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Abstract

We describe a technique to study the asymptotics of SL(2,C) invariant tensors associated to graphs,
with unitary irreps and lowest SU(2) spins, and apply it to the Lorentzian EPRL-KKL (Engle, Pereira,
Rovelli, Livine; Kaminski, Kieselowski, Lewandowski) model of quantum gravity. We reproduce the
known asymptotics of the 4-simplex graph with a different perspective on the geometric variables and
introduce an algorithm valid for any graph. On general grounds, we find that critical configurations
are not just Regge geometries, but a larger set corresponding to conformal twisted geometries. These
can be either Euclidean or Lorentzian, and can include curved and flat 4d polytopes as subsets. For
modular graphs, we show that multiple pairs of critical points exist, and there exist critical configu-
rations of mixed signature, Euclidean and Lorentzian in different subgraphs, with no 4d embedding
possible.
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1 Introduction

The spin foam formalism provides transition amplitudes for loop quantum gravity. The state of the
art is the Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) model [1, 2], which is based on the group
SL(2,C) and its infinite-dimensional, unitary irreducible representations of the principal series. Support
in favour of this model comes from the emergence of Regge geometries and the Regge action in the
asymptotics of the 4-simplex vertex amplitude for large quantum numbers. This result was obtained by
Barrett and collaborators [3], building on previous work [4, 5, 6, 7, 8], and has been used in a number
of applications of the model, e.g. [9, 10, 11, 12, 13, 14, 15, 16, 17]. The 4-simplex vertex amplitude is
sufficient if one restricts attention to spin foams which are dual to triangulations of spacetime, and is the
building block for transition amplitudes of 4-valent, simplicial spin network states. But from a canonical
perspective, more general vertex amplitudes are to be included in order to provide transition amplitudes
to all spin network states, and not just simplicial ones. One such generalization has been proposed by
Kaminski, Kieselowski and Lewandwski (KKL) [18], see also [19], and has been applied to cosmological
models and studies of spin foam renormalization [20, 21, 22, 23, 24, 25]. It is however not known what
are the dominant geometric configurations and the asymptotic behaviour of the EPRL-KKL Lorentzian
amplitude on general vertices. These are the open questions that we answer in this paper. To do so, we
introduce a novel technique to study the saddle point approximation of the SL(2,C) amplitudes. The
technique and results presented here, while motivated by the quantum gravity applications, are of more
general interest for any situation in which asymptotics of unitary SL(2,C) Clebsch-Gordan coefficients
are needed.

The derivations of 4-simplex asymptotics [3, 4, 5, 6, 7, 8] are based on the bivector reconstruction
theorem [26]: a map from Euclidean or Lorentzian 4-simplices to a collection of bivectors satisfying certain
constraints. This elegant result has played an instrumental role in driving the geometrical intuition of
spin foam models, and establishing Regge calculus as a semiclassical tool [27, 4]. But the theorem does
not extend beyond 4-simplices, and the technique used in [3] cannot be directly applied to the generalized
EPRL-KKL vertex. The novel technique that we introduce sidesteps the bivector reconstruction theorem
entirely, and allows us to by-pass its limitations. The idea is to focus on the 3d geometry of the boundary
data, as described in terms of dihedral and twist angles, rather than on bivectors. This description follows,
and is inspired by, previous work on discrete holonomy-flux geometries [28] and on twisted geometries
[29, 30, 31, 32]. It allows us to solve the critical point equations using elementary trigonometry, without
referring to bivectors, spinors, nor to algebraic maps. We also use a convenient choice of gauge for the
boundary data of the spin foam amplitude, motivated by its clear geometric interpretation. This choice
allows us to provide simple explicit formulas for the individual group elements at the critical point, which
were necessarily left implicit in the gauge-free analysis of [3].

Our first result is to show that the novel technique correctly reproduces the 4-simplex asymptotics.
It offers a different perspective, with some advantages. First, solving the critical point equations and
counting the number of solutions is just a matter of solving trigonometric equations, with a prominent
role played by spherical cosine and sine laws. Second, it makes some geometric aspects of the critical
point equations more manifest, in particular it exposes the precise relation between the existence of
two distinct critical points and the shape-matching conditions reducing a twisted geometry to a Regge
geometry. We believe that these results simplify the understanding of the asymptotic, and can help to
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bring their study to a broader audience. But the main value of the novel technique lies in its general
applicability beyond the 4-simplex. We present an algorithm that can be used to study the asymptotics
of any vertex graph. Specifically to the purposes of this paper, we use the algorithm to compute the
asymptotics of the EPRL-KKL model for various non-simplicial vertices. These include the complete
graph with N nodes, the hypercubic graph, and the refined hypercubic graph considered in [33]. As part
of our results, we extend the findings of [23, 24] and [33] to the general asymptotic properties of the
Lorentzian vertex on the hypercube and refined hypercube.

From the structure of the algorithm and the specific examples treated, it is possible to draw some
general conclusions about the critical asymptotics. Let us recall from the 4-simplex asymptotics that it is
the boundary data, given by spins and coherent intertwiners [34], that determine whether the amplitudes
fall-off exponentially in the large spin limit, or whether there exist one or more critical points leading to a
power-law fall-off. For the 4-simplex, boundary data describing vector geometries admit one critical point,
and boundary data describing 3d Regge geometries, either Euclidean or Lorentzian, admit two critical
points. We found a similar situation for a general graph, with vector geometries having a unique critical
point, and either Euclidean or Lorentzian 3d Regge geometries having more than one. However, there
are two novelties. First, every 3d Regge geometry of the 4-simplex graph is also the boundary geometry
of a flat 4-simplex, but this is not true for a general graph: only the subset of 3d Regge geometries that
can be flat embedded, define the boundary geometry of a flat polytope.

Secondly, the configurations with more than one critical point can be more general than 3d Regge
geometries, and correspond to a collection of polyhedra whose adjacent faces have partially the same
shape, but not completely: the area, valence and 2d angles are uniquely defined, but not the edge lengths.
The faces can then differ by an area-preserving conformal transformation. For this reason, such angle-
matched twisted geometries were called conformal twisted geometries in [35]. The fact that non-Regge
geometries admit distinct critical points was first observed in special cases of the Euclidean EPRL-KKL
model [23, 22], and then proved to be a generic feature of both SU(2) BF theory and the Euclidean
EPRL-KKL model [35]. Our results show that it is a generic feature of the Lorentzian EPRL-KKL model
as well.

Another new feature of general vertices is the possibility of multiple pairs of critical points. This is
obvious for graph amplitudes that are reducible using recoupling theory, since these can be written as the
product of amplitudes for the smaller graphs, and data can exist leading to a pair of distinct critical points
for each smaller graph. But it is also a possibility for irreducible graphs; an example for a refinement
of the hypercubic graph was pointed out in [33]. What we find is that the increased multiplicity is a
property of n-modular graphs,1 for which the angle-matched configurations admit up to 2n critical points.
Such graphs always have links that don’t belong to any 3-cycle. For these links, the spherical cosine laws
reconstruct 4d dihedral angles between the boundary polyhedra and the auxiliary hyperplanes identified
by the larger cycles. The saddle point equations select sums and differences of these auxiliary angles,
which for flat-embeddable data, can be identified as convex or concave embeddings. This explains the
origin of convex and concave polytopes observed in [33]. The same mechanism that introduces multiple
solutions also unconstraints the signature of the boundary data: mixed boundary data, namely Euclidean
in one subgraph and Lorentzian in another, exhibit also a critical behaviour. Such data have no flat 4d
embedding.

In the conclusions we give an overview of the classification of boundary data, discuss implications for
models of quantum gravity, and possible future extensions of our work.

2 Generalized coherent EPRL-KKL amplitude

Consider an oriented graph Γ with N nodes connected by L links. We label the nodes with a = 1, . . . N ,
and the oriented links with (ab). The generalized EPRL-KKL vertex amplitude [18, 19] associates the

1Graphs that can be divided in n subgraphs, such that every node in each subgraph is connected to at most one node
in another subgraph.
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following real function to Γ,

AΓ(jab,mab, nab) =

∫ N
∏

a=2

dha
∏

(ab)

D
(γjab,jab)
jabmabjabnab

(h−1
a hb). (1)

The integration is over (N − 1 copies of) the non-compact manifold SL(2,C), with dh the Haar measure.

The matrices D
(ρ,k)
jmln(h), (j, l) ≥ k, are the infinite-dimensional unitary irreps of the principal series in the

canonical basis. Only the so-called γ-simple representations appear in the EPRL-KKL model, those with
all ρ’s proportional to the k’s, and only the lowest SU(2) spins. The common proportionality constant γ
is the Immirzi parameter. The integral (1) defines an invariant tensor, and can be expressed in terms of
SL(2,C) Clebsch-Gordan coefficients [37].

The graph, referred to as vertex graph, is defined surrounding the spin foam vertex with a two-
dimensional sphere, and identifying each edge of the vertex puncturing the sphere as a node of the graph,
and each face associated with pairs of edges as an oriented link between nodes. See [18] for details. For Γ
the 4-simplex graph, we recover the original definition of the model [38, 1, 2, 39]. An immediate caveat
in dealing with the Lorentzian theory is the non-compactness of the group integrals, which makes the
convergence of (1) non-trivial. For that to happen, it is necessary to eliminate one redundant integration
(e.g. at the node 1 in the above formula), and suitably restrict the connectivity of the graph. A sufficient
condition is 3-link-connectivity, namely any bi-partition of the nodes cannot be disjointed by cutting only
two links, but many non-3-link-connected graphs are well defined, see [40, 41, 25]. It is satisfied by all
graphs explicitly considered in this paper.

The integrals (1) can be evaluated exactly using the decomposition of SL(2,C) Clebsch-Gordan into
SU(2) ones. See [37] for details, and [42, 16] for numerical applications. Here we are interested instead in
analytic approximations for large values of the spins. To study such asymptotics, it is convenient to take
linear combinations of (1) weighted by SU(2) coherent states, as suggested in [34]. The SU(2) coherent
states are labelled by a point (Θ,Φ) on the sphere, or equivalently by unit vectors

~n := (sinΘ cosΦ, sinΘ sinΦ, cosΘ) ∈ R
3. (2)

In the fundamental representation j = 1/2, any spinor |ζ〉 ∈ C2 provides a coherent state. To span an
overcomplete basis, it is enough to vary the homogeneous coordinate ζ0/ζ1 ∈ CP 1, while keeping norm
and the global phase fixed. We choose unit SU(2) norm ||ζ||2 = 1 and arg ζ1 = 0, hence

|ζ〉 =
(

− sin Θ
2 e

−iΦ

cos Θ
2

)

. (3)

This phase convention is singled out by the relation between coherent states and holomorphic realizations
of the algebra [43]. We will also need the spinorial parity map,

|ζ] := J ⊲ |ζ〉 = ǫ|ζ̄〉 =
(

cos Θ
2

sin Θ
2 e

iΦ

)

, ǫ = iσ2 =

(

0 1
−1 0

)

. (4)

The states are coherent in the sense that they pick out a definite direction for the angular momentum
generators,

〈ζ|~σ|ζ〉 = −~n, [ζ|~σ|ζ] = ~n, (5)

with minimal uncertainty [43]. Here ~σ are the Pauli matrices, 〈ζ| and [ζ| the Hermitian conjugates of
the two spinors |ζ〉 and |ζ]. This pair provides a basis of C2, orthogonal with respect to the Hermitian
product, and can be put in relation with the two families of coherent states associated with the lowest and
highest weights. We refer the reader to the Appendix of [16] for details and a complete list of conventions.

To define the coherent amplitude, we take lowest weight coherent states, labeled by ~nab on the columns
and by −~nba on the rows. A standard calculation exploiting the factorization property of the coherent
states leads to [34, 3, 16]

AΓ(jab, ~nab,−~nba) = ei
∑

(ab) jabψab

∏

(ab)

djab

π

∫ N
∏

a=2

dha

∫

∏

(ab)

dµ(zab)

||h†azab||2||h†bzab||2
expS(h, z), (6)
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where the action is

S(h, z) :=
∑

(ab)

jab ln
〈ζab|h†azab〉2〈h†bzab|ζba]2

||h†azab||2 ||h†bzab||2
+ iγjab ln

||h†bzab||2

||h†azab||2
, (7)

with h1 = 1. The map between the vectors on the left-hand side of (6) and the spinors in the right-
hand side is provided by (5). The detailed derivation of (6) with our conventions can be found in the
Appendix of [16]. The continuous vectorial labels replaces the magnetic labels mab, nab of (1), whereas
the spins jab = jba are untouched. The dummy spinors |zab〉 provide the homogeneous realization of the
infinite dimensional irreps. The integrand is invariant under complex rescalings |zab〉 7→ λab|zab〉, and the
spinorial integration is defined over CP 1, with measure dµ(z) := (i/2)[z|dz〉 ∧ [z̄|dz̄〉. See [44, 3] for more
details.

The amplitude (6) is complex, unlike (1), because of complex coefficients of the coherent states. The
phase factors ψab depend on two choices: the phase convention chosen for the SU(2) coherent states,
and the way the parity map on the bras is introduced. We have chosen to do so taking a minus sign
in the vector label. Alternatively, one can use the spinorial parity map (4), or the parity map on the
infinite-dimensional representations, as done in [3]. Introducing the parity map on the bras is convenient
to have the closure conditions satisfied by the normals at every node, without additional signs. This
makes us able to systematically interpret the normals as outgoing to the faces of the polyhedra. With
our choices, convenient from a numerical viewpoint [35, 16],

ψab = −2Φab. (8)

With the option used in [3], ψab = i arctanγ. This global phase difference is irrelevant for the saddle
point analysis and geometric interpretation of the asymptotics. Apart from this global phase difference
of the amplitude, the action (7) is related to the one used in [3] by a complex conjugation and inversion
of the sign of γ.2

The coherent amplitude satisfies an important covariance property for the boundary data. If we rotate
all the normals ~nab at a node a

~nab 7→ Ra~nab ∀b, Ra ∈ SO(3), (9)

the coherent states pick up a phase χab(~nab, Ra) [43],

|ζab〉 7→ eiχabra|ζab〉, (10)

where ra is the SU(2) element corresponding to the rotation Ra. These group elements can be reabsorbed
redefining ha and using the invariance of the Haar measure,3 but the phase remains:

AΓ(jab, Ra~nab) = e−i
∑

ab jab(χab−χba)AΓ(jab, ~nab). (11)

As a consequence, the amplitude is invariant under (9), up to a phase. The norm of the amplitude
is a function of rotational-invariant quantities only, namely of the scalar products ~nab · ~nac between
normals at the same node. Their relative orientation does not matter. The relative orientations do
not affect the geometric interpretation of the asymptotic formula, and are also irrelevant to spin foam
applications. Furthermore, the global phase can always be reabsorbed changing the phase conventions for
the SU(2) coherent states, if one so wishes. For these reasons, we will refer to (9) as gauge transformations
of the boundary data. It should not be confused with the invariance of the amplitude under group
transformations acting on the group elements ha.

2And the identification ζab = ξab. The two actions can equivalently be related by the map ha 7→ h̄a, ζab 7→ ζ̄ab = ξ̄ab,
as stated in [16], without conjugation or changing γ. Notice also that we use an opposite sign for J , and the opposite
convention for the map between spinors and normal vectors: we associate spinors with the standard lowest weights SU(2)
coherent states, whereas [3] uses the highest weights. As a consequence, the signs of the vectors in (5) would be flipped.

3To include rotations at the node 1 without group integration, the redefinition is ha 7→ hara for all nodes not connected

to 1, and ha 7→ r
†
1
hara for those connected to 1.
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2.1 Classification of boundary data: from 3d to 4d geometries

To better understand the saddle point analysis, let us first review how the boundary data assign a
geometric structure to a cellular decomposition dual to the oriented graph Γ. This can be done following
loop quantum gravity, where the spin jab gives the area of the dual face ab, and the vectors ~nab and ~nba
are the normals to that face in two different R3 frames, one at the node a and one at the node b. The
triple (jab, ~nab, ~nba) on each link parametrizes the subset of the holonomy-flux phase space T ∗SU(2) with
vanishing twist angle ξab [29].

4

We now list a number of subsets of geometric interpretations, which are relevant to the saddle point
analysis.

(i) Twisted geometries.5 The data satisfying the closure condition at each node,

∑

b6=a

jab~nab = 0, ∀a. (12)

This condition means that the vectors describe a (typically bent, namely non-planar) polygon in
R3 at each node. For non-coplanar vectors, the polygon also identifies a unique convex polyhedron
in R3, with the spins as areas and the vectors as normal directions of the faces. In particular, it is
the data themselves that determine the type of polyhedron, namely its adjacency matrix [46]. We
conventionally choose the normals to be outgoing to the polyhedra, hence the scalar products

~nab · ~nac = cosφabc (13)

define the exterior dihedral angles φabc ∈ [0, π). The non-coplanar case is the most relevant one
to loop quantum gravity, and our saddle point analysis will focus on this case. The closed, non-
coplanar data describe a collection of polyhedra dual to the nodes, adjacent to one another following
the connectivity of the graph. The face shared by two polyhedra has a unique area determined by
the spin, but in general different shapes induced by the shape of each polyhedron. The name twisted
geometries refers to this mismatch, but also to the relation to twistors that this parametrization
has led to [47, 48, 30].

The normals endow each polyhedron with an orientation in R3. One can further reduce the de-
scription looking at the data modulo rotations at each node. This is the only information relevant
to the determine the norm of the coherent amplitude, and consists of a gauge-invariant description
of the twisted geometry in terms of areas and the shape parameters of the polyhedra.

These geometries carry a notion of Euclidean and Lorentzian signature. This can be determined
from the range of the functions of φabc that enter the spherical cosine laws (see below). In the case
of a 4-simplex, it matches the signature determined by the areas and triangle inequalities. For
Lorentzian data, the polyhedra are space-like by definition of the model.6 One can also use the
spherical cosine laws to define 4d dihedral angles associated to the faces. Because of the shape-
mismatch, this gives as many different dihedral angles per face as its valence [54, 55, 31, 32].

(ii) Vector geometries. These were introduced in [5] as the set satisfying closure and further the
orientation conditions

Ra~nab = −Rb~nba, Ra ∈ SO(3). (14)

We remark that these conditions are independent of the spins, and that they can be satisfied only
for twisted geometries that have a Euclidean signature everywhere, as proved in Appendix B.

This definition is orientation-dependent: a gauge reduction would be useful to think clearly of the
vector geometries as a subset of twisted geometries we some partial shape matching imposed, but it

4The reason one considers boundary data with vanishing twist angles is that the amplitudes are coherent in the directions,
but sharp in the areas. One can consider superpositions of vertex amplitudes also in the spins, like it is done in the propagator
calculations [45]. These will be labelled also by the twist angles, and the boundary data be complete holonomies and fluxes.

5Or closed twisted geometries, if the name open twisted geometries is used for the generic parametrization of T ∗SU(2)
prior to imposing the closure conditions.

6See [49, 50] for twisted geometries with time-like and light-like polyhedra, and e.g. [26, 51, 12] for spin foam models
with time-like faces.
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is not known. In the case of the 4-simplex, a partial gauge reduction of the five-dimensional space
of vector geometries at fixed spins was obtained in [35], in terms of four shape parameters of the
tetrahedra, and one non-gauge-invariant angle.

(iii) Angle-matched, or conformal twisted geometries. These were introduced in [35] and corre-
spond to the subset of twisted geometries with a partial shape-matching, consisting of the valence
and 2d angles of the faces. For triangulations, they coincide with 3d Regge geometries, but not in
general.

When the faces of the polyhedra are not triangles, the angle-matching conditions don’t impose the
matching of the shapes: two polygons with the same area and the same 2d dihedral angles can still
differ by a conformal transformation that preserves the area. An n-sided polygon in R2 has 2n− 3
degrees of freedom up to rotations, thus matching area and angles leaves n− 3 freedoms.

Conformal twisted geometries exist for both Euclidean and Lorentzian angles. If, and only if,
they are fully Euclidean, they are a strict subset of vector geometries [35]. Angle-matched twisted
geometries have two important geometric properties, that will play a prominent role in the saddle
point analysis:

• By having a well-defined valence for each face dual to the link, conformal twisted geometries
introduce a map from cycles of the graph to edges of a cellular decomposition.

• Furthermore, they assign a unique 4d dihedral angle to each face, via the spherical cosine laws,
more on this in the next Section.

(iv) 3d Regge geometries. The further subset of angle-matched twisted geometries satisfying full
shape-matching conditions [54, 46]. They split in Euclidean and Lorentzian sectors, again identified
by the spherical cosine laws. The reduced data are in one-to-one correspondence with the edge
lengths of the cellular decomposition,7 and describe a 3d Regge geometry. The standard and
simplest definition of a Regge geometry uses only triangulations, but the extension to a cellular
decomposition described by its edge lengths is rather straightforward. Notice that the graph Γ
does not fix the nature of the cellular decomposition, only the number and connectivity of the cells:
whether it is a triangulation or not, it is determined by the data themselves following the Minkowski
theorem [46].

(v) Flat-embeddable 3d Regge geometries. Among the 3d Regge geometries, it is possible to single
out those that can be flat embedded in 4d. This request typically constrains the edge lengths. In
this case, the data can be given a 4d interpretation as the boundary geometry of a flat 4d polytope,
Euclidean or Lorentzian as previously determined by the spherical cosine laws. A special situation
occurs in the case of the 4-simplex: a 3d Regge geometry on the boundary graph of the 4-simplex is
always flat-embeddable, therefore all 3d Regge data admit a 4d interpretation as a flat 4-simplex.
But in general this is not the case. When the flat embedding is not possible, one can seek a curved
interpretation for instance starting from the flat polytope and adding one or more vertices in the
bulk, but we are not aware a specific prescription to do so.

Looking at the definitions, we can see that the 4-simplex case loses this fine-grained structure. In
particular, there is no distinction between (iii), (iv) and (v), which are all squashed in the same class of 4-
simplex Regge geometries. From the classification we also see that every Euclidean 3d Regge geometry is
automatically a vector geometry. This may not be very intuitive at first, but can be given a nice geometric
picture in the case of a 4-simplex, in terms of 3d objects called spike and twisted spike, we refer to [35]
for more details. The 4-simplex has another special property: one can generically invert the edge lengths
for the areas,8 and use the latter as fundamental variables to describe the geometry. In this respect, the
reduction from a vector geometry to a Regge geometry corresponds to picking a configuration of normals
(unique up to rotations) compatible with the areas. Furthermore, the distinction between Euclidean and
Lorentzian data can be done using the areas alone, by computing the squared 4-volume and checking its

7Up to some highly symmetric configurations, e.g. a regular parallelepiped, which is only uniquely characterized by areas
and angles and not by the edge lengths,

8Up to isolated configurations with non-invertible Jacobian, see Appendix E.
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sign. In the quantum model, the areas are described by the half-integer spins jab, and only in the large
spin limit one can approach a continuum of possible shapes.

This classification of boundary data, which is common to any spin foam model with SU(2) spin
network states in its boundary, is useful to classify the existence of critical points and their geometric
interpretation.

2.2 Spherical cosine laws and edge twist angles

The previous classification has made various references to the spherical cosine laws. These play a crucial
role throughout our analysis, and it is useful to provide some details here. For future reference, a summary
of the basic angles used is given in Table 1.

φabc 3d angle of polyhedron a between the faces identified by its adjacency to the polyhedra b and c

θ̂abc 4d angle between polyhedra b and c defined using the edge identified by their adjacency to a
αabcd 2d angle of the polyhedron a, in the face identified by its adjacency to b,

between the edges identified by its adjacency to c and d

ξ̂abc angle between the vectors associated to the same edge
(the one in the face shared by the polyhedra b and c, identified by their adjacency to a)
but computed using either the geometry of b or that of c

Table 1: Various geometric angles and their notation. The first three are defined in [0, π), and taken to be external

by convention, while the twist angle is defined in [0, 2π).

Consider first three hyperplanes in R4, call them a, b, and c for later convenience. Generically, they
intersect at an edge, and pairwise at planes. The spherical cosine laws give a relation between the 3d
dihedral angles among the planes, denote them φ, and the 4d dihedral angles among the hyperplanes,
denote them θ̂. With reference to Fig. 1, left panel, and using conventions with exterior dihedral angles,
we have

cos θ̂cab =
cosφcab + cosφbac cosφ

a
bc

sinφbac sinφ
a
bc

∈ R, Re(θ̂cab) ∈ [0, π]. (15)

This is the angle between a and b. Since the hyperplanes are given, the left-hand side does not depend
on c: as we move the third hyperplane in R4, all three φ’s change, while keeping the result unchanged.
In other words, the 4d angle depends on two hyperplanes only, the third is introduced only to compute
it from 3d angles.

bc

ab

ac

φb
ac

φa
bc

φc
ab

θ̂abc

θ̂cab

θ̂bac

b

a

abc

ξ̄cab

abd ξ̄dab

bac

bad

Figure 1: Left panel: The spherical cosine laws can be used to define edge-dependent 4d dihedral angles from the
3d dihedral angles computed from the boundary data. Right panel: The edge twist angles ξ̂cab on the face shared
between the polyhedra a (blue) and b (red). When they match for all edges, ξ̂cab = ξ̂dac, also the 2d angles (marked
by a double line) match, by Thales’ theorem.

The reality of the angles θ̂cab depends on the values of the 3d angles, as follows:
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• If the RHS takes values in (−1, 1) then θ̂cab = θcab ∈ [0, π). These are ‘Euclidean’ configurations,

with θ̂ the angle between two Euclidean vectors, or space-like Minkowski vectors.

• If the RHS takes values in (1,∞) then θ̂cab = iθcab is purely imaginary, and we fix by convention

θcab > 0. These are ‘Lorentzian co-chronal’ configurations, with θ̂ the angle between two time-like
vectors pointing both to the future or the past (called ‘thick wedge’ configurations in [3]).

• If the RHS takes values in (−∞,−1) then θ̂cab = iθcab+ π is complex with real part π, and we fix by

convention θcab < 0. These are ‘Lorentzian anti-chronal’ configurations, with θ̂ the angle between
one future-pointing and one past-pointing time-like vector (or ‘thin wedge’ configurations).

We use the notation θ̂ as bookkeeping for both real and complex possibilities, and θ for the Euclidean or
Lorentzian real angles.

Consider now a different setting, where we are not given the hyperplanes, but rather just a triple of
3d angles φcab. This is the situation described by the boundary data of the amplitude for three nodes a, b
and c mutually connected, namely belonging to a 3-cycle C of the graph. Assuming non-degenerate data,
each node describes a polyhedron in R3, and the 3-cycle identifies an edge shared by the three polyhedra.
With reference to Fig. 1, left panel, the edge is the vertex where the three lines meet. We can now use
(15) as a definition of 4d angles from the boundary data. This definition provides a local flat embedding
of the polyhedra in R

4, or equivalently or their hyperplanes, like a discrete version of the Gauss-Codazzi
equation. This embedding works independently of the shapes of the polyhedra. If we now swap the triple
for a new triple φdab, where d 6= c is a fourth mutually connected node, we obtain in general different 4d
angles and a different embedding of the polyhedra. Since each choice of triple is associated with an edge
shared by two of the polyhedra, we refer to (15) defined in this way as edge-dependent 4d dihedral angles.
Such angles allows us to locally classify the boundary data into Euclidean or Lorentzian, according to
the range of the right-hand side of (15).

This is the situation for generic boundary data. We are now interested in characterizing a special
subset of the data, for which the reconstructed 4d angle does not depend on the choice of edge. To
provide an answer to this question, we consider the spherical cosine laws relating the 3d dihedral angles
to 2d dihedral angles:

cosφabc =
cosαadbc + cosαacbd cosα

ab
cd

sinαacbd sinα
ab
cd

, cosαabcd =
cosφacd − cosφabc cosφ

a
bd

sinφabc sinφ
a
bd

. (16)

Here αabcd is the external 2d angle in the face ab, between the edge shared by a and c and the edge shared
by a and d. Looking at the right-hand side, we see that the notation for the angle is symmetric in the
lower indices, αabcd = αabdc. This is a constant property of the notation for all angles used in this paper.
It is a priori not symmetric on the upper indices, αabcd 6= αbacd. This amounts to using the 3d angles of a
or the 3d angles of b, and this will in general produce different answers, since adjacent polyhedra have
different shapes. The equality αabcd = αbacd defines the special boundary data that we call angle-matched, or
conformal, twisted geometries. It is easy to show that angle-matched data define also edge-independent
4d dihedral angles. To see that, it suffices to express θ̂cab and θ̂

d
ab in terms of the 2d angles using (16). It

follows by inspection that

(αabcd = αbacd, α
ac
bd = αcabd, α

ad
bc = αdabc , α

bc
ad = αcbad, α

bd
ac = αdbac) ⇒ θ̂cab = θ̂dab. (17)

The 4d dihedral angle computed at c matches the one at d if the 2d angles at the vertex abcd for the
faces ab, ac, ad, bc, and bd match. To have edge independence of θ̂ at a face ab, we need angle matchings
not only at ab, but also on adjacent faces. Reversing the procedure, we also obtain

(θ̂cab = θ̂dab, θ̂
b
ac = θ̂dac, θ̂

b
ad = θ̂cad, θ̂

a
bc = θ̂dbc, θ̂

a
bd = θ̂cbd, θ̂

a
cd = θ̂bcd) ⇒ αabcd = αbacd. (18)

A local double arrow corresponding to a necessary and sufficient condition is clearly not possible, because
the 2d and 4d angles have common φ’s but also uncommon ones: they differently on the structure of
the graph. Nonetheless, if all (independent) cycles of the graph are 3-valent, it is possible from these
relations to conclude that all 4d dihedral angles are edge-independent if and only if all 2d angles match:

{αcdab} = {αdcab} ⇔ {θ̂cab} = {θ̂ab}. (19)

9



This is for instance the case of the 4-simplex: all nodes are mutually connected, and all edges of the
tetrahedra are dual to 3-cycles. In this case, it is easy to see that angle-matching conditions for all 2d
angles imply the edge-independence of all 4d angles. For a general graph we need additional formulas,
to take into account the edges of the polyhedra which are not dual to 3-cycles but to larger cycles of the
graph. In this case, it turns out that one has to consider first the (edge-dependent) 4d angles between
one polyhedron and the auxiliary hyperplanes identified by the higher cycles, and then sum them up to
signs. The relative signs determines locally convex or concave embedding of the polyhedra sharing the
edge dual to the higher cycle. Let us illustrate this more general situation in the case of a 4-cycle.

φd
ac

φa
bd

φc
bd

φb
ac

θ̂e
bc

θ̂d
sa

φs
bc

θ̂c
sb

cd

bc

abad

θ̂h
ab

φh
ab

b

a

abc

ξ̄cdab

abe ξ̄
ef
ab

bad

baf

Figure 2: Left panel: Use of spherical cosine laws for a 4-cycle, here labelled by (abcd). The 4-cycle identifies
an auxiliary hyperplane s = (ab, cd) colored in blue. If bc belongs also to a 3-cycle, say with a node e, the dashed
3d dihedral angle can be determined by the boundary data and the 4d angle computed using the 3-cycle data. The
result is the identification of two 4d angles between a or b and s.
Right panel: Visual proof that edge-independence of the twist angles (30) implies matching of the 2d angles: when
ξ̂cdab = ξ̂

ef
ab , the 2d angles in red and blue coincide, by Thales’ theorem. Unlike in the 3-cycle case of Fig. 1, the

third nodes c and e need not coincide with d and f . As a consequence, the lines drawn in red and blue are not
necessarily edges of the polytope.

Consider a face ab in a 4-cycle C = abcd. With the help of Fig. 2, left panel, we see that if we know
all six 3d angles, we can use the spherical cosine laws to define three different 4d angles at ab:

cos θ̂hab :=
cosφhab + cosφabd cosφ

b
ac

sinφabd sinφ
b
ac

, (20)

cos θ̂csb :=
cosφcbd + cosφbac cosφ

s
bc

sinφbac sinφ
s
bc

, cos θ̂dsa :=
cosφdac + cosφabd cosφ

s
bc

sinφabd sinφ
s
bc

. (21)

The first option uses the left-most triple of 3d angles, and defines an angle between a and b constructed
in reference to an auxiliary hyperplane h spanned by the faces ad and bc. The second option uses the
dashed 3d angle and the two marked by a single line. It defines a 4d angle between b and the auxiliary
hyperplane s spanned by the faces ab and cd. The third uses the right-most triple of 3d angles, the dashed
one and the two marked by a double line. It defines a 4d angle between a and the same hyperplane s.
These three definitions provide a local flat embedding of three hyperplanes a, b and s. By construction,
the three hyperplanes share a common face ab, and the three angles are related by

cos(θ̂hab − θ̂csb) = − cos θ̂dsa. (22)

It follows that
θ̂hab − θ̂csb = ηsθ̂

d
sa + π, ηs = ±1. (23)

The sign of ηs can be understood as a convex or concave relative embedding of the hyperplanes. The π
here is to take into account our convention of always using external dihedral angles. We stress that this
formula holds always, be the configuration Euclidean or Lorentzian, or even mixed in same cases.

There is a catch, however: the boundary data do not determine all 3d angles needed. The dotted and
dashed ones in the figure are not given, because their relative faces don’t belong to the same polyhedron.
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Therefore we do not have direct access to the 4d angles just defined. It is however possible to obtain
them using the boundary data and 4d angles previously determined using 3-cycles. For instance if ab
belongs to a 3-cycle with a node f , we can use that 3-cycle to determine the dihedral angle θ̂fab. If ab

does not belong to a 3-cycle, but say bc does, with a node e, then we can use θ̂ebc to determine φsbc via

cosφsbc = cos θ̂ebc sinφ
b
ac sinφ

c
bd − cosφbac cosφ

c
bd. (24)

This quantity allows us to know the two angles (21). At this point, we can use (23) as a definition of θ̂hab.
This procedure leaves ηs undetermined: we have no way to fix from the boundary data the local convex
or concave embedding for a 4d angle associated to a face that does not belong to any 3-cycle. There is
also freedom left in the sector of the data: looking at the 3d angles entering the definitions, we see that
θ̂csb is in the same sector (Euclidean or Lorentzian) of θ̂ebc, but the sector of θ̂dsa is independent.

Once again, the 4d angles and hyperplanes defined are all edge-dependent: choosing different cycles
containing ab, we get different values. The subset of data that we want to characterise are those that
identify a unique 4d angle on ab, namely those that give the same value

θ̂ab := θ̂csb + ηsθ̂
d
sa = θ̂c

′

s′b + ηs′ θ̂
d′

s′a, (25)

independently of the 4-cycle considered. Furthermore, if there is also a 3-cycle containing ab, say with
node f , this can also be used to compute a 4d angle θ̂fab associated with the same face, and we must also
require

θ̂fab ≡ θ̂csb + ηsθ̂
d
sa + π = θ̂ab. (26)

In this case, the relative embedding described by ηs is fixed. Notice that the edge-independence we are
looking for, (25) and/or (26), does not extend to the auxiliary angles between polyhedra and s. These are
free to vary with s, only their sum and/or difference must not. Proceeding as before, one can derive this
edge independence from 2d angle matching conditions. Notice in fact that (16) only require a 3-valent
node a of the graph, irrespective of the size of the cycles passing through it. The general angle matching
conditions take the form

αabcd = αbac′d′ , (27)

since for general cycles b has no face in common with c and d, but rather with c′ and d′, and vice versa for
a.9 A similar reasoning allows to define edge-dependent 4d dihedral angles for faces whose independent
cycles are arbitrarily large, in terms of boundary data and previously determined 4d dihedral angles.
Iterating use of (16) one identifies the relevant angle-matching conditions in each case. Listing all the
required angle matching conditions for the edge-independence of a given face, with its edges belonging
to arbitrary cycles, may be cumbersome. Fortunately, it is also unnecessary, since all we need is a
global characterization. Our investigations lead us to conclude that (19) holds in general, with the edges
corresponding to arbitrary cycles:

{αabcd} = {αbac′d′} ⇔ {θ̂Cab} = {θ̂ab}. (28)

We have however no formal proof to offer. The main geometric interpretation pointed out in this paper,
that conformal twisted geometries are the general type of data admitting multiple critical points, relies
on the validity of (28). Notice that the 2d angles are defined in a purely combinatorial way: they can
belong to a vertex which is not part of the boundary of the polyhedra. Therefore the left-hand side is
clearly a redundant requirement, as it would be enough to restrict attention to those that do belong to
the boundary of a polyhedra. While redundant, this characterization is simpler. On the right-hand side,
it is sufficient to focus on independent cycles.

To get some intuition about these auxiliary hyperplanes, it is useful to consider an example in one less
dimension, given by a polyhedron with the combinatorial shape of a house (a tetragonal-based pyramid
stacked on top of a cuboid). The dihedral angle between one wall and its adjacent part of the roof
cannot be computed using the standard spherical cosine laws, because there is no other face touching

9Notice that with this procedure one can associate to a face also a spurious 4d angle that corresponds to a dependent
4-cycle, namely a 4-cycle that can be obtained composing 3-cycles. In this case, the angle-matching conditions guarantee
that this spurious angle matches the edge-independent dihedral angle.
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both. The solution is to introduce an auxiliary plane, the (tetragonal) attic of the house. The spherical
cosine laws permit to compute the angles between this auxiliary plane and the wall or the roof. The
desired angle is then the sum of the two (or the difference in case the polyhedron was concave). If the
polyhedron is modified in such a way that there is a face touching both one wall and its adjacent part of
the roof, then it is possible to compute the dihedral angle using the spherical cosine laws with this face.
If the angle-matching conditions are satisfied, the two computations must give the same result, and this
in particular fixes the relative convex or concave embedding. We will see this example in full details in
Section 7.3 below.

There is an alternative, equivalent way to characterize the angle-matched data: instead of the matching
of the 2d angles, we can look at the relative angles between the edge vectors, and see whether they are
constant all along the face. We refer to these as edge twist angles. To define them in the way most
relevant to the saddle point analysis, we proceed as follows. For two adjacent polyhedra a and b we can
always consider the gauge in which ~nab = −~nba. In the case of a 3-cycle with c, the triple abc defines
an edge, to which we can associate two distinct vectors, one computed in the frame of a, and one in the
frame of b. In the chosen gauge, we define the angle between these two vectors as

cos ξ̂cab :=
~nbc × ~nba · ~nab × ~nac
||~nbc × ~nba|| ||~nab × ~nac||

, sin ξ̂cab := − ~nbc · ~nab × ~nac
||~nbc × ~nba|| ||~nab × ~nac||

, ξ̂cab ∈ [0, 2π). (29)

This edge twist angle is always real, however it is not gauge-invariant. It is invariant under the remaining
gauge freedom of rotations at the node b but not at the node a.10 If ξ̂cab = ξ̂dab, the 2d angle between
the two edges abc and abd computed in the frame of a matches the one computed in the frame of b, see
the right panel of Fig. 1 for a visual proof. Notice that for a polygonal face with n sides, we need n
edge independent conditions for all 2d angles to match. Edge-independence of twist angles thus implies
matching of 2d angles, and in turn, edge-independence of 4d angles. When this happens, there exist
a relative orientation of two adjacent polyhedra with all twist angles vanishing. For the edges dual to
4-cycles, we look at the scalar products between the two vectors associated to the edge shared by a and
b, identified by the connected pair (c, d),

cos ξ̂cdab :=
(~nac × ~nab) · (~nba × ~nbd)

|~nab × ~nac||~nba × ~nbd|
, sin ξ̂cdab := − ~nac · ~nba × ~nbd

|~nab × ~nac||~nba × ~nbd|
, ξ̂cdab ∈ [0, 2π). (30)

Proceeding in the same way, one can define edge-dependent 4d dihedral and twist angles for larger cycle,
and deduce their edge-independence from 2d angle-matching conditions. When all edge twist angles
match, the 2d angles at the face also match:

αabcd = αbac′d′ ⇔ ξ̂Cab = ξ̂ab ∀ independent cycles. (31)

This equivalence is completely local, valid face by face. It may involve redundant quantities: for instance
some of the edges or the vertices may not be in the boundary of the polyhedra, but lie outside of the
polyhedra, where non-adjacent faces intersect. We refer to edges and vertices defined at the generic
intersection of faces in R3, not in the boundary of the polyhedra, as ‘virtual ones’.

The resulting geometric picture is the following. For every (closed) twisted geometry, we can identify
a unique convex polyhedron at each node, and define edge-dependent 4d dihedral angles among the
polyhedra, and edge twist angles. The twist angle varies in general from one edge to the next, forbidding
the reconstruction of a unique shape for the face ab. But, if the data are such that the twist angles at a
face are all the same, the valence and 2d angles of the face ab are uniquely determined. The only possible
mismatch left is that of (area-preserving, since the spins are uniquely assigned) conformal transformations.
In this case, also the 4d angles defined by the spherical cosine laws are edge independent.

10It should not be confused with the gauge-invariant twist angle used in the twisted geometry literature, see e.g. [31, 56],

cos ξ̄cab :=
~nbc × ~nba · gab ⊲ (~nab × ~nac)

||~nbc × ~nba|| ||~nab × ~nac||
, sin ξ̄cab := −

~nbc · ~nba × gab ⊲ ~nac

||~nbc × ~nba|| ||~nab × ~nac||
, ξ̂cab ∈ [0, 2π).

This is independent of the orientation thanks to the SU(2) parallel transport gab along the link connecting the two tetrahedra.

To distinguish the two but hint at their common structure, we used ξ̂ as opposed to ξ̄. The 2d angle-matching conditions
also follows from the edge-independence of the gauge-invariant twist angles, the only reason to work with (29) is that those
are the ones that appear in the saddle point analysis below.
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3 Saddle point analysis

We are interested in the homogeneous large spin behaviour of (6), namely

jab 7→ λjab, λ→ ∞. (32)

The action (7) is linear in the spins, and therefore the asymptotics of the vertex amplitude can be
studied with saddle point techniques. The critical points, or saddles, are those where the gradient
vanishes. Among them, those maximizing the real part of the action give the dominant contributions
to the asymptotic behaviour of the integral, and we restrict attention to these. With a little abuse
of language, we will still call them critical points, even though strictly speaking they should be called
absolute critical points. Accordingly, the analysis of [3] obtains three sets of equations. Requiring the
absolute maximum of the real part of the action, one finds

|ζab〉 = eiυab
h†a|zab〉
||h†azab||

|ζba] = eiυba
h†b|zab〉
||h†bzab||

. (33)

Here υab are arbitrary phases, and we used the fact that the boundary spinors have unit norm. These
two equations can be combined to give

(h†a)
−1|ζab〉 =

||h†bzab||
||h†azab||

ei(υab−υba)(h†b)
−1|ζba]. (34a)

From the vanishing of the (imaginary part of the) spinorial gradient, on-shell of (33), one finds

ha|ζab〉 =
||h†azab||
||h†bzab||

ei(υab−υba)hb|ζba]. (34b)

From the vanishing of the gradient in the group variables, on-shell of (34), one finds the closure conditions
(12). These equations were derived in [3] for the 4-simplex graph, but it is immediate to see that the
same equations arise from (7) for any vertex graph. To proceed, we can further combine (the hermitian
conjugate of) (34a) with (34b) to derive

〈ζab|h−1
a ~σha|ζab〉 = [ζba|h−1

b ~σhb|ζba], (35a)

[ζba|h−1
b ha|ζab〉 =

||h†azab||
||h†bzab||

ei(υab−υba). (35b)

Equations (35a) turn out to be enough to fully determine the group elements at the critical point. The
equations (35b) can then be used to determine the norm ratios and the phase differences υab − υba. As
for the sums υab + υba, these are part of the irrelevant choice of section for the dummy spinors zab and
therefore are undetermined. Finally (33) determine the dummy spinors zab, up to their arbitrariness
under complex rescalings.

The system of non-linear critical point equations for the integration variables zab and ha, made of (12),
(33) and (35), has no solution for general boundary data. This is manifest from the closure conditions
(12), which don’t involve the integration variables at all, but are directly a restriction on the boundary
data. Satisfying the closure conditions (12) is not enough: the equations (35), or equivalently (34), impose
additional restrictions on the boundary data, known from [3] for a 4-simplex and to be revisited in this
Section. Critical points exist only for special boundary data, corresponding to a strict subset of twisted
geometries.

If a critical point (c) is found, and the Hessian H (c) is not degenerate, the saddle point approximation
of (6) gives 6(N − 1) + 2L Gaussian integrals to evaluate. From the general formula of the saddle point
approximation we have the leading order asymptotics

AΓ(λjab, ~nab,−~nba) =
(2π)3(N−1)22L+N−1J

λ3(N−1)

∑

c

Ω(c)

√
det−H (c)

expS(c) +O(λ−3N+2). (36)
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The sum is over distinct critical points, and there is a factor 2N−1 because the action is even in all group
elements, so if h(c)

a is a critical point, also −h(c)
a is. We have used the short-hand notation

J :=
∏

(ab)

jab, (37)

and Ω(c) is Barrett’s notation for the value of the spinorial measure at the critical point.
The value of the action at the critical points is

S(c) = −2iλ
∑

(ab)

jab
(

υ(c)

ab − υ(c)

ba

)

+ γjab log
||h(c)†
a z(c)

ab ||
||h(c)†

b z(c)

ab ||
. (38)

Both terms of this on-shell action can be determined from the LHS of (35b). We notice also that the
explicit solution for the dummy spinors from (33) is not needed. They are needed however to compute the
Hessian determinant. This can be done choosing explicitly a section of the tautological bundle, following
the calculations presented for the 4-simplex case in [16]. This dependence on the choice of section is
exactly cancelled by the measure factor Ω(c).

3.1 From spinors to 3d vectors

The key equations to solve for the saddle point analysis are (35a). These can be rewritten in terms of
the vectors only, without reference to the spinors, as

Ha~nab = −Hb~nba, (39)

where H is the 3-dimensional, non-unitary representation of h ∈ SL(2,C), defined as

H~n := 〈ζ|h−1~σh|ζ〉, ~n = −〈ζ|~σ|ζ〉. (40)

This mapping plays an important role in the analysis, and it is useful to give more details about it. We
use the polar decomposition h = bu, where u ∈ SU(2) and b is a boost, with rapidity r:

b := e−r~v·
~σ
2 , r ∈ R, ~v2 = 1. (41)

From elementary properties of the Pauli matrices (see Appendix A for details) we derive

〈ζ|h−1~σh|ζ〉 = cosh r U~n− i sinh r ~v × U~n+ (1− cosh r)(~v · U~n)~v, (42)

where U is the vectorial representation of u. This is the formula defining (39) explicitly. It can be
recognized as the SL(2,C) transformation of the self-dual part of a bivector with vanishing magnetic
part. The latter property follows from the reality of ~n. This special class of bivectors is singled out
by the use of the canonical basis in the vertex amplitude, which selects the SU(2) subgroup stabilizing
the time direction tI = (1, 0, 0, 0). Introducing the notation nI := (0, ~n), the bivector can be written
BtIJ := ǫIJKLt

KnL.
Notice that ±ha give the same Ha. The action (7) is even in the group elements ha, therefore we can

replace in the saddle point analysis (35a) with (39) without loss of generality. Each solution obtained for
Ha will induce two solutions for ha, distinguished by the sign.

Written in form (39), one class of solutions to the equations becomes manifest. If the boundary data
satisfy

~nab = −~nba, (43)

then (39) is solved with Ha = 1 for all nodes. This leads to two solutions for ha = ±1, but we still refer
to it as a single critical point, discounting the Z2 symmetry. More generally, if the boundary data satisfy
(14) for some rotations Ra, then (39) is solved with Ha = Ra ∈ SO(3). This shows that vector geometries
can be immediately identified as boundary data with a critical point, for any graph. Finding if there are
more solutions, or solutions with Ha /∈ SO(3), requires all the work.
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4 4-simplex asymptotics revisited

The reader familiar with the results of [3] can recognize from (39) the main classes of critical configurations
for the 4-simplex: vector and Euclidean Regge geometries, for which Ha ∈ SO(3), and Lorentzian Regge
geometries for which Ha have non-vanishing boosts. The novelty of our procedure lies in the way we
solve these equations.

The 4-simplex amplitude is associated to K5, the complete graph with 5 nodes. We pick the node 1 as
the one without group integration. Then, we perform a partial gauge fixing at the 4 remaining nodes: we
require the normal at the triangles shared with the tetrahedron 1 to be anti-parallel to the corresponding
normal of the tetrahedron 1, namely

~n1a = −~na1. (44)

This condition involves only one normal per tetrahedron, and can then be realized for any set of boundary
data (even those not satisfying the closure conditions). It fixes 2 gauge freedoms per node, leaving one
gauge freedom to perform rotations in the plane of the triangle 1a. If desired, the latter can be fixed
for instance aligning one edge of the triangle 1a in the tetrahedron a with the corresponding edge in the
tetrahedron 1; the other two edges will be unaligned in general, because of the shape mismatch of generic
data.

The advantage of the partial gauge (44) is to make the direction of the critical group elements straight-
forward. Taking b = 1 in (39), we have

~n1a = −Ha~na1 = Ha~n1a. (45)

This equation implies that the critical group elements contain a rotation and a boost along the same
direction determined by the boundary data between a and the root 1. SL(2,C) transformations of this
type are called four-screws, and can be conveniently parametrized in the fundamental representation as

ha = ± exp
( i

2
ωa~na1 · ~σ

)

, ωa := αa + iβa, (αa, βa) ∈ [−π, π)× R. (46)

To find the complex angle ωa, we insert the special form (46) in (39), using equations with both a and b
different from 1. After some simple algebra we find

cosωa ~nab + sinωa ~na1 × ~nab + (1− cosωa)(~na1 · ~nab) ~na1
= − cosωb ~nba − sinωb ~nb1 × ~nba − (1− cosωb)(~nb1 · ~nba) ~nb1. (47)

It is at this point that we exclude from our analysis configurations with coplanar normals at the same
node. For the 4-simplex, these have tetrahedra with zero volume, and such degenerate configurations are
excluded also from the standard analysis based on the bivector reconstruction theorem. This vectorial
equation can be decomposed projecting along the basis provided by ~nb1, ~na1 and ~nb1 × ~na1. After simple
trigonometry, we obtain the following scalar equations,

cos(ωa + ξ̂ba1) = cos θ̂ba1, (48a)

cos(ωb + ξ̂ab1) = cos θ̂ab1, (48b)

sinφab1 sin(ωa + ξ̂ba1) = sinφba1 sin(ωb + ξ̂a1b), (48c)

where θ̂ba1, θ̂
a
b1 and ξ̂ba1 are the functions of the boundary normals defined in (15) and (29). Thanks to

a natural choice of basis to project the vectorial equations, the (edge-dependent) twist and 4d angles
appear naturally from the critical point equations! All expressions are well defined since sinφabc 6= 0 for
all combinations of nodes, having excluded the degenerate configurations.

As we vary a and b, the cosine equations determine the complex angles ωa in terms of the 3d normals,
giving two solutions at most. The sine equations involve ωa at different nodes and can introduce global
conditions restricting the space of solutions. To proceed, we split (48) into real and imaginary parts, in
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terms of the angles αa and boosts βa:

coshβa cos(αa + ξ̂ba1) = cos θ̂ba1, (49a)

sinhβa sin(αa + ξ̂ba1) = 0, (49b)

sinφab1 sin(αa + ξ̂ba1) coshβa = sinφba1 sin(αb + ξ̂ab1) coshβb, (49c)

sinφab1 cos(αa + ξ̂ba1) sinhβa = sinφba1 cos(αb + ξ̂ab1) sinhβb, (49d)

to be valid for all a and b.
The solutions to (49) can be classified according to whether (49b) is solved by βa = 0, or by αa+ξ̂

b
a1 = 0

modulo π. It follows from (49c) and (49d) that whichever case is chosen for the first a, it has to be chosen
for all remaining nodes as well, since they are all connected to 1 and a. In the first case, all critical group
elements are pure rotations, that is Ha ≡ Ra ∈ SO(3). From (39), we see that such critical points exist
only for boundary data satisfying the orientation conditions

Ra~nab = −Rb~nba, Ra ∈ SO(3). (50)

This implies that the 3d dihedral angles satisfy the Euclidean condition θ̂ba1 ≡ θba1 ∈ [0, π) (see Appendix B
for an explicit proof). Accordingly, we will refer to these solutions as Euclidean. In the second case, βa 6= 0
and no critical group element is a pure rotation, that is Ha /∈ SO(3) for a 6= 1. The presence of a boost

in Ha means that the 3d angles φba1 violate the Euclidean conditions, and θ̂ba1 = iθba1 up to a possible real
part π. We will refer to these solutions as Lorentzian.

4.1 Euclidean solutions

Taking βa = 0 ∀a solves (49b) and (49d). This leaves us with (49a) and (49c), which read

cos(αa + ξ̂ba1) = cos θba1, (51)

sinφab1 sin(αa + ξ̂ba1) = sinφba1 sin(αb + ξ̂ab1). (52)

The first equation requires
αa = ǫbaθ

b
a1 − ξ̂ba1, ǫba = ±1 (53)

to hold for any choice of b different from 1 and a, and to be solved modulo 2π within the interval [−π, π).
These gives two candidate solutions per node different from 1, namely 24. But the value of the RHS
depends a priori on the choice of b, hence it is not obvious that the solutions are admissable. It turns out
that (50) guarantees that the plus sign in (53) is always a solution. The simplest way to prove this is to
notice that for data satisfying (50), the partial gauge-fixing (44) used so far can be completed to have all
normals pairwise-opposite, and not just those at the faces of the first tetrahedron. Namely, there exist a
complete gauge-fixing such that

~nab = −~nba ∀ a, b. (54)

In this gauge we have ξ̂ba1 ≡ θba1 for all a and b. This can be immediately seen expanding the numerator
of (29), then using (54) and the definition of the 3d angles in terms of the normals (13), to recover (15).

Since ξ̂ba1 is affected only by rotations at a, it follows that the most general configuration satisfying (50)
has

θba1 = ξ̂ba1 + νa, (55)

for some angles νa determined by the orientation chosen. Then, αa = θba1 − ξ̂ba1 ≡ νa is manifestly
b-invariant and solves (51). It also solves identically the remaining equation (52), which become the
spherical sine laws. We have thus found a solution to all critical point equations, and this is in general the
only solution, since the minus sign in (53) is ruled out by the b-dependent RHS. The corresponding critical
group elements h(c)

a are given by (46) with ω(c)
a = νa. In other words, we have a unique critical configuration

of R(c)
a = D(1)(h(c)

a ) ∈ SO(3), to which there correspond 24 critical configurations h(c)
a ∈ SU(2). Notice

that in the gauge (54), h(c)
a = ±1 ∀a.

The boundary data satisfying the closure and orientation conditions, given respectively by (12) and
(50), are the vector geometries, and we have just recovered that such data admit a unique critical
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configuration (up to spin lifts). Here we used equations that assumed non-coplanar normals, but vector
geometries can be shown to be always solutions regardless of this assumption, as discussed in Section 3.1.
A direct counting of conditions shows that the space of vector geometries for this graph has 15 dimensions,
up to rotations.

Taking the minus sign in (53) becomes possible only if the right-hand side is independent of b. As
discussed in Section 2.2, we know that this happens for the special subset of data with matching 2d
angles, for which

θba1 = θa1, ξ̂ba1 = ξ̂a1, (56)

both independent of the choice of edge, provided we also fix ǫba = ǫa. The conditions (56) involve only the
faces shared between the tetrahedron 1 and a. This is a consequence of our choice of solving the equations
starting from the node 1. But we could have repeated the analysis taking any other node as reference,
therefore the boundary data that admit additional critical points must satisfy angle-matching on all faces.
Since the faces are triangles with a well-defined area, this condition imposes full shape-matching of the
faces.

Plugging these solutions in the sine equations (52), we have

sinφab1 sin(ǫaθa1) = sinφba1 sin(ǫbθb1). (57)

These are satisfied identically as the spherical sine laws, and from the parity of the functions and positivity
of all quantities involved, we conclude that ǫa ≡ ǫb. Therefore we only have two distinct solutions
ω(c)
a = ǫ θa1 − ξ̂a1 ∈ R which differ by a global sign ǫ = ±1.
We have found that the subset of boundary data describing a Euclidean 4-simplex admits two distinct

critical points, determined up to a global sign by the dihedral angles θab of the 4-simplex. This is the
same set obtained in [3] using the bivector reconstruction theorem. Our construction can not exclude
per se the presence of special configurations for which the minus sign is an acceptable solution also if the
shapes don’t match, but we know from the analysis of [3] that these don’t exist. Therefore we can either
restrict the validity of our result to generic configurations, or invoke the bivector reconstruction theorem
to exclude the existence of special configurations bypassing the angle-matching conditions. In the case
of general graphs below, we will only be able to choose the first option.

The critical points for the group elements in the partial gauge used are

h(c)

a = ±hǫa, hǫa := exp
( i

2
(ǫ θa1 − ξ̂a1)~na1 · ~σ

)

. (58)

These values are manifestly orientation-dependent, including the norm of the rotation ω(c)
a : if we rotate

a critical configuration of the normals by Ra, we obtain again a critical point, but with a different ω(c)
a .

Among the geometrically equivalent configurations with angle-matching data, there are two convenient
choices to fix the residual gauge freedom. We refer to [35] for a more accurate construction and to Fig. 8
of the same paper for a graphical representation. The first gauge choice is the spike gauge, characterized
by a rotation of the boundary normals so that ξ̂ba1 vanish for all a 6= 1. The second choice is the twisted

spike gauge, where the boundary normals are rotated so that ξ̂ba1 = θ̂ba1, as in (54). Namely, the edge
angles match precisely the 4d dihedral angles. This choice allows the extrinsic curvature (the 4d dihedral
angle) to be encoded among the intrinsic data (the holonomies and fluxes) in a simple way, similarly
to the analysis done in [32]. These two gauges provides a useful visualization of the geometry of the
problem, and are very convenient in the explicit reconstruction of the data needed in calculations of the
amplitudes. We summarize their properties in the following list:

spike gauge: ξ̂a1 = 0, ~na1 = −~n1a, ω(c)
a = ±θa1, h+

a = h−†
a

~nab × ~nac = −~nba × ~nbc

twisted spike gauge: ξ̂a1 = θa1, ~nab = −~nba, ω(c)
a = 0,−2θa1, h+

a = 1.

From the boundary data corresponding to a 4-simplex one can also reconstruct its ‘spacetime’ orienta-
tion in 4d Euclidean space, namely the individual 4-normals to each tetrahedron, up to a global rotation.
This reconstruction is described for instance in [35], and produces SO(4) holonomies that rotate the
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twisted spike into a 4d object. The critical group element provide also these holonomies, but with a
catch: a single set of Euclidean critical group elements is only SU(2), therefore it would not suffice.11

The solution to recover the correct SO(4) group element is to use both sets of critical points. Explicitly, we
first assign a reference 4d normal tI = (1, 0, 0, 0) to the tetrahedron 1, the node without the integration.
From the two sets of critical group elements labelled by h±

a we define the SO(4) transformations

Λa
I
J :=

1

2
Tr(σIh+

aσJh
−†
a ) ∈ SO(4), (59)

where σI := (1, ~σ), and indices are contracted with the Euclidean metric δIJ . We construct the 4d normal
to the tetrahedron a acting with Λa on the reference vector. In any (partial) gauge of our analysis,

N I
a := Λa

I
J t
J = (cos θa1, sin θa1~na1). (60)

If we exchange the two critical points in (59) we get ΛT = Λ−1, and thus parity-transformed normals and
4-simplex. It is necessary on the other hand to choose the same sign of the spin lift, to have detΛ = 1.

Notice that if we use the group elements from a single critical point, we obtain instead

Ra
I
J :=

1

2
Tr(σIhǫaσJh

ǫ†
a ) ∈ SO(3), (61)

which are the rotations preserving the canonical time direction, that is Ra
I
J t
J ≡ tI . Hence, for vec-

tor geometries with a single critical point, the reconstructed 4d normals are all parallel. Similarly, for
Euclidean 4-simplex data, if one uses a single critical group element and not both as in (59), the re-
constructed 4d normals are all parallel. For this reason, Euclidean 4-simplex as well as vector data are
considered ‘degenerate’ in [7, 11]. We find this name misleading, since there is a well-defined Euclidean
4-simplex with non-zero 4d volume associated with these data, and we will not use it. We can then keep
‘degenerate’ in reference to boundary data with vanishing 3d volumes.

4.2 Lorentzian solutions

In the Lorentzian sector we solve (49b) taking βa 6= 0 and sin(αa + ξ̂ba1) = 0, ∀a. The latter condition
gives

αa = −ξ̂ba1 +Πa1, with Πa1 = 0, π. (62)

These are 24 tentative solutions, but they are admissible only if ξ̂ba1 = ξ̂a1 is independent of the choice of
b. As explained earlier, this happens if the boundary data satisfy the angle-matching conditions, implying
in turn that also θ̂ba1 = θ̂a1 is independent of the choice of b. In addition, the arbitrariness of choosing

the node 1 as reference imply that θ̂cab is edge independent. Since (39) is now satisfied with Ha /∈ SO(3),
the RHS of (15) takes values outside (−1, 1). For such Lorentzian boundary data, we have followed [57]
and defined the 4d dihedral angles θa1 as

co-chronal (‘thick wedge’): cos θ̂ba1 = cosh θa1, θa1 > 0,

anti-chronal (‘thin wedge’): cos θ̂ba1 = − cosh θa1, θa1 < 0.
(63)

The choice of sign for θa1 is purely conventional, and it is made to simplify the parametrization of the
solutions. Taking (62) solves (49b) and also (49c). This leaves us with (49a) and (49d), which read

cosΠa1 coshβa = cos θ̂a1, (64)

cosΠa1 sinφ
a
b1 sinhβa = cosΠb1 sinφ

b
a1 sinhβb. (65)

The first equation fixes Πa1 = 0 for a co-chronal configuration (‘thick’), Πa1 = π for an anti-chronal

(‘thin’) configuration, and βa = ǫaθa1, where ǫa = ±1. In other words, on-shell θ̂a1 = iθa1 + Πa1 for
both co- and anti-chronal data. Thanks to the convention (63), we can write the solutions as βa =
ǫa cosΠa1|θa1|. Inserting these values in the second equation we find

ǫa sinφ
a
b1 sinh |θa1| = ǫb sinφ

b
a1 sinh |θb1|. (66)

11And for this reason, Euclidean critical points were considered ‘degenerate’ in [3].
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To solve this equation we must fix ǫa = ǫb, since by definition all 3d angles are in (0, π). This leaves a
single, global sign freedom, βa = ǫθa1, ǫ = ±1. Having done so, (66) can be recognised as the spherical
sine laws, which are identically satisfied since we are already satisfying the spherical cosine laws.

We have found that in the Lorentzian branch, there is no subset of data with a single critical point:
either there are no critical points, or there are two distinct ones, labelled by ǫ. The critical values of the
group elements contain a boost and a rotation, and are given by

h(c)

a = ±hǫa, hǫa = exp
(

− ǫ

2
θa1~na1 · ~σ

)

exp
(

− i

2
(ξ̂a1 −Πa1)~na1 · ~σ

)

. (67)

The boundary data admitting critical points satisfy closure and angle-matching conditions at all faces.
From the same argument used in the Euclidean case, it follows that these data describe Lorentzian 4-
simplices. Since the boundary data are 3d Euclidean, the 4-simplices must have all tetrahedra space-like,
namely the 4d normals to the tetrahedra are time-like. This is confirmed looking at the critical group
elements, which are boosts representing the extrinsic curvature between time-like normals. The space-like
4-simplices are of two types: 1-4, with one 4d normal anti-chronal to the other four, and 2− 3, with two
4d normals anti-chronal to the remaining three. The types are distinguished by the values of Πa1, which
are in turn determined by the boundary data.

In the Lorentzian case, a single set of critical points captures the holonomies mapping the 3d data into
a 4d object, and changing the set used has the effect of a parity map on the 4d object. To reconstruct
the 4d normals explicitly, we assign the 4d normal tI = (−1, 0, 0, 0) to the reference tetrahedron 1. From
the critical group element we define

Λa
I
J :=

1

2
Tr(σ̂Ih+

aσJh
+†
a ) ∈ SO+(1, 3) ≃ SL(2,C), (68)

with σI = (1, ~σ), σ̂I = (−1, ~σ), and the indices are now contracted with the Minkowski metric ηIJ . This
can be recognized as the mapping between SL(2,C) matrices and the future-pointing, identity-connected
part of the Lorentz group. The 4d-normals are obtained from these transformations and the reference
vector. In our partial gauge,

N I
a := Λa

I
J t
J = cosΠa1(cosh θa1, sinh θa1~na1). (69)

Changing to the second critical point achieves Λa 7→ ΛT
a = Λ−1

a , and one reconstructs the parity trans-
formed Lorentzian 4-simplex.

The twisted spike gauge (54) is not accessible for Lorentzian data, because the presence of a boost
in (39) prevents them from satisfying (50). Among the geometrically equivalent gauge configuration
for a Lorentzian 4-simplex, there is one convenient choice: the spike configuration with the 3d normals
rotated so to have ξ̂a1 = 0. However, the geometric meaning of this gauge is slightly different than in
the Euclidean case: it still represents the 4-simplex as the 3d object obtained gluing 4 tetrahedra to the
exterior of the reference tetrahedron 1. But unlike in the Euclidean case, this configuration cannot be
obtained with the group elements (68) acting on the 4-simplex embedded in Minkowski space: these are
SL(2,C) transformations, and will rotate the anti-chronal tetrahedra inside the reference one. To obtain
the spike configuration one needs a parity or time-reversal transformations on these tetrahedra.

4.3 Action at the critical points

To evaluate the action at the critical point (38), we need the matrix elements (35b). We start with the
partial gauge (44), and use the general expression (46) for the critical group elements. For the links
connected to 1, we obtain

[ζb1|h−1
b |ζ1b〉 = e−iωb [ζb1|ζ1b〉 = e−iωb+i arg[ζb1|ζ1b〉. (70)

For the other links, after some algebra based on the properties of the coherent states (see Appendix C),
we obtain

[ζba|h−1
b ha|ζab〉 = [ζba|ζab〉

(

cos
ωa
2

cos
ωb
2

− sin
ωa
2

sin
ωb
2
~na1 · ~nb1

)

(71)

− i[ζba|ζab〉
~nab − ~nba + i~nab × ~nba

1− ~nab · ~nba
·
(

cos
ωa
2

sin
ωb
2
~na1 − sin

ωa
2

cos
ωb
2
~nb1 − sin

ωa
2

sin
ωb
2
~na1 × ~nb1

)

.
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For vector geometries, we have ωa = θa1 − ξ̂a1. In the twisted spike gauge (54), ωa = 0 and

S(c) = −2iλ
∑

(ab)

jab arg[ζba|ζab〉. (72)

To write the on-shell action in an arbitrary gauge, recall that upon a rotation of the 3d normals, the
spinors transform as in (10). Hence the general form of the action is

S(c) = iΨ, Ψ := −λ
∑

(ab)

jab(χab − χba + 2 arg[ζba|ζab〉), (73)

where χab is the phase of the spinor ζab under the change of orientation of the normal ~nab (10).

For Regge data, we can choose the spike gauge, which is accessible for both Euclidean and Lorentzian
data. In this gauge, ξ̂ba1 = 0 and the vectors ~nab × ~nba are aligned with ~n1a × ~n1b. Additional simple
relations hold between the scalar products at different tetrahedra and the 3d dihedral angles, such as
~nab ·~nba = cos

(

φ1ab + φba1 + φab1
)

. Using this formula and similar ones proved in Appendix C, (71) reduces
to

[ζba|h−1
b ha|ζab〉 (74)

=

[

cos
ωa
2

cos
ωb
2

sin

(

φ1ab + φab1 + φba1
2

)

+ sin
ωa
2

sin
ωb
2

sin

(−φ1ab + φab1 + φba1
2

)

− i cos
ωa
2

sin
ωb
2

sin

(

φ1ab − φab1 + φba1
2

)

− i sin
ωa
2

cos
ωb
2

sin

(

φ1ab + φab1 − φba1
2

)]

ei arg[ζba|ζab〉.

At this point we can specialize to Euclidean or Lorentzian solutions. In the first case we have ωa = ǫθa1.
Spherical trigonometry, see (D.15), gives

cos
θa1
2

cos
θb1
2

sin

(

φ1ab + φab1 + φba1
2

)

+ sin
θa1
2

sin
θb1
2

sin

(−φ1ab + φab1 + φba1
2

)

= cos
θab
2
, (75)

cos
ǫθa1
2

sin
ǫθb1
2

sin

(

φ1ab − φab1 + φba1
2

)

+ sin
ǫθa1
2

cos
ǫθb1
2

sin

(

φ1ab + φab1 − φba1
2

)

= ǫ sin
θab
2
. (76)

It follows that

[ζba|h−1
b ha|ζab〉 = exp

(

− i

2
ǫ θab + i arg[ζba|ζab〉

)

. (77)

Comparing with (35b) we read ||h†azab||/||h†bzab|| = 1 and υab − υba = −ǫ θab/2 + arg[ζba|ζab〉. The action
at the two critical points in the spike gauge is thus

S(c) = iǫλ
∑

(ab)

jabθab − 2iλ
∑

(ab)

jab arg[ζba|ζab〉. (78)

Since θab are the 4d dihedral angles functions of the 10 areas jab uniquely determining the 4-simplex, the
first term above contains the Regge action for a 4-simplex,

SR(j) := λ
∑

(ab)

jabθab(j). (79)

The general form of the action at the critical points reads

S(c) = iǫSR + iΨ. (80)

The first term is independent of the orientation of the boundary data, as well as of the phase conventions
for the coherent states. The second depends on both, and can always be put to zero choosing a convenient
orientation or adapting the phases of the coherent states. In the twisted spike gauge χab−χba ≡ −θab(j)
[35], and S(c) = i(ǫ− 1)SR − 2iλ

∑

jab arg[ζba|ζab〉.
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For Lorentzian data ωa = iǫ θa1 + Πa1 in the spike gauge. Using this time hyperbolic trigonometry,
see D.16, we arrive at

[ζba|h−1
b ha|ζab〉 = exp

(

− 1

2
ǫ θab +

i

2
Πab + i arg[ζba|ζab〉

)

. (81)

From this matrix element we read ||h†bzab||/||h†azab|| = exp(ǫ θab/2) and υab − υba = Πab/2 + arg[ζba|ζab〉.
The action at the two critical point in the spike gauge is thus

S(c) = iǫγλ
∑

(ab)

jabθab − iλ
∑

(ab)

jab(Πab + 2 arg[ζba|ζab〉). (82)

The first term contains the Regge action (79), now for a Lorentzian 4-simplex. The critical action for an
arbitrary orientation of the 3d normals is

S(c) = iǫγSR + iΨ+ iλ
∑

(ab)

jabΠab, (83)

where Ψ is the same as before, and we have kept separated the phase induced by the number of anti-
chronal pairs (thin wedges) since it is independent of orientations and phase conventions.

4.4 Asymptotic formulae

To write the asymptotic formulas we use the general expression (36). The Hessian for the 4-simplex
amplitude was partially studied in [3] and explicitly computed in [16]. Numerical investigations in [16]
showed that it is non-degenerate, and that H+ = H−, for various critical configurations considered. An
analytic proof that the Hessian in non-degenerate on a dense set of critical points was then given in
[58].12 With this information and the results of the previous analysis we obtain the following asymptotic
formulas.

• For vector data:

Aσ(jab, ~nab,−~nba) =
236π12J

λ12
Ω(+)eiΨ

√

det(−H (+))
+O(λ−13), (84)

with Ψ given by (73), the factor J is the product of all the spins in the vertex as in (37) and Ω(c)

is the value of the spinorial measure at the critical point (c) as in [7].

• For Euclidean Regge data:

Aσ(jab, ~nab,−~nba) =
236π12J

λ12
Ω+eiΨ

√

| det (−H+)|
cos

(

λSR − 1

2
arg det(−H+)

)

+O(λ−13), (85)

with SR given by (79).

• For Lorentzian Regge data:

Aσ(jab, ~nab,−~nba) =
236π12J

λ12
Ω+(−1)χeiΨ
√

| det (−H+)|
cos

(

λγSR − 1

2
arg det(−H+)

)

+O(λ−13), (86)

with SR given by (79), this time with Lorentzian angles, and where χ = λ
∑

(ab) jabΠab depends on

the number of anti-chronal pairs of tetrahedra (thin wedges).

The main qualitative difference between Euclidean and Lorentzian data concerns the dependence on γ,
only in the Hessian in the first case, also in the frequency of λ-oscillations in the second. We also recall
that with the phase conventions used here, the amplitude for the Euclidean 4-simplex is real in the twisted
spike gauge, and argH (c) = 0.

These formulas complete the reproduction of the results of [3], amended with the reality properties
of the Hessian found in [16]. In the next section, we describe the novel application of our technique to
general graphs.

12The Hessian determinant vanishes for instance for degenerate data with coplanar normals, or when the 4-volume
reconstructed from the areas vanishes.
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5 The algorithm for a general vertex asymptotics

The critical point equations for a general graph are the closure conditions of the normals at the same
node (12), and the equations (33) and (35) obtained maximizing the real part of the action and from
the gradient respect to the dummy spinors zab. The first one is solved restricting the boundary data to
describe bent polygons in R

3, or convex polyhedra in the non-coplanar case. The crucial one is (35a),
which we replace with (39), as explained earlier. Once this is solved, (35b) and (33) are straightforward.
The focus is then on finding group elements solving the boosted orientation equations (39), which we
report here for convenience of the reader,

Ha~nab = −Hb~nba.

As discussed in Section 3.1, vector geometries always admit one critical point, with ha ∈ SU(2) for all
nodes. The non-trivial quest is to find the most general set of boundary data that admits solutions, and
determine the solutions.

Our algorithm requires picking a set of connected nodes that don’t define a cycle, and such that
all remaining nodes of Γ are first neighbours to it. A set of nodes such that all remaining nodes are
first neighbours to it is known as ‘dominating set’ in graph theory. The path that connects them is the
‘dominating path’, and provides the trunk of a rooted spanning tree of Γ. For the examples considered
explicitly below, all graphs are such that a minimal dominating set does not define cycles, and can be
thus used for the algorithm. But in more general cases, one may need a non-minimal set of nodes to
avoid cycles, see Fig. 3.

We denote the root as node 1. To keep a uniform notation with the 4-simplex case, we label the nodes
first neighbours to 1 with a, b, etc. Among them is the second node of the dominating set, which we label
ā. The first neighbours to ā distinct from the first neighbours to 1 are labelled a2, b2, etc. We refer to
them as second neighbours (they are indeed second neighbours to 1 along the dominant path chosen).
Among them is the third node of the dominant set, which we label ā2. The first neighbours to ā2 distinct
from the first neighbours to 1 and ā are labelled a3, b3, etc, and called third neighbours. We proceed in
this way until all nodes have been reached. This dominating set is used to order the boosted orientation
equations (39) and solve them hierarchically.

We now describe the explicit steps of the algorithm. Each step is associated with a node in the
dominant set chosen, and solves all boosted orientation equations associated to its first neighbours. We
assume that the closure conditions have been already solved restricting the boundary data, and we focus
on non-degenerate configurations, with non-coplanar normals and non-zero 3-volumes of the polyhedra.13

We use the partial gauge-fixing introduced in the previous Section, anti-aligning the normals along all
links in the dominating path.

13For general polyhedra, flat 3d dihedral angles can also occur for non-degenerate configurations with parallel faces. These
cases can be treated as limits of slightly non regular polyhedra.
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1

ā3

, b2, · · ·

type-12

type-21

a, b, · · ·

Figure 3: Schematic representation of the algorithm for a generic graph. We choose a starting node, denoted 1
in the figure. We determine the critical group elements on the nodes first neighbours to it (vertical shaded area),
by solving the boosted orientation equations for all links (1a) and (ab). We then choose a new seed, ā, among the
first neighbours, and determine the critical group elements on the nodes first neighbours to ā not already known
(diagonal shaded area), by solving the boosted orientation equations for all links (āa2) called type-12, (a2b2) called
type-22, and (aa2) called type-21. We distinguish the equations as type-12, type-22, and type-21, respectively.
If all unfinished links (the dashed ones) are removed from the picture to get an example of a closed graph, the
dominating set can be chosen to be 1āā2ā3. Notice that it is not minimal: a minimal dominating set such as 1āb
cannot be used to run the algorithm, and can be excluded because it defines a cycle.

Step 1: First neighbours

The first step of the algorithm involves only the first neighbours to 1, and has many similarities with the
analysis done for the 4-simplex. We use the equations linking 1 to a to determine the directions in the
anti-aligned partial gauge, and those between first neighbours to determine the complex angles.

• Eqs. [1a]. We take the root as the node without group integration. The equations linking 1 to a are

~n1a = −Ha~na1. (87)

We partially fix the gauge at the nodes a requiring ~n1a = −~na1. The equations are then solved by
four-screws with directions ~na1,

ha = ± exp
( i

2
ωa~na1 · ~σ

)

, (88)

and ωa ∈ C still to be determined.

• Eqs. [ab]. For all first neighbours belonging to at least one 3-cycle with the root, we have the ab
equations

Ha~nab = −Hb~nba. (89)

We pick a basis na1, nb1 and na1 × nb1 to project them into scalar equations, obtaining

cos(ωa + ξ̂ba1) = cos θ̂ba1, (90a)

cos(ωb + ξ̂ab1) = cos θ̂ab1, (90b)

sinφab1 sin(ωa + ξ̂ba1) = sinφba1 sin(ωb + ξ̂ab1). (90c)

for all a and b belonging to 3-cycles. Here θ̂ba1 are the edge-dependent dihedral angles defined in (15),

and ξ̂ba1 the edge twist angles (29).

Finding solutions for these equations follows the analysis detailed in the 4-simplex Section. The cosine
equations require ωa = ǫbaθ̂

b
a1− ξ̂ba1, with ǫba = ±1. Writing the solution in this form allows us to treat at

once all possibilities. Whichever possibility is realized will depend on the boundary data at the nodes
involved in this step. The plus signs ǫba = 1 are admissible if the data satisfy the orientation conditions
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(50) at the links ab. This can be proved as we did for the 4-simplex: use the twisted spike gauge

(54) and the linear transformation of ξ̂ba1 under rotations at a. This is the vector geometry solution.
Solutions with ǫba = −1 are possible only when the right-hand side of (92) is independent of b. This
requires generically14 edge-independent angles

θ̂ba1 ≡ θ̂a1, ξ̂ba1 ≡ ξ̂a1, (91)

and also fixes ǫba ≡ ǫa. These are angle-matching data, as explained in Section 2.2, but notice that not
all 2d angles of the faces 1a are already required to match: there may be additional edges of this face
that have not yet entered the algorithm at this step.

Inserting (92) in (90c), we find the spherical sine laws between θ̂’s and φ’s. These are identically
satisfied, provided all nodes are in the same Euclidean or Lorentzian sector, and ǫ1 := ǫa = ǫb. For
Euclidean angle-matched data, θ̂a1 = θa1 is real, and for Lorentzian data θ̂a1 = iθa1 + Πa1, with
Πa1 = 0 or π if the boundary data are respectively co-chronal or anti-chronal. There is thus a unique
sign freedom, and the solution for any critical data can be written in the generic form

ωa = ǫ1θ̂
b
a1 − ξ̂ba1. (92)

• Lonely neighbour. If one first neighbour does not belong to any 3-cycle with the root, there are no
equations to fix its complex angle at this step.

If this step has determined all group elements, the algorithm stops here.

Step 2: Second neighbours

In the second step, we choose a new seed among the first neighbours of 1, labelled ā, and determine the
group elements at the nodes a2, b2, etc.. namely those first neighbours to ā that were not determined in
the first step. We refer to these nodes as second neighbours of the root along the trunk.

• Eqs. [āa2]. We consider the ‘type-12’ equations from the new seed to the second neighbours,

~nāa2 = −H−1
ā Ha2~na2ā. (93)

We define H̃a2 := H−1
ā Ha2 , and partially fix the gauge at the nodes a2 requiring ~nāa2 = −~na2ā. The

equations are then solved by a four-screw

h̃a2 = ± exp
( i

2
ωa2~na2ā · ~σ

)

, (94)

with ωa2 to be determined.

• Eqs. [a2b2]. For all second neighbours belonging to at least one 3-cycle with the new seed ā, we have
the ‘type-22’ equations.

Multiplying them on both sides by H−1
ā , we can write them as

H̃a2~na2b2 = −H̃b2~nb2a2 , (95)

so to involve 4-screws with known directions. We pick a basis ~na2ā, ~nb2ā and ~na2ā× ~nb2ā to project the
equations into scalar components. These have the same structure of (90),

cos(ωa2 + ξ̂b2a2ā) = cos θ̂b2a2ā, (96a)

cos(ωb2 + ξ̂a2b2ā) = cos θ̂a2b2ā, (96b)

sinφa2b2ā sin(ωa2 + ξ̂b2a2ā) = sinφb2a2ā sin(ωb2 + ξ̂a2b2ā), (96c)

14 We put a word of caution here because we cannot rule out the possibility of individual configurations for which the
equations can be solved by numerical coincidence, without requiring b-independence of the right-hand side. We are merely
providing a constructive algorithm here, not an existence theorem. It may also happen that for a certain a, there is a single
choice of b. In this case there are conditions for 1a arising at this step, but they will arise at a later step.
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and lead to
ωa2 = ǫ2θ̂

b2
a2ā − ξ̂b2a2ā, ǫ2 = ±1, (97)

for all a2 and b2 belonging to a 3-cycle with ā. These group elements must thus belong to the same
Euclidean or Lorentzian sector, there is single sign freedom ǫ2. The plus solution requires orientation
conditions (50) for the links a2ā, a2b2 and āb2, and the existence of a second solution requires edge-
independent conditions

θ̂b2a2ā = θ̂a2ā, ξ̂b2a2ā = ξ̂a2ā, (98)

• Eqs. [a2b]. The ‘type-21’ equations involve a second and a first neighbours. The first neighbour need
not be linked to the new seed ā. These equations have a new structure with respect to those appearing
at step 1, because they involve a 4-cycle, 1āa2b. They can be rewritten as

H̃a2~na2b = −H−1
ā Hb~nba2 , (99)

so to have all directions already determined. But unlike the previous equations, they involve three
group elements. We project them on the basis ~nāb, ~na2ā and ~nāb× ~na2ā.15 The first projection has the
usual structure encountered so far. The other two are slightly more complicated, but it is possible to
simplify them using not just the directions, but also the complex angles found in the previous steps.
We then obtain

cos(ωa2 + ξ̂ba2ā) = cos θ̂ba2ā, (100a)

cos(ǫ1θ̂
c
ā1 − ξ̂cā1 + ξ̂a2bā1 − ǫ1ϑ̂

b
s1 − π) = cos ϑ̂a2sā, (100b)

sinφa2bā sin(ωa2 + ξ̂ba2ā) = sinφba2ā sin(ǫ1θ̂
a2
bā). (100c)

The first cosine equations require ωa2 = ǫba2 θ̂
b
a2ā − ξ̂ba2ā, with ǫba2 = ±1. The plus sign is valid if the

boundary data satisfying the orientation conditions at the links a2ā, a2b and bā, and the minus sign
requires edge-independence conditions at āa2,

θ̂ba2ā = θ̂a2ā, ξ̂ba2ā = ξ̂a2ā, (101)

and ǫba2 = ǫa2 . If there are no type-22 equations in the graph, (100a) replaces (97) in determining ωa2 .
Otherwise, it must be consistent with the previous solution. This requires ǫa2 = ǫ2 and the additional
edge-independence conditions that (101) must match (98) previously determined. The sine equations
require ǫa2 = ǫā = ǫ1, as well as a matching of sectors of the boundary data: mixed Euclidean and
Lorentzian configurations would fail to satisfy the spherical sine laws. The type-21 equations thus force
the matching of signs between first and second neighbours,

ǫ1 = ǫ2. (102)

The second cosine equations involve explicitly the 4-cycles, but all complex angles have been already
determined. They thus give only restrictions on the boundary data. These will be examined in details
below in the examples of Sections 7, where the new angles ϑ̂ entering this formula will also be defined.
They are closely related to the dihedral angles with the auxiliary hyperplane s = (ā1, ba2) described
in Section 2.2. The required edge-independence conditions turn out to be

ξ̂a2bā1 = ξ̂ā1, ξ̂a2āb1 = ξ̂b1, (103)

involving the edges of the face 1a dual to 4-cycles. When these are satisfied, ϑ̂bs1 = θ̂bs1 and ϑ̂a2sā = θ̂a2sā ,
and (100b) becomes

θ̂cā1 = θ̂bs1 + ǫ1ǫ
a2
s θ̂

a2
sā + π, ǫa2s = ±1. (104)

This equation fixes the sign ǫa2s in terms of the boundary data and ǫ1, but to be valid requires also
new edge-independence conditions, which we see are of the type (26) relating the 4d angles of the face

15Alternative versions of (100) follow choosing different triples of vectors as basis. The one chosen here is the most
convenient because of the simplicity of (100a). Other options lead to equations of the type (100b).
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1ā computed using 3-cycles and 4-cycles. The important point here is that additional orientation or
edge-independence conditions appear for the faces 1a already involved in the first step. It is this type
of additional restrictions that in the end guarantees that there are as many angle-matching conditions
as possible valence of the faces connected to the dominating set.

• Lonely neighbour. If a second neighbour does not belong to any 3-cycle with the new seed, both
type-22 and type-21 equations are missing, and there are no equations to fix its complex angle at this
step.

If this step has determined all group elements, the algorithm stops here.

Step 3

We iterate the procedure moving to the next node of the chosen dominating set, ā2, and use it as a new
seed to solve the boosted orientation equations around it. There can be type-23 equations involving the
nodes ā2a3, type-33 equations involving a3b3, and type-32 involving a3b2. These are treated as before,
leading to solutions

ωa3 = ǫ3θ̂
b3
a3ā2 − ξ̂b3a3ā2 , ǫ3 = ±1, (105)

and matching signs ǫ3 = ǫ2 and signature of the boundary data from the type-32 equations. The novelty
appearing at step 3 is the possibility of type-31 equations, connecting a first neighbour b to a third
neighbour b3. These can be rewritten as

H̃ā2H̃b3~nb3b = H−1
ā Hb~nbb3 , (106)

so to have all directions known. Four group elements appear now, and their scalar projections involve a
4-cycle (ābb3ā2) and a 5-cycle (ā1bb3ā2). Using solutions obtained from the previous steps, we can write
the scalar projections as follows,

cos(ωā2 + ξ̂b3bā2ā − ǫ3ϑ̂
b3
sā2 − π) = cos ϑ̂bsā, (107a)

cos(ǫ1θ̂
c
ā1 − ξ̂cā1 + ξ̂ā2bā1 − ǫ1ϑ̂

b
s′1 − π) = cos ϑ̂ss′ā, (107b)

sinϕsb3ā2 sin(ωā2 + ξ̂b3bā2ā − ǫ3ϑ̂
b3
sā2 − π) = sinφbā2ā sin(ǫ1ϑ̂

s
bā), (107c)

where s = (ā2ā, bb3) and s
′ = (ā1, bb3) are auxiliary hyperplanes associated respectively with the 4-cycle

and 5-cycle, and ϑ̂’s mismatched versions of the auxiliary 4d angles, defined below in Section 7.3. If ωā2
was a lonely neighbour of a previous step, the first cosine equation can be used to determine it. So the
lonely neighbours require equations associated with other nodes of the dominant set to be determined.
This shows that while the (complex angles of the) non-lonely neighbours can be determined always using
the simple 3-cycle expressions like (92), the lonely neighbours require more complicated expressions with
higher cycles. Otherwise, ωā2 goes also on-shell using a previous step, and then both cosine equations
are only restrictions on the boundary data. These turn out to be additional orientation conditions or
angle-matching conditions on boundary data that had not yet entered the analysis, and refer to edges
associated to the higher cycles.

An important feature is that the type-31 sine equations don’t provide restrictions between the signs
ǫ1 and ǫ3, but between ǫ1 and the new sign in front of ϑ̂bsā. Therefore, only the equations of type-21, 32,
etc, rigidify the structure.

Iteration

At step 4 one encounters equations with five group elements involving at least 5-cycles, and so on. One
proceeds in this way until all group elements have been determined, and all unused boosted orientation
equations have been verified to see if they are identities or require additional constraints.
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Modular graphs

The equations of type-21, 32, etc, play a key role in rigidifying the geometric structure defined by the
boundary data: their sine equations require matching signs among different parts of the graph, thus
reducing the overall number of solutions, and matching sectors, thus selecting globally Euclidean or
Lorentzian data. For this reason, we refer to them as bracing equations. A special situation occurs if
for any choice of dominating set, one or more consecutive pairs of bracing equations are missing. This
‘unbraced’ situation occurs for modular graphs, namely graphs that can be divided in subgraphs whose
nodes are connected to at most one node outside the subgraph. Such graphs appear naturally for instance
if one refines an existing graph replacing one of its nodes with a new subgraph. In this case, there is
nothing relating the signs of the subgraphs, nor the sector of the boundary data. Furthermore, there will
always be a lonely neighbour for any choice of dominating set, given by the first seed of the subgraph.
Its complex angle is then necessarily determined through a higher cycle. For example, if ā2 is the first
node in the dominating set that belongs to a subgraph, we can determine it from the type-31 equations
(107), finding

ωā2 = ǫ1ϑ̂
b
sā + ǫ3ϑ̂

b3
sā2 − ξ̂b3bā2ā + π, (108)

where ǫ1 and ǫ3 are the signs of the two subgraphs.

Comments

Given the vast richness of (3-link-connected) graphs, the algorithm we provided can only be indicative:
it can be applied straightforwardly to the examples considered below, but the reader should keep in
mind that it may need some adapting for specific graphs. If it needs to be adapted, we hope to have
at least conveyed the main logic of our technique, which consists of solving the equations in a given
order, and collecting step by step the required restrictions on the boundary data. As we will discuss in a
moment, these conditions can be identified in fairly general terms as global orientation or angle-matching
conditions. If the algorithm applies straightforwardly, the way we presented it has also the more ambitious
goal of providing directly the general solution to the critical point equations. In particular, it is then
possible to choose the dominating set so that all group elements can be determined using only the smallest
cycles. The more complicated equations are then only restriction on the boundary data, automatically
satisfied requiring angle-matching conditions everywhere.

If a graph is not modular, we believe it is always possible to pick a dominating set such that there
are no lonely neighbours. In this case, all complex angles are determined by 3-cycles, and the solutions
at the end of the algorithm take the generic form

h1 = 1, ha = ± exp
( i

2
(ǫθ̂ba1 − ξ̂ba1)~na1 · ~σ

)

, (109a)

ha2 = ±hā exp
( i

2
(ǫθ̂b2a2ā − ξ̂b2a2ā)~na2ā · ~σ

)

, (109b)

ha3 = ±hāhā2 exp
( i

2
(ǫθ̂b3a3ā2 − ξ̂b3a3ā2)~na3ā2 · ~σ

)

, (109c)

and so on, with the choice of dominating set explicitly appearing in the sequence of holonomies. For
angle-matched data, we can take the spike gauge, then all ξ̂’s vanish, and the critical holonomies are all
written in terms of the dihedral angles alone, with θ̂ determined by (15), taking either the Euclidean

values θ̂ = θ, or the Lorentzian values θ̂ = iθ+Π with conventions (63) and Π = 0 for the co-chronal and
π for the anti-chronal cases.

If a graph is 2-modular, there will be a lonely neighbour no matter which set we choose: this coincides
with the seed used as first node of the subgraph. Suppose this happens at step 2, we will have

hā2 = ±hā exp
( i

2

(

ǫ(ϑ̂bsā + ηϑ̂b3sā2 + π)− ξ̂b3bā2ā

)

~na2ā · ~σ
)

, (110)

replacing (109b). If the boundary data satisfy edge-independence conditions at the face ā2b3, the ϑ̂ angles

reduce to θ̂’s and the argument in round brackets equals the definition (26) of the 4d dihedral angle for
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a face not belonging to any 3-cycle,

θ̂a2ā(φ, η) = θ̂bsā + ηθ̂b3sā2 + π, (111)

with the same conventions as above for Euclidean and co-chronal and anti-chronal Lorentzian values. If
a graph is n-modular, there will be n − 1 holonomies of the form (110), one for each seed entering a
subgraph.

The advantage of the gauge-fixed approach used here is that the directions of the individual group
elements at the critical point are easily determined by the normals themselves. The vectorial equations
determining the complex angles of the four-screws can be projected in scalar components that introduce
the edge-dependent 4d dihedral and twist angles described in Section 2.2: these quantities appear nat-
urally from the saddle point analysis. For 3-cycles, we get directly the spherical cosine laws in terms of
boundary data. For higher cycles, we recover the spherical cosine laws only on-shell of equations belong-
ing to 3-cycles. There is therefore a minor conceptual difference between the geometric formulas, and the
interpretation of the critical point equations.

5.1 Geometric reconstruction

The procedure described above permits to find all critical group elements in a certain gauge, and to
classify the conditions that must be satisfied by the boundary data. What we see is that each step always
introduces the same type of restrictions at the nodes and links involved, namely orientation conditions
(50) to have one Euclidean solution, and edge-independence of twist and 4d dihedral angles to have a
second Euclidean or two Lorentzian solutions, like (91) and (103), or (98) and (101). Both types of edge-
independences are captured by angle-matching conditions, as explained in Section 2.2. A single step may
not force as many angle-matching conditions as the possible maximal valence of a given face. But at the
end of the algorithm, one typically finds full 2d angle-matchings for all faces dual to the links connecting
all nodes to the nodes in the chosen dominating set (in more botanical words, all links corresponding to
the trunk and its branches), plus partial 2d angle-matchings at the faces dual to the remaining links. The
exact nature of the partial matching can be determined from (17), but it is not important, because as we
already pointed out when describing the 4-simplex analysis, the critical behaviour of the amplitude does
not depend on the dominant path chosen. A moment of reflection observing the angles entering (17) and
the multiplicity of possible dominant paths shows that full angle-matching conditions must be satisfied
at all faces, since we must be able to solve the equations in whichever order we want.

For non-modular graphs, the various bracing equations impose a single global sign freedom, and
boundary data of the same sector throughout the graph. Therefore, we have at most two solutions, which
occur for globally angle-matched data, Euclidean or Lorentzian. For an n-modular graph on the other
hand, the signs of each subgraph are left free, as are the sectors of the boundary data. As a consequence,
we can have up to 2n critical points, for data that are angle-matched throughout. Furthermore, n− 1 of
the seeds are necessarily lonely neighbours of some steps. Their complex angles are therefore determined
via 4-cycles or higher cycles. The free signs then enter the reconstructed 4d dihedral angle at the bridging
link as ηs in (110). The angle-matched data can be globally Euclidean or Lorentzian, but also mixed,
Euclidean in one subgraph and Lorentzian in another subgraph. In the latter case the bridging 4d angle
is neither Euclidean nor Lorentzian. Fewer critical points occur for data which are angle-matched in some
subgraphs but vector geometries in other. The η signs are then fixed at the bridges to a vector subgraph.

What emerges from this analysis, and more explicitly from the examples given below, is that the
vector geometry solution is recovered as the difference between 4d dihedral and twist angles at each link,
which is pure gauge, and vanishes in the twisted spike gauge. Additional critical points occur generically
for angle-matched boundary data, and are thus described by conformal twisted geometries and not just
Regge geometries. In the Lorentzian case, the boundary data determine also which faces of the conformal
twisted geometry are thin or thick wedges. This fact, which plays a key role to have a precise geometric
reconstruction of the 4-simplex, holds for general graphs. We use the word generically here, because our
analysis does not provide a theorem: there could be special configurations that allow to solve all critical
point equations without being angle-matched, or graphs for which not all angle matching conditions arise.
The examples and cases treated makes us believe that this is not the case, but we cannot exclude it.

A non-trivial aspect of the geometric reconstruction is whether the critical 3d data admit a 4d em-
bedding. This question is well-posed for the 3d Regge geometries. Still, it can be extended to conformal
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twisted geometries, once understood in terms of the value of deficit angles defined as sums of the 4d di-
hedral angles. The answer depends on the graph. Only the 4-simplex graph is known to admit a unique
flat embedding for any 3d Regge geometry. In general, a case-by-case analysis is needed to see whether
the 4d dihedral angles obtained from the analysis are consistent with a curved or flat embedding.16

5.2 Action at the critical points

Even if the individual critical group elements depends on the choice of dominating set, the products h−1
a hb

entering the action do not. Using (109), and the fact that orientation or angle-matching conditions
have to be satisfied everywhere in the graph, the evaluation of the on-shell action is identical to the
procedure detailed in Section (4.3). For the vector geometries, the result is always (73). For angle-
matched data, after recursive applications of (D.14) or (D.16) depending on the sector, we find the same
formal expressions (80) and (83), but with the Regge action SR replaced by the general formula

SΓ(jab, φ
c
ab) :=

∑

(ab)

jabθab(φ). (112)

This action is well-defined for any cellular decomposition, and not just a triangulation, and with data
which are conformal twisted geometries, and not just Regge geometries.

In the case of modular graphs, one group element per bridge between subgraphs has a critical value
like (110), with an additional sign freedom. If we denote Ii the sets of links bridging between various
subgraphs, with i from 1 to n− 1, the composition of holonomies introduces the η-dependent angles for
all bridging links. The resulting action this time is

SηiΓ (jab, φ
c
ab) :=

∑

(ab)/∈∪Ii

jabθab(φ) +

n−1
∑

i=1

∑

(ab)∈Ii

jabθab(φ, ηi). (113)

where θab(φ, ηi) is defined by (26). This formula holds for globally angle-matched configurations, of
any sector. For mixed configurations which are angle-matched in one subgraph and vector geome-
tries in another subgraph, the resulting on-shell action is a mixture of (113) and (73). For mixed Eu-
clidean/Lorentzian data, γ appears in front of all links inside the Lorentzian subgraphs. For the bridging
links between subgraphs of different sectors, γ appears only in front of the Lorentzian ‘half-angle’ with
the auxiliary hyperplane.

6 General asymptotic formulae

Based on the previous analysis, we can now present the asymptotic formulas valid for generic graphs,
with all nodes of valence 4 or higher. Assuming that the Hessian determinant does not vanish at the
critical points, we have the following leading order behaviours.

• For vector geometries data:

AΓ =
(2π)3(N−1)22L+N−1J

λ3(N−1)
eiΨ

Ω(+)

√

det (−H (+))
+O(λ−3N+2), (114)

with Ψ given by the on-shell action (73).

16An important example of this fact has come to our attention after the publication of this paper, and motivates the
addition of this comment in the present v3 on the ArXiv. The example concerns a graph corresponding to a {27j} symbol,
obtained as the boundary graph of the triangulation called ∆3 in [52]. In this case, there are only triangular faces, thus
only 3d Regge geometries in the critical set. These could have a priori both flat and curved 4d embeddings in terms of
three 4-simplices sharing a common face, however the conditions on the holonomies coming from the 5-cycles connecting
three triangular subgraphs can be seen to select only those Regge geometries that are 4d flat. The restriction of the critical
behaviour to flat-only configurations was missed in the initial numerical analysis presented in [52], but corrected in the v3
once a more efficient numerical code became available. This improvement was motivated by the long discussion and recent
results [53] on the flatness problem in spin foam models.
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• For non-degenerate Euclidean angle-matched data, on non-modular graphs:

AΓ =
(2π)3(N−1)22L+N−1J

λ3(N−1)
eiΨ

(

Ω(+)eiλSΓ

√

det (−H (+))
+

Ω(−)e−iλSΓ

√

det (−H (−))

)

+O(λ−3N+2), (115)

with SΓ given by (112) with Euclidean data. Euclidean 3d Regge geometries, and flat 4d polytopes,
are subcases with the Regge action appearing. (80)

• For non-degenerate Lorentzian angle-matched data, on non-modular graphs:

AΓ =
(2π)3(N−1)22L+N−1J

λ3(N−1)
(−1)χeiΨ

(

Ω(+)eiλγSΓ

√

det (−H (+))
+

Ω(−)e−iλγSΓ

√

det (−H (−))

)

+O(λ−3N+2), (116)

with SΓ given by (112) with Euclidean data, and χ = λ
∑

(ab) jabΠab depends on the number of anti-

chronal pairs of tetrahedra (thin wedges). Lorentzian 3d Regge geometries, and flat 4d polytopes,
are subcases with the Regge action appearing.

From the general formula (36) or (116), we see that the fall-off exponent of the leading order in λ increases
linearly with the number of nodes of the vertex graph, namely with the valence of the vertex. The 4-
simplex amplitude is the dominant one among those admitting a 4d Regge interpretation. The key to the
general asymptotic formula (116) is the fact that edge-independent 4d dihedral angles are defined for all
conformal twisted geometries, therefore one can write the action (112) for all multi-critical boundary data,
and not just for Regge geometries. For boundary data describing flat-embeddable 3d Regge geometries,
the action is a direct generalization of the Regge action from the 4-simplex to a flat 4-polytope. For 3d
Regge geometries that are not flat-embeddable, the action could be interpreted as a boundary term for
a curved polytope. We refer the reader to [35] for a more detailed discussion of this action, including its
relation to area-angle Regge calculus [54], and to a generalized Regge calculus based on 4d polytopes.

One difference with respect to the 4-simplex analysis is that we have not expressed the angle-matched
asymptotics using cosines, because we have no evidence that H (+) = H (−) for general graphs. The Hessian
matrix can be computed analytically as shown in [3, 16]. For its determinant one will in general have
to be content with numerical evaluations, which we did not attempt here. If one is not interested in the
overall phase, the calculation can be simplified using a reduced Hessian like in [58]. It would of course
be useful to extend the analytic proof of non-degeneracy of the 4-simplex Hessian presented in [58], but
this would require further work.

For n-modular graphs, there is also the possibility of mixed boundary data, and up to n distinct
critical points. We have thus a richer classification. If the boundary data are globally vector geometries,
we have one critical point and the same asymptotics (114). If one subgraph satisfies the angle-matching
conditions, Euclidean or Lorentzian, and the rest is vector geometries, we have two critical points, labelled
by a sign. In this case the asymptotics is given by (115), with Ψ including all links but SΓ including only
the links with angle-matched data. If two subgraphs are angle-matched, and the rest vector geometries,
we have four distinct critical points labelled by two signs, and so on. When all boundary data are non-
degenerate angle-matched, we have 2n critical points. We label them by signs ǫ and ηi, i = 1 to n − 1,
and the leading order asymptotic formula for globally Euclidean data is

AΓ =
(2π)3(N−1)22L+N−1J

λ3(N−1)
eiΨ

∑

ǫ=±

∑

ηi=±

Ω(ǫ;ηi)

√

det (−H (ǫ;ηi))
eiǫλS

ηi
Γ . (117)

The formula for Lorentzian angle-matched data is the same, with γ in front of SΓ, Lorentzian dihedral
angles, and the additional (−1)χ phase. Similarly for mixed data, with the form of the action discussed
below (113).

We have restricted attention to graphs with nodes of valence 4 or higher. This choice, together with the
exclusion of degenerate configurations with coplanar normals, allows us to interpret the 3d boundary data
as a collection of polyhedra, and classify them according to whether they represent or not the boundary
of a curved, or flat, polytope. Our technique can also be applied to graphs with 3-valent nodes. In this
case, the data satisfying closure are necessarily co-planar and represent the edges of triangles. Their
scalar products define 2d dihedral angles, and one can use the same construction presented here, with
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(15) being spherical cosine laws from 2d to 3d dihedral angles. The classification of boundary data and
determination of critical points will follow a different geometric interpretation, based on 2-dimensional
polygonal boundaries, and 3d bulk geometries. Furthermore, the edge-independent conditions are trivially
satisfied by the coplanarity of the normal vectors. Therefore all closed boundary data admit two critical
points (or more in the modular case), be them Euclidean or Lorentzian. With these differences in mind,
we expect our the asymptotic formulas to hold. On the other hand, for nodes of valence 4 or higher with
coplanar normals which are not vector geometries, a different technique is needed.

6.1 Orientation dependence of the global phase

In physical applications of the coherent amplitudes and its asymptotics, it is important to keep in mind
the relative arbitrariness of the global phase. As we have discussed above, it depends on the conventions
chosen for the irrep matrices and for the SU(2) coherent states. As well as on the way the parity map
to avoid signs in the closure conditions is implemented. But even once all these conventions are uniquely
specified, the global phase depends on the orientation of the normals. This is to be contrasted with the
norm of the amplitude, which is independent of the orientation, and depends thus only on the geometry
reconstructed from areas and normals. In the saddle point analysis, the critical values h(c)

a and z(c)

ab depend
on the orientation of the normals, and so does the on-shell action (38). But the difference between the
action at two critical points is orientation-invariant.

To prove this, consider boundary data allowing multiple critical point solutions. If we rotate the
normals with Ra ∈ SO(3) node by node as in (9), the on-shell action transforms as follows,

S(h(c)

a , z
(c)

ab ; ζab) → S(h(c)

a ra, z
(c)

ab ; raζab)−i
∑

(ab)

jab(χab−χba) ≡ S(h(c)

a , z
(c)

ab ; ζab)−i
∑

(ab)

jab(χab−χba). (118)

where for clarity we made explicit the parametric dependence of the action on the boundary spinors ζab.
From this it immediately follows that

S(h(c1)

a , z(c1)

ab ; ζab)− S(h(c2)

a , z(c2)

ab ; ζab) ≡ S(h(c1)

a ra, z
(c1)

ab ; raζab)− S(h(c2)

a ra, z
(c2)

ab ; raζab). (119)

We conclude that in the asymptotic formulas presented above, the global phase Ψ is orientation-
dependent, but the relative phase SΓ is not. This is the crucial difference between vector geometries, which
admit a single critical point, and conformal twisted geometries, which admit two or more: only for the
latter the oscillatory behaviour of the asymptotic formula contains an orientation-invariant information.

7 Examples

7.1 Complete graph K6: appearance of conformal twisted geometries
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2 3
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56

Figure 4: Complete graph with six nodes, combinatorially dual to the boundary of a 3-3 duo-prism. When the
boundary data describe a geometric 3-3 duo-prism, the associated vertex asymptotics has two distinct critical
points. It can be either Euclidean, or Lorentzian one with all faces space-like. The signature is determined by the
boundary data, and can be read off the spherical cosine laws. However, two distinct critical points are also present
for more general boundary geometries. These consist of 3d Regge geometries that cannot be flat embedded as a 3-3
duo-prism, and of angle-matched twisted geometries that are not 3d Regge geometries. When the boundary data
are vector geometries, there is a single critical point.
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Our first case study beyond the graph K5 of the 4-simplex is K6, the complete graph with 6 (five-valent)
nodes, see Fig 4. Combinatorially, it is dual to the boundary of a flat convex 4d polytope known as
3-3 duo-prism. We look first at the closure conditions, and describe the geometric interpretation of the
boundary data that solve them. Because the nodes are all 5-valent, boundary data satisfying the closure
conditions describe a collection of six polyhedra with 5 faces each, all sharing one face with their neighbour
following the connectivity of the graph. Generically, the polyhedra with five faces are triangular prisms,
but (measure-zero) subsets of the data describe square-based pyramids. See [46] for more details. These
are the (closed) twisted geometry data for this graph. Since each face can be at most a tetragon, the

conformal twisted geometry subset requires four edge-independence conditions on the twist angles ξ̂ per
link. The subset of 3d Regge data has 18 degrees of freedom, corresponding to the number of edges of a
generic shape-matched configuration. On the other hand, the 3-3 duo-prism has 14 degrees of freedom, as
can be easily counted using Minkowski theorem, see Appendix E. This means that only a codimension-4
subset of the 3d Regge data can be interpreted as the boundary geometry of a flat convex 3-3 duo-prism.
For a 4d interpretation of the remaining 3d Regge data, one could look for another polytope with the same
boundary graph, convex or concave, and more degrees of freedom than the 3-3 duo-prims; or consider a
more general interpretation in terms of a curved polytope, exploring for instance a splitting of the 3-3
duo-prism in 4-simplices.

With this geometric picture in mind, we now look at the boosted orientation equations for the group
elements. We require only the first step of the algorithm, since all nodes are first neighbours. We pick
1 as the root node for our algorithm, and partially fix the gauge requiring ~na1 = −~n1a. The critical
point equations involving the node 1, namely (87) with b = 1 and a = 2 to 6, fix the directions of the
group elements along ~na1, according to (88). The other critical point equations, with a, b 6= 1, lead to
(90), and are solved by (92). The plus sign solution requires the orientation conditions (50) for all links.
The minus sign requires the edge-independence conditions (91) for all links 1a. Each link belongs to four
3-cycles, therefore we have four edge-independence conditions per link 1a. By the analysis of Section 2.2,
we satisfy them with four angle-matching conditions at the faces 1a, plus additional angle-matchings at
the faces ab. However, independence of the result from the choice of starting node implies that one needs
four angle-matching conditions on every link. The faces have a unique area given by the spin and are
either triangles or squares by the closure conditions. In the first case, the shapes match. In the second
case, we have the freedom of one conformal transformation. Therefore four angle-matching conditions
are always enough to restrict the boundary data to be conformal twisted geometries. The two critical
points belong to the Euclidean or Lorentzian sector depending on the boundary data, as determined by
the domain of the spherical cosine law formula. All ωa’s must be either Euclidean or Lorentzian, and
their sign is fixed up to the global freedom. The boundary data determine also the number of co-chronal
and anti-chronal configurations.

The asymptotic formulae for the vertex amplitude associated with this graph can be read from the
general ones presented in Section 6, specializing to L = 15 and N = 6. For instance for Lorentzian
angle-matched data,

AΓ =
250π15J

λ15
(−1)χeiΨ

(

Ω(+)eiλγSΓ

√
det−H (+)

+
Ω(−)e−iλγSΓ

√
det−H (−)

)

+O(λ−16). (120)

An identical analysis can be applied to KN , the complete graph with N nodes. This is in general not
dual to the boundary of a 4d polytope, therefore one has to be careful with the geometrical interpretation
of the variables.
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7.2 Hypercubic graph: presence of a second neighbour

1

2

3

4

5

6

7

8

Figure 5: Hypercubic graph with eight nodes: this is combinatorially dual to the boundary of a hypercuboid.
When the boundary data describe a geometric hypercuboid, or any other polytope with the same boundary graph,
the associated vertex asymptotics has two distinct critical points. There are both Euclidean and Lorentzian sectors,
distinguished by the spherical cosine laws. Two distinct critical points are present for more general boundary data
that are not the boundary of a hypercuboid. These are 3d Regge geometries that cannot be flat embedded in the
hypercuboid, and conformal twisted geometries that are not 3d Regge geometries. When the boundary data are
vector geometries, there is a single critical point.

Our next example of general analysis is the hypercubic graph, see Fig. 5. The name refers to the
combinatorics of the graph, which coincides with the dual of the boundary of an hypercube, or tesseract.
The closure conditions require boundary data that describe a collection of six-faced polyhedra. In the
generic case, they can be either cuboids, or pentagonal wedges, with 12 edges. In special cases, they
describe polyhedra with lesser edges. There are five polyhedral classes with codimensions from one to
three. For instance, the pinched cuboid with two triangles and four tetragons has codimension one, or
the double pyramid with all triangular faces has codimension three. Any 4d flat polytopes with boundary
geometries described in terms of these 6-faced polyhedra and the connectivity of the graph, will turn out
to provide data admitting two solutions of the critical point equations. While we are not aware of any
explicit classification, we know of at least two examples: the hypercuboid, and the pinched hypercuboid
with five cuboids and three pinched cuboids.17

We now run our algorithm and prove that these geometries, as well as more general angle-matched
twisted geometries, admit solutions to the critical point equations. We choose 1 as the root node of the
algorithm, with h1 = 1. The first step of the algorithm determines all group elements ha with a = 2
to 7, with directions ~na1 and angles (92). These group elements must furthermore all be Euclidean or
Lorentzian, otherwise the sine equations (90c) are violated, and there is a single sign freedom ǫ1. The
plus sign is valid if the normals satisfy the orientation condition at every link involving the nodes 1 to
7, whereas the minus sign requires the edge-independence conditions (91). Each link 1a belongs to four
3-cycles. Hence these are four edge-independence conditions at the faces 1a. Since the faces can be at
most pentagons, this is not yet enough to always fix angle-matching of the faces 1a.

It remains to determine the group element of the second neighbour, a2 = 8. For this we move to step
2 of the algorithm, and pick a new seed among the first neighbours, say ā = 2. There is one type-12
equation, which imposes H̃a2 := H−1

ā Ha2 to be a complex rotation in the direction ~na2ā, as in (94).
There are no type-22 equations, thus we look at the type-21 to determine ωa2 . There are five type-21
equations, Ha2~na2b = −Hb~nba2 , where b = 3 to 7. They involve the 4-cycles 1āa2b = 128b. We rewrite
them multiplying by H−1

ā on both sides, so to have all directions already known. We obtain (99) and
their scalar projections (100). The first cosine equations determine the missing complex angle as

ωa2 = ǫba2 θ̂
b
a2ā − ξ̂ba2ā, ǫba2 = ±1. (121)

17We thank Jonathan Bowers for providing us with this example, and invite the reader interested in polytopes to look at
his webpage at http://www.polytope.net/hedrondude/regulars.htm
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By the usual argument, ǫba2 = 1 is a valid solution if the normals satisfy the orientation equations (50)
at the links a2ā, a2b and bā, and the minus sign requires five edge-independence conditions (101), with
ǫba2 = ǫa2 for all b. Plugging (121) in (100c), we find that the group element at a2 must be in the same
sector (Euclidean or Lorentzian) of the group elements determined in the first step, and that

ǫa2 = ǫ1. (122)

There can be at most two solutions.
It remains to deal with the last set of equations, (100b), which are only restrictions on the boundary

data. In these equations, the angles ϑ̂bs1 and ϑ̂a2sā refer to the hyperplane s = (ā1, ba2) and are defined by

cos ϑ̂bs1 :=
cosφba21 + cosφ1bā cosϕ

s
b1

sinφ1bā sinϕ
s
b1

, cos ϑ̂a2sā :=
cosφa2āb + cosφāa21 cosϕ

s
b1

sinφāa21 sinϕ
s
b1

, (123)

where
cosϕsb1 := cos(ǫ1θ̂

d
b1 − ξ̂db1 + ξ̂a2āb1 ) sinφ1bā sinφ

b
a21 − cosφ1bā cosφ

b
a21. (124)

These angles are a ‘mismatched’ version of (24) and (21), from which they differ because of the presence

of the ξ̂’s in (55).18 We argue that (100b) can be satisfied only if

ξ̂a2āb1 = ξ̂db1, ξ̂a2bā1 = ξ̂cā1. (125)

This can be proved by a perturbative expansion of (100b) around (125), which can be written as

cos(ǫ1θ̂
c
ā1 − ǫ1θ̂

b
s1) + cos θ̂a2sā (126)

+A(φ1bā, φ
b
a21, θ

c
ā1, θ

d
b1)δξ̂

a2b
ā1 + B(φ1bā, φ

b
a21, θ

c
ā1, θ

d
b1, φ

a2
āb, φ

ā
a21)δξ̂

a2ā
b1 + . . . = 0.

The functions A and B can be computed using

cosϕsā21 = cosφsā21 − sin θ̂cb1 sinφ
1
bā sinφ

b
ā21 δξ

a2ā
b1 + . . . , (127)

but their explicit expression is not needed here: it suffices to observe that they depend on different angles
at a2, which allows us to vary them arbitrarily. Therefore the only way to satisfy the equality is when
the parameters of the expansion vanish, namely when (125) hold. We are then left with the first line

of (126), which implies (104). Since the θ̂’s are all known, this simply fixes the sign ǫa2s in terms of the
boundary data and ǫ1, as described in the algorithm, provided the right-hand side is edge-independent.
This gives five edge-independence conditions as we vary the 4-cycle and its associated hyperplane s.

We have at this point determined all group elements, and exposed the restrictions on the boundary
data necessary to solve all boosted orientation equations. Let us collect them, to summarize the result
of the analysis. To have the vector geometry solution, we need the orientation conditions at every face.
These are automatically satisfied by our choice of gauge for the links in the dominating path, but restrict
non-trivially the data for the other links. To have two solutions, we need the θ̂’s and ξ̂’s to satisfy five
edge-independent conditions at the faces 1a and āa2, involving both 3-cycles and 4-cycles.19 But since we
could have chosen any other dominant set, the five edge-independence conditions must hold at every face.
By the closure conditions the faces can be at most pentagons, hence five edge-independent conditions
imply matching of all 2d angles. We conclude that angle-matched, conformal twisted geometries admit
two distinct critical points. Notice also that if the data at every node except 8 satisfy the angle-matching
conditions, but the data at 8 do not, the sign restriction (122) imposes a unique solution: only data that
are globally angle-matched have two critical points.

18The off-shell version of (100b), prior to using (92), has ωb instead of ǫ1θ̂db1 − ξ̂d
b1

as argument of the first cosine defining
ϕ, and

arcsin

(

sin(|ωb + ξ̂
āa2
b1

|) sinφb
a21

sinφs
a21

)

instead of ξ̂a2b
ā1 − ǫ1ϑ̂

b
s1 in the left-hand side. As an off-shell equation, (100b) is thus a relation between ωā and ωb.

19Even more than 5, precisely 9, for the link 1ā in the dominating path, but these are redundant matchings among virtual
edges which are not in the boundary, as discussed in Section 2.2.
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The asymptotic formulae for this graph can be obtain from the general ones of Section 6, adapting to
L = 24 and N = 8. For instance for Lorentzian angle-matched data,

AΓ =
276π21J

λ21
eiΨ(−1)χ

(

Ω(+)eiλγSΓ

√
det−H (+)

+
Ω(−)e−iλγSΓ

√
det−H (−)

)

+O(λ−22). (128)
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Figure 6: Example of a graph that is not dual to the boundary of a 4d polytope. Two distinct critical points occur
for conformal twisted geometries and 3d Regge data, but none with a straightforward 4d interpretation.

A simpler graph with a second neighbour can be obtained starting from K6 and removing three links,
see the right-panel of Fig. 6. The amplitude for this vertex graph has been recently considered [59] in
order to study aspects of the spin foam calculation of black hole tunnelling [21]. The saddle point analysis
proceeds exactly as for the hypercubic example above, with two steps of the algorithm required. One
finds a critical point for vector geometries and two for angle-matched geometries, Euclidean or Lorentzian.
The latter coincide with 3d Regge geometries, since the nodes are all 4-valent. The difference with this
graph is that it is not dual to any 4d polytope. Therefore there is no subset of the 3d Regge data with a
straightforward 4d interpretation.

For the reader interested in more details, we sketch the algorithm for this graph. We take 1 and 2 as
dominating set. The boosted orientation equations connected to 1 determine the directions of the group
elements on the first neighbours 2 to 5. The equations among the first neighbours give (90), which fix the
four-screw angles to a unique solution if the orientation conditions are satisfied for all links except those
with node 6, or two if two edge-independent conditions are satisfied at the faces 1a. For the second step,
we use the boosted orientation equation connecting 2 and 6 to fix the direction of h6, and we are left
with three type-21 equations connecting 6 to the nodes 3 to 5. These three determine ω6 through (100a),
provided the orientation conditions are satisfied at the links with node 6, or three edge-independence
conditions are satisfied at the face 2-6. By (100c) the data must be in the same sector, and with a
unique sign freedom. A third edge-independent condition at 1a comes from (100b) and following the
same analysis explained in the case of the hypercube graph. Together with the those arising at step 1,
these conditions are equivalent to angle-matching conditions for the faces 1a and 26. By independence of
the choice of dominating set, the angle-matching conditions must be satisfied at every face, to have two
critical points.
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7.3 The refined hypercubic graph: multiple critical point solutions
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Figure 7: Example of a 2-modular graph, with subgraphs 1− 7 and 8− 13. The dominating set has 4 nodes, e.g.
(1, 2, 8, 9), and the algorithm requires 4 steps. The boundary data describing a geometric 4d polytope have four
critical points, and corresponding to convex and a concave versions of the polytope, which cannot be distinguished
from the 3d data. Four distinct points are present for more general boundary data, corresponding to angle-matched
twisted geometries, be them Euclidean or Lorentzian in both subgraphs, or mixed. Two distinct critical points occur
for data that are angle-matched in one subgraph and vector geometries in the other subgraph.

Our last case study is a refined hypercube graph considered in [33], see Fig. 7. It is more than three-link
connected and therefore the Lorentzian amplitude well-defined. It is the boundary graph of a 4d polytope
obtained subdividing a boundary cuboid of the hypercube into six pyramids. This polytope can be either
convex or concave, depending on the way we embed the six pyramids. It is important to notice that both
convex and concave polytopes induce the same 3d boundary geometry, see Fig. 8 for a picture in one less
dimension.20

20A similar situation occurs for 3-valent graphs, easier to visualize thanks to their 3d interpretation. For the triangular
prism graph Y3, corresponding to the reducible 9j-symbol vertex amplitude of BF theory, the critical group elements describe
either a convex or a concave gluing of two tetrahedra into a triangular bi-pyramid, both of which have the same boundary
data [60].
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bā2

φs
b3ā2
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Figure 8: A convex and a concave 3d polyhedron with the same boundary data. This is a 3d version of the refined
hypercube of Fig. 7, with squares instead of cubes and triangles instead of pyramids. The convex and concave
configuration are shown to differ by the bulk dihedral angle between one side of the wall, say ā, and one side of
the roof, say ā2. This angle is in one case the sum, and in the other case the difference, of the bulk angles with
the auxiliary plane s, the ‘attic’ of the house. We use s for speculum, since that plane (or hyperplane in the
4d case) acts as a mirror for the convex and concave configurations. Notice that the convex/concave ambiguity
exist for any conformal twisted geometry as boundary data, and not just for 3d Regge geometries: angle-matched
configurations are in fact enough to identify a unique (hyper)plane s. For more general boundary data on the
other hand, s depends on the 4-cycle chosen to define it, e.g. s = (āā2, bb3). The labels for the faces have been
chosen to provide a visual reference to the critical point analysis performed later. With respect to the numbering
of Fig. 7, we can take for instance s = (28, 39).

The closure condition is solved by 6-faced polyhedra for the 6-valent nodes of the first subgraph, and
5-faced polyhedra for the 5-valent nodes of the second subgraph. The faces can have maximal valence
five in the first subgraph, and four in the second subgraph.

The graph is 2-modular: it can be subdivided into two subgraphs, given by the nodes 1 to 7 and 8 to
13 respectively, such that the nodes of each subgraphs are connected to at most one node of the other
subgraph. Looking at this graph, one obvious geometric question arises. The spherical cosine laws (15)
require three nodes belonging to a 3-cycle. In the examples considered so far, each pair of nodes belonged
to at least one 3-cycle, so it was possible to define the 4d dihedral angles in this way. But consider now
the links connecting the two subgraphs of Fig 7, e.g. the one from 2 to 8. How can we define the 4d
dihedral angle for this pair of polyhedra? The minimal cycle they belong to is a 4-cycle, and we cannot
apply (15). We have to use the 4-cycle construction of Fig. 2, with abcd = 2839 for instance. The useful
observation here is that although the boundary data don’t define the 4d dihedral angle between 2 and
8, they define two auxiliary 4d dihedral angles between either 2 or 8, and the hyperplane identified by
one of the 4-cycles. The sum and difference of the auxiliary angles defines a local convex or concave
embedding of the polyhedra sharing the (edge dual to the) 4-cycle. It is precisely this combination that
will appear at the end of the critical point analysis. When the angle-matching conditions are satisfied,
the hyperplane is independent of the choice of 4-cycle containing 2 and 8, and one obtains a unique notion
of 4d dihedral angle between these two polyhedra.

We choose 1 as the root node of the algorithm, with h1 = 1. The first step of the algorithm determines
all group elements ha with a = 2 to 7, with directions ~na1 and angles (92). The sine equations (90c)
force all group elements in this step to be all Euclidean or Lorentzian, and allow a single sign freedom
ǫ1. If the normals at every link involving the nodes 1 to 7 satisfy the orientation condition the plus sign
is valid solution. The minus sign requires four angle-matching conditions (91), since each link of type 1a
belongs to four 3-cycles.

For the second step we choose ā = 2. There is only one second neighbour, a2 = 8. We partially fix
the gauge at a2 requiring ~nāa2 = −~na2ā. The only type-12 equation (93) fixes H̃a2 := H−1

ā Ha2 to be a
four-screw with direction ~na2ā. There are no type-21 nor type-22 equations: a2 is a lonely neighbour at
this step, and to determine the angle ωa2 of H̃a2 we need to move to the next steps of the algorithm.
There are no restrictions on the boundary data from step 2.
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In the third and fourth step we pick ā2 = a2 = 8 as third seed, and ā3 = 9 as fourth. The subgraph
made of the third neighbours a3 = 9, . . . , 12 and the fourth neighbour a4 = 13 coincides with the one of
Fig. 6, and the procedure is identical to starting over from the first step, with the only difference that
Hā2 6= 1. The result will be to fix all group elements of the subgraph in terms of Hā2 . At step 3, we fix
the gauge to anti-align the normals at the nodes a3 to ā2, and write the four type-23 and four type-33
equations in terms of H̃a3 := H−1

ā2 Ha3 :

H̃a3~na3ā2 = −~nā2a3 = ~na3ā2 , H̃a3~na3b3 = −H̃b3~nb3a3 . (129)

The equations are solved taking projections as for the type-22 equations of step 2 of the algorithm (96).
They determine all group elements h̃a3 with a3 = 9, . . . , 12, as four-screws with directions ~na3ā2 and
angles

ωa3 = ǫ3θ̂
b3
a3ā2 − ξ̂b3a3ā2 , (130)

with a new sign freedom ǫ3 = ±1. For step 4, we fix the gauge at a4 = 13 and anti-align its normal with
ā3, and write the one type-34 and three type-43 equations in terms of H̃a4 := H−1

ā3 Ha4 :

H̃a4~na4ā3 = −~nā3a4 = ~na4ā3 , H̃a3~na3a4 = −H̃a4~na4a3 . (131)

These equations are solved taking projections as for the type-21 equations of step 2 of the algorithm
(100). The group element h̃a4 is determined in terms of its direction ~na4ā3 and angle

ωa4 = ǫ3θ̂
b3
a4ā3 − ξ̂b3a4ā3 , (132)

with the same sign ǫ3 of the third step.
The conditions we find on the boundary data in this subgraph are the usual ones: the group elements

must be all Euclidean or Lorentzian, and there is a single sign freedom ǫ3. The solutions with ǫ3 = 1
are valid if the data entering the subgraph 8-13 are vector geometries. This means requiring (50) for all
normals on links of the subgraph, and not for normals ~na3a and ~na4a leaving the subgraph, such as ~n93.
To prove this we follow the same argument that led to (55) for the 4-simplex. We first complete the gauge
fixing to the twisted spike for the subgraph, to have the vector data in the configuration ~nab = −~nba for
a, b from 8 to 13. This can be achieved rotating the normals at the nodes 9 to 13, and in this gauge we
have θ̂b3a3ā2 = ξ̂b3a3ā2 . Since ξ̂

b3
a3ā2 is affected only by rotations at a3

21 and θ̂b3a3ā2 is invariant, it follows that

leaving this gauge we have θ̂b3a3ā2 − ξ̂b3a3ā2 = νa3 for some parameter depending only on the rotation at a3.
Then ωa3 ≡ νa3 so defined is the solution for a general vector geometry. The vector geometry solution for
ω4 follows from a similar argument. The second solution ǫ3 = −1 requires that the data of the subgraphs
are all Euclidean or Lorentzian, and edge-independence conditions. From the type-33 equations, we have

θ̂b3a3ā2 = θ̂a3ā2 , ξ̂b3a3ā2 = ξ̂a3ā2 . (133)

These are two edge-independence conditions at the faces a3ā2. From the first type-43 cosine equations
we find the solution for ωa4 and the conditions

θ̂b3a4ā3 = θ̂a4ā3 , ξ̂b3a4ā3 = ξ̂a4ā3 (134)

These are three edge-independence conditions at the faces a4ā3. The second type-43 cosine equations
are like (100b). They involve the 4-cycles ā2b3a4ā3 and become identities provided the folowing edge-
independence conditions are satisfied,

θ̂c3ā3ā2 = θ̂b3s4ā2 + ǫ3ǫ
a4
s4 θ̂

a4
s4ā3 + π, ǫa4s4 = ±1, ξ̂a4ā3b3ā2

= ξ̂b3ā2 . (135)

These requirements complement the edge-independence conditions (133) at the faces ā2b3, bringing the
total to three.

Up to this point, the sectors of the partial solutions found in the first step and the partial solutions for
the subgraph are independent, and we have two free signs ǫ1 and ǫ3. This is the consequence of the lack

21It is affected also by rotations at ā2, but if we perform one of these, we need to compensate it with an equal rotation

at a3, leaving ξ̂
b3
a3ā2

invariant, otherwise (129) does not hold anymore and we cannot write the solutions in this form.
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of bracing equations of type-32 and type-21. To complete steps 3 and 4, there are five boosted orientation
equations to solve, four of type-31 and one of type-41. There is only one variable left to be determined,
ωā2 . The type-31 can all be written in terms of H̃ā2 and H̃b3 :

H̃ā2H̃b3~nb3b = −H−1
ā Hb~nbb3 . (136)

We project them on ~nāb, ~nāā2 and ~nāb×~nāā2 , and after some lengthy algebra on-shell of the other boosted
orientation equations, we find

cos(ωā2 + ξ̂b3bā2ā − ǫ3ϑ̂
b3
sā2 − π) = cos ϑ̂bsā, (137a)

cos(ǫ1θ̂
c
ā1 − ξ̂cā1 + ξ̂ā2bā1 − ǫ1ϑ̂

b
s′1 − π) = cos ϑ̂ss′ā, (137b)

sinϕsb3ā2 sin(ωā2 + ξ̂b3bā2ā − ǫ3ϑ̂
b3
sā2 − π) = sinφbā2ā sin(ǫ1ϑ̂

s
bā), (137c)

The first equations determine the missing complex angle as

ωā2 = ǫbā2 ϑ̂
b
sā + ǫ3ϑ̂

b3
sā2 − ξ̂b3bā2ā + π. (138)

In these equations, the angles ϑ̂ are a mismatched version of the auxiliary 4d dihedral angles (21) between
respectively ā and ā2 and the hyperplane s = (ā2ā, bb3). They are the analogue of (123) for the hypercube,
and are defined by

cos ϑ̂b3sā2 :=
cosφb3bā2 + cosφā2b3ā cosϕ

s
b3ā2

sinφā2b3ā sinϕ
s
b3ā2

, cos ϑ̂bsā :=
cosφbb3 ā + cosφābā2 cosϕ

s
b3ā2

sinφābā2 sinϕ
s
b3ā2

, (139)

where
cosϕsb3ā2 := cos(ǫ3θ̂

d3
b3ā2

− ξ̂d3b3ā2 + ξ̂bāb3ā2) sinφ
ā2
b3ā

sinφb3bā2 − cosφā2b3ā cosφ
b3
bā2
. (140)

Plugging this solution in (137c), we find

sinϕsb3ā2 sin(ǫ
b
ā2 ϑ̂

b
sā) = sinφbā2ā sin(ǫ1ϑ̂

s
āb), (141)

where

cos ϑ̂sbā =
cosϕsb3ā2 + cosφābā2 cosφ

b
b3ā

sinφābā2 sinφ
b
b3ā

(142)

Notice that the same mismatched ϕ appears in the three ϑ̂ angles. One can explicitly check using spherical
sine laws that ϑ̂b3sā2 belongs to the same sector of the critical data in the small subgraph, and that ϑ̂bsā
and ϑ̂sbā also belong to the same sector. Then (141) is just fixing the signs ǫbā2 = ǫ1, and the solution
reduces to

ωā2 = ǫ1ϑ̂
b
sā + ǫ3ϑ̂

b3
sā2 − ξ̂b3bā2ā + π. (143)

The positive signs ǫ1 = ǫ3 = 1 correspond to the vector geometry solution, and is valid for all data
satisfying the orientation conditions (50) also on the links connecting the two subgraphs bb3, i.e. 39, in
addition to the links of the two subgraphs as we discussed in the step 1 and 3 of the algorithm. To prove
this explicitly, we need to show that in the twisted spike gauge ξ̂b3bā2ā = ϑ̂bsā + ϑ̂b3sā2 + π. This could be
done studying trigonometric identities, but we refrain from doing so since it would be very cumbersome,
and we know already that ωā2 = 0 is the vector geometry solution in the twisted spike gauge, from the
general solution given in Section 3.1.

To have additional solutions, the right-hand side has to be independent of the cycle, namely of the
pair bb3. One may think at first sight that this requires ξ̂b3bā2ā = ξ̂ā2ā and also edge-independence of

the individual angles ϑ̂bsā and ϑ̂b3sā2 . This is however not the case, thanks to the identity (23). This
shows that it is possible to have the auxiliary angles cycle-dependent, while their sum or difference is
cycle-independent. What is required is ϑ̂ ≡ θ̂, for the identity to hold, namely the edge-independence
ξ̂bāb3ā2 = ξ̂b3ā2 , which guarantees ϕsb3ā2 = φsb3ā2 . These conditions are sufficient, but we don’t have a proof
that they are also necessary. Inspection of the equations and our experience with explicit configurations
strongly suggest that if they can be avoided, it will likely be due to numerical coincidences of special
configurations, and not to the existence of a different class of data.
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In the second cosine equations (137b) there are no new variables to determine. These equations are
only a restriction on the boundary data. The new angles appearing here are 4d angles involving the
auxiliary hyperplane s′ = (ā1, bb3) associated with the 5-cycle (1āā2b3b). These are defined as follows,

cos ϑ̂bs′1 :=
cosφbb31 + cosφ1āb cosϕ

s′

b1

sinφ1āb sinϕ
s′
b1

, cos ϑ̂ss′ā :=
cosϕsb3ā2 + cosφāā21 cosϕ

s′

b1

sinφāā21 sinϕ
s′
b1

, (144)

where
cosϕs

′

b1 := cos(ǫ1θ̂
e
b1 − ξ̂eb1 + ξ̂b3āb1 ) sinφ1bā sinφ

b
b31 − cosφ1bā cosφ

b
b31. (145)

The equations (137b) can be treated as (100b) in the analysis of the hypercubic graph: they have no
solutions in general, unless the following edge independence conditions are satisfied

θ̂ā1 = θ̂cā1 = θ̂bs′1 + ǫ1ǫ
s
s′ θ̂

s
s′ā + π, ξ̂b3āb1 = ξ̂b1, ξ̂ā2bā1 = ξ̂ā1, (146)

and fixes the value of the sign ǫss′ since θ̂cā1 is known. In other words, having already identified the 4d
dihedral angle of 1ā through a 3-cycle, the equation associated to the 5-cycles with 1ā can only be satisfied
if there are enough edge-independence conditions so that it becomes an identity.

We are left with only one boosted orientation equation, the type-41

H̃ā2H̃ā3H̃a4~na4b = −H−1
ā Hb~nba4 . (147)

Scalar projections of this vectorial equation involve 5-cycles and 6-cycles. Their expression is similar to
(137), with angles ϑ̂ associated with the new auxiliary hyperplanes. We refrain from writing them here.
In these equations everything is already determined, and these equations only provide the remaining
edge-independence conditions on the faces ā2ā, ā3ā2, a4ā3, ā1,b1.

We have identified all critical holonomies, and solve all boosted orientation equations. Let us now
collect the restrictions on the boundary data that are necessary. To have a vector geometry solution, we
need the orientation conditions at every face. These are automatically satisfied by our choice of gauge
for the links in the dominating path, but restrict non-trivially the data for the other links. To have
more solutions, we need the θ̂’s and ξ̂’s to satisfy five edge-independent conditions at the faces 1a and
āā2, involving cycles of length from three to six, and four edge-independent conditions at the faces b3ā2
and ā3a4, involving both 3-cycles and 4-cycles. Since we could have chosen any other dominant set, five
edge-independence conditions must hold at every face in the first subgraph and at each face bridging
between the two subgraphs, while four edge-independence conditions must hold at every face in the
second subgraph. By the closure conditions, the faces in the first subgraph can be at most pentagons and
the faces in the second subgraph can be at most squares. Hence we need edge-independence conditions
at every link of the graph, and by (28), 2d angle-matching conditions of every face.

The main novelty of this graph is that the angle-matched solutions are labelled by two independent
signs ǫ1 and ǫ3. We conclude that conformal twisted geometries admit at most four distinct solutions. If
the angles match in a subgraph only, including the bridging faces, we only have one free sign, and two
distinct solutions. This freedom goes hand in hand with the freedom of taking independent sectors of
the boundary data. Therefore the global angle-matched geometries need not be globally Euclidean or
Lorentzian. We could have mixed ones as well. For these, ωā2 is neither a pure rotation nor a pure boost
(in the spike gauge and up to Πā2). The mixed signature geometries have no possible 4d embedding.
For the global Euclidean or Lorentzian geometries with a flat 4d embedding possible, the relative sign
η = ǫ1ǫ3 describe a local convex or concave embedding as exemplified by Fig. 8.

The asymptotic formulae for this graph can be obtain from the general ones of Section 6, adapting to
L = 36 and N = 13. For instance for Lorentzian angle-matched data,

AΓ = =
2120π36J

λ36
eiΨ

(

Ω(+;+)eiλS
+
Γ

√
det−H (+;+)

+
Ω(−;+)e−iλS

+
Γ

√
det−H (−;+)

+
Ω(+;−)eiλS

−
Γ

√
det−H (+;−)

+
Ω(−;−)e−iλS

−
Γ

√
det−H (−;−)

)

+O(λ−37).

(148)

40



8 Conclusions

We have introduced a technique and a step-by-step algorithm that can be used to compute the asymp-
totic behaviour of the Lorentzian EPRL-KKL amplitude for an arbitrary graph, and with any choice of
boundary data. One of the main technical results of this paper is to have obtained convenient explicit
scalar projections of the boosted orientation equations. These are given by trigonometric equations, like
(90) or (107), and can be used to solve the critical point equations for general graphs. We found that
critical points exist only for special types of boundary data, that can be identified on general grounds
for any graph. For non-modular graphs, the critical data are vector geometries with one critical point,
and angle-matched data, defining conformal twisted geometries, with two critical points. The angle-
matched data can be either Euclidean or Lorentzian, in the sense determined by the spherical cosine
laws, and contain 3d Regge geometries as a subset. We also explained that not all 3d Regge geometries
are the boundary of flat polytopes, and referred to [35] for a discussion of the required conditions, and
identification of the flat polytope subset.

The characterization of the (non-degenerate) critical configurations as conformal twisted geometries
is based on two assumptions: the equivalence of global angle-matching and edge-independence conditions
(28), and the inexistence of numerical coincidences as discussed at the end of Section 5.1. As a conse-
quence, we do not have a theorem that conformal twisted geometries are always the most general class of
data admitting more than one critical point for an arbitrary graph. It would be great if this result could
be tightened up, but that may likely require a graph by graph analysis.

The fact that the critical data describe conformal twisted geometries and not just Regge geometries,
is after all quite natural from the point of view of the saddle point approximation: the key equations
(39) are scale invariant. Therefore it is to be expected that any restriction on the boundary data that
may arise from these equations will only involve angles, and thus not be as strong as selecting Regge
geometries. What emerges from our analysis is that these restrictions are actually the strongest ones
that can arise from scale-invariant equations: all 2d angles have to match, making all 4d dihedral and
twist angles edge-independent. No further restrictions appear rather than closure and angle matching,
making thus conformal twisted geometries the natural object to discuss asymptotics of unitary SL(2,C)
invariants. It is a special feature of 4-simplices that conformal twisted geometries coincide with Regge
geometries.

The generic relation between classes of boundary data and critical behaviour of the amplitude is
schematically represented in Fig. 9. The diagram is necessarily qualitative, and questions like the actual
location of the boundaries of the different subsets are left to a more precise analysis once a specific graph
is picked. The diagram is very similar to the one derived for SU(2) BF theory [35], with the only addition
of the Lorentzian configurations, which have no critical point and thus an exponential fall-off in SU(2) BF
theory. The vertex asymptotics shares many features between SU(2) BF theory, and the Euclidean and
Lorentzian EPRL-KKL models. The boundary data are the same in the three cases, and the asymptotic
formulas are also very similar: This was known for the 4-simplex graph [8], and a comparison of the
results presented here and in [35] shows that it is true for generic graphs.

Our results help assess the viability of the generalized EPRL-KKL vertex. On the one hand, the fact
that (non-vector-geometry) critical behaviour occurs for the EPRL-KKL model on an arbitrary graph,
with a well-defined geometric interpretation and rotation-invariant action, is a positive result: not only
we have a notion of transition amplitudes for all spin networks, but these transition amplitudes can be
interpreted geometrically in the large spin limit. Furthermore, 3d Regge data, flat embeddable or not,
are always part of the critical behaviour.

On the other hand, the fact that critical configurations occur for a larger class than Regge geometries
may be undesirable, and hinder the spin foam dynamics with many vertices and its continuum limit,
adding to the non-trivial open questions that the presence of vector geometries and cosines of Regge
actions already pose. From this perspective, let us recall that the rationale to define the EPRL-KKL
model is the imposition of the quantum simplicity constraints as restrictions of the irreps appearing in
the state sum. This is based on a direct discretization of the continuum covariant constraints [26, 61]
which is complete only for the 4-simplex (see also Appendix of [38]). In particular, it is only on the 4-
simplex that a third set of simplicity constraints,22 namely the discretization of the continuum constraints

22After the diagonal and off-diagonal, implemented respectively with ρab = γkab and kab = jab.
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on non-adjacent faces, become redundant and can be dropped. This prompts the question of whether
the amplitude for non-simplicial vertices should be modified to include this third set. It is not an easy
question to address, because the third set depends a priori not just on fluxes but also on holonomies.
Some preliminary considerations in this direction have appeared in [62, 33]. It is possible that a proper
discretization of the third set, usually referred to as ‘volume simplicity constraints’, will break the scale
invariance of the boosted orientation equations, and lead to new types of constraints explicitly introducing
lengths.

0 Generic data (twisted geometries)

≥ 2 Lor. angle-matched

Lor. 3d Regge≥ 2
≥ 2

polytopes
Lor. flat

Vector geometries1
Eucl. angle-matched≥ 2
Eucl. 3d Regge≥ 2
Eucl. flat
polytopes

≥ 2

Figure 9: Schematic classification of boundary data, with their geometric interpretation and number of distinct
critical points (up to the spin lift). The angle-matched data describe conformal twisted geometries, and only a
subset of them represents 3d Regge geometries, unless all reconstructed faces are triangular. Furthermore, not
all 3d Regge geometries are flatly embeddable. For the flat embeddable ones, the boundary data can be put in
corresponds with the boundary geometries of flat 4d polytopes. For modular graphs, mixed configurations are also
possible and more than two critical points.

This said about the generalized vertex amplitude, modifications of the model have also been discussed
for the 4-simplex amplitude, in order to eliminate the vector geometries and/or the cosine of the Regge
action in favour of a single exponential, see e.g. [63, 14, 15, 64, 65]. The analysis discussed here also offers
a new perspective on this program. As we have pointed out, the Lorentzian data can be characterized
in terms of inequalities on the scalar products of the normals. Or, for the 4-simplex, a negative squared
4-volume computed from the spins. Imposing such inequalities has the effect of removing all Euclidean
critical points, including the vector geometries. As for the presence of a cosine instead of a single
exponential of the Regge action, namely the fact that angle-matched critical points come in pairs, our
technique traces this to the evenness of the boosted orientation equations, in particular their scalar
projections (90): the cosine there is ultimately the reason why we have a cosine in the asymptotic
formulae (provided the Hessians are complex conjugated). Having solutions coming in pairs appears thus
to be unavoidably related to the nature of the irreps used in the model, and our analysis does not suggest
any obvious simple modifications to change this fact, on top of those already considered in the literature.
We believe that our techniques and algorithm can be of use also for the modified models.

Let us conclude with two possible extensions of the analysis presented here. We considered only irreps
with the lowest SU(2) weights, which are the ones that enter the EPRL-KKL model. The general case
with non-minimal SU(2) spins is also interesting, at least from a mathematical perspective. It has more
complicated critical point equations, and a richer geometric interpretation. In the simplest case of a
product of generalized Clebsch-Gordan coefficients, with no graph structure, the critical point equations
define a more elaborated map between the 3d vectors appearing in the boundary data and bivectors than
the one appearing here: γ-simple bivectors instead of bivectors with vanishing magnetic part [66]. For
a tensor invariant associated to a graph, it should be possible to combine the technique presented here
with the ones of [66] to obtain asymptotics of all unitary SL(2,C) invariants on graphs. Secondly, it
would be also interesting to extend our technique to more general settings with time-like or null faces,
see e.g. [26, 51, 12]. These involve the other little groups of SL(2,C) and typically use their associated
representation basis instead of the canonical basis, and other coherent states such as those for SU(1, 1).

We hope to have convinced the reader that the beautiful link between SL(2,C) Clebsch-Gordan
coefficients and Minkowski geometry goes far beyond the simplicial case.
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A Vectorial representation of SL(2,C)

In this Appendix we show how to derive (42), namely the explicit form of the 3d, non-unitary irrep of
SL(2,C) in terms of the fundamental one. We start from the polar decomposition h = bu. We parametrize

u = exp(i
θ

2
~n · ~σ) = 1 cos

θ

2
+ i~n · ~σ sin θ

2
∈ SU(2), (A.1)

and compute its adjoint action on ~σ using the properties of Pauli matrices,

g−1~σg = cos θ ~σ − sin θ ~n× ~σ + (1− cos θ) (~n · ~σ) ~n = R~n(θ)~σ. (A.2)

where U := R~n(θ) is the vectorial representation of u, a rotation of angle θ and axes ~n. This equation is
actually valid for θ ∈ C. Therefore, for a pure boost

b = exp(
β

2
~m · ~σ) = 1 cosh

β

2
+ ~m · ~σ sinh β

2
, (A.3)

we immediately derive

b−1~σb = coshβ ~σ + i sinhβ ~m× ~σ + (1− coshβ) (~m · ~σ) ~m = B~m(β)~σ. (A.4)

Combining these two we obtain the expression

h−1~σh = B~m(β)R~n(θ)~σ ≡ H~σ, (A.5)

with H given by (42). This 3d, non-unitary irrep of SL(2,C) is usually labelled (1,0) in terms of the
self-dual and antiself-dual spins j±, however we avoided this notation in the main text to avoid confusion
with a unitary irrep (ρ, k) of fixed ρ and k.

B Orientation conditions imply Euclidean geometry

In this Appendix we prove that boundary data satisfying the orientation conditions (50) satisfy the
Euclidean spherical cosine laws. Consider the quantity

C :=
~n1b × ~n1a

||~n1b × ~n1a||
· Ra~na1 ×Ra~nab

||~na1 × ~nab||
. (B.6)

By the Cauchy-Schwarz inequality and the invariance of the scalar product under Ra ∈ SO(3),

|C| ≤ ||~n1b × ~n1a||
||~n1b × ~n1a||

||Ra~na1 ×Ra~nab||
||~na1 × ~nab||

= 1.

On the other hand, we can expand the numerator of (B.6) as follows,

C =
(~n1b · Ra~na1) (~n1a ·Ra~nab)− (~n1b ·Ra~nab) (~n1a · Ra~na1)

||~n1b × ~n1a||||~na1 × ~nab||
=

(~n1b · Ra~na1)
(

R−1
a ~n1a · ~nab

)

−
(

R−1
b ~n1b · R−1

b Ra~nab
) (

R−1
a ~n1a · ~na1

)

||~n1b × ~n1a||||~na1 × ~nab||
.

If the data satisfy (50) we can remove all rotations and obtain

C =
(~n1b · ~n1a) (~na1 · ~nab) + (~nb1 · ~nba) (~na1 · ~na1)

‖~n1b × ~n1a‖ ‖~na1 × ~nab‖
=
~nb1 · ~nba + (~n1b · ~n1a) (~na1 · ~nab)

‖~n1b × ~n1a‖ ‖~na1 × ~nab‖
= cos θ̂b1a.

The bound derived above therefore implies that the 3d angles of vector geometries satisfy the Euclidean
condition | cos θ̂b1a| ≤ 1 for the spherical cosine laws.
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C Evaluating the on-shell action

In this Appendix we give more details on the evaluation of the action at the critical points presented in
Section 4.3. First, we recall some basic properties of SU(2) coherent states:

~nab · ~σ |ζab〉 = −|ζab〉, ~nba · ~σ |ζba] = |ζba], (C.7)

and for non-proportional spinors,

[ζba|~σ|ζab〉 =
[ζba|ζab〉

1− ~nab · ~nba
(−~nab + ~nba − i~nab × ~nba) . (C.8)

Then, composing four-screws using (A.1) with a complex angle and properties of the Pauli matrices,
we arrive at (71). To proceed, it is convenient to choose the spike gauge, which is available for both
Euclidean and Lorentzian angle-matched data.

In the spike gauge the vectors ~nab × ~nba and ~n1a × ~n1b are anti-aligned,

~na1 × ~nb1
||~na1 × ~nb1||

= − ~nab × ~nba
||~nab × ~nba||

. (C.9)

We can use this property to eliminate some scalar products from (71), obtaining

[ζba|h−1
b ha|ζab〉 = [ζba|ζab〉

(

cos
ωa
2

cos
ωb
2

− sin
ωa
2

sin
ωb
2
~na1 · ~nb1 (C.10)

− i
~nab − ~nba

1− ~nab · ~nba
·
(

cos
ωa
2

sin
ωb
2
~na1 − sin

ωa
2

cos
ωb
2
~nb1

)

− sin
ωa
2

sin
ωb
2

~na1 × ~nb1 · ~nab × ~nba
1− ~nab · ~nba

)

.

1

a

b

π

π

�nab

�nba

Figure 10: In the spike gauge the tetrahedra 1, a, and b share an edge vector that is orthogonal to both ~nab and
~nba. The angle between these two vectors is given in terms of the external 3d dihedral angles by π − (π − φa

b1) −
(π−φ1

ab)− (π−φb
a1) = −2π+φa

b1 +φ1

ab +φb
a1 = φa

b1 +φ1

ab +φb
a1. This and analogue observations lead to (C.11).

With the help of Fig. 10, we deduce

~nab · ~nba = cos
(

φ1ab + φba1 + φab1
)

, (C.11)

~nb1 · (−~nab + ~nba) = − cos
(

φ1ab + φab1
)

+ cos
(

φba1
)

= 2 sin

(

φ1ab + φab1 + φba1
2

)

sin

(

φ1ab + φab1 − φba1
2

)

,

~na1 · (−~nab + ~nba) = − cos (φab1) + cos
(

φ1ab + φba1
)

= −2 sin

(

φ1ab + φab1 + φba1
2

)

sin

(

φ1ab − φab1 + φba1
2

)

.

The last ingredient we need is the scalar product

[ζba|ζab〉 =
√

1− ~nab · ~nba
2

ei arg[ζba|ζab〉 = sin

(

φ1ab + φba1 + φab1
2

)

ei arg[ζba|ζab〉. (C.12)

Plugging these relations in (C.10) we obtain (74).
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D Spherical and hyperbolic trigonometry

In evaluating the action at the critical points, we used formulas of spherical and hyperbolic trigonometry
which relate 3d and 4d dihedral angles. We report them here for completeness, and to fix our conventions
which use external angles as opposed to the internal angles more commonly found in the literature.

A

B

C

a

b c

A

B

C

a

b

c

Figure 11: Spherical triangle, and spherical cosine laws. Left panel: The more common case of internal dihedral
angles. Right panel: The use of external dihedral angles.

Consider a spherical triangle with spherical (external) angles A, B, C, and area 2π − A − B − C.
With reference to Fig. 11, right panel, we have the following identities

cosA =
cos a+ cos b cos c

sin c sin b
. (D.13)

The identifies for the internal dihedral angles, depicted in the left panel, have a relative minus sign. From
these identities and trigonometric identities we derive the half-angle equations

cos
A

2
=

√

cos(s− c) cos(s− b)

sin c sin b
sin

A

2
=

√

∣

∣

∣

∣

cos(s) cos(s− a)

sin c sin b

∣

∣

∣

∣

, (D.14)

where s = a+b+c
2 . And from these we derive the composition formulas

cos
C

2
= cos

A

2
cos

B

2
sin(s) + sin

A

2
sin

B

2
sin(s− c), (D.15a)

sin
C

2
= sin

B

2
cos

A

2
sin(s− a) + sin

A

2
cos

B

2
sin(s− b), (D.15b)

used to obtain (77). Similiar relations hold also in the case of a hyperbolic triangle substituting the
trigonometric functions with hyperbolic ones.

cosh
C

2
= cosh

A

2
cosh

B

2
sin(s) + sinh

A

2
sinh

B

2
sin(s− c), (D.16a)

sinh
C

2
= sinh

B

2
cosh

A

2
sin(s− a) + sinh

A

2
cosh

B

2
sin(s− b), (D.16b)

used to obtain (81).

E Degrees of freedom of polytopes

Minkowski theorem states that a set of N vectors in Rn identifies a unique convex polytope, up to
rotations. The norms of the vectors determine the n − 1-volumes of the facets (the n − 1 dimensional
cells), and the scalar products the n-dimensional dihedral angles. This information determines the whole
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geometry of the polytope, including its adjacency matrix, and the number and geometry of faces, edges,
etc. It follows that the number of degrees of freedom of a convex polytope, up to rotations in the flat
ambient space, is n(N − 1) − n(n − 1)/2. The n-simplex has n + 1 facets, hence n(n + 1)/2 degrees
of freedom. This coincides with the number of edges, and it is the reason why Regge calculus uses
n-simplices and edge lengths. For more general polytopes in the dominant adjacency classes (i.e. all
vertices n-valent23), the number of edges can be estimated using the Euler characteristic and the relation
nV = 2E. In 2d, we have 2N − 3 degrees of freedom, which are always less than the edges, except for
the triangle. Polygons are thus generically not edge-rigid. In 3d, we have 3N − 6 degrees of freedom,
which always coincides with the number of edges of the dominant classes. Polyhedra are thus generically
edge-rigid. But not always: there exist special configurations where the Jacobian between closed vectors
and lengths is degenerate, e.g. a regular parallelepiped. In 4d, we have 4N − 10 degrees of freedom. This
is typically less than the number of edges, except for the 4-simplex. 4d polytopes are thus generically
edge-constrained, a fact that can be understood in terms of geometric embeddings. The edge lengths
define a 3d Regge tessellation of S3, and not every such geometry can be flat embedded in R4. It should
be possible to understand the difference between the degrees of freedom of a 3d Regge geometry and a
flat 4d polytope in terms of flat-embedding conditions, but we are not aware of an explicit construction.

For a 4-simplex, not only the edge lengths determine uniquely its geometry. It is also the case that
their number matches the number of triangles. Therefore it is possible to locally invert from lengths to
areas. The reconstruction of a 4-simplex from its ten areas is something heavily used in simplicial spin
foam models. In the main text we have used this fact to argue that in the asymptotic analysis of the
vertex amplitude, the 4-simplex is ‘already there’ once the spins are correctly chosen; and the role of the
critical point equations is to verify the compatibility of the 3d normals with the given the 4-simplex. It
allows us also to distinguish a Euclidean from a Lorentzian 4-simplex using the spins. This is established
looking at the sign of the squared 4-volume, which can be written in terms of the areas by writing it first
in terms of the lengths via the Caley determinant formula, and then inverting the lengths for the areas.

This inversion is however not always guaranteed, as there may exist special configurations at which the
Jacobian determinant vanishes. An example mentioned in the literature is the Tuckey configuration [67]:
two different sets of lengths both giving all areas equal. To study this example in more details, we wrote
a code on Mathematica that computes all areas, 3d volumes and the 4d volume of a 4-simplex, strarting
from the edge lengths and using the Heron formula and its generalization with Caley determinants.
Requiring that the areas are all equal, we actually found three sets of compatible edge lengths.

The first one is the equilateral 4-simplex: all lengths ℓ are equal, all the three-dimensional volumes are
equal to V = 1/(6

√
2)ℓ3, and the 4d volume is Vσ =

√
5/96ℓ4. The second one is Tuckey’s example: nine

lengths are equal to ℓ, while the last one is
√
3ℓ. Two of the three-dimensional volumes are 1/(6

√
2)ℓ3 while

the remaining three are 0. The squared 4d volume is negative, Vσ = i/(32
√
3)ℓ4. The last configuration

has eight lengths equal to ℓ and two equal to
√
3ℓ. Four tetrahedra are degenerate with vanishing

volume, and the last one has negative square volume, V = i/
√
8. The squared 4d volume is also negative,

Vσ = i
√
3/32ℓ4. Therefore, Tuckey’s configuration is not so relevant after all: having vanishing 3d

volumes, it is part of the degenerate data usually disregarded. There exist however other configurations
with singular area-length Jacobian, but corresponding to non-degenerate geometries with both 3d and
4d volumes non-vanishing. Specific examples using two different values of the areas were pointed out to
us by Bianca Dittrich. For these configurations, there are two or more (up to rotations) configurations
of normals compatible with the areas, which allow to distinguish the geometry and reconstruct a unique
set of edge lengths.
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