of the so-called dummy field method [14], one may obtain the
RGEs of the dimensionful couplings (fermion mass, scalar mass and scalar trilinear couplings)
of a theory based on the known expressions for the dimensionless ones. The formalism presented
in the previous sections is particularly well-suited for such a procedure, which relies on a dia-
grammatic approach as well. For instance, one can derive the contribution to a fermion mass
β-function by amputating the external scalar leg of a `-loop Yukawa coupling diagram involving
a dummy scalar field introduced at the Lagrangian level. We will not go through this procedure
in detail since it is extensively documented in [14] but simply mention that we used it to derive
the full set of dimensionful RGEs of a general gauge theory up to the 2-loop order, based on the
results of [1]. Following Eqs. (15) - (17), the expression of the β-functions for fermion mass,
trilinear and scalar mass couplings are respectively expressed as:

βi j ≡
dmi j

dt
=

1
2

∑
perm

∑
`

1
(4π)2` β

(`)
i j , (22)

βabc ≡
dtabc

dt
=

1
3!

∑
perm

∑
`

1
(4π)2` β

(`)
abc , (23)

βab ≡
dµab

dt
=

1
2

∑
perm

∑
`

1
(4π)2` β

(`)
ab . (24)

The complete set of expressions of the β(`) for dimensionful couplings is given in Ref. [22].

3. PyR@TE 3 : an overview

3.1. Download and installation

The new version of PyR@TE may be downloaded from the following GitHub web page:

https://github.com/LSartore/pyrate

No further installation procedure is needed and the user may start working in PyR@TE’s main
folder. However, PyR@TE relies on a number of Python modules which need to be installed by
the user if not already present on his/her machine. We show here the full list of dependencies:

• Python ≥ 3.6

• PyYAML ≥∗ 5.3

• Sympy ≥ 1.5

• h5py ≥∗ 2.10

• Numpy ≥∗ 1.18

• Scipy ≥∗ 1.4

• Matplotlib ≥∗ 3.1

6

Version requirements marked with an asterisk are not critical requirements, in the sense that
PyR@TE is likely to work properly with older versions of these modules. However, we note that
during its development, PyR@TE was only tested with the above listed versions. We also note
that Scipy and Matplotlib are solely required to run the Python output of PyR@TE (see
section 3.4).

3.2. Definition of the model
The information on the particle physics model is contained in the so-called model file, which

is the starting point of any computation performed by PyR@TE. The overall structure of the
model file is essentially based on the previous versions [10, 11] of the software. However, a
number of improvements were made that we will review in the following. Let us begin this dis-
cussion with, as usual, the example of the Standard Model. The full SM model file is provided
in Appendix B. In the following we will go through this model file step by step, making com-
ments wherever useful.

General information – Three fields can be provided in this section, namely the Author , Date

of creation and Name of the model file. The first two are essentially informative while the last
one will be used by PyR@TE to generate its output (see section 3.4).

Author: Lohan Sartore

Date: 08.06.2020

Name: SM

Gauge groups – This is the first essential information to provide to PyR@TE. Here the full
gauge group of the SM is U(1)Y × SU(2)L × SU(3)c :

Groups: {U1Y: U1, SU2L: SU2, SU3c: SU3}

Each gauge factor must be given a custom label, and is described by the usual name of the
associated Lie group. Possible choices cover the entirety of the gauge groups associated with a
simple Lie algebra, namely U(1), SU(N), SO(N), Sp(N) and the five exceptional groups G2, F4
and E6,7,8. We emphasize that this is an improvement compared to PyR@TE 2, where symplectic
and exceptional groups were not implemented.

Field content – The next step consists in defining the particle content of the model. Three
kinds of fields may be implemented in the model file, namely Fermions , RealScalars and
ComplexScalars :

Fermions: {

Q : {Gen: 3, Qnb: {U1Y: 1/6, SU2L: 2, SU3c: 3}},

L : {Gen: 3, Qnb: {U1Y: -1/2, SU2L: 2, SU3c: 1}},

uR : {Gen: 3, Qnb: {U1Y: 2/3, SU2L: 1, SU3c: 3}},

dR : {Gen: 3, Qnb: {U1Y: -1/3, SU2L: 1, SU3c: 3}},

eR : {Gen: 3, Qnb: {U1Y: -1, SU2L: 1, SU3c: 1}},

}

RealScalars: {

7

}

ComplexScalars: {

H : {RealFields: [Pi, Sigma], Norm: 1/sqrt(2), Qnb: {U1Y: 1/2, SU2L: 2, SU3c: 1}},

}

In every case the user must specify the quantum numbers of each particle under the gauge
group of the model. For Abelian gauge factors, we call quantum number the charge of the fields
(e.g. the hypercharge under U(1)Y). For non-Abelian gauge factors, it corresponds instead to the
irreducible representation under which the field transforms. Most of the time, the usual notation
based on the dimension of the representation (e.g. 2 of SU(2), 3 of SU(3), ...) is sufficient to
identify unambiguously a given representation. In this notation, the conjugate representations
are indicated by a negative quantum number in the model file. For instance, it is understood
that Qnb: {..., SU3c : -3} refers to the anti-fundamental representation of SU(3)c. In
addition, the quantum number 1 indicates that the field transforms in the trivial representation,
i.e., is unaffected by the gauge transformations of the associated gauge factor. Another way to
indicate that a field is not charged under one or several gauge factors is to simply omit them in
the definition of the quantum numbers. For instance, it is understood that eR is a singlet under
both SU2L and SU3c if the user writes:

eR : {Gen: 3, Qnb: {U1Y : -1}}

This remark also applies to Abelian gauge factors, in which case the charge of the corresponding
field is automatically set to 0 .

In a situation where a given gauge group possesses several representations with the same di-
mension (e.g. the 15 and 15′ of SU(3)), the usual notation breaks down and the user must use the
Dynkin labels notation instead. To keep this presentation straightforward we defer the discussion
on Dynkin labels and their implementation in the model file to Appendix C.

In addition to the quantum numbers, the Fermions of the model may be assigned a gener-
ation number. This number can either be a positive integer or a symbolic number, for instance:
Q : {Gen: nG, ...} . In the latter case the β-functions will be expressed in terms of the

symbolic generation numbers they may explicitly depend on.

For ComplexScalars , the user must indicate the decomposition of the fields in terms of a

real and imaginary part. To this end, he/she must use the RealFields and Norm keywords.
In our case, the complex Higgs doublet is expressed as

H =
1
√

2
(Π + i Σ) . (25)

We note that there is no need to define the real fields beforehand in the RealScalars sec-
tion of the model file. We also want to draw the reader’s attention to the influence of the norm
of complex scalars on the actual expression of the resulting β-functions: varying the norm of a
complex scalar field can be seen as a rescaling of its real components, or, equivalently, a rescaling
of the couplings of the model.

8

Finally, since the SM contains no real scalars (other than the real components of the Higgs
doublet), we show here an example of syntax:

RealScalars: {

S : {Qnb: {U1Y: 1/2, SU2L: 1, SU3c: 1}}

}

A short-hand syntax may also be employed, removing the Qnb keyword:

RealScalars: {

S : {U1Y: 1/2, SU2L: 1, SU3c: 1}

}

A last important point concerns the conjugate fields of the model. In contrast to the previ-
ous version of PyR@TE, the anti-particles should never be defined in the model file. Instead,
every fermion and complex scalar is automatically assigned a conjugate counterpart which can
be accessed appending bar to its name. For instance, in our case, Qbar and Hbar would
respectively correspond to the fields Q̄ and H† of the Standard Model.

Potential – This section contains the expression of the Lagrangian density of the theory. Since
kinetic terms are not needed in PyR@TE, the only types of couplings which must be defined are:

• The Yukawa couplings (Yukawas)

• The quartic scalar couplings (QuarticTerms)

• The trilinear scalar couplings (TrilinearTerms)

• The scalar mass couplings (ScalarMasses)

• The fermion mass couplings (FermionMasses)

The syntax used in these five sections to define the Lagrangian was revisited in PyR@TE
3. In order for the user to have a full control over the expressions of the various terms, the
new syntax consists in writing the terms as an explicit mathematical expression with contracted
indices. As an illustration, the down-type Yukawa coupling of the Standard Model,

Yd f1, f2 Q̄ f1,i,a Hi d a
R, f2 + h.c. , (26)

is implemented in the model file as:

Yukawas: {

Yd : Qbar[i,a] H[i] dR[a]

}

A few important remarks are in order.
First, in the definition of the Yukawa couplings (and fermion masses), the flavour indices

are implicit. Consequently, the order in which the two fermions appear in the expression has an

9

influence on the structure of the Yukawa matrices. In the example above, it is understood that
Qbar is contracted with the first flavour index of Yd and dR with the second one.

Then, a field which transforms non trivially under more than one non-Abelian gauge factor
will carry more than one index. In this case, the order in which the indices should be written is
based on the order in which the gauge factors were defined. Therefore, in the above example, the
SU2 index of Qbar comes before the SU3 index.

Finally, we note that the hermitian conjugate is automatically inferred by PyR@TE and there-
fore should not need to be defined explicitly. This behavior always applies to Yukawa and
fermion mass couplings, but also to couplings involving scalar fields. In the latter case how-
ever, the user has the choice to include or not the conjugate couplings in the model file. Let us
consider as an illustration the λ5 quartic coupling of the Two-Higgs-doublet model:

1
2

[
λ5

(
φ†1φ2

)2
+ λ∗5

(
φ†2φ1

)2
]
. (27)

There are essentially two ways of implementing this term:

QuarticCouplings: {

First possibility - the conjugate counterpart is explicitly defined

lambda5 : 1/2 (phi1bar[i] phi2[i])**2,

lambda5star : 1/2 (phi2bar[i] phi1[i])**2

Second possibility - let PyR@TE infer the conjugate automatically

lambda5 : 1/2 (phi1bar[i] phi2[i])**2

}

In the first implementation, the λ∗5 term is explicitly defined. In this situation, the suffix star

must be appended to the name of the coupling (here, lambda5star) to enforce the relation
of conjugation among the two couplings. In the second implementation, where the conjugate
counterpart is omitted, PyR@TE will automatically detect that the term is not invariant under
complex conjugation, and consequently generate the λ∗5 term when constructing the Lagrangian
of the model.

Finally, there may be situations where λ5 is assumed real. In this case, the natural way to pro-
ceed is to set λ∗5 = λ5 in Eq. (27), leading to the first implementation shown below. Equivalently,
the assumption1 real may be used to achieve the same outcome:

QuarticCouplings: {

lambda5 is assumed real

lambda5 : 1/2 (phi1bar[i] phi2[i])**2 + 1/2 (phi2bar[i] phi1[i])**2

lambda5 is assumed real, shorthand

lambda5 : {1/2 (phi1bar[i] phi2[i])**2 , real}

}

Definitions – In order to help the user deal with this new syntax and produce a clear and readable
model file, a new section was introduced in PyR@TE 3. This is the Definitions section,

1More detail about assumptions is given below.

10

which must be implemented inside the Potential part of the model file (see the full SM
model file in Appendix B). In this section, the user may define quantities that will be used in the
expression of the Lagrangian density. For instance, in the SM, on has to introduce the conjugated
Higgs field:

H̃ ≡ εH† , (28)

where ε = iσ2 is the Levi-Civita tensor of rank 2. Such an auxiliary quantity may be defined in
the model file the following way:

Definitions: {

Htilde[i] : Eps[i,j]*Hbar[j]

}

The tensor Eps is a pre-defined object in PyR@TE 3. Levi-Civita tensors of rank higher than
2 may be defined in the same fashion, increasing the number of indices accordingly. We empha-
size that the gauge indices must always appear explicitly, both on the right- and left-hand side.
According to the usual convention, repeated indices will be summed over internally. Any object
defined this way can now be used in the Lagrangian expression. In our case, the up-type Yukawa
couplings may be written as:

Yukawas: {

Yu : Qbar[i,a] Htilde[i] uR[a],

... is equivalent to ...

Yu : Qbar[i,a] Eps[i,j] Hbar[j] uR[a],

}

Not only the Definitions sections may help produce a clear and structured model file,
but it also introduces two additional features, namely:

1. The use of gauge group generators in the expression of the Lagrangian,

2. The possibility of using Clebsch-Gordan coefficients (CGCs) to produce terms that cannot
be expressed simply in terms of products of fields with contracted indices.

Both rely on the group-theoretical module PyLie, first introduced in PyR@TE 2 [11]. This
module underwent a number of modifications and improvements presented in Appendix C. We
also defer to this appendix the treatment of the CGCs and their implementation in the model file.
Here we focus on the first feature, namely the definition of gauge generators in the model file.

As an illustration, let us consider a toy model in which the scalar sector of the SM is extended
by a complex SU(2) triplet δ. It is convenient to rewrite this triplet in the form of a 2 × 2 matrix
by contraction with the generators of the fundamental representation:

∆ ≡ ta δa . (29)

In the following, we demonstrate how to use the Definitions section to implement the quartic
part of the scalar potential:

V = λ1

(
H†H

)2
+ λ2Tr(∆†∆)H†H + λ3H†∆∆†H + λ4Tr(∆†∆)2 + λ5Tr(∆†∆∆†∆) . (30)

11

First, we have to introduce the generators ta in order to define the matrix ∆. The general
syntax to define the generators of a given representation is t(group, representation) ,
where the representation may be labelled either by its dimension or its Dynkin labels. We note
that the generators thus defined carry three indices with respective ranges D, Nr and Nr, where D
is the dimension of the Lie group (i.e. of its adjoint representation) and Nr that of the considered
representation. The matrix ∆ and its hermitian conjugate ∆† may therefore be implemented as2:

Definitions: {

Define the generators of the fundamental rep of SU2 (indices are implicit)

tFund : t(SU2, 2),

Define the matrix Delta and its adjoint

Delta[i,j] : tFund[a,i,j] delta[a],

DeltaDag[i,j] : tFund[a,i,j] deltabar[a]

We may also define the traces

Tr2 : DeltaDag[i,j] Delta[j,i],

Tr4 : DeltaDag[i,j] Delta[j,k] DeltaDag[k,l] Delta[l,i]

}

Having also pre-defined the traces Tr(∆†∆) and Tr(∆†∆∆†∆), the scalar potential (30) can
now be implemented in a simple, concise form:

QuarticTerms: {

lambda1 : (Hbar[i] H[i])**2,

lambda2 : Hbar[i] H[i] Tr2,

lambda3 : Hbar[i] Delta[i,j] DeltaDag[j,k] H[k],

lambda4 : Tr2**2,

lambda5 : Tr4

}

Assumptions – In some cases, the user may want to assume some particular properties for the
Yukawa (or fermion mass) matrices. Four different assumptions can be implemented for such
couplings in the model file, namely: real , symmetric , hermitian and unitary . To
impose one or more of these properties to a Yukawa matrix, the general syntax is:

coupling: {expression, assumption1, assumption2, ...}

For instance, let us assume a real and symmetric Yukawa matrix in the leptonic sector of the SM:

Yukawas: {

Without assumptions

Ye : Lbar[i] H[i] eR

2In this example, we used the fact that SU(N) generators are hermitian. In general, we may conjugate the represen-
tation matrices appending bar to the name of the generators. For instance, tFundbar[a,j,i] would correspond to

(t∗a) j
i = (t†a)i

j.

12

With assumptions

Ye : {Lbar[i] H[i] eR, real, symmetric}

},

Based on these assumptions, PyR@TE will automatically perform the appropriate simplifica-
tions in the resulting RGEs. In the case illustrated above, Y†e would be systematically simplified
as Ye. We note that in some cases, such assumptions should be necessarily included in order to
guarantee explicit gauge invariance of the Lagrangian, checked by PyR@TE 3 using the appro-
priate options (see section 3.3).

As stated previously, the real assumption may also be used for quartic, trilinear and scalar
mass couplings.

At this point, it is important to note that depending on the model considered, such assump-
tions might not be preserved along the RG-flow. This may happen for instance if a coupling
which is assumed real has a β-function with a non vanishing imaginary part. In such cases, the
simplifications made in the expressions of the β-functions would not be valid at all scales and
would generate an inconsistent RG-flow.

Finally, another possible assumption, squared , concerns only the scalar mass terms, and
allows to make the distinction between the two following notations:

L ⊃ µ φ†φ and L ⊃ µ2φ†φ . (31)

The former case, where the mass dimension of µ equals 2, is the one assumed in PyR@TE by
default. In the latter case, the squared keyword may be added in order to indicate that the
scalar mass coupling has a mass dimension of 1:

ScalarMasses: {

mu : {Phibar[i] Phi[i], squared}

}

In this case, PyR@TE will internally use the relation

β(µ) =
1

2µ
β(µ2) (32)

to infer the value of β(µ).

Vacuum-expectation values – The 2-loop RGEs of vacuum-expectation values (VeVs) were
implemented in PyR@TE 3, based on the MS expressions of Refs. [23, 24]. To define a VeV, the
only thing to do is to identify the real scalar component which develops a non-zero expectation
value. For instance, considering that in the SM the VeV is developed by the real part of the
second component of the Higgs doublet, we simply have to write:

Vevs: {

v : Pi[2]

}

13

Since VeVs break gauge invariance, the resulting RGEs are given in a general Rξ gauge and
therefore explicitly depend on the ξ parameter. If the user wishes to fix the gauge, he/she may
use the GaugeParameter keyword:

Let's work in the Landau gauge

GaugeParameter: 0

Anomalous dimensions – The 2-point anomalous dimensions of scalars and fermions may
be computed by PyR@TE. This is achieved by adding the optional ScalarAnomalous and
FermionAnomalous sections in the model file. In order to compute the anomalous dimensions

of one or several pairs of fields, the following syntax may be used:

ScalarAnomalous: {

(Pi[1], Pi[1]),

(Sigma[2], Sigma[2])

}

FermionAnomalous: {

(Q[1,1], Q[1,1]),

(eR, eR),

(uR[1], dR[1])

}

We emphasize that the fields used as an input for computing the anomalous dimensions are the
individual components of the gauge eigenstates, and not the fields themselves (except of course
if a given field is a gauge singlet).

To compute all the possible anomalous dimensions of the model, the user may instead use
the keyword all :

ScalarAnomalous : all

FermionAnomalous : all

In this case, PyR@TE will display in its output all the non-vanishing anomalous dimensions of
the fields of the model.

We note finally that the anomalous dimensions depend in general on the gauge fixing param-
eter ξ. If the gauge was fixed using the GaugeParameter keyword introduced above, its value
will be substituted accordingly in the expression of the anomalous dimensions.

Substitutions – Another new feature in PyR@TE 3 is the possibility of performing various kinds
of substitutions after the computation of the RGEs is carried out. To this end, the Substitutions

section can be implemented in the model file. The possible types of substitutions which may be
performed are listed and exemplified below.

(1) The first type of substitution consists in renaming some of the couplings. This is mainly
useful to rename the gauge couplings whose names are set by default to g[GroupName] . For
instance, in the SM, the three gauge couplings would respectively be labelled as gU1Y , gSU2L ,
gSU3c . If one wishes to rename them to g1 , g2 and g3 , the following syntax must be used:

14

Substitutions: {

gU1Y : g1,

gSU2L : g2,

gSU3c : g3

}

(2) Another possibility is to apply GUT normalization factors to some of the gauge cou-
plings. The following code indicates that the normalization g1 →

√
5/3 g1 must be adopted and

substituted in the β-functions:

Substitutions: {

g1 : sqrt(5/3)*g1

}

(3) In some cases, the user may want to constrain the form of the Yukawa (or fermion mass)
matrices, for instance neglecting the first two generations or the off-diagonal couplings. The
examples below show how to proceed in these two cases:

Substitutions: {

First example - Neglect the first and second generations

Yu : [[0, 0, 0],

[0, 0, 0],

[0, 0, 'yt']],
A short-hand notation may be employed for diagonal matrices

Yd : [0, 0, 'yb'],
Ye : [0, 0, 'ytau'],

Second example - Neglect the off-diagonal couplings

Yu : ['yu', 'yc', 'yt'],
Yd : ['yd', 'ys', 'yb'],
Ye : ['ye', 'ymu', 'ytau'],

}

It is important to note that the newly defined couplings (e.g. 'yt' , 'yb' , ...) are put inside

quotation marks '' . Furthermore, the user must be aware that in some cases, the form of the
Yukawa matrices as defined in the Substitutions section might not be preserved along the
RG-flow. In other words, some components of the Yukawa matrices which were set to 0 in the
model file may have a non-vanishing β-function starting from the 1- or 2-loop order. In such
cases, PyR@TE will generate a warning message in the Latex output, informing the user that the
RG-flow is inconsistent.

(4) The last possibility consists in defining new quantities, expressed in terms of the cou-
plings of the model. For instance, if the user wishes to obtain the β-functions in terms of the
αi = g2

i /(4π) instead of the coupling constants gi, he/she would have to define the following
substitutions:

Substitutions: {

alpha1 : g1**2 / (4 pi),

15

alpha2 : g2**2 / (4 pi),

alpha3 : g3**2 / (4 pi)

}

In this situation, PyR@TE will internally take care of computing the β-functions of the new
couplings, using the relation

β (αi) =
1

4π
2gi β (gi) , (33)

and then substituting g2
i with 4παi everywhere in the expression of the β-functions.

Latex – In this section, the user is invited to define any substitution that should be performed
in the Latex output. Although it is possible to choose as the name of a coupling a simple Latex
expression (e.g. g_1), we recommend to avoid it in practice (and more generally to avoid the
use of any special character in the name of the couplings) since it might lead to some unexpected
behavior. Instead, the mapping to Latex expressions should be defined in the dedicated Latex

section, so the user has a full control on the output.

3.3. Running PyR@TE

As for previous versions of the software, PyR@TE 3 can be run either from the console or
from an interactive IPython notebook. In the former case, the general syntax is:

$ python pyR@TE.py -m [path to model file] [-args]

We emphasize that the python alias must be associated with a Python 3 executable correctly
linked to the dependencies listed in section 3.1. In an interactive IPython notebook, PyR@TE
would be run using:

%run pyR@TE.py -m [path to model file] [-args]

The only mandatory argument is the -m argument, used to specify the path (relative or absolute)
to the model file. The list of optional arguments is presented in Table 1. Compared to the
previous versions, the number of available command-line arguments was reduced in order to
simplify to a maximum the use of the software. Instead, most of the settings are gathered in
a configuration file, 'default.settings', which can be found in PyR@TE’s main directory.
The list of options that are available in this file are listed in Table 2. For some of the options,
there is an overlap between the default and command-line settings. In this case, the latter always
have the priority over the former. For example, even if the gauge invariance of the model is to be
checked by default, the user may use the -no-gi command-line option to prevent this behavior.

We note in passing that the gauge invariance check of the model is a new feature in PyR@TE 3.
When enabled, the invariance of all types of coupling under infinitesimal gauge transformations
is tested. For instance, in the scalar quartic sector, gauge invariance requires that

(T A
φ)aeλebcd + (T A

φ)beλaecd + (T A
φ)ceλabed + (T A

φ)deλabce = 0 (34)

for all a, b, c, d spanning the space of the scalar components of the model. It is strongly advised
to check the gauge invariance of a model at least once, after which the option -no-gi may be

16

used to speed up the computation3.

The -l and DefaultLoopLevel settings should be followed either by a positive integer (1,
2 or 3) or the keyword max, meaning that the computation should be carried out at the maximum
loop-order, i.e. 3-loop for the gauge couplings and 2-loop for the other couplings. Another pos-
sibility is to use a list of three elements4, e.g. [3,2,1] to set the respective orders of the gauge,
Yukawa, and quartic couplings RGEs to different values.

The -rb and RealBasis settings enable the use of a new feature available in PyR@TE 3,
namely the rotation of the generators of real representations. These representations have the
property that there exists a set of bases where their generators ta are imaginary, skew-symmetric
matrices. In the following, such bases will be referred to as a real bases. In addition, for adjoint
representations (which are always real), there exists a basis where the usual relation

(ta)i
j = −i f ai

j , (35)

with f ai
j the structure constants of the Lie algebra, is satisfied. However the generators of real

representations originally computed by PyLie never satisfy the two above properties, preventing
the user to properly implement models where one or several fields transform under real represen-
tations. In order to circumvent this issue, a new algorithm was implemented in PyLie, allowing
to systematically rotate the generators of real representations to a real basis; and in the case of
adjoint representations, to the basis where Eq. (35) is satisfied. To trigger this behavior, the -rb
(or RealBasis) option may be assigned three possible values:

• ‘-rb adjoint’ rotates only adjoint representations,

• ‘-rb all’ rotates all real representations,

• ‘-rb False’ or ‘-rb None’ disables the rotation to real bases.

We emphasize that complex and pseudo-real representations are unaffected by this setting.

The EndCommands default settings allows to run one or several shell commands after the run.
It was designed to compile the Latex output automatically after its generation by PyR@TE. The
general syntax is:

EndCommands "command 1, command 2, ..."

For instance, we may call pdflatex twice using

EndCommands "pdflatex [name].tex, pdflatex [name].tex"

where [name] will be automatically replaced by the name of the model (and therefore of the
output files) before running the commands.

3For large gauge groups and/or representations, the gauge invariance check may take up to a few minutes due to the
large number of tensor contractions to be computed. For simpler models, the computation takes a few seconds at most.

4On some operating systems, the use of square brackets in the command line may not work properly. In this case,
putting the list inside quotation marks should solve the problem.

17

Option Short-hand Description

--Loops -l Set the loop-level of the computation
--Results -res Set the directory in which the output is stored
--RealBasis -rb Set the behaviour regarding the generators of real

representations

--Quiet -q Switch off informative output
--no-KinMix -no-kin Neglect the Abelian kinetic mixing
--CheckGaugeInvariance -gi Switch on the Lagrangian gauge invariance check
--no-CheckGaugeInvariance -no-gi Switch off the Lagrangian gauge invariance check
--LatexOutput -tex Switch on the Latex output
--no-LatexOutput -no-tex Switch off the Latex output
--MathematicaOutput -math Switch on the Mathematica output
--no-MathematicaOutput -no-math Switch off the Mathematica output
--PythonOuput -py Switch on the Python output
--no-PythonOuput -no-py Switch off the Python output

Table 1: Command-line options in PyR@TE 3. The second part of the table shows the various switches which may be
used by the user to override some of the default settings.

Option Description

VerboseLevel Set the verbose level : Info, Critical (only errors and warnings).
ResultsFolder Set the default folder in which the results are stored.
LogFolder Set the default folder in which the log files are stored.
DisableLogFiles True/False.
DefaultLoopLevel Default loop level of the computation.
CheckGaugeInvariance True/False.
PrintComputationTimes Display the computation times : True/False.
RealBasis Default behavior regarding the generators of real representations.
CreateFolder Store the output in a folder named after the model: True/False.
CopyModelFile Copy the original model file in the results folder : True/False.
LatexOutput True/False.
AbsReplacements In the Latex output, replace x∗x with |x|2: True/False.
GroupTheoryInfo In the Latex output, display some information about the gauge groups

and their representations: True/False.
MoreGroupTheoryInfo Display information about the first N representations of the gauge

groups: N/False.
MathematicaOutput True/False.
MathematicaSolver In the Mathematica output, generate a ready-to-use RGE solver:

True/False.
PythonOutput True/False.
EndCommands Commands to be automatically run from the console after the output is

generated.

Table 2: Default settings available in PyR@TE’s configuration file.

18

3.4. Output

After the computation, PyR@TE may generate three types of output, namely Latex, Math-
ematica, and Python files. With the CreateFolder option enabled, all the output files will be
gathered in a folder named after the model (e.g. SM/ in our case).

The Latex output contains a detailed summary of the content of the model (gauge groups,
particles, Lagrangian, substitutions), and the results of the computations, i.e. the β-functions of
the various couplings of the model. If the GroupTheoryInfo setting is enabled, some infor-
mation about the gauge groups and their representations will be added in an appendix, along
with the expressions of the CGCs possibly used in the definition of the Lagrangian. Using the
MoreGroupTheoryInfo setting followed by a positive integer will display information about
the first few representations of the gauge groups, in addition to the representations actually pop-
ulated by the fields of the model.

The Mathematica output consists in a single file, containing the expressions of the β-functions.
In addition, if the MathematicaSolver default setting is set to True, the file is enhanced with a
ready-to-use RGE solver. To solve the RGEs, the first thing that the user needs to do is to define
the boundary conditions, that is the value of the couplings of the model at some initial energy
scale. Then, after having defined the running scheme (the loop level for each type of couplings),
the user may solve the system of RGEs using the RGsolve[] function and finally plot the re-
sults using the RGplot[] function.

Finally, the Python output consists of three files, gathered in a PythonOutput folder. For
instance, in the case of the SM:

• RGEs.py contains the expressions of the β-functions in the form of Python functions.

• SM.py contains various classes used to define the couplings of the model, the RGEs, and
several functions used to solve the RGEs and plot the running couplings. In principle,
this file should not be modified by the user, but may still serve as a basis for a more
sophisticated analysis.

• run.py is the file that should be modified and run by the user to perform the RG analysis.
For more details about the use of the classes and functions called in this file, we invite the
reader to refer to the documentation provided with PyR@TE in the doc/ folder.

4. Validation

The output of PyR@TE 3 was validated against some of the results found in the literature,
in particular in the 3-loop gauge sector which is a new feature compared to the previous version.
Full agreement was found between PyR@TE 3 and the following references :

• SM gauge couplings RGEs at three loop [25, 26, 27].

• Gauge, Yukawa and quartic sector of the general Two-Higgs-doublet model at respective
orders 3-2-1 [28, 29].

19

• 2-loop dimensionless and dimensionful RGEs of the toy model described in [14] in the
SUSY limit5.

• 1-loop quartic RGEs of simple SU(5) and SO(10) models [30].

• 1-loop Yukawa sector of the minimal SU(5) model [31].

• 1-loop quartic, trilinear and scalar mass RGEs of the most general Georgi-Machacek
model [32]. We find agreement for the 1-loop gauge coupling RGEs after correcting a
trivial mistake in Eq. (C1) of [32].

In addition, we compared the results of PyR@TE 3 against those of PyR@TE 2 for some of
the models presented in [10] and [11]. Doing so, we were able to compare the performance of
the two versions of the software in terms of execution time, as illustrated in Table 3. We first
present the comparison of the results for some of the models listed in [10]:

• Standard Model with a real scalar singlet : full agreement at 2-loop.

• Standard Model with a complex scalar doublet : full agreement at 2-loop.

• Standard Model with Majorana triplet fermion and Dirac doublet : full agreement in the
gauge, Yukawa and quartic sectors at 2-loop. Agreement is found for the scalar mass
RGEs after correcting a mistake in the latest version of the PyR@TE 2 code. For the
fermion mass RGEs, we find agreement once the corrected formulae presented in [14] are
taken into account.

• SM extended by a complex triplet and vectorlike doublets : at 1-loop, we find many dis-
agreements in the quartic sector due to an incomplete implementation of the model. In-
deed, in PyR@TE 1 it was not possible to contract the same set of fields in different ways.
As a consequence, couplings (operators) allowed by gauge invariance were missing. In
such a situation, the resulting RGEs are arbitrary and vary depending on the choice of
the n legs chosen to compute the various n-point contributions to the β-functions (see also
footnote 5).

The limitation of PyR@TE 1 mentioned in the last point was overcome in PyR@TE 2, as
illustrated in [11] with the example of a toy model where the SM is extended with a scalar triplet.
For this model, the scalar potential is given by Eq. (30), and we were able to compare the results
given by PyR@TE 2 and 3. Full agreement is found at 2-loop, after an obvious error in the model
file from PyR@TE 2 is corrected (an additional lepton doublet was unintentionally included).

Finally, we validated the output of PyR@TE 3 for the U(1)B−L extension of the SM de-
scribed in [11]. In the gauge, Yukawa and quartic sector, full agreement is found between the
two versions of the code in presence of kinetic mixing in the Abelian sector. However, there

5As explained in [14], the toy model in its non-SUSY form is not well defined, leading to arbitrary results depending
on details of the implementation. It is possible to get full agreement between the results from SARAH and PyR@TE
before taking the SUSY limit by a simple mapping. However, we refrain from providing these details here since they
concern unphysical results and the mapping is only simple because the implementation conventions used in SARAH and
PyR@TE are quite similar.

20

Model Loop order PyR@TE 2 PyR@TE 3

SM B-L
1 114 1.5
2 8823 11

2 + 3 (gauge) / 23

SM + complex triplet
1 385 1.0
2 59936 3.2

2 + 3 (gauge) / 5.7

SM + scalar singlet
1 79 0.9
2 5765 4.3

2 + 3 (gauge) / 5.6

SM + complex doublet
1 153 1.2
2 39666 6.2

2 + 3 (gauge) / 9.4

SM + Majorana triplet
+ Vectorlike doublet

1 262 1.3
2 15653 10.7

2 + 3 (gauge) / 13.2

Table 3: Comparison of the running times of PyR@TE 2 and PyR@TE 3 for several models, using a machine with a
1.8 GHz Intel Core i7 processor. The running times are expressed in seconds.

is a disagreement for the scalar mass β-functions starting at 2-loop which we describe in the
following. Letting

V ⊃ µH H†H + µχχ
†χ (36)

be the quadratic part of the scalar potential V , where H is the usual SM Higgs doublet and χ is
a complex scalar field which is a SM singlet with (B-L)-charge 2, the disagreement occurs in
the two-loop contributions of β(µH) and β(µχ). More precisely, the problematic terms are of the
generic form g4µH and g4µχ, respectively, so we only include the terms of these forms in the
expressions below. We note that the gauge coupling matrix is taken to be(

g1 g12
g21 gBL

)
, (37)

while g2 stands for the SU(2)L coupling constant.

Expressions of β(2)(µH)

Using PyR@TE 2:

1
µH

β(2)(µH) ⊃
1105
96

g4
1 −

145
16

g4
2 +

1105
96

g4
12 +

7
2

g2
1g2

2 +
1105

48
g2

1g2
12 + 17g2

1g2
21 + 17g2

12g2
BL (38)

+
7
2

g2
12g2

2 +
40
3

g3
1g21 +

40
3

g3
12gBL +

40
3

g2
1g12gBL +

40
3

g1g2
12g21 + 34g1g12g21gBL

21

Using PyR@TE 3:

1
µH

β(2)(µH) ⊃
557
48

g4
1 −

145
16

g4
2 +

557
48

g4
12 +

15
8

g2
1g2

2 +
557
24

g2
1g2

12 + 17g2
1g2

21 + 17g2
12g2

BL (39)

+
15
8

g2
12g2

2 +
40
3

g3
1g21 +

40
3

g3
12gBL +

40
3

g2
1g12gBL +

40
3

g1g2
12g21 + 34g1g12g21gBL

Expressions of β(2)(µχ)

Using PyR@TE 2:

1
µχ
β(2)(µχ) ⊃ 648g4

BL + 648g4
21 +

422
3

g2
1g2

21 +
422

3
g2

12g2
BL + 1296g2

21g2
BL +

640
3

g1g3
21

+
640

3
g12g3

BL +
640
3

g1g21g2
BL +

640
3

g12g2
21gBL +

844
3

g1g12g21gBL (40)

Using PyR@TE 3:

1
µχ
β(2)(µχ) ⊃ 672g4

BL + 672g4
21 +

422
3

g2
1g2

21 +
422

3
g2

12g2
BL + 1344g2

21g2
BL +

640
3

g1g3
21

+
640

3
g12g3

BL +
640
3

g1g21g2
BL +

640
3

g12g2
21gBL +

844
3

g1g12g21gBL (41)

Although the above expressions alone do not allow one to discard any of the two sets of
results, there is a fact indicating that PyR@TE 2 is internally inconsistent when it comes to
kinetic mixing: running PyR@TE 2 with the option --KinMix to disable the effects of kinetic
mixing, or taking the limit g12, g21 → 0 in the two expressions above do not yield the same result,
as would be expected. Interestingly, the results obtained with the --KinMix option (i.e. disabling
kinetic mixing in PyR@TE 2) completely agree with those of PyR@TE 3 in the limit where g12
and g21 vanish.

As a concluding remark, while we cannot make the claim that the results obtained with
PyR@TE 3 are correct6, the treatment of kinetic mixing for the scalar mass RGEs in PyR@TE 2
appears to be inconsistent. Furthermore, the implementation of kinetic mixing in the formalism
described in Sec. 2 is quite natural whereas it has been incorporated a posteriori in PyR@TE 2
[11] by enhancing [13] the expressions derived by Machacek & Vaughn 7. As a result, the imple-
mentation of the kinetic mixing in PyR@TE 2 is quite involved and we were not able to directly
identify the source of the inconsistency. In any case, the process of validation performed above
allowed us to highlight at least two flaws present in the PyR@TE 2 code, and we recommend
to systematically use PyR@TE 3 in the future instead of its previous versions which are now
deprecated.

5. Conclusion and outlook

In this paper, we have presented a new version of PyR@TE, a Python tool for the computation
of renormalization group equations for general, non-supersymmetric gauge theories. Compared

6It is worth noting that complete agreement was found with Thomsen’s code RGBeta [33], based on the same
formalism.

7A similar comment holds for the Mathematica package SARAH [9].
22

to the previous versions PyR@TE 1 [10] and PyR@TE 2 [11], an important number of improve-
ments have been realized. First of all, the new PyR@TE 3 is now compatible with Python 3.
This is an important step since Python 2 has reached “End Of Life status” as of January 2020
and it is officially recommended to switch to Python 3 now. Furthermore, large parts of the code
have been rewritten. Its new core relies on a new formalism developed by Poole & Thomsen
[1] to compute the β-functions for all dimensionless couplings. The corresponding expressions
for the dimensionful couplings have recently been derived in [22] completing the set of expres-
sions in this formalism. In this framework, gauge kinetic mixing is naturally implemented, and
the Weyl consistency relations between gauge, quartic and Yukawa couplings [17, 19, 20] are
automatically satisfied. One of the main new features is the possibility for the user to compute
the gauge coupling β-functions up to the three-loop order. Therefore, it is now possible with
PyR@TE 3 to study the RGEs at (3, 2, 1) loop order for the gauge, Yukawa, and quartic cou-
plings, respectively, as has been advocated in the literature [34]. Much effort was put towards the
development of a faster code. As a consequence, there is a drastic improvement in performance
as can be inferred from Tab. 3. This is of great practical importance. For one-loop calculations
PyR@TE 3 is roughly a factor 100 faster than PyR@TE 2 and for the more complex two-loop
calculations PyR@TE 3 is 1000 to 10000 times faster than PyR@TE 2. In all examples presented
in Tab. 3, PyR@TE 3 just needs a couple of seconds to compute the RGEs – even in the case of
three-loop gauge couplings. For more involved models, in particular ones with widely extended
scalar sectors, the typical running times are at most of a few minutes at the maximum loop-orders.

There is a number of other improvements which are noteworthy: (i) We have worked to make
the model file more flexible and user-friendly (albeit largely but not entirely backward compat-
ible). (ii) The PyLie module has been modified not only to improve its speed performance but
also to include some new features. For example, PyR@TE 3 can now handle all simple Lie al-
gebras including the symplectic and exceptional ones. There is also now the option to rotate the
basis in the target space of the representation such that the generators for a real representation
are imaginary and skew-symmetric. (iii) The two-loop RGEs for VeVs [23, 24] have been imple-
mented in PyR@TE 3. (iv) We also note in passing that an interface between PyR@TE 3 and the
Mathematica package Feynrules [35] is under development which will be described elsewhere.

We have validated PyR@TE 3 against the literature for several models (see Sec. 4) and found
complete agreement. We have also compared the results of PyR@TE 3 with the ones of PyR@TE
2 for some of the models already discussed in [10, 11]. Again, we have found largely agreement
up to two problems which could be associated with the PyR@TE 2 code. For several reasons
we recommend to use PyR@TE 3 in the future: PyR@TE 2 (and Python 2) are no longer de-
veloped/maintained, the new formalism in the PyR@TE 3 code has a very clear structure with a
natural implementation of kinetic mixing, there are several new features which make PyR@TE
3 more user-friendly and efficient.

Acknowledgements

We are indebted to Florian Lyonnet from whom we have taken over the development of
PyR@TE. This work wouldn’t have been possible without the foundations laid by him in the
previous versions of the code. We are also grateful to Colin Poole and Anders Eller Thomsen for
many useful discussions. Finally, we would like to thank Jan Kwapisz, Aaron Held and Fabien
Besnard for their helpful contributions in testing and validating PyR@TE 3. We also wish to

23

thank Tom Steudtner for his help with the validation of the SUSY toy model from [14]. This
work was supported in part by the IN2P3 project “Théorie – BSMGA”.

Appendix A. Kinetic mixing in the Abelian sector

We consider in this appendix a theory with p Abelian gauge factors. Prior to the redefinition
of the gauge fields by absorption of the gauge couplings, the Abelian mixing is parametrized by
the mixing matrix ξ:

Lkin ⊃ −
1
4

FT
µνξFµν . (A.1)

ξ is a p × p symmetric matrix satisfying ξmm = 1. Therefore it contains p(p − 1)/2 degrees of
freedom. Initially, the gauge coupling matrix g in the Abelian sector is diagonal:

g =

g1

. . .

gp

 . (A.2)

Following the approach presented in [13, 11], we may perform a redefinition the gauge fields
V ′ = ξ1/2V such that ξ does no longer explicitly appear in the expression (A.1). Accordingly, we
define an extended gauge coupling matrix Gmix:

Gmix ≡ gξ −1/2 . (A.3)

Going one step further, we may absorb the gauge couplings by redefining the gauge fields in
the following way:

V ′′ = GmixV ′ , (A.4)

so that equation (A.1) can eventually be put in the form

Lkin ⊃ −
1
4

FT
µνH

−2Fµν , (A.5)

where
H2 = GmixGT

mix . (A.6)

Clearly, according to the above definition, H2 is invariant under rotations Gmix → GmixO where
O is a p × p orthogonal matrix. Such a rotation enables one to transform Gmix into an upper-
triangular matrix where its p(p + 1)/2 degrees of freedom (p gauge couplings plus p(p − 1)
mixing parameters) appear explicitly [11].

Appendix B. The SM model file

As an illustration of the overall structure of a model file in PyR@TE 3, we show below the
full SM model file. We note that this file can be found in PyR@TE’s models/ subdirectory,
along with several BSM model files.

24

YAML 1.1

Author: Lohan Sartore

Date: 08.06.2020

Name: SM

Groups: {U1Y: U1, SU2L: SU2, SU3c: SU3}

Fermions: {

Q : {Gen: 3, Qnb: {U1Y: 1/6, SU2L: 2, SU3c: 3}},

L : {Gen: 3, Qnb: {U1Y: -1/2, SU2L: 2}},

uR : {Gen: 3, Qnb: {U1Y: 2/3, SU3c: 3}},

dR : {Gen: 3, Qnb: {U1Y: -1/3, SU3c: 3}},

eR : {Gen: 3, Qnb: {U1Y: -1}},

}

RealScalars: {

}

ComplexScalars: {

H : {RealFields: [Pi, Sigma], Norm: 1/sqrt(2), Qnb: {U1Y: 1/2, SU2L: 2}},

}

Potential: {

Definitions: {

Htilde[i] : Eps[i,j]*Hbar[j]

},

Yukawas: {

Yu : Qbar[i,a] Htilde[i] uR[a],

Yd : Qbar[i,a] H[i] dR[a],

Ye : Lbar[i] H[i] eR

},

QuarticTerms: {

lambda : (Hbar[i] H[i])**2

},

ScalarMasses: {

mu : -Hbar[i] H[i]

}

}

Vevs: {

v: Pi[2]

}

Substitutions: {

Rename the gauge coupling constants

g_U1Y : g1,

g_SU2L : g2,

g_SU3c : g3,

Possibly define GUT normalizations

25

g1 : sqrt(5/3) * g1

}

Latex: {

Particles

uR : u_R,

dR : d_R,

eR : e_R,

Pi : \Pi,

Sigma : \Sigma,

Htilde : \tilde{H},

Couplings

g1 : g_1,

g2 : g_2,

g3 : g_3,

Yu : Y_u,

Yd : Y_d,

Ye : Y_e,

lambda : \lambda,

mu : \mu

}

Appendix C. Group theory and PyLie

This appendix is dedicated to the description of the group theoretical functionalities avail-
able in PyR@TE 3. All the group theory related computations are handled, since the previous
version of PyR@TE, by the PyLie module. PyLie is essentially a Python rewrite of the group
theory module of SUSYNO [36]. Such computations comprise for instance the possibility of
computing the generators of a given representation, the structure constants of the Lie algebra, or
the Clebsch-Gordan coefficients (CGCs) of a given set of representations. A lot of effort was put
in the development of PyR@TE 3 to improve the performances of PyLie’s main functions. This
concerns in particular the three kinds of calculations listed above. However, despite these efforts,
some calculations may be quite time-consuming when it comes to high-dimensional represen-
tations. Therefore, based on the previous version of PyLie, we developed a database in which
the results of the group-theoretical computations are systematically stored for any later use. At
various steps of the computation of the RGEs, PyR@TE 3 interacts with this database through
the PyLieDB module. The user may interact as well with this database through an interactive
IPython session or a Jupyter notebook in order to access the results of PyLie’s computations.

After a discussion about the Dynkin labels as a way to uniquely identify the representations
of a given gauge group, we introduce the use of CGCs to build a Lagrangian in PyR@TE 3. A
short tutorial (in the form of an interactive Python notebook) available in the doc/ repository of
PyR@TE 3 is dedicated to the interaction with PyLie’s database. In order to keep this appendix
as concise as possible, we invite the interested user to refer to this tutorial if needed.

26

Appendix C.1. Dynkin labels

The Dynkin labels of an irreducible representation are a set of N positive integers, where
N is the rank of the algebra. They charaterize the decomposition of the highest weight of the
representation in terms of the N fundamental weights of the algebra. In PyLie, they are used
to identify uniquely the representations of a given Lie algebra. In practice, the Dynkin labels
take the form of Python lists, and can be used in the model file in place of the usual notation for
representations based on their dimensions. For instance, one could define the quantum numbers
of the quark doublet Q as:

Q: {Gen: 3, Qnb: {U1Y: 1/6, SU2L: [1], SU3c: [1,0]}}

We invite the user who is not familiar with the Dynkin labels notation to refer to the docu-
ment provided with PyR@TE 3 in the doc/ directory, where the first few representations of
some usual gauge groups are listed along with their Dynkin labels. Several functions were also
implemented in the PyLieDB module that can be called by the user to get information on the
representations and their Dynkin labels.

Appendix C.2. CGCs

In some cases, it may not be possible to express a given gauge invariant combination of the
fields using a notation with contracted indices involving only the gauge generators, the Levi-
Civita tensor and the fields themselves. In such cases, the user may use the Clebsch-Gordan
coefficients (CGCs) generated by PyLie.

Given a set of N fields Fk, k≤N transforming under the irreducible representations rk, k≤N of a
given Lie algebra, we call CGCs all the tensors IA

i1,...,iN
such that the quantity

IA
i1,...iN

F i1
1 . . . F

iN
N (C.1)

is gauge invariant. Since in PyR@TE we consider only renormalizable theories, N may only
equal 2, 3 or 4. We note that there are M linearly independent CGCs, where M is the multiplicity
of the trivial representation in the decomposition of the tensor product r1 ⊗ . . . ⊗ rN .

One of the main functionalities of PyLie consists in finding a basis of CGCs given a set of N
fields. These CGCs may be used by the user in the model file to build the Lagrangian. To this
end, the CGCs must be defined in the Definitions section of the model file using the two
following possible syntaxes :

Definitions: {

C : cgc(groupName, field_1, ... field_N, P),

or, equivalently,

C : cgc(group, representation 1, ... representation N, P)

}

The last argument, P , is an integer indicating that we are asking for the Pth CGCs returned by
PyLie. If omitted, the first invariant tensor will be returned. Defined this way, C is a tensor

27

with N indices that may be used in the expression of the Lagrangian as any other tensor quantity
defined in the model file.

In order to illustrate the use of CGCs in a simple case, let us first consider the example of
the up-type Yukawa coupling in the SM. In a notation with contracted indices, one would simply
write:

Yukawas: {

Yu : Qbar[i,a] Htilde[i] uR[a]

}

where Htilde is the conjugated Higgs field, defined in the Definitions section of the SM
model file. The SU(2) and SU(3) contractions rely on the two simple decompositions

SU(2) : 2 ⊗ 2 = 3 ⊕ 1 , (C.2)

SU(3) : 3 ⊗ 3 = 8 ⊕ 1 , (C.3)

from which it can be seen that only one gauge singlet may be constructed in each case. Using
the CGCs instead, the Yu term would be defined as:

Definitions: {

SU2 contraction

c1 : cgc(SU2L, Qbar, Hbar),

or, equivalently,

c1 : cgc(SU2, -2, -2),

SU3 contraction

c2 : cgc(SU3c, Qbar, uR),

or, equivalently,

c2 : cgc(SU3, -3, 3)

},

Yukawas: {

Yu : c1[i,j] c2[a,b] Qbar[i,a] Hbar[j] uR[b]

}

Of course, the above example looks like an unnecessary complication since c1 and c2 actu-
ally correspond to the rank 2 Levi-Civita tensor and the 3-dimensional Kronecker delta.

As a more sophisticated example, let us now consider a SU(5) model with the following field
content:

Fermions : ψ5 ∼ 5 and ψ10 ∼ 10
Scalars : φ ∼ 5

(C.4)

In order to construct the Yukawa sector, we make use of the decompositions

5 ⊗ 5 ⊗ 10 = 126 ⊕ 75 ⊕ 24 ⊕ 24 ⊕ 1 , (C.5)

10 ⊗ 5 ⊗ 10 = 175′ ⊕ 126 ⊕ 75 ⊕ 75 ⊕ 24 ⊕ 24 ⊕ 1 , (C.6)

28

enabling one to define the two following Yukawa couplings

Y5 ψ5φ
†ψ10 and Y10 ψ10φψ10 . (C.7)

The two above terms are usually expressed in a simple form, noticing that the 10-plet can be
reorganized in a 5 × 5 antisymmetric matrix. However, in PyR@TE, the field ψ10 only carries a
single SU(5) index and we must use the CGC notation in order to build the Yukawa Lagrangian.
We show below a minimal implementation of this SU(5) toy model.

Groups: {SU5: SU5}

Fermions: {

psi5 : {Gen: 3, Qnb: {SU5: -5}},

psi10 : {Gen: 3, Qnb: {SU5: 10}}

}

ComplexScalars: {

phi : {RealFields: [phiR, phiI], Norm: 1/sqrt(2), Qnb: {SU5: 5}}

}

Potential: {

Definitions: {

c5 : cgc(SU5, psi5, phibar, psi10),

c10 : cgc(SU5, psi10, phi, psi10)

},

Yukawas: {

Y5 : c5[i,j,k] psi5[i] phibar[j] psi10[k],

Y10 : {c10[i,j,k] psi10[i] phi[j] psi10[k], symmetric}

}

}

29

[1] C. Poole, A. E. Thomsen, Constraints on 3- and 4-loop -functions in a general four-dimensional Quantum Field
Theory, Journal of High Energy Physics 2019 (9). doi:10.1007/JHEP09(2019)055.
URL http://link.springer.com/10.1007/JHEP09(2019)055

[2] M. E. Machacek, M. T. Vaughn, Two-loop renormalization group equations in a general quantum field theory: (i).
wave function renormalization 222 (1) 83–103. doi:10.1016/0550-3213(83)90610-7.
URL http://www.sciencedirect.com/science/article/pii/0550321383906107

[3] M. E. Machacek, M. T. Vaughn, Two-loop renormalization group equations in a general quantum field theory (II).
yukawa couplings 236 (1) 221–232. doi:10.1016/0550-3213(84)90533-9.
URL http://www.sciencedirect.com/science/article/pii/0550321384905339

[4] M. E. Machacek, M. T. Vaughn, Two-loop renormalization group equations in a general quantum field theory: (III).
scalar quartic couplings 249 (1) 70–92. doi:10.1016/0550-3213(85)90040-9.
URL http://www.sciencedirect.com/science/article/pii/0550321385900409

[5] I. Jack, H. Osborn, Two-loop background field calculations for arbitrary background fields 207 (3) 474–504. doi:
10.1016/0550-3213(82)90212-7.
URL http://www.sciencedirect.com/science/article/pii/0550321382902127

[6] I. Jack, H. Osborn, General two-loop beta functions for gauge theories with arbitrary scalar fields, Journal of
Physics A: Mathematical and General 16 (5) (1983) 1101–1109. doi:10.1088/0305-4470/16/5/026.
URL https://doi.org/10.1088%2F0305-4470%2F16%2F5%2F026

[7] I. Jack, H. Osborn, General background field calculations with fermion fields 249 (3) 472–506. doi:10.1016/
0550-3213(85)90088-4.
URL http://www.sciencedirect.com/science/article/pii/0550321385900884

[8] M. Luo, H. Wang, Y. Xiao, Two-loop renormalization group equations in general gauge field theories 67 (6) 065019.
doi:10.1103/PhysRevD.67.065019.
URL https://link.aps.org/doi/10.1103/PhysRevD.67.065019

[9] F. Staub, SARAH 4: A tool for (not only SUSY) model builders 185 (6) 1773–1790. doi:10.1016/
j.cpc.2014.02.018.
URL http://www.sciencedirect.com/science/article/pii/S0010465514000629

[10] F. Lyonnet, I. Schienbein, F. Staub, A. Wingerter, PyR@TE: Renormalization group equations for general gauge
theories 185 (3) 1130–1152. doi:10.1016/j.cpc.2013.12.002.
URL http://www.sciencedirect.com/science/article/pii/S0010465513004141

[11] F. Lyonnet, I. Schienbein, PyR@TE 2: A Python tool for computing RGEs at two-loop 213 181–196. doi:

10.1016/j.cpc.2016.12.003.
URL http://www.sciencedirect.com/science/article/pii/S001046551630368X

[12] M. Luo, Y. Xiao, Renormalization group equations in gauge theories with multiple u(1) groups 555 (3) 279–286.
doi:10.1016/S0370-2693(03)00076-5.
URL https://linkinghub.elsevier.com/retrieve/pii/S0370269303000765

[13] R. M. Fonseca, M. Malinský, F. Staub, Renormalization group equations and matching in a general quantum field
theory with kinetic mixing 726 (4) 882–886. doi:10.1016/j.physletb.2013.09.042.
URL http://www.sciencedirect.com/science/article/pii/S0370269313007739

[14] I. Schienbein, F. Staub, T. Steudtner, K. Svirina, Revisiting RGEs for general gauge theories, Nuclear Physics B
939 (2019) 1–48. doi:10.1016/j.nuclphysb.2018.12.001.
URL https://linkinghub.elsevier.com/retrieve/pii/S0550321318303419

[15] A. Pickering, J. Gracey, D. Jones, Three loop gauge beta function for the most general single gauge coupling
theory, Phys. Lett. B 510 (2001) 347–354, [Erratum: Phys.Lett.B 535, 377 (2002)]. arXiv:hep-ph/0104247,
doi:10.1016/S0370-2693(01)00624-4.

[16] H. Osborn, Derivation of a four dimensional c-theorem for renormaliseable quantum field theories, Physics Letters
B 222 (1) (1989) 97 – 102. doi:https://doi.org/10.1016/0370-2693(89)90729-6.
URL http://www.sciencedirect.com/science/article/pii/0370269389907296

[17] I. Jack, H. Osborn, Analogs of the c-theorem for four-dimensional renormalisable field theories, Nuclear Physics
B 343 (3) (1990) 647 – 688. doi:https://doi.org/10.1016/0550-3213(90)90584-Z.
URL http://www.sciencedirect.com/science/article/pii/055032139090584Z

[18] H. Osborn, Weyl consistency conditions and a local renormalisation group equation for general renormalis-
able field theories, Nuclear Physics B 363 (2) (1991) 486 – 526. doi:https://doi.org/10.1016/0550-
3213(91)80030-P.
URL http://www.sciencedirect.com/science/article/pii/055032139180030P

[19] I. Jack, C. Poole, The a-function for gauge theories, JHEP 01 (2015) 138. arXiv:1411.1301, doi:10.1007/
JHEP01(2015)138.

[20] O. Antipin, M. Gillioz, E. Mølgaard, F. Sannino, The a theorem for gauge-Yukawa theories beyond Banks-Zaks
fixed point, Phys. Rev. D 87 (12) (2013) 125017. arXiv:1303.1525, doi:10.1103/PhysRevD.87.125017.

30

[21] J. Davies, F. Herren, C. Poole, M. Steinhauser, A. E. Thomsen, Gauge Coupling β Functions to Four-Loop Order
in the Standard Model 124 (7) 071803. doi:10.1103/PhysRevLett.124.071803.
URL https://link.aps.org/doi/10.1103/PhysRevLett.124.071803

[22] L. Sartore, General renormalization group equations for dimensionful couplings in the MS scheme, Phys. Rev. D
102 (2020) 076002. doi:10.1103/PhysRevD.102.076002.
URL https://link.aps.org/doi/10.1103/PhysRevD.102.076002

[23] M. Sperling, D. Stöckinger, A. Voigt, Renormalization of vacuum expectation values in spontaneously broken
gauge theories 2013 (7) 132. doi:10.1007/JHEP07(2013)132.
URL https://doi.org/10.1007/JHEP07(2013)132

[24] M. Sperling, D. Stöckinger, A. Voigt, Renormalization of vacuum expectation values in spontaneously broken
gauge theories: two-loop results 2014 (1) 68. doi:10.1007/JHEP01(2014)068.
URL https://doi.org/10.1007/JHEP01(2014)068

[25] L. N. Mihaila, J. Salomon, M. Steinhauser, Gauge coupling beta functions in the standard model to three loops
108 (15) 151602. doi:10.1103/PhysRevLett.108.151602.
URL https://link.aps.org/doi/10.1103/PhysRevLett.108.151602

[26] L. N. Mihaila, J. Salomon, M. Steinhauser, Renormalization constants and beta functions for the gauge couplings
of the standard model to three-loop order 86 (9) 096008. doi:10.1103/PhysRevD.86.096008.
URL https://link.aps.org/doi/10.1103/PhysRevD.86.096008

[27] A. V. Bednyakov, A. F. Pikelner, V. N. Velizhanin, Anomalous dimensions of gauge fields and gauge coupling
beta-functions in the standard model at three loops 2013 (1) 17. doi:10.1007/JHEP01(2013)017.
URL https://doi.org/10.1007/JHEP01(2013)017

[28] F. Herren, L. Mihaila, M. Steinhauser, Gauge and yukawa coupling beta functions of two-higgs-doublet models to
three-loop order 97 (1) 015016. doi:10.1103/PhysRevD.97.015016.
URL https://link.aps.org/doi/10.1103/PhysRevD.97.015016

[29] F. Herren, L. Mihaila, M. Steinhauser, Erratum: Gauge and yukawa coupling beta functions of two-higgs-
doublet models to three-loop order [phys. rev. d 97, 015016 (2018)] 101 (7) 079903. doi:10.1103/
PhysRevD.101.079903.
URL https://link.aps.org/doi/10.1103/PhysRevD.101.079903

[30] M. B. Einhorn, D. T. Jones, Asymptotic freedom in certain $SO(n)$ and $SU(n)$ models 96 (5) 055035. doi:

10.1103/PhysRevD.96.055035.
URL https://link.aps.org/doi/10.1103/PhysRevD.96.055035

[31] M. T. Vaughn, Renormalization group constraints on unified gauge theories: II. yukawa and scalar quartic couplings
13 (2) 139–146. doi:10.1007/BF01547677.
URL http://link.springer.com/10.1007/BF01547677

[32] S. Blasi, S. De Curtis, K. Yagyu, Effects of custodial symmetry breaking in the georgi-machacek model at high
energies 96 (1) 015001. doi:10.1103/PhysRevD.96.015001.
URL https://link.aps.org/doi/10.1103/PhysRevD.96.015001

[33] A. E. Thomsen, https://github.com/aethomsen/rgbeta, currently under development.
URL https://github.com/aethomsen/RGBeta

[34] D. F. Litim, M. Mojaza, F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, JHEP 01
(2016) 081. arXiv:1501.03061, doi:10.1007/JHEP01(2016)081.

[35] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, B. Fuks, Feynrules 2.0 a complete toolbox for tree-level phe-
nomenology, Computer Physics Communications 185 (8) (2014) 2250 – 2300. doi:https://doi.org/10.1016/
j.cpc.2014.04.012.
URL http://www.sciencedirect.com/science/article/pii/S0010465514001350

[36] R. M. Fonseca, Calculating the renormalisation group equations of a SUSY model with susyno 183 (10) 2298–
2306. doi:10.1016/j.cpc.2012.05.017.
URL http://www.sciencedirect.com/science/article/pii/S0010465512001865

31

