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Contact interactions of a muon, an electron and two photons can contribute to the decay μ → eγγ, but
also to the conversion of a muon into an electron in the electric field of a nucleus. We calculate the μ → e

conversion rate, and show that for the coefficients of operators involving the combination FF ∝ jE⃗j2
(as opposed to FF̃ ∝ E⃗ · B⃗), the current bound on μ → e conversion is more sensitive than the bound on
μ → eγγ.
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I. INTRODUCTION

The observed neutrino masses imply the existence of
contact interactions where charged leptons change flavor.
This is referred to as (charged) lepton flavor violation
(CLFV) and is reviewed for muon decays in, e.g., [1].
Current constraints on several μ ↔ e flavor changing
processes are restrictive, and experiments under construc-
tion [2–4] aim to reach BR ∼ 10−16. Some bounds and
future sensitivities are given in Table I.
If CLFV is discovered, experimental bounds on, or

observations of, a multitude of independent processes
would assist in discriminating among models. This moti-
vates our interest in the less commonly considered contact
interactions involving a muon, an electron and two pho-
tons. Such interactions could mediate various processes,
such as μ → eγγ and μ → e conversion in the electric field
of a nucleus. The rate for μ → eγγ was calculated by
Bowman, Cheng, Li and Matis (BCLM) [11], whose results
are reviewed in Sec. II, and an experimental search with the
Crystal Box detector obtained BRðμ → eγγÞ ≤ 7.2 × 10−11

[7]. Similar contact interactions, involving two photons

but dark matter instead of leptons, have been studied
in [12–15].
We will parametrize CLFV interactions via contact

interactions involving Standard Model (SM) particles.
This would be appropriate if the new particles involved
in CLFV are heavy, but may not be generic for μ → eγγ.
This decay could be mediated by μ → ea [16] followed by
a → γγ, where a is a light (pseudo) scalar such as an
axionlike particle [17]. Recently, the MEG experiment
searched for collinear photons from this process [18]. They
found that the branching ratio of μþ → eþa; a → γγ is
smaller than Oð10−11Þ when the mediator a has a mass of
20–45 MeV and a lifetime below 40 ps.
In this manuscript, we calculate the μ → e conversion

rate induced by contact interactions of μ, e and two
photons. Section II introduces the basis of operators
(previously given by BCLM [11]), and gives their con-
tribution to μ → eγγ. The operators are of dimension seven
and eight; we focus on the dimension seven operators,
which can arise from loop corrections to dimension six
scalar operators. Our calculation of μ → e conversion
mediated by the ēμFF operator is presented in Secs. III
and IV, where we first calculate the interaction of the
leptons with the classical electromagnetic field, then in
Sec. IV find a surprisingly large “short distance” loop
interaction of two photons with individual protons. The
final discussion section integrates our results in the usual
expression for the spin independent branching ratio of
μ → e conversion, and discusses the current and future
sensitivity to the ēμFF operator coefficients at the exper-
imental scale. Appendix A considers loop contributions to
the ēμFF operator and its relation to dimension six LFV
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operators in models of heavy new physics (and in
passing mentions an accidental cancellation in the contribu-
tion of the LFV Higgs coupling operator OEH to
μ → e conversion). Appendix B shows the numerical values
of the overlap integral which will be introduced in Sec. III.

II. NOTATION AND REVIEW

A set of QED-invariant operators that could mediate the
decay μ → eγγ was given by Bowman, Cheng, Li and
Matis (BCLM) [11]:

δL ¼ 1

v3
ðCFF;LēPLμFαβFαβ þ CFF;RēPRμFαβFαβ þ CFF̃;LēPLμFαβF̃αβ þ CFF̃;RēPRμFαβF̃αβÞ

þ 1

v4
ðCVFF;LēγσPLμFαβ∂βFασ þ CVFF;RēγσPRμFαβ∂βFασ

þ CVFF̃;Lēγ
σPLμFαβ∂βF̃ασ þ CVFF̃;Rēγ

σPRμFαβ∂βF̃ασÞ þ ½H:c:�; ð1Þ

where two changes have been made to their notation: the
new physics scale in the denominator is taken to be the
Higgs vacuum expectation value v ≃mt, with 2

ffiffiffi
2

p
GF ¼

1=v2 (BCLM took mμ), and we use chiral fermions,
because this facilitates matching onto the full SM at the
weak scale, and because the outgoing electrons are rela-
tivistic so ≈ chiral.
This basis of operators is constructed to include all

possible Lorentz contractions that give the desired external
particles (there is no tensor, because there is no two-index
antisymmetric combination of FF or FF̃ to contract with
ēσμ1), so corresponds to a general parametrization of the
interaction at lowest order in a momentum expansion. The
resulting operators are of dimension seven and eight.
Curiously, all the operators of Eq. (1) induce a matrix-

element-squared for μðPμÞ → eðpeÞ þ γðkÞ þ γðqÞ that is
proportional to [11]

jMj2 ∝ Pμ · peðk · qÞ2;

giving a branching ratio

BRðμ → eγγÞ ¼ C2
2m2

μ

5v2
; ð2Þ

where

C2 ¼
����CFF;L þ i

mμCVFF;R

4v

����
2

þ
����CFF;R þ i

mμCVFF;L

4v

����
2

þ
����CFF̃;L þ i

mμCVFF̃;R

2v

����
2

þ
����CFF̃;R þ i

mμCVFF̃;L

2v

����
2

ð3Þ

The experimental bound from Crystal Box [7] given in
Table I therefore corresponds to

mμ

v
jCj ≲ 1.3 × 10−5 ⇒ jCj≲ 2.2 × 10−2: ð4Þ

Notice that the BCLM study focuses on “short-distance”
contributions to μ → eγγ mediated by LFV contact inter-
actions. There could also be a “long-distance” contribution,
induced by a LFV four-fermion operator that coupled ēμ to
the neutral pion, which decays to γγ. This process could
have more interesting sensitivity to the relevant pseudo-
scalar four-fermion operator that KTEV [19] (because the
muon decays weakly, but the π0 decays electromagneti-
cally), but we do not consider it further here because we are
interested in μ → e conversion, and the π0 couples to E⃗ · B⃗,
which is negligibly small in the nucleus. Consequently, we
disregard E⃗ · B⃗ contributions in the remainder of this paper.
In many heavy new physics models, LFV arises at

dimension six. So for a sufficiently high new physics scale
ΛNP, it is reasonable to neglect the dimension ≥ 7 operators
that could be generated at ΛNP, because their contributions

TABLE I. Current bounds on the branching ratios for various CLFV processes, and the expected reach of
upcoming experiments.

Process Current sensitivity Future

μ → eγ <4.2 × 10−13 (MEG [5]) ∼10−14 (MEG II [6])
μ → eγγ <7.2 × 10−11 (Crystal Box [7]) ∼10−16 (Mu3e [4])
μ → eēe <1.0 × 10−12 (SINDRUM [8]) ∼10−16 (COMET [2], Mu2e [3])
μA → eA <7 × 10−13 (SINDRUM II [9]) ∼10−18 (PRISM/PRIME [10])

1The tensor operator considered in [14] should vanish.
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to observables will be suppressed by additional factors of
Eexpt=ΛNP. However, some of the operators of Eq. (1) can
arise at Oð1=Λ2

NPÞ in a CLFV new physics model, with a
SM mass scale providing the additional dimensions in the
denominator. For example, if the scalar operators

Oψψ
S;XX≡ ðēPXμÞðψ̄PXψÞ; Oψψ

S;XY ≡ ðēPXμÞðψ̄PYψÞ ð5Þ

are present in the Lagrangian as δL ¼ 1
Λ2
NP
ðCψψ

S;XXO
ψψ
S;XX þ

Cψψ
S;XYO

ψψ
S;XYÞ, then at a heavy fermion mass scale mψ , they

match onto the two-photon operator OFF;X via the diagram
of Fig. 1, with coefficient

CFF;X

v3
¼ −

X
ψ

ðCψψ
S;XX þ Cψψ

S;XYÞ
Q2

ψNcαe
12πmψΛ2

NP
ð6Þ

where Nc ¼ 3 for heavy quarks, and is one otherwise. This
result is related to the conformal anomaly [20], and is the
QED version of the matching of scalar heavy quark
operators onto gluons, performed by Shifman, Vainshtein
and Zakharov [21] (the ēμGG operators were included in
μ → e conversion by [22]).
The dimension eight two-photon operators OVFF;X ¼

ēγσPXμFαβ∂βF̃ασ appear more difficult to obtain at
Oð1=Λ2

NPÞ. Furry’s theorem says that dimension six vector
operators, such as ðēγαPXμÞðψ̄γαψÞ, do not match onto
OVFF;X via the diagram of Fig. 1, because an odd number
of vector current insertions appear on the fermion loop.
Writing the loop of Fig. 1 with external legs amputated and
an axial heavy fermion current ðēγαPXμÞðψ̄γαγ5ψÞ in the
grey blob, gives a vacuummatrix element that is even under
charge conjugation, but odd under CP. Analogously to
Furry’s theorem, it should vanish in a CP invariant theory,
so we do not calculate this diagram in the approximation of
CP invariance.
In the next sections, we attempt to calculate the con-

tribution of the scalar OFF;X operators to coherent
μ → e conversion. The new physics scale is not required
to be particularly high: Sec. III considers the “long-range”
classical electromagnetic field of the nucleus, and should be
valid for ΛNP such that OFF;X is a contact interaction at the
muon mass scale. Section IV is a QED loop calculation

involving protons, which requires ΛNP ≫ mp. In
Appendix A, we will reconsider the case of ΛNP ≫ mW .
We do not consider the contribution of the dimension eight
OVFF;X operators; if new physics scale is high, their
contribution to μ → e conversion would be relatively sup-
pressed by OðE2

expt=Λ2
NPÞ compared to that of dimension

six LFV operators, and we are not aware of a motivated
light new physics model that induces these operators.

III. THE μ → e CONVERSION RATE IN THE
CLASSICAL ELECTRIC FIELD

We consider the coherent μ → e conversion described by
the first two terms of Eq. (1). Assuming that the muon and
the outgoing electron are independently described by their
wave functions in a Coulomb potential, the transition
matrix is

M ¼ 1

v3

Z
d3rψ̄eðrÞðCFF;LPL þ CFF;RPRÞ

× ψ1s
μ ðrÞhNjFαβFαβjNi; ð7Þ

where ψ1s
μ and ψe are respectively the wave functions of a

1s bound muon and the outgoing electron. Here, we omit
spin indices for simplicity. jNi denotes the ground state of a
nucleus. For an ordinary nucleus, we can safely assume that
the electric field EðrÞ is spherically symmetric and the
magnetic field is negligible.
We approximate the hadronic matrix element with a

classical field strength as:

hNjFαβFαβjNi ¼ −2fEðrÞg2: ð8Þ

Diagrammatically, this corresponds to assuming that both
exchanged photons carry three-momentum but no energy
(giving a Coulomb potential), and neglects excited inter-
mediate states for the nucleus. It can be compared to the
approximation of Weiner and Yavin [13] for dark matter
scattering on nuclei, where the nucleus is treated as a
particle of charge Z in heavy quark effective theory, with a
form factor to account for its finite size.2

With the amplitude M, the conversion probability is
given by

dΓconv ¼
d3pe

ð2πÞ32Ee
ð2πÞδðEe − Econv

e Þ
X
spins

jMj2; ð9Þ

where the summation includes spin averaging of the initial
state, and Econv

e is the energy of the signal electron, given by
Econv
e ¼ ½ðmN þmμ −BμÞ2 −m2

N þm2
e�=2ðmN þmμ −BμÞ.

Here Bμ is the binding energy of initial muon in the muonic

FIG. 1. Matching of scalar heavy fermion operators Oψψ
S;XY ,

Oψψ
S;XX onto the two-photon operator OFF;X.

2This approach is inconvenient in our case because the wave
functions of the electrically charged muon and electron are easier
to include in position space.

PROBING μeγγ CONTACT … PHYS. REV. D 102, 115043 (2020)

115043-3



atom. The lepton wave functions ψl (l ¼ e, μ) obey the
Dirac equation in a nuclear Coulomb potential; our
formulation below follows [23,24].
For a spherically symmetric potential, one can represent

the wave function of the bound muon as

ψ1s
μ ðrÞ ¼

�
GðrÞχsμ−1ðr̂Þ
iFðrÞχsμþ1ðr̂Þ

�
; ð10Þ

where χ is a two-component spherical spinor.3 The differ-
ential equations for the radial wave functions GðrÞ and
FðrÞ are obtained from the Dirac equation as follows,

dGðrÞ
dr

− ðEμ þmμ þ eVCðrÞÞFðrÞ ¼ 0; ð11Þ

dFðrÞ
dr

þ 2

r
FðrÞ þ ðEμ −mμ þ eVCðrÞÞGðrÞ ¼ 0: ð12Þ

The nuclear Coulomb potential VC is calculated with a
nuclear charge density ρðrÞ as,

VCðrÞ ¼
Z

∞

0

dr0r02ρðr0Þ
�
θðr − r0Þ

r
þ θðr0 − rÞ

r0

�
: ð13Þ

For the nuclear density, we adopted two different models,
the two-parameter-Fermi distribution (2pF) and three-
parameter-Gaussian distribution (3pG), given by

ρ2pFðrÞ¼
ρ0

1þexpr−c
z

; ρ3pGðrÞ¼
ρ0ð1þω r2

c2Þ
1þexpr2−c2

z2
: ð14Þ

The normalization has been used such that Ze ¼
4π

R
∞
0 ρðrÞr2dr with the normalization factors ρ0 for each

type of distribution. The parameters,ω, c and z, are listed in
Refs. [25,26].
For simplicity of formulation, we express the wave

function of the outgoing electron of momentum p⃗e using
the partial wave expansion:

ψeðrÞ ¼
X
κ;ν;m

4πilκðlκ; m; 1=2; sejjκ; νÞYm�
lκ
ðp̂eÞ

× e−iδκ
�

gκðrÞχνκðr̂Þ
ifκðrÞχν−κðr̂Þ

�
; ð15Þ

where jκ and lκ are the total and orbital angular momentum,
respectively. We introduced an integer quantum number κ
that runs from −∞ → ∞ skipping 0, and determines j and l

as jκ ¼ jκj − 1=2 and lκ ¼ jκ þ κ=2jκj. Due to angular
momentum conservation, only the waves with κ ¼ ∓1
contributes to μ → e conversion. δκ is a phase shift of the κ
partial wave, and the incoming boundary condition is taken
from [24]. ðlκ; m; 1=2; sejjκ; νÞ is the Clebsch-Gordan
coefficient, and Ym

lκ
ðp̂eÞ is a spherical harmonic. The radial

Dirac equations for each partial wave are

dgκðrÞ
dr

þ1þ κ

r
gκðrÞ− ðEeþmeþeVCðrÞÞfκðrÞ¼ 0; ð16Þ

dfκðrÞ
dr

þ1−κ

r
fκðrÞþðEe−meþeVCðrÞÞgκðrÞ¼ 0: ð17Þ

The normalization of the wave functions is the same
as Ref. [23].
Then the conversion probability is

Γconv ¼ 16G2
Fm

5
μ

�����mμ

v
ðCFF;L þ CFF;RÞF−

A

����
2

þ
����mμ

v
ðCFF;L − CFF;RÞFþ

A

����
2
	

ð18Þ

where the overlap integrals F−
A and Fþ

A for a target nucleus
A are

F−
A ¼

1ffiffiffiffiffiffiffiffiffi
2m7

μ

q
Z

∞

0

drr2fEðrÞg2fg−1ðrÞGðrÞ−f−1ðrÞFðrÞg;

ð19Þ

Fþ
A ¼ 1ffiffiffiffiffiffiffiffiffi

2m7
μ

q
Z

∞

0

drr2fEðrÞg2ffþ1ðrÞGðrÞþgþ1ðrÞFðrÞg:

ð20Þ

Neglecting the electron mass, we have gþ1 ¼ −f−1 and
fþ1 ¼ g−1, so Fþ

A ¼ F−
A ≡ FA. For instance, FA for alu-

minum (Z ¼ 13) and gold (Z ¼ 79) are 3.8 × 10−4 and
−6.1 × 10−3, respectively. FA for other targets are listed in
Appendix B, and the absolute values are plotted in Fig. 2.
A few nuclei are modeled by both the 2pF and 3pG

distributions, in which case we give the results with the
latest distribution. Apart from the dip around Z ¼ 38
(discussed below), different distribution models lead to
the same results withinOð1Þ% accuracy. The magnitude of
FA continues to grow at large Z (unlike other overlap
integrals [23]), because the squared electric field of heavy
nuclei EðrÞ2 ∝ Z2.
In Fig. 2, one sees a dip in the overlap integral in the

range 30≲ Z ≲ 50. In order to interpret this cancellation,
the integrand of FA is plotted as a function of radius in
Fig. 3 for Z ¼ 13, 38, and 79. The oscillations arise from
the electron wave function g−1, whose first node is at

3The subscript is the eigenvalue of κ¼−σ ·L⃗−1¼�ðjþ1=2Þ,
which is −l − 1 when κ is negative, l when κ is positive. Unlike
the four-component spinor ψ, the two-component spinors are L2

eigenstates, with different L2 eigenvalues in the upper and lower
components. See [24] for the construction of these states.
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r ≃ π=mμ ≃ 5.8 fm. Since the electric field is maximized
around the nuclear surface, there is a significant cancella-
tion between the interior and exterior contributions to the
integral when the first node of g−1 is close to the nuclear
radius. As a result, the overlap integral changes sign at
35≲ Z ≲ 40, where the nuclear radius is about 5.5 fm.
However, the precise prediction of the dip is difficult,

since the overlap integral at 30≲ Z ≲ 50 is very sensitive to
the nuclear model, and some parameters in the muonic
atom (such as the muon binding energy atOð1Þ% level). In
order to reliably predict FA for these targets, it would be
necessary to model the nuclear distributions with consid-
erable accuracy.
This interesting Z behavior could be a signature of the

OFF;X operators, if their contribution to the μ → e con-
version rate is dominant. For this reason we exhibit it.
However, as discussed in the next section, there is a

comparable loop contribution, which arises provided that
the μeγγ interaction remains a contact interaction up to
scales of a few GeV.

IV. TWO-PHOTON EXCHANGE
WITH A PROTON

The nuclear matrix element of the FF operator involves
the expectation value of two nucleon currents, which can be
challenging to calculate. If the nucleus is represented as a
nonrelativistic bound state of protons (and neutrons), then
Wick contractions give two diagrams for the interaction of
theOFF;X operator with the nucleus, which are illustrated in
Fig. 4. The sum of both diagrams was calculated in the
previous Sec. III, in the approximation that the protons
remain in their energy levels of an external nuclear
potential. This implies that the photons only carry three-
momentum, so correspond to the Coulomb potential (which
can be checked in the bound state formalism of Appendix B
of [27]). This neglects excited intermediate states of the
nucleus, which are possible although the final state nucleus
should be in the ground state, in order to contribute to
coherent μ → e conversion. (We also neglect correlations
between the two protons, which were considered in [15].)
In this section, we focus on the left diagram, where both
photons interact with the same proton, and estimate the
contribution of off-shell photons via the renormalization
group equations (RGEs) of QED below the proton mass
scale. At first sight, this diagram appears negligible,
because it is loop-suppressed (∝ 1=ð16π2Þ), and benefits
from only one factor Z enhancement, as opposed to Z2 for
the tree diagram on the right.
In the RGEs of QED, the FF operator can mix to scalar

operators mψO
ψψ
S;XX, mψO

ψψ
S;XY [defined in Eq. (5)], for ψ a

charged point particle. This corresponds to the log-
enhanced part of the loop where both photons interact
with the same proton, can be reliably computed in EFT, and
was considered in [14] for ψ a heavy quark. In an EFT of
leptons and hadrons below 2 GeV, we apply this result for ψ
a proton, for scales between 2 GeV and mμ≃ the momen-
tum exchange of μ → e conversion, which gives

ΔCpp
S;XðmμÞ ¼ −

6αemmp

πv
ln
2 GeV
mμ

CFF;X

≃ −2.26 × 10−4CFF;X ð21Þ

where Cpp
S;X ¼ 1

2
ðCpp

S;XL þ Cpp
S;XRÞ, and CFF;X is evaluated at

2 GeV. This mixing, with ψ a proton, is discussed in [15]
but was not included in [14]. It can only be a rough
approximation to this loop, because the not-log-enhanced
contributions are unknown and difficult to estimate.
We can now calculate the contribution of CFF;X to μ → e

conversion. The branching ratio is

FIG. 3. Integrand of FA for Z ¼ 13, 38, and 79. The horizontal
axis shows the dimensionless distance from a nuclear center. The
amplitude for Z ¼ 13 is multiplied by a factor 5.

FIG. 2. jFAj as a function of atomic number (Z) for the target
nucleus. Nuclear distributions are 3pG for Z ¼ 16, 28, 38, 40, 42,
50, 56, and 83 (blue circle), and 2pF for other nuclei (red
diamond).
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BRðμA → eAÞ ¼ 32G2
Fm

5
μ

Γcap

�����…þ Cpp
S;LS

ðpÞ
A þ Cnn

S;LS
ðnÞ
A þ CD;L

DA

4
−
mμ

v
CFF;LFA

����
2

þ fL ↔ Rg
�

ð22Þ

where Γcap is the muon capture rate in a muonic atom [28],

SðNÞ
A and DA are respectively the overlap integrals in

nucleus A of the N̄N nucleon current and the dipole
operator [23], FA is the overlap integral for the FF operator
from Sec. III, and “…” represents the vector coefficients
that we do not discuss. If the principle source of μ → e
flavor change at a scale of 2 GeV is OFF;X, then on
aluminum and gold, we have

BRðμA→ eAÞ
jCFF;Lj2þ jCFF;Rj2

¼
�
6.6× 10−9j1þ 15j2 for 27Al

9.1× 10−8j− 1þ 3.8j2 for 197Au
:

ð23Þ

where between the absolute values is first the tree con-
tribution, then the loop. Unexpectedly, the loop contribu-
tion could be larger than the tree for light and heavy nuclei.
Let us briefly discuss how this can occur. Naively, the

loop amplitude should be suppressed relative to the tree
contribution by 1=ð16π2ZÞ. However:

(i) the numerical factor from the loop is large: Eq. (21)
is ∼2α log, rather than being ∼ α

4π log.
(ii) the classical amplitude is suppressed by 1=ð4πÞ,

because the electric field of a point charge Z is
jE⃗ðrÞj ¼ Ze=ð4πr2Þ, so a factor 4π remains in the
denominator when E2 is integrated over the volume
of the nucleus. Combined with the first effect, this
compensates the 1=16π2 suppression.

(iii) the FF operator is of dimension seven, so the
amplitude is proportional to an energy scale. For
the loop, this is the proton mass, whereas for the
classical process, it is a combination of the momen-
tum transfer (mμ) and the inverse nuclear radius,
which turns out to be ∼mμ=π2. So this ratio of
energy scales (over)compensates the Z suppression
of the loop.

Alternatively, the second point (and part of the third), can
be seen by noticing that the overlap integral SðpÞA is large
compared to FA. For simplicity, we assume a uniform
proton distribution ρ ∝ Zð4π

3
R3Þ−1 for a nuclear radius

R ∼ 1.1A1=3 fm. Since the nuclear electric field is maxi-
mized around the nuclear surface, we approximate the
electric field as one at the surface, jE⃗ðrÞj ≃ Ze=ð4πR2Þ.
Hence, the ratio of the overlap integrals is jFA=S

ðpÞ
A j ≃

2m−1
μ ½ Ze

4πR2�2=½Zð4π3 R3Þ−1� ¼ 2Zα=ð3mμRÞ ∼ 0.02 for 27Al
(0.06 for 197Au), where the overall factor 2m−1

μ covers
the typical scale of μ → e conversion and the difference of

normalization for overlap integrals between FA and SðpÞA
[23]. That is naive understanding that the overlap FA is

small compared to SðpÞA . The numerical calculation tells us
that the ratio is 0.02 for 27Al (0.1 for 197Au).
Figure 5 shows the branching ratios for targets of atomic

number Z normalized by that for aluminium. The branch-
ing ratio via the scalar CLFVoperator, Opp

S;X ¼ ēPXμðp̄pÞ,
is also shown to highlight the difference of Z dependence.
Two features of the overlap integral FA can be seen: first, it
has an additional factor of Z, due to the extra Fμν, and
second, it becomes negative at large Z. The first point is
illustrated by the dashed line, showing the branching ratio
induced only by the tree contribution of the ēμFF operator,
which continues to increase at large Z. This differs from the
high-Z falloff of the branching ratios due to the familiar
dipole, scalar or vector operators [23]. The solid line
includes the tree and loop contributions of the ēμFF
operator, which interfere destructively at large Z, where
FA is negative but the scalar overlap integral is positive.
This sign difference, combined with the increasing magni-
tude of FA at large Z, causes the branching ratio to decrease
for increasing Z ≳ 50. The shape and magnitude of this
feature differ from the high-Z decrease of dipole, scalar or
vector operators [23]. We stress that this feature could be

FIG. 4. Diagrams for two photons from the FF operator interacting with the nucleus A.
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used to discriminate the ēμFF operator from other CLFV
operators.

V. SUMMARY

In this manuscript, we calculated the contribution of low-
energy ēμγγ contact interactions to μ → e conversion on

nuclei. We considered the first two operators of Eq. (1),
which are CP-even, of dimension seven, and involve
FμνFμν ⊃ jE⃗j2. Other possibilities are discussed in Sec. II.
If the μeγγ interaction is a contact interaction at

momentum transfers ∼mμ, then there is a contribution to
μ → e conversion from the leptons interacting with the
electromagnetic field of the nucleus. The calculation is
outlined in Sec. III. It relies on the overlap integrals in
the nucleus, of the electron and muon wave functions
with the electric-field-squared, which are given in
Eqs. (19) and (20). This contribution has an interesting
and rare feature: it changes sign at intermediate
Z (¼the electric charge of the target nucleus).
If the μeγγ interaction remains a contact interaction at

larger momentum transfers ≳mp, then the dominant con-
tribution of OFF;X to μ → e conversion arises from loop
mixing into the scalar proton operatorOS;X ¼ ðēPXμÞðp̄pÞ,
as discussed in Sec. IV. Naively, the loop amplitude is
suppressed by 1=ð16π2ZÞ, but overlap integrals, energy
ratios, and numerical factors more than compensate, as
discussed at the end of the section. The combined tree and
loop contributions exhibit a unique Z-dependence that
could be used to distinguish the ēPXμFF operator from
other operators. The branching ratio for μ → e conversion
induced byOFF;X is given in Eq. (22), and plotted in Fig. 5.
If the branching ratio for spin independent μ → e

conversion [23] is expressed as a function of operator
coefficients at a scale of 2 GeV, our results forOFF;X can be
included as

BRðμA → eAÞ ¼ 32G2
Fm

5
μ

Γcap

X
X∈fL;Rg

����CD;X
DA

4
þ ð9.0Cuu

S;X þ 8.2Cdd
S;X þ 0.42Css

S;XÞSðpÞA

þ ð8.1Cuu
S;X þ 9.0Cdd

S;X þ 0.42Css
S;XÞSðnÞA þ � � �

− CGG;X
8πmN

9αsð2mNÞv
ð0.90SðpÞA þ 0.89SðnÞA Þ − CFF;X

�
mμ

v
FA þ 18αmp

πv
SðpÞA

�����
2

ð24Þ

where DA and SðNÞ
A are the overlap integrals inside the

nucleus A, with respectively the electric field or the
appropriate nucleon (N ∈ fn; pg) distribution, which can
be found in [23]. Γcap is the muon capture rate on nucleus A
[28], CD;X is the dipole coefficient, fCqq

S;Xg are the coef-

ficients of 2
ffiffiffi
2

p
GFðēPXμÞðq̄qÞ, and the “þ…” represents

the contributions of vector operators involving a light quark
bilinear. This expression uses the quark densities in the
nucleon of Refs.4 [30–33], the gluon density [21,22]

hNjGGðxÞjNi ≃ 8πmN

9αsð2 GeVÞ hNjN̄NðxÞjNi; ð25Þ

and the last term gives the contribution of the operators
OFF;X, at tree level via the overlap integral FA tabulated in
Appendix B, and via one loop mixing to the scalar proton
density (lnð2 GeV=mμÞ ≃ 3 is used in the last term).
The SINDRUM II experiment searched for μ → e

conversion on gold, and obtained the upper bound
BRðμAu → eAuÞ ≤ 7 × 10−13 [9]. If we assume that only
the “gauge boson operator” coefficients are nonzero (at a
scale of 2 GeV), this corresponds to the bound:

4.9×10−8≳ j0.222CD;X−0.038CGG;X−4.8×10−5CFF;Xj;
ð26Þ

which gives, in the absence of CD;X and CGG;X,

FIG. 5. Branching ratios for μ → e conversion normalized to
that for aluminum. The solid line shows the result for OFF;X ¼
ēPXμFαβFαβ, where we consider two contributions: one is the
interaction with the classical electric field of the nucleus, and the
other is the effect of loop mixing of OFF;X into OS;X ¼
ðēPXμÞðp̄pÞ due to two-photon exchange. If neglecting the loop
contribution, we obtain the dashed line. For comparison, the
dotted line gives the normalized branching ratio for only the
scalar operator OS;X.

4These are the “EFT” determinations, which are ∼50% larger
than the lattice results [29].
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jCFF;Xj ≤ 1.0 × 10−3: ð27Þ

This is a better sensitivity than that given in Eq. (4) from the
Crystal Box search for μ → eγγ. Searching for μ → eγγ
nonetheless remains an interesting and complementary
channel, because it probes all the operators of Eq. (1).
Experimental constraints on μēγγ coefficients are summa-
rized in Table II.
The upcoming COMET and Mu2e experiments plan to

start with an Aluminium target. Combining Eq. (24) and
FAl ¼ 3.8 × 10−4, we obtain a future sensitivity of

jCFF;Xj ≤ 7.6 × 10−6
�
BRðμAl → eAlÞ

10−16

�
1=2

: ð28Þ

The sensitivity to CFF;X would be improved by two orders
of magnitude with an expected branching ratio of ∼10−16
on the light target Aluminium.
Finally, we comment on the interest of the ðēPL;RμÞFF

operators in identifying heavy new physics in the lepton
sector. These operators are of dimension seven in the
QED × QCD-invariant EFT below mW, and dimension
eight above. However, they can be mediated by not-so-
heavy, feebly coupled pseudoscalars of mass m ≫ mμ; mp,
and in the case of new physics at scales≫ mW , they can be
induced in matching out heavy fermion scalar operators of
dimension six, as illustrated in Fig. 1, and given in Eq. (5).
However, the dominant contribution of such scalar oper-
ators to μ → e conversion arises via the dipole or
ðēPL;RμÞGG operators. In Appendix A, we estimate the
sensitivities of μ → eγ and μ → e conversion to scalar
operators.
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APPENDIX A: ēμFF IN THE RGES

In this Appendix, we briefly consider how a heavy new
physics model could induce the dimension seven FF
operators. Parenthetically, we notice a partial cancellation
in the contribution of LFV Higgs interactions to
μ → e conversion.

1. Obtaining ēμFF at Oð1=Λ2
NPÞ

We assume that new physics generates dimension six
CLFV operators at some scale ΛNP > mW , which is high
enough that dimension≥ 7 operators can be neglected. Then
OFF;X can be generated in matching out dimension six
operators, such as aHiggswith flavor-changing couplings, or
a flavor-changing scalar operator involving heavy fermions.
We first consider the QED × QCD invariant EFT below

mW , in the notation of [34], where operators are added to
the Lagrangian as LSM → LSM þ 2

ffiffiffi
2

p
GFΣC

ζ
LorO

ζ
Lor, with

ζ being flavor indices, and the subscript giving the Lorentz
structure. As illustrated in Fig. 1, the scalar operators
Oψψ

S;XX;O
ψψ
S;XY [see Eq. (5)], match at mψ onto OFF;X and

OGG;X:

CFF;X

v
¼ −

αQ2
ψNc;ψ

12πmψðmψÞ
ðCψψ

S;XX þ Cψψ
S;XYÞ ðA1Þ

CGG;X

v
¼ −

αsðmQÞ
24πmQðmQÞ

ðCQQ
S;XX þ CQQ

S;XYÞ ðA2Þ

where Q ∈ fc; b; tg. We focus on ψ ∈ fτ; c; b; tg a heavy
fermion, because the operators with ψ ∈ fe; u; d; sg con-
tribute at tree level to μ → e conversion or μ → eēe, and for
ψ ¼ μ, the operator contributes at one loop to μ → eγ. It is
interesting to pursue the loop effects of these heavy-
fermion scalars, because the two heavy fermions make
the operators difficult to probe directly in experiment.
The Oψψ

S;XX scalar operators (with the same chiral pro-
jector in both bilinears) contribute to the dipole operator via
“Barr-Zee” diagrams. The log2-enhanced part is given by
the one-loop RGEs of QED [35,36] as

ΔCD;X ≈ 8
α2e

eð4πÞ2
�
Cττ
S;XX

mτ

mμ
ln2

mW

mτ
þ 4mc

3mμ
Ccc
S;XXln

2
mW

mc

þ mb

3mμ
Cbb
S;XXln

2
mW

mb

�
ðA3Þ

TABLE II. μēγγ operator coefficients bounded by μ → eγγ [7], and the sensitivity of μAu → eAu [9] obtained in
this manuscript. The operators are given in Eq. (1), fX; Yg ∈ fL; Rg with X ≠ Y and v ¼ 174 GeV.

Coefficient Constraint Process

jCFF;X þ imμCVFF;Y=ð4vÞj <2.2 × 10−2 BRðμ → eγγÞ < 7.2 × 10−11

jCFF̃;X þ imμCVFF̃;Y=ð4vÞj <2.2 × 10−2 BRðμ → eγγÞ < 7.2 × 10−11

j…þ CFF;Xj <1.0 × 10−3 BRðμAu → eAuÞ < 7 × 10−13
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where CD;X is the dipole coefficient at the experimental
scale, and the coefficients on the right are evaluated at mW .
Numerically, this is

ΔCD;X ≈ 9 × 10−6ð245Cττ
S;XX þ 277Ccc

S;XX þ 117Cbb
S;XXÞ

where the current MEG bound BRðμ → eγÞ ≤ 4.2 × 10−13

gives CD;X ≲ 10−8. Comparing to Eqs. (A2) and (26), one
sees that the scalar quark coefficients CQQ

S;XX give contri-
butions to μ → e conversion via the dipole and GG
operators that are of the same order of magnitude and
sign. So the SINDRUMII μ → e conversion bound has
better sensitivity to these operators [34] than the current
MEG bound. On the other hand, Cττ

S;XX contributes princi-
pally to μ → e conversion via the dipole, rather than the FF
operators, so high precision would be required to see the
FF contribution, and MEG has better sensitivity.
The Oψψ

S;XY operators can be Fierz-transformed to vector
operators − 1

2
ðēγαψÞðψ̄γαμÞ, which contribute to μ → eγ at

two-loop in EFT [36,37], that is Oðα2e lnÞ:

ΔCD;X ≈
α2e

eð4πÞ2
�
58

9
Cττ
V;YY þ

116

9

X
l¼e;μ

Cll
V;YY

þ 64

9
ðCuu

V;YY þCcc
V;YYÞþ

22

9

X
q¼d;s;b

Cqq
V;YY

−
80

9
ðCuu

V;YX þCcc
V;YXÞ−

14

9

X
q¼d;s;b

Cqq
V;YX

−
50

9

X
l¼e;μ;τ

Cll
V;YX þ 4

X
f¼b;c;s;τ

Cff
S;YX

Q2
fNfmf

mμ

�
ln
mW

m?

ðA4Þ

where the logarithm should be inside the bracket, with a
lower cutoff ∼mb → mμ which depends on the operator.

For the heavy quark coefficients CQQ
S;XY , the contribution to

μ → e conversion via the OGG;X operator is clearly larger
than via the dipole or OFF;X [see Eqs, (A2), (26)], giving
the SINDRUMII search the best sensitivity.
For the tau scalar coefficient, Eq. (A4) corresponds

to ΔCD;X ≃ 2.9 × 10−4Cττ
S;YX which gives μ → eγ the

current best sensitivity to this coefficient [34]. For
μ → e conversion, this contribution to the dipole can be
compared with ΔCFF;X ≃ 0.019Cττ

S;YX from Eq. (A2).
Equation (26) then implies that the contribution of Cττ

S;YX

to ðμAu → eAuÞ via the dipole is an order of magnitude
larger than via the FF operator, and a similar dominance of
the dipole contribution arises in Aluminium. This can be
understood diagrammatically, where both the contributions
ofOττ

S;YX to the dipole, and to the scalar proton current, arise
at 2-loop with a single log enhancement. However, the

contributions to the dipole benefit from a mτ=mμ

enhancement.

2. Of the sensitivity of μ → e conversion to flavor-
changing Higgs interactions

The discussion so far has been in the context of QED ×
QCD invariant operators below the weak scale. However,
since we assume ΛNP is large, it is relevant to translate to
the SMEFT, where SU(2) invariance restricts the operator
basis to three scalar four-fermion operators at dimension
six: the XX scalar for u-type quarks, and the XY scalars for
d-type quarks and charged leptons. There is also a flavor-
changing Higgs coupling, which matches onto OFF;X and
OGG;X at the weak scale. Including also the dipoles, these
operators appear in the SMEFT Lagrangian as

δLSMEFT¼
1

v2
ðCμe

EHH
†Hl̄μHeþCeμ

EWyβðl̄eτ
aHσμνeμÞWa

μν

þCeμ
EByβðl̄eHσμνeμÞBμνþCeττμ

LE ðl̄eγ
μlτÞðēτγμeμÞ

þCτμeτ
LE ðl̄τγ

μlμÞðēeγμeτÞ
þCeμnn

LEQUðl̄A
e eμÞεABðq̄BnunÞ

þCeμnn
LEDQðl̄eeμÞðd̄nqnÞÞþH:c:; ðA5Þ

where the capitalized SU(2) indices are explicit when not
contracted in the parentheses, l and q are doublets, u, d, e
are singlets, flavor indices are superscripts, n ∈ fc; t; bg,
and the operator labels are according to [38]. The Oeμ

EW and
Oeμ

EB will combine to the dipole, theOLE operators Fiertz to
XY scalar operators with a τ bilinear, and in the quark
sector,OLEQU is a YY-scalar operator (same chiral projector
twice), whereas OLEDQ is XY.
Loop effects between ΛNP and the weak scale can be

partially included via the RGEs of the SMEFT. Gauge
boson loops can renormalize the coefficients, and mix the
Ceμnn
LEQU coefficients into the u—type tensor operator, and

then to the dipole (as occurs below mW for YY scalars).
Higgs exchange can mix these scalars into vector
four-fermion operators (to which there could be better
experimental sensitivity), but for OLEDQ and OLE,
this is negligible because suppressed by ∼yμyψ=ð16π2Þ
(ψ ∈ fτ; bg). We therefore suppose that the coefficients in
Eq. (A5) are given at the weak scalemW , since the one-loop
RGEs abovemW do not appear to significantly mix the XY-
scalars into more experimentally accessible operators.
The coefficients from Eq. (A5) can be matched at mW

onto those of QED × QCD-invariant scalar four-fermion
operators, relevant at low energy. All the scalar operators
below mW are generated at tree level, just that some arise
due to Higgs exchange with a flavor-changing coupling
from the OHE operator, leading to correlations in the
coefficients. One obtains [35]
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CD;RðmWÞ ¼ cWC
eμ
EBðmWÞ − sWC

eμ
EWðmWÞ

þ Ceμ
EHðmWÞ

�
eαy2t
8π3yμ

�
ðA6Þ

Cττ
S;RR ¼ −

mτC
eμ
EHv

m2
h

ðA7Þ

Cττ
S;LR ¼ −2Cτμeτ

LE −
mτC

μe�
EH v

m2
h

ðA8Þ

Cττ
S;RL ¼ −2Ceττμ

LE −
mτC

eμ
EHv

m2
h

ðA9Þ

Cττ
S;LL ¼ −

mτC
μe�
EH v

m2
h

ðA10Þ

Ccc
S;LL ¼ C�μecc

LEQU −
mcv
m2

h

Cμe�
EH ðA11Þ

Cbb
S;LL ¼ −

mbv
m2

h

Cμe�
EH ðA12Þ

Ccc
S;RR ¼ Ceμcc

LEQU −
mcv
m2

h

Ceμ
EH ðA13Þ

Cbb
S;RR ¼ −

mbv
m2

h

Ceμ
EH ðA14Þ

Ccc
S;LR ¼ −

mcv
m2

h

Cμe�
EH ðA15Þ

Cbb
S;LR ¼ C�μebb

LEDQ −
mbv
m2

h

Cμe�
EH ðA16Þ

Ccc
S;RL ¼ −

mcv
m2

h

Ceμ
EH ðA17Þ

Cbb
S;RL ¼ Ceμbb

LEDQ −
mbv
m2

h

Ceμ
EH ðA18Þ

CFF;R

v
¼ −

α

9πmt

�
Ceμtt
LEQU −

2mtv
m2

h

Ceμ
EH

�
ðA19Þ

CGG;R

v
¼ −

αs
24πmt

�
Ceμtt
LEQU −

2mtv
m2

h

Ceμ
EH

�
ðA20Þ

where sW ¼ sin θW , all the masses and couplings
are running, and are evaluated at the weak scale.

The two-loop Barr-Zee diagrams involving top and W
loops were included in the matching to the dipole, and the
top loop matching the scalar operators onto FF and GG
was included for these operators.
These coefficients then run down to the experimental

scale with the RGEs of QED × QCD (see, e.g., [36]). QCD
effects are numerically significant, although they only
renormalize the coefficients.5 The scalar quark operators
run like quark masses, and the operatorOGG;X runs like the
gluon kinetic term, which is accounted for by the wave
function renormalization of the gluons. So the running
parameters in the coefficient are evaluated at the match-
ing scale.
Retaining only the contribution of the flavor-changing

Higgs couplings, we obtain

Ceμ
D;R ≃

�
Ceμ
eγ þ eαey2t

8π3yμ
Ceμ
EH

��
1 −

4αe
π

ln

�
mW

mμ

��
þ � � �

CGG;R ¼ v2

12πm2
h

Ceμ
EH½αsðmtÞ þ αsðmbÞ þ αsðmcÞ� þ � � �

CFF;R ¼ αev2

6πm2
h

Ceμ
EH

�
9

3
þ 1

�
þ � � � ðA21Þ

where on the right appear SMEFT coefficients evaluated at
mW , and the coefficients on the left can be input into the
rate for μ → e conversion. Here Ceμ

eγ ¼ cWC
eμ
EB − sWC

eμ
EW.

Combining with Eq. (26), one sees that the contribution
of the LFV Higgs interactions Oeμ

EH via OGG;X is of
opposite sign and 1

3
the magnitude of the dipole contribu-

tion. The contribution via the light quark (u, d, s) scalar
operators is slightly smaller than the GG contributions
and of same sign, which worsens the sensitivity of
μ → e conversion to OEH.

6 Including both effects, μAu →
eþ Au cannot see

Ceμ
EH ≤ 4.7 × 10−5 ðA22Þ

whereas including only the dipole would give a sensitivity
of ≲1.6 × 10−5.

APPENDIX B: NUMERICAL VALUES OF
OVERLAP INTEGRAL

In Table III, we show the numerical values of FA, defined
in Sec. III. A few nuclei are modeled by both the 2pF and
3pG distributions (14) [25], in which case we give the
results with the latest distribution: 3pG for Z ¼ 16, 28, 38,
40, 42, 50, 56, and 83, and 2pF for other nuclei.

5QCD can also mix OGG;X to OS;XL þOS;XR by attaching the
gluons to heavy quark line with a mass insertion. But we do not
include this, because the scalar operators always have to be
matched back toOGG;X in order to contribute to μ → e conversion.

6This cancellation is more effective for light targets like
Aluminium or Titanium.
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TABLE III. FA for each nucleus.

Nucleus FA × 104 Nucleus FA × 104
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