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Abstract. We explain how the axioms of Conformal Field Theory are used to make predictions about critical
exponents of continuous phase transitions in three dimensions, via a procedure called the conformal boot-
strap. The method assumes conformal invariance of correlation functions, and imposes some relations be-
tween correlation functions of different orders. Numerical analysis shows that these conditions are incom-
patible unless the critical exponents take particular values, or more precisely that they must belong to a small
island in the parameter space.

Résumé. Nous expliquerons comment utiliser les axiomes de la théorie conforme des champs pour faire
des prédictions sur les exposants critiques des transitions de phase continues en trois dimensions, par une
procédure dite “auto-amorçage conforme”. La méthode consiste à faire l’hypothèse que les fonctions de
corrélation ont l’invariance conforme, puis à imposer certaines relations entre les fonctions de corrélation
d’ordre différent. L’analyse numérique montre alors que ces conditions ne sont compatibles que si les
exposants critiques ont des valeurs particulières, plus précisément s’ils se trouvent dans un îlot étroit de
l’espace des paramètres.

Keywords. Phase transitions, Critical exponents, Conformal symmetry, Ising model, Emergence.

Mots-clés. Transitions de phase, Exposants critiques, Symétrie conforme, Modèle d’Ising, Émergence.

1. Introduction

Physics has many emergent laws, which follow in a non-obvious way from more fundamental
microscopic laws. Whenever this happens, we have two separate goals: to understand how the
emergent law arises, and to explore its consequences.
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One example is the Gibbs distribution of equilibrium statistical mechanics: the probabil-
ity for the system in thermal equilibrium at temperature T to be found in a state n of en-
ergy En is proportional to exp(−En/T ). One may be interested in deriving this emergent
law from microscopic models of thermalization, or in exploring the myriad of its physical
consequences.

This text, based on a recent talk for an audience of mathematical physicists, is about the “con-
formal field theory” (CFT), a set of emergent laws governing critical phenomena in equilibrium
statistical mechanics (such as the liquid–vapor critical point or the Curie point of ferromagnets).
CFT makes certain assumptions about the state of the system at a critical point. These assump-
tions can be given reasonable physical explanations, but for the purposes of this talk we will view
them as axioms.

CFT is an “emergent law of second degree” with respect to the Gibbs distribution, by itself
emergent. It sidesteps the Gibbs distribution similarly to how the Gibbs distribution sidesteps
a thermalization model. Future work should derive the CFT axioms with mathematical rigor
from the Gibbs distribution. Our goal here will be to explain the axioms and how they lead
to concrete predictions for observable quantities through a procedure called the “conformal
bootstrap”.

CFT/bootstrap approach to critical phenomena is an alternative to the better-known Wilson’s
renormalization group (RG) theory. The RG is more directly related to the Gibbs distribution than
CFT, although it too is not fully mathematically justified. The RG will not be treated here except
for a few comments.

We will not give many references, which can be found in the recent review [1]. See also lecture
notes [2–4]. An excellent set of recorded lectures is [5].

2. The first two CFT axioms

We will describe the axioms of Conformal Field Theory (CFT) on Rd , d > 3. These axioms are well
established in the physics literature. We will present them in a form hopefully more accessible to
mathematicians. In particular, we will try to avoid (or at least explain) excessive physics jargon.
Similar axioms, with additional bells and whistles, hold in d = 2 dimensions [6].1

Suppose we are given a collection of real-valued functions

T = {Gi1,...,in (x1, . . . , xn)}, (1)

defined for xp ∈ Rd , xp 6= xq (p, q = 1, . . . ,n), where n > 1 and the indices ip are non-negative
integers.

Functions (1) are called “n-point correlators of fields Ai1 , . . . , Ain ” and are also denoted by

〈Ai1 (x1)Ai2 (x2) · · · Ain (xn)〉. (2)

The collection T is called a CFT if it satisfies certain axioms stated below. Different CFT’s are just
different collections of correlators satisfying those axioms.2

Note that the “field” Ai is just a label, a name, and (2) is just a notation for Gi1,...,in (x1, . . . , xn).
The statistical average operation suggested by this notation does not have a direct meaning in the
CFT axioms. It will be handy in the interpretation of the axioms (Section 4).

1Our axioms should be viewed as a sketch of future complete axiomatics, which has not yet been written up in the
mathematics literature. A different approach to axiomatize CFTs in d > 3 (akin to Segal’s 2d CFT axiom) is in [7], but it
makes the connection to concrete calculations less explicit. A nicer starting point is the recent mathematics paper [8]
which develops 2d CFT from the conformal bootstrap perspective. It would be interesting to generalize it to d > 3.

2One also uses the term “Conformal Field Theory” in a meta-sense, as the study of all possible CFTs.
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Axiom 1 (Simple properties). Correlators have the following properties:

(a) They are invariant under permutation of any two fields:3

〈Ai1 (x)Ai2 (y) · · · 〉 = 〈Ai2 (y)Ai1 (x) · · · 〉,etc. (3)

(b) Index i = 0 is associated with the “unit field”, replaced by 1 under the correlator sign:

〈A0(x)×anything〉 = 〈anything〉. (4)

(c) The 1-point (1pt) correlators are given by

〈A0(x)〉 ≡ 1, 〈Ai (x)〉 ≡ 0 (i > 1). (5)

(d) The 2pt correlators are given by

〈Ai (x)A j (y)〉 = δi j

|x − y |2∆i
(x, y ∈Rd ). (6)

where δi j is the Kronecker symbol, and ∆i > ((d −2)/2) (i > 1) is a real number called
“scaling dimension of field Ai ”. For the unit field we have ∆0 = 0.

(e) The set of scaling dimensions {∆i } is called the “spectrum”. It is a discrete set without
accumulation points (i.e. there are finitely many scaling dimensions below any ∆∗ <∞).

Axiom 2 (Conformal invariance). Correlators are conformally invariant, in the sense that they
satisfy the constraint

Gi1,...,in (x1, . . . , xn) =
(

n∏
p=1

λ(xp )∆ip

)
Gi1,...,in ( f (x1), . . . , f (xn)), (7)

or equivalently, using notation (2),

〈Ai1 (x1) · · · Ain (xn)〉 =
(

n∏
p=1

λ(xp )∆ip

)
〈Ai1 ( f (x1)) · · · Ain ( f (xn))〉, (8)

where f (x) is an arbitrary conformal transformation of Rd and λ(x) = |∂ f /∂x|1/d is its scale factor.

Recall that conformal transformations satisfy the constraint ∂ f µ/∂xν = λ(x)Rµ
ν(x) where

Rµ
ν(x) ∈ SO(d). For d > 3, these transformations form a group SO(d +1,1).

Remark 1. Conformal transformations of Rd may send points to infinity, and should be thought
more properly as acting onRd ∪{∞}, the d-dimensional analogue of the Riemann sphere. To treat
the point at infinity on equal footing with the other points, one can put Rd ∪ {∞} in one-to-one
correspondence with the d-dimensional unit sphere Sd via the stereographic projection. This
subtlety will be glossed over here.

2.1. Basic consequences of conformal invariance

We will state without proof a few basic consequences of the above axioms. One can check that
the 2pt correlators given in Axiom 1(d) are consistent with Axiom 2. Note that the same scaling
dimension ∆i has to appear in all n-point correlators involving the field Ai . The 3pt correlators
are fixed by Axiom 2 up to an overall factor:

〈Ai (x1)A j (x2)Ak (x3)〉 = ci j k

x
∆i+∆ j −∆k

12 x
∆i+∆k−∆ j

13 x
∆ j +∆k−∆i

23

, (9)

3One can also consider CFTs with fields having fermionic statistics, whose correlators change sign under permuta-
tions. Such CFTs are important e.g. for describing quantum critical points of many-electron systems. Here we only con-
sider commuting fields for simplicity.

C. R. Physique, 2020, 21, n 2, 185-198
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where ci j k is totally symmetric by Axiom 1(a), and we denoted xi j = |xi − x j |. For 4pt correlators
Axiom 2 implies the following functional form:

〈Ai (x1)A j (x2)Ak (x3)Al (x4)〉 =
(

x24

x14

)∆i−∆ j
(

x14

x13

)∆k−∆l gi j kl (u, v)

x
∆i+∆ j

12 x∆k+∆l
34

, (10)

where gi j kl (u, v) is a function of conformally invariant cross-ratios:

u = x2
12x2

34

x2
13 x2

24

, v = u|1↔3 =
x2

23x2
14

x2
13 x2

24

. (11)

By Axiom 1(a) functions gi j kl with permuted indices are all related, e.g. permutation 1 ↔ 3
generates the constraint:

u− ∆i +∆ j
2 gi j kl (u, v) = v− ∆k+∆ j

2 gk j i l (v,u),etc. (12)

2.2. Primaries and descendants

Group-theoretically, the transformation

A(x) →λ(x)∆A( f (x)) (13)

is an irreducible representation π∆ of the conformal group on scalar functions A : Rd → R.
Equation (7) means that the correlators Gi1,...,in belong to the invariant subspace of the tensor
product representation ⊗n

p=1π∆ip
(so they can be called “invariant tensors”).

We formulated Axioms 1, 2, 3 for the fields transforming as (13), called “scalar fields”. These
axioms can and should be extended to allow for fields with tensor indices. First of all, we have
to add fields ∂αAi (x) which are partial derivatives (of arbitrary order) of the fields Ai . Their
correlators are defined as derivatives of the original ones:

〈∂αAi (x) · · · 〉 := ∂αx 〈Ai (x) · · · 〉. (14)

This is, in a sense, just a convenient notation. The basic fields Ai (x) whose correlators transform
as (13) are called “primaries”, while their derivatives “descendants”. Transformation rules for
correlators of descendants can be obtained by differentiating (13).

The second extension is a bit less trivial. We should generalize (13), allowing for fields with
values in a finite-dimensional vector space V , dimV > 1, transforming under the conformal
group via

A(x) →λ(x)∆ρ(R(x))A( f (x)), (15)

where ρ is an irreducible representation of SO(d) acting in V . Such fields are called “primary
spinning fields”. One example is V = {symmetric traceless rank-l tensors}. Correlators of spin-
ning fields then take values in the tensor product ⊗n

p=1Vip and satisfy a conformal invariance
constraint similar to (7) but with factors of ρip (R(xp )) in the l.h.s. (Derivatives of spinning fields
are then also added as in (14).) Adding spinning fields would complicate the notation a bit. We
will neglect them here, although practical conformal bootstrap computations always allow for
their presence.

3. The OPE axiom

The last “OPE axiom” will relate different correlators, and in particular correlators with different
n. This is unlike the previous axioms which involved one n-point correlator at a time.4

4Except the rather trivial Axiom 1(b).
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Figure 1. The OPE expansion applies when all points xp (p > 3) lie further from x1 than x2.

Suppose we are given two collections of real numbers

{λi j k }, {s(r )
i j k ,r > 1}, (16)

where i , j ,k run over the field indices (non-negative integers). With these numbers as coeffi-
cients, “Operator Product Expansion” (OPE) is constructed as a set of formal equalities (one for
each pair of fields Ai and A j ):

Ai (x)A j (y) =
∞∑

k=0

λi j k

|u|∆i+∆ j −∆k

× [Ak (x)+ s(1)
i j k uµ∂

µ
x Ak (x)+ (s(2)

i j k uµuν+ s(3)
i j k u2δµν)∂µx∂

ν
x Ak (x)+·· · ], (17)

where u = y − x. Using the OPE for the first pair of fields inside the n-point correlator (2) with
n > 2, we get a set of candidate identities among correlators:

〈Ai (x)A j (y)Π〉 =
∞∑

k=0

λi j k

|u|∆i+∆ j −∆k
[〈Ak (x)Π〉+ s(1)

i j k uµ∂
µ
x 〈Ak (x)Π〉+ · · · ], (18)

where we denoted i1 = i , i2 = j , x1 = x, x2 = y , and Π = Πn
p=3 Aip (xp ) is the product of all other

fields in the correlator. In the l.h.s. we have an n-point correlator, while in the r.h.s. we have an
infinite series of (n −1)-point correlators and derivatives thereof.

The OPE axiom gives a condition for when the candidate identity (18) is a true identity.

Axiom 3 (OPE). There exists a set of coefficients (16), such that (18) holds as a true relation between
correlators (the series in the r.h.s. converges absolutely to the l.h.s.) as long as |xp − x| > |u| for all
p > 3 (see Figure 1).

What can be said about coefficients (16) which make this axiom work? To see this, let us
apply (18) to a 3pt correlator. Because the 2pt correlators vanish for non-identical fields (δi j in
Axiom 1(d)), the sum in the r.h.s. collapses to the single k value, and we get:

〈Ai (x)A j (y)Ak (x3)〉 = λi j k

|u|∆i+∆ j −∆k

[
1

|x −x3|2∆k
+ s(1)

i j k uµ∂
µ
x

1

|x −x3|2∆k
+·· ·

]
, (19)

where we used that 〈Ak (x)Ak (x3)〉 = 1/|x − x3|2∆k . On the other hand, we already know that the
3pt correlator in the l.h.s. has form (9) by Axiom 2. Let us then expand (9) for small y and match
with (19). From the leading term we find λi j k = ci j k .5 Relative to this overall normalization, the
subleading terms on the l.h.s. are fixed, and this allows to determine s(r )

i j k uniquely as rational
functions of ∆i , ∆ j , ∆k and d . We conclude that all coefficients (16) can be uniquely determined
by demanding that the OPE axiom works for the 3pt correlators. Furthermore, the axiom says that
the same set of coefficients should then also work for any n-point correlators.

5In particular we learn that λi j k has to be symmetric, just as ci j k . Note also that by putting Ak = A0 = 1 in (9) and by

using Axiom 1(d), we get λi j 0 = ci j 0 = δi j .

C. R. Physique, 2020, 21, n 2, 185-198
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Definition 1. A conformal field theory (CFT) T in d > 3 dimensions is a collection of correlators
(1) satisfying Axioms 1–3.

Remark 2. We included in our axioms the conditions ∆i > (d −2)/2 for i > 1 in Axiom 1(d), and
λi j k ∈R in (16). By this, we are restricting our discussion to a subclass of conformal field theories
called reflection positive (or unitary). Many statistical physics systems at criticality (such as the
Ising model or O(N ) models) are known to be described by unitary CFTs.

3.1. CFT data

The spectrum ∆i and the OPE coefficients λi j k comprise the “dataset” of a CFT T :

Data(T ) = {∆i ,λi j k }. (20)

As discussed, Data(T ) is in one-to-one correspondence with the 2pt and 3pt correlators of T .
Moreover, knowing Data(T ) we can reconstruct all n-point correlators, for an arbitrarily high
n. Indeed, from Data(T ) we can construct the OPE (the coefficients s(r )

i j k are not included in
Data(T ) since they are uniquely determined by ∆’s and d). Then, we can recursively reduce any
n-point correlator to lower-point ones, until we get to the known 2pt and 3pt correlators.6

We thus see that the dataset Data(T ) encodes full information about the CFT T . Below we
will describe a program of classifying CFTs by classifying their data sets. But first let us discuss
the interpretation of the CFT axioms.

4. Interpretation

Notation 〈Ai1 (x1)Ai2 (x2) · · · Ain (xn)〉 for Gi1,...,in (x1, . . . , xn) acquires a meaning in the interpreta-
tion of the CFT axioms, as correlation functions of statistical systems at their critical points. CFT
calculations are then interpreted as predictions for the critical exponents of statistical physics
models. Although the CFT calculations based on the axioms are completely rigorous, the inter-
pretation step is at present non-rigorous. Hopefully it will be justified in the future.

Let us discuss how this works for the 3d Ising model: a lattice model with the Hamiltonian H =
−∑

〈x y〉 Sx Sy where Sx =±1 are spins on a cubic lattice, with the nearest-neighbor ferromagnetic
interaction.

The “3d Ising CFT” is a CFT in d = 3 describing the critical point of this model, and of any
other model in the same universality class. Just as the lattice Ising model, this CFT has a globalZ2

invariance with all fields divided into Z2-even and Z2-odd.7 It contains a Z2-odd scalar primary
field denoted σ(x), whose correlators

〈σ(x1)σ(x2) · · ·σ(xn)〉 (21)

are interpreted as the 3d Ising model spin correlation functions

〈Sx1 Sx2 · · ·Sxn 〉 (22)

6We should take care that the OPE is used for a pair of fields at positions x1, x2 verifying conditions of Axiom 3, so
that it converges. This is the case if x2 is the unique position with the minimal distance from x1. There are degenerate
configurations when such a pair cannot be found, because each point has two or more nearest neighbors at equal distance
(e.g. the vertices of a regular polygon). It is then always possible to apply a small conformal transformation which moves
points to a non-degenerate configuration. In the new configuration the OPE converges and we can compute the value of
the correlator. We then conformal-transform back to the original configuration. This way we can compute correlators in
any configuration of non-coincident points.

7We have not included the notion of global symmetry in the CFT axioms, but this extension is straightforward. It just
means that all fields transform in finite-dimensional irreducible representations of a compact global symmetry group G ,
forming a direct product with the conformal group. All correlators are invariant tensors of G , and the OPE respects this
additional symmetry.

C. R. Physique, 2020, 21, n 2, 185-198
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computed at the critical temperature T = Tc , at distances |xp − xq | much larger than the lattice
spacing. While 〈· · · 〉 in (21) is just a notation, in (22) it is a true average with respect to the Gibbs
distribution, in the thermodynamic limit. By Axiom 2, correlator (21) is conformally invariant,
and thus in particular scale invariant, scale transformations being a part of the conformal group.
This means (∆σ is the scaling dimension of σ):

〈σ(λx1)σ(λx2) · · ·σ(λxn)〉 =λ−n∆σ〈σ(x1)σ(x2) · · ·σ(xn)〉. (23)

On the other hand, Equation (22) clearly does not have such an exact scale invariance, already
because it is defined on a lattice. The precise statement of agreement at large distances is8

lim
|xp−xq |→∞

〈Sx1 Sx2 · · ·Sxn 〉
〈σ(x1)σ(x2) · · ·σ(xn)〉 =C n , (24)

where C is some constant, which is n-independent but non-universal (e.g. it would change if
we add next-to-nearest interactions to the lattice model, which does not change the universality
class).

Other 3d Ising CFT fields will correspond to other lattice-scale operators. E.g. we can consider
the product of two nearby spins (separated in an arbitrary direction)

Ex = Sx Sx+1 −〈Sx Sx+1〉, (25)

where 〈Sx Sx+1〉 is subtracted so that 〈Ex〉 = 0. The 3d Ising CFT contains aZ2-even scalar primary
ε(x) whose correlators describe long-distance limits of the Ex correlators, similarly to (24).

More generally, we expect to have a CFT associated with every universality class of continuous
phase transitions. This CFT will share global symmetry (Z2, O(N ), etc) with the universality class,
and its scaling dimensions will determine the critical exponents. It has not been proven yet,
starting from the lattice models or in any other way, that all these CFTs actually exist. This is
the non-rigorous part of the CFT game.

CFT fields Ai and their scaling dimensions ∆i also have counterparts in the RG approach to
critical phenomena [9].9 Namely, they correspond to the eigenvectors and the eigenvalues of RG
transformation linearized near a fixed point describing a continuous phase transition. Fields of
scaling dimension ∆i < d (∆i > d) correspond to the relevant (irrelevant) deformations of the
fixed point. This dictionary is not needed for the actual CFT calculations, but only for interpreting
the results.

We expect that the above-mentioned fields σ and ε are the only two relevant fields of the 3d
Ising CFT. This follows from the experimental fact that the critical point of the 3d Ising model is
in the same universality class as the liquid–vapor critical point, which is reached by tuning two
parameters (pressure and temperature).

5. Conformal bootstrap program

5.1. Consistency

Conformal bootstrap program attempts to classify CFTs by classifying their datasets. That this
may be possible was first suggested by Polyakov [10].

8Equivalently, one can consider a sequence of lattice models with a smaller and smaller lattice spacing a, and take the
limit a → 0 while keeping xa fixed.

9On the other hand, the OPE coefficients λi j k do not feature prominently in the RG approach.

C. R. Physique, 2020, 21, n 2, 185-198
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Figure 2. The 4pt correlator for this configuration of points can be reduced to 3pt correla-
tors using the OPE (18) with (x, y) being one of the following pairs: (x1, x2), (x2, x3), (x3, x2),
(x4, x3).

We call a dataset D = {∆i ,λi j k } “consistent” if it is a dataset of some CFT: D = Data(T ). Ideally,
we would like to have a list of all consistent data sets:10

{Data(T1),Data(T2), . . .}, (26)

but it is not currently known how to generate such a list. The following question is less ambitious
but still very interesting:

Q1: Given a trial dataset D, decide if it is inconsistent. (27)

It turns out that this has an algorithmic answer. This will allow progress on classification by ruling
out inconsistent data sets (rather than by constructing consistent ones).

The idea is straightforward: given a trial dataset D = {∆i ,λi j k }, we will try to construct all
correlators, looking for some inconsistency with the axioms.

The first step is to construct the 2pt and 3pt correlators. These are simply given by explicit
formulas from Axiom 1(d) and (9) with ci j k =λi j k . So far no room for inconsistency.

Then we proceed to construct the 4pt correlators. For this we consider the OPE series reducing
them to the 3pt correlators. All information needed to write down these series is contained in ∆i

and λi j k . But now we need to check a couple of things. First, do these series converge where
Axiom 3 says they should? For this, the trial OPE coefficients λi j k should not grow too fast as a
function of k for fixed i , j . The required growth condition can be shown to take a relatively simple
form: ∞∑

k=0
(4ρ)∆kλ2

i j k <∞ ∀ρ < 1. (28)

Second, there are several ways to reduce a 4pt correlator to 3pt correlators via the OPE, and they
all should agree in the overlapping regions of convergence. See Figure 2 for an example. This
condition is called “crossing”, and it is not automatically satisfied.11 Assuming that it also holds,
we can define the 4pt correlators as the sum of OPE series.

We then proceed to higher n-point correlators. Similarly to n = 4, they are reduced to (n −1)-
point correlators via the OPE, and we need to check convergence and crossing. It turns out that
crossing for n > 5 is automatically satisfied once we impose crossing for all 4pt correlators. On the
other hand, the general convergence condition is stronger than (28), and it can be expressed as
follows. Consider an infinite matrix consisting of OPE coefficientsλi j k with a fixed j and arbitrary
i ,k:

(M ( j ))i k =λi j k . (29)

10We are not giving full details necessary to make this statement precise. One important subclass of CFTs are “local
CFTs”, which roughly correspond to critical points of lattice models with finite-range interactions. It is expected that most
local CFTs are isolated. One exception are CFTs with “exactly marginal” fields of dimension ∆ = d , which form finite-
dimensional continuous families. A folk conjecture says that exactly marginal fields in d > 3 require supersymmetry,
which makes this exception non-generic.

114pt crossing constraints were first discussed in Refs. [10, 11]. The word “crossing” comes from an analogy with
relativistic Quantum Field Theory. There, the 2 → 2 scattering amplitude M (p1, p2 → p3, p4) is invariant under “crossing
transformations", when one incoming particle is moved (“crosses”) into the group of outgoing particles, while one
outgoing particle crosses in the opposite direction.
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Then any such M ( j ), viewed as an operator from i -indexed sequences to k-indexed sequences,
should be bounded with respect to a certain weighted `2 norm (with ∆-depending weights).12

Equation (28) follows from this general condition when we apply the operator to a sequence
consisting of a single nonzero element, and demand that the result have a finite norm.

To summarize, consistent datasets are those which satisfy the general convergence and the
4pt crossing conditions. The convergence condition is the less interesting of the two. Below we
will focus on the 4pt crossing, which will allow us to put constraints on the fields of low scaling
dimension.

5.2. Conformal blocks and 4pt crossing

Here we will describe how to put 4pt crossing constraint into a more explicit form, by expanding
4pt correlators in a basis of special functions called conformal blocks.

Recall that conformally invariant 4pt correlators have form (10). When we compute the 4pt
correlator in the r.h.s. of (10) using the OPE, we should get something consistent with this
formula. Let us see how this happens. Applying the OPE to the first pair of fields, we get an
expression of the form:

〈Ai (x1)A j (x2)Ak (x3)Al (x4)〉 =∑
m

λi j m

x
∆i+∆ j −∆m

12

[〈Am(x1)Ak (x3)Al (x4)〉+ · · · ], (30)

where . . . denotes terms proportional to s(r )
i j m times derivatives acting on the 3pt correlator

〈Am Ak Al 〉, which is in turn given by λmkl times an x-dependent function which can be read
off from (9). It can be shown that by doing all derivatives and infinite sums over r , the r.h.s. of (30)
takes the form: (

x24

x14

)∆i−∆ j
(

x14

x13

)∆k−∆l 1

x
∆i+∆ j

12 x∆k+∆l
34

∑
m
λi j mλmkl G∆m (u, v). (31)

The functions G∆m (u, v) appearing here are called “conformal block”. These functions are fixed by
conformal symmetry. They depends on the exchanged scaling dimension ∆m , and on the space
dimension d .13 Notably, they do not depend on the OPE coefficients λi j k whose product appears
as a prefactor in (31).

Theory of conformal blocks is huge and it’s not possible to do it justice in this text. It has con-
nections to representation theory, orthogonal polynomials, and integrable quantum mechanics.
There are no fully general closed form expressions of conformal blocks in terms of the classical
special functions. Fortunately, they admit rapidly convergent power series expansions which al-
low efficient numerical evaluation. This is what is used in practical applications.

The conformal block is simple only for the exchanged unit field: Am = A0 = 1, when we have:

G0(u, v) = 1, λi j 0 = δi j , λ0kl = δkl , (32)

where we also gave the OPE coefficients for this case (see footnote 5).
Comparing (31) with (10) we see that they are consistent if we identify:

gi j kl (u, v) =∑
m
λi j mλmkl G∆m (u, v). (33)

12This is related to something called “radial quantization”, which we do not describe in this text. This convergence
condition for higher n-point corelators has not been discussed in detail in the literature.

13They also depend on the external dimension differences∆i −∆ j ,∆k −∆l but we will omit this from the notation. In

a full treatment involving spinning fields, the conformal blocks also depend on the spin of the fields.
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This gives a compact formula to compute the 4pt correlators in terms of the CFT data. We can
also obtain a compact expression for the 4pt crossing constraints, by substituting (33) into (12):

u− ∆i +∆ j
2

∑
m
λi j mλmkl G∆m (u, v) = v− ∆k+∆ j

2
∑
m
λk j mλmi l G∆m (v,u). (34)

As (12), this corresponds to the permutation x1 ↔ x3. Constraints corresponding to other permu-
tations take a rather similar form. They should also be considered, although we will not discuss
them here explicitly.

Now, we can test a trial dataset D for consistency, by checking (34) for all possible choices of
i , j ,k, l , in the region of overlapping convergence. This region is not empty. E.g., let us fix points
x1,3,4 so that x4 is far away from x1,3. Then the l.h.s. should converge within the set {x2 : x12 < x13},
and the r.h.s. in {x2 : x23 < x13}. These two balls have a nontrivial overlap.

5.3. Partially specified datasets

In Sections 5.1 and 5.2, we gave an answer to the consistency question (27). Unfortunately, the
described procedure is not by itself practically useful, since it assumes that the trial dataset D

is fully specified, which includes infinitely many parameters (all scaling dimensions and OPE
coefficients). To correct for this, let us define the notion of a “partially specified trial dataset”,
which is a list L of finitely many assumptions on scaling dimensions and OPE coefficients.
We say that L is consistent if there is at least one CFT T whose dataset Data(T ) satisfies the
assumptions. The following is then a more practical version of question (27):

Q2: Given a partially specified trial dataset L , decide if it is inconsistent. (35)

Although this looks like a much harder question than (27), it turns out that this question can also
be answered, based on (34), using numerical algorithms. This was first shown by Rattazzi, Tonni,
Vichi and the author [12] and led to the rapid development of the numerical conformal bootstrap
in the last 10 years. We will explain how this work on an example in the next section.

6. Example: constraining the 3d Ising CFT

Let us fix two real numbers ∆1,∆2 in the interval [1/2,3], and consider the following list of
assumptions L =L (∆1,∆2) about a 3d CFT:

• Z2 global symmetry;
• there is one field which is Z2-odd, one which is Z2-even, and they have scaling dimen-

sions ∆1 and ∆2;
• all other fields have scaling dimensions ∆i > 3 i.e. are irrelevant.

As discussed in Section 4, the 3d Ising CFT satisfies L (∆σ,∆ε). Our strategy will be to exclude a
large part of the (∆1,∆2)-plane by showing that L (∆1,∆2) is inconsistent there. This will imply
that the scaling dimensions of the 3d Ising CFT must belong to the remaining part of the plane.

6.1. One crossing constraint

Consider first the 4pt crossing for 〈A1 A1 A1 A1〉. Putting i = j = k = l = 1 in (34), we obtain:

u−∆1
∑
m

pmG∆m (u, v) = v−∆1
∑
m

pmG∆m (v,u), pm =λ2
11m > 0. (36)

We know that p0 =G0 = 1 (see (32)), so isolating those terms we write this as

h(u, v) ≡ v−∆1 −u−∆1 =
∞∑

m=2
pmF∆m

(u, v), (37)

F∆(u, v) := u−∆1G∆ (u, v)− v−∆1G∆ (v,u).

Note that F∆ also depends on ∆1. The sum starts from m = 2 because λ111 = 0 for the Z2-odd A1.
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Geometrically, Equation (37) means that h, viewed as a vector in a space of two-variable
functions, belongs to a convex cone C generated by vectors F∆2

and F∆ with∆> 3. We include all
F∆ with∆> 3 as generators of the cone since we don’t know the exact values of∆m for m > 3, but
only that ∆m > 3. Denote by C ∗ the dual convex cone, which is the set of all linear functionals α
which are positive on all vectors generating the cone:

α[F∆2 ]> 0, α[F∆]> 0 ∀∆> 3. (38)

Suppose that there exists a functional α0 ∈C ∗ such that

α0[h] < 0. (39)

Then by acting with α0 on (37) we get a contradiction. So, this equation cannot be satisfied for
any nonnegative pm . This is how one shows that the assumption L (∆1,∆2) is inconsistent: by
exhibiting a functional α0 which satisfies (38) and (39).

Numerically, one works with a finite dimensional space of functionals A (Λ) which are finite
sums of partial derivatives at a particular point:

α[ f ] = ∑
m+n6Λ

αm,n∂
m
u ∂

n
v f (u0, v0), (40)

whereΛ is a parameter, to be taken as large as possible to have the maximal constraining powers
(within the available computer resources). One then minimizes α[h] over all α ∈ C ∗ ∩A (Λ),
looking for a functional satisfying (39). This is a convex optimization problem (continuous
linear programming), which can be solved by efficient numerical algorithms. If the minimum is
negative, then we ruled out L (∆1,∆2). If it is positive, and cannot be made negative by increasing
Λ, this would mean that L (∆1,∆2) is consistent with crossing for 〈A1 A1 A1 A1〉.

With this procedure, Ref. [13] showed that the constraint L (∆1,∆2) is inconsistent in a sig-
nificant portion of parameter space. Invoking an extra and so far unproven assumption, that the
3d Ising CFT lies at a singular boundary point of the consistent region (the so called “kink”),
Refs. [13, 14] gave the first conformal bootstrap determination of ∆σ,∆ε. Subsequent work
has shown that the kink assumption is unnecessary, provided that one includes crossing con-
straints for the 4pt correlators 〈A1 A1 A2 A2〉, 〈A2 A2 A2 A2〉. We will now explain briefly how this
was done.

6.2. Several crossing constraints

To increase the constraining power, a natural idea is to include crossing constraints for the other
4pt correlators of fields A1 and A2. While 〈A2 A2 A2 A2〉 is completely analogous to 〈A1 A1 A1 A1〉,
one encounters a crucial difference when analyzing 〈A1 A1 A2 A2〉. Namely, its conformal block
expansion involves products of two different OPE coefficients λ11mλ22m . These products are
not necessarily positive, because λi j k may have either sign. On the other hand, positivity of the
coefficients pm = λ2

11m played a crucial role in making the minimization problem of Section 6.1
convex. To overcome this obstacle, one analyzes all three correlators together, and considers the
matrix

Pm =
(

λ2
11m λ11mλ22m

λ11mλ22m λ2
22m

)
. (41)

Crucially, this matrix is positive semidefinite: Pm < 0. This condition is convex, and provides a
good substitute for the simple positivity in the bootstrap problems involving multiple correla-
tors. The resulting problem is that of continuous semidefinite programming, and it can still be at-
tacked by efficient numerical algorithms. This was realized and carried out in Refs. [15–17] which
found a consistent “island” near ∆1 ≈ 0.5181489(10), ∆2 ≈ 1.412625(10). The 3d Ising CFT point
(∆σ,∆ε) must live somewhere in this tiny island (Figure 3).
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Figure 3. The bootstrap island to which the 3d Ising CFT must belong [17]. Also shown is a
Monte Carlo result [18] for the same scaling dimensions. This plot usedΛ= 43 in (40).

The scaling dimensions ∆σ,∆ε determine the main critical exponents of the 3d Ising model
α,β,γ,δ,η,ν. In what follows we will focus on η and ν, given by

η = 2∆σ−1, (42)

ν = 1/(d −∆ε). (43)

Equation (43) deserves a comment, because it expresses an off-critical quantity (the exponent
ν describing behavior of the correlation length close to the critical point) via a critical theory
parameter ∆ε. This is an example of how CFT can make predictions about small deviations
from the critical theory, which arise at short distances from relevant perturbations, and at large
distances from the irrelevant ones. Such predictions are done via a technique called “conformal
perturbation theory,” which we have not explained. Equation (44) below is another simple
example.

Another important quantity is the “correction to scaling” exponent ω. It appears in the rate
∼ 1/rω at which the limit in (24) is achieved, assuming that all distances |xp − xq | ∼ r are
of the same order. It also appears in the subleading singularities of all quantities exhibiting
powerlaw behavior near the critical point (e.g. the specific heat). While describing deviations
from criticality, ω like ν can be expressed in terms of a purely critical parameter:

ω=∆3 −d , (44)

where ∆3 is the scaling dimension of the leading irrelevant Z2-even scalar operator. The confor-
mal bootstrap determines∆3 (and henceω) by scanning the island in Figure 3 and reconstructing
the spectrum which provides a solution to the 4pt crossing [19].

In Table 1 we report the values of the critical exponents ν, η, ω according to the conformal
bootstrap, Monte Carlo simulations and RG calculations. We also include some experimental
measurements of ν and η.14 The conformal bootstrap predictions are the most precise, and
they are in a good agreement with the Monte Carlo and RG. There is also reasonable agreement
between the theory and the experiment, although the experimental accuracy is not amazing.

14Since ω parametrizes subleading powers, it is harder to measure, and we are not aware of any published result.
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Table 1. Some representative theoretical and experimental determinations of the 3d Ising
critical exponents. See [20], Section 3.2, for more references

Ref Year Method/Experiment ν η ω

[17, 19] 2016 Conformal bootstrap 0.629971(4) 0.036298(2) 0.82968(23)
[18] 2010 Monte Carlo 0.63002(10) 0.03627(10) 0.832(6)
[21] 1998 RG 0.6304(13) 0.0335(25) 0.799(11)

[22] 1989 Binary fluid 0.628(8) 0.0300(15)
[23] 2009 Binary fluid 0.629(3) 0.032(13)
[24] 1994 Binary mixture 0.623(13) 0.039(4)
[25] 2000 Liquid–vapor 0.62(3)
[26] 1998 Liquid–vapor 0.042(6)
[27] 1987 Uniaxial antiferromagnet 0.64(1)

7. Conclusions

Conformal bootstrap calculations provide predictions for observable physical quantities from the
CFT axioms. Agreement of these predictions with alternative theoretical determinations and the
experiment increase our belief in the validity of the axioms.

Feynman [28] called the Gibbs distribution the “summit of statistical mechanics”, the entire
subject being either the “climb-up” to derive it, or the “slide-down” when it is applied. Echoing
Feynman, we may call the CFT a summit of the theory of critical phenomena, the conformal
bootstrap being the way to slide down. To climb up would be to prove the validity of the
interpretation of the CFT axioms described in Section 4. Unfortunately, relatively little rigorous
work has been done in the way of climbing up.15 One should also not forget a second major peak
in the same mountain range: the Renormalization Group.
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