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We explore the properties of the squared-kernel-discrepancy (SKD) framework for the Nyström approximation of integral operators related to symmetric positive-semidefinite kernels. We describe how SKD-based approaches make use of the Hilbert-Schmidt geometry of the set of all trace-class integral operators defined form a given kernel and acting on the Hilbert space for which the kernel is reproducing. In this setting, we investigate the connections between SKD, spectral approximation and kernel approximation. We also describe how the properties of the conic SKD, a variation of the SKD invariant under rescaling of the approximate measures, can be combined with the notion of affine restriction to define sequential-type procedures for the design sparse approximate measures corresponding to low-conic-SKD configurations; we in addition point out an interesting connection between conic-SKD minimisation and the search of specific low-energy configurations. The efficiency of the proposed sequential procedures is demonstrated on a series of examples, and the ability of SKD-based approaches to lead to accurate approximation of the main eigenpairs of very large kernel matrices is further illustrated.

Introduction.

The spectral decomposition of integral operators related to symmetric positive-semidefinite (SPSD) kernels plays a central role in kernel methods. The spectral properties of such operators gather essential information on the underlying models, and spectral truncations yield low-rank-approximation schemes enjoying optimality properties (see e.g. [START_REF] Cucker | On the mathematical foundations of learning[END_REF][START_REF] Zhou | Learning theory estimates via integral operators and their approximations[END_REF][START_REF] Zhou | Geometry on probability spaces[END_REF][START_REF] Steinwart | Mercer's theorem on general domains: on the interaction between measures, kernels, and RKHSs[END_REF][START_REF] Gauthier | Spectral approach for kernel-based interpolation[END_REF][START_REF] Gauthier | Convex relaxation for IMSE optimal design in random-field models[END_REF][START_REF] Santin | Approximation of eigenfunctions in kernel-based spaces[END_REF]). As an important instance, this framework encompasses the diagonalisation of SPSD matrices, and is therefore essential for a wide range of applications in Mathematics and Data Science. Analytical expressions for such decompositions are however rarely at hand, and numerical computations quickly become intractable for large-scale discrete problems, the time complexity of the diagonalisation of a general × SPSD matrix being ( 3 ), not to mention issues related to the storage of very large matrices. These limitations naturally raise questions related to the design of efficient spectral approximation schemes for this class of operators and matrices, and to the assessment of the accuracy of the induced approximations. Notice that we are in this work interested in approximating the main eigenpairs of a given operator (i.e. the pairs corresponding to the largest eigenvalues of the operator).

Context.

The Nyström method is a commonly used approach for integral operator approximation. For a given integral operator , defined from a fixed kernel and an initial measure (see Section 2.2 for a detailed discussion), the Nyström method consists in considering an approximate measure so that the operator , defined from and , yields a numerically tractable approximation of . In the spectral-approximation framework, the measure is generally required to be sparse, i.e. discrete and supported by a relatively small number of points (so that the diagonalisation of then numerically corresponds to the diagonalisation of a × matrix); this sparsity constraint makes the characterisation of suitable approximate measures even more critical. As a particular instance, an important class of low-rank matrix approximation schemes are based on the Nyström method, see e.g. [START_REF] Mahoney | On the Nyström method for approximating a Gram matrix for improved kernel-based learning[END_REF][START_REF] Kumar | Sampling methods for the Nyström method[END_REF][START_REF] Boutsidis | Near-optimal column-based matrix reconstruction[END_REF][START_REF] Wang | Towards more efficient SPSD matrix approximation and CUR matrix decomposition[END_REF][START_REF] Mahoney | Revisiting the Nyström method for improved large-scale machine learning[END_REF][START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF]; the design of suitable approximate measures is in this case often referred to as the sampling problem, or landmark selection problem.

Thanks to its ability to effectively compare measures in a reproducing-kernel-Hilbertspace (RKHS) setting, the notion of kernel discrepancy (also referred to as maximum mean discrepancy, or kernel mean embedding in the literature; see Section 2.1) has emerged as a fruitful concept in Machine Learning and Statistics, among others; see for instance [START_REF] Muandet | Kernel mean embedding of distributions: a review and beyond[END_REF] for an overview. In [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF], a novel connection was drawn between the Nyström approximation of integral operators defined from SPSD kernels and a specific notion of kernel discrepancy, referred to as the squared-kernel discrepancy (SKD), this terminology being motivated by the fact that the underlying kernel discrepancy is defined from the square of the kernel defining the initial and approximate integral operators.

SKD-based approaches make use of the Hilbert-Schmidt geometry of the set of all traceclass integral operators defined form a given SPSD kernel and acting on the RKHS  associated with ; the connection between the operator framework and the kernel-discrepancy framework is consequence of Theorem 2.5. Remarkably, the "raw" SKD 2 ( , ) between the measures and corresponds to the squared norm ‖ -‖ 2 HS() , where HS() stands for Hilbert space of all Hilbert-Schmidt operators on  (see Section 2.3 for a detailed discussion). The conic SKD takes in addition account of the invariance of the spectral approximation (or equivalently, of the kernel approximation) induced by proportional approximate measures. The conic SKD 2 ( ; ) = min ∈ℝ + 2 ( , ) is thus invariant under rescaling of , offering more flexibility in the characterisation of approximate measures leading to accurate spectral approximations of the initial operator (see Section 4). In [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF], the design of sparse measures corresponding to low conic-SKD configurations was explored through regularised SKD minimisation (see also Remark 5.1).

SKD-based approaches offer an original, theoretically sound and numerically tractable framework for the Nyström approximation of integral operators related to SPSD kernels (and consequently, for low-rank SPSD-kernel and matrix approximation). From a numerical perspective, the only requirement for the efficient implementation of such approaches is the availability of a suitable approximation of the potential of the initial measure with respect to the squared kernel 2 .

Contribution and organisation of the paper.

The present paper aims at further investigate the properties of SKD-based approaches for Nyström approximation.

Section 2 introduces the theoretical framework and the notations of the paper; we in particular describe how the notion of SKD naturally appears when the initial and approximate operators and are interpreted as elements of HS() (instead of being seen merely as operators acting on 2 ( ) or 2 ( ), the Hilbert spaces of square-integrable functions with respect to or ).

Section 3 focuses on the approximation of an eigendecomposition of from an eigendecomposition of , and on the assessment of the accuracy of the induced approximation. We further discuss the notions of geometric approximate eigenvalues and of orthogonality defect that were introduced in [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF], and Theorem 3.3 depicts how the SKD can be interpreted as a combined measure of the spectral approximation and kernel approximation accuracy.

Section 4 investigates the properties of the conic SKD. In particular, Theorem 4.3 describes the generalised-convexity properties of the map ↦ 2 ( ; ), and provides analytical expression for its first and second-order directional derivatives (see also Remark 4.4 for a discussion on the attributes of the underlying Hessian operator), and for the line-search optimal step size.

In Section 5, we discuss the minimisation of the conic SKD on a convex cone of measures . We introduce the notion of (admissible) affine restriction, and describe how the combination of such restrictions with the properties of the conic SKD can be used to define sequential procedures (based on line search with sparse descent direction and optimal step size) for the design sparse approximate measures corresponding to low-conic-SKD configurations. In Section 5.3, we in addition describe how affine restrictions defined from the potential (i.e. the potential of the initial measure with respect to 2 ) draw an interesting parallel between conic-SKD minimisation and the search of low-squared-kernel-energy configurations on specific sets of measures.

In Section 6, we illustrate the behaviour of the sequential procedures discussed in Section 5 on a series of examples. Following [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF], we also further demonstrate the ability of SKDbased approaches to approximate the main eigenpairs of very large kernel matrices without resorting to powerfull computing hardware.

Section 7 consists of a concluding discussion, and for readability, the proofs of all the results present in the main body of the paper are gathered in Appendix A.

Theoretical framework and notations.

We consider a general measurable space ( , ), with  a -algebra of subsets of . Let ∶ × → ℝ be a SPSD kernel; we denote by  the underlying RKHS of real-valued functions on (see e.g. [START_REF] Paulsen | An Introduction to the Theory of Reproducing Kernel Hilbert Spaces[END_REF]). We assume that  is a separable Hilbert space. We also assume that  consists of measurable functions on ( , ), and that the diagonal of , i.e. the function ↦ diag[ ]( ) = ( , ), is measurable on ( , ). The separability of  then entails that is measurable on × for the product -algebra  ⊗ ; see for instance [START_REF] Steinwart | Support Vector Machines[END_REF]Section 4.3].

We denote by  the real linear space of all signed measures on ( , ), and by  the convex cone in  consisting of all the (non-negative) measures on ( , ).

Kernel discrepancy.

We introduce the linear subspace  ( ) of  , defined as

 ( ) = ∈  | | | | ∫ √ ( , )d| |( ) < +∞ ,
where | | ∈  stands for the variation of the signed measure . We also define the convex cone ( ) =  ( ) ∩ . For all ∈  ( ), we denote by ℎ the potential of the measure with respect to , defined as

ℎ ( ) = ∫ ( , )d ( ), for all ∈ ;
we have ℎ ∈  and (ℎ|ℎ )  = ∫ ℎ( )d ( ) for all ℎ ∈ . Notice that the map ↦ ℎ , from  ( ) onto , is linear.

The kernel discrepancy (see Remark 2.1) between and ∈  ( ) is then defined as

(2.1) ( , ) = ‖ℎ -ℎ ‖ 2  , and ( ) = ‖ℎ ‖ 2
 is referred to as the energy of the measure with respect to . Remark 2.1. The notion of kernel discrepancy is also referred to as maximum mean discrepancy, or kernel mean embedding in the literature; see for instance [START_REF] Damelin | On energy, discrepancy and group invariant measures on measurable subsets of Euclidean space[END_REF][START_REF] Muandet | Kernel mean embedding of distributions: a review and beyond[END_REF] for an overview. Notice that the kernel discrepancy is sometime defined as the square root of ( , ); in our framework, the definition (2.1) is nevertheless more convenient. ⊲

Integral operators.

We introduce the real convex cone

 ( ) = ∈  | | | | = ∫ ( , )d ( ) < +∞ .
For ∈  ( ), we have ∈ 2 ( ⊗ ). Further, for all ℎ ∈ , we have ℎ ∈ 2 ( ) and ‖ℎ‖ 2 2 ( ) ⩽ ‖ℎ‖ 2  , so that  is continuously embedded into 2 ( ); see Remark 2.2. We can in addition define the SPSD Hilbert-Schmidt integral operator on 2 ( ), given by [ ]( ) = ∫ ( , ) ( )d ( ), for ∈ 2 ( ) and ∈ ;

in particular (see e.g. [START_REF] Gauthier | Spectral approximation of the IMSE criterion for optimal designs in kernelbased interpolation models[END_REF]), we have [ ] ∈  ⊂ 2 ( ) for all ∈ 2 ( ), and

(2.2) ℎ | | [ ]  = ℎ | | 2 ( ) for all ℎ ∈ .
Remark 2.2. Throughout this article and when it is not source of errors, we make the abuse of notation consisting of interpreting square-integrable functions with respect to as elements of 2 ( ). For ∈  ( ) and ℎ ∈ , we thus for instance directly write "ℎ ∈ 2 ( )" instead of introducing the linear map ∶  → 2 ( ) defined as (ℎ) = [ℎ] ∼ , with [ℎ] ∼ the equivalent class of all functions -almost everywhere equal to ℎ; see for instance [START_REF] Steinwart | Mercer's theorem on general domains: on the interaction between measures, kernels, and RKHSs[END_REF].

Notice that for ∈  ( ),  is actually compactly embedded into 2 ( ) since for any orthonormal basis (ONB) {ℎ } ∈ of , with a general at most countable index set, we have

∑ ∈ ‖ℎ ‖ 2 2 ( ) = ∑ ∈ ℎ | | [ℎ ]  = . ⊲ We introduce the closed linear subspace  0 = ℎ ∈  | | ‖ℎ‖ 2 ( ) = 0 ⊂ , and let  =  ⊥ 
0 be the orthogonal of  0 in . We denote by { } ∈ + the at most countable set of all strictly positive eigenvalues of (repeated with multiplicity), and let {̃ } ∈ + ⊂ 2 ( ) be a set of associated eigenfunctions, chosen to be orthonormal in 2 ( ), i.e. In view of Section 2.2, for ∈  ( ), the operator on 2 ( ) can also be interpreted as an operator on ; with a slight abuse of notation, we keep the same notation for " viewed as an operator on 2 ( )", and " viewed as an operator on ". In both cases, is an Hilbert-Schmidt operator, see e.g. [START_REF] Zhou | Learning theory estimates via integral operators and their approximations[END_REF][START_REF] Zhou | Geometry on probability spaces[END_REF]. The set { } ∈ + consists of all the strictly positive eigenvalues of the operator on , and { √ } ∈ + defines a set of associated -orthonormal eigenfunctions. We denote by HS() the Hilbert space of all Hilbert-Schmidt operators on  (see also Remark 2.7).

‖ [̃ ] -̃ ‖ 2 ( ) = 0, and (̃ |̃ ′ ) 2 ( ) = , ′ (Kronecker delta). For ∈ + , let = 1 [̃ ] ∈ 
We denote by2 the square of the kernel , i.e. 2 ( , ) = ( , ) 2 , and ∈ . From the Schur product theorem, the squared kernel 2 is also SPSD on × ; we denote by  the associated RKHS of real-valued functions on . Since ( , ) = √ 2 ( , ) for all ∈ , we in particular have  ( ) = ( 2 ). By analogy with Section 2.1, for all ∈  ( 2 ), we denote by ∈  the potential of with respect to 2 , i.e. ( ) = ∫ 2 ( , )d ( ) for all ∈ . Notice that for ∈  ( ), we have ⩾ 0.

Remark 2.4. For ∈ , since the function ↦ ( , ) is measurable, so is the function ↦ 2 ( , ). From [START_REF] Steinwart | Support Vector Machines[END_REF]Lemma 4.24], all the functions in  are measurable. ⊲ THEOREM 2.5. For and ∈  ( ), we have ∈ 2 ( ⊗ ) and

( | ) HS() = ‖ ‖ 2 2 ( ⊗ ) = ( | )  = ∫ ( )d ( ) = ∫ ( )d ( ).
Theorem 2.5 is the cornerstone of the SKD framework for Nyström approximation (see [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF]); this result indeed entails that the squared-kernel discrepancy between two measures and ∈  ( ) corresponds to the squared Hilbert-Schmidt norm of the difference between the operators and ∈ HS(), that is

(2.4) 2 ( , ) = ‖ -‖ 2  = ‖ -‖ 2 HS() .
For and ∈  ( ), with fixed, we define

( ) = 1 ( ) = ( ) + ( -| -)  + 1 2 ‖ -‖ 2
 , where Ω( ; ) = ( -| -)  corresponds to the directional derivative of at in the direction -. Introducing the linear subspace

 = ∈  ( 2 ) | | = 0 ⊂  ( 2 )
, we have ( + ) = ( ) for all ∈  ( ) and ∈  such that + ∈  ( ).

Remark 2.6. If  = {0}, then the linear map ↦ is injective from  ( 2 ) onto ; in this case, the kernel 2 is said to be characteristic, see e.g. [START_REF] Sriperumbudur | Universality, characteristic kernels and RKHS embedding of measures[END_REF][START_REF] Muandet | Kernel mean embedding of distributions: a review and beyond[END_REF][START_REF] Ziegel | Strictly proper kernel scores and characteristic kernels on compact spaces[END_REF]. ⊲ 2.4. Low-rank kernel approximation and Nyström method. For ∈  ( ) and for ∈ ℕ, let trc ⊂ + be a truncation subset consisting of the indices of of the largest eigenvalues of (i.e. ⩾ ′ for all ∈ trc and ′ ∈ err ). We denote by  ,trc the closed linear subspace of  spanned by { √ } ∈ trc , and let ,trc = ∑ ∈ trc ( ⊗ ) be the reproducing kernel of  ,trc .

The truncated kernel ,trc defines an 2 ( ⊗ )-optimal rank-approximation of the kernel , i.e. for any kernel ̃ on × belonging to 2 ( ⊗ ) and with rank smaller than or equal to , we have

‖ -̃ ‖ 2 2 ( ⊗ ) ⩾ ‖ -,trc ‖ 2 2 ( ⊗ ) = ‖ ‖ 2 2 ( ⊗ ) - ∑ ∈ trc 2 .
Remark 2.7. We denote by HS( ) the Hilbert space of all Hilbert-Schmidt operators on 2 ( ); for ∈  ( ), we have ∈ HS( ). We consider a kernel ̃ on × such that ̃ ∈ 2 ( ⊗ ); we then denote by ̃ ∈ HS( ) the integral operator defined by ̃ and .

We have

‖ -̃ ‖ 2 ( ⊗ ) = ‖ -̃ ‖ HS( ) .
Consequently, kernel approximation in 2 ( ⊗ ) is equivalent to approximation in HS( ); in comparison, the SKD framework focuses on approximation in HS(). ⊲ Remark 2.8. We assume that is a discrete measure such that = ∑

=1

, where stands for a Dirac measure at ∈ . We also consider a kernel on × such that ∈ 2 ( ⊗ ). We denote by the × kernel matrix defined by and { } =1 , i.e. the matrix with , entry [ ] , = ( , ). We then have ‖ ‖ 2 ( ⊗ ) = ‖ ‖ , where ‖.‖ stands for the Frobenius norm. The Frobenius norm is a commonly used criterion for SPSDmatrix approximation, see e.g. [START_REF] Mahoney | On the Nyström method for approximating a Gram matrix for improved kernel-based learning[END_REF][START_REF] Kumar | Sampling methods for the Nyström method[END_REF][START_REF] Mahoney | Revisiting the Nyström method for improved large-scale machine learning[END_REF], and kernel approximation in 2 ( ⊗ ) thus appears as a natural extension of the Frobenius-norm-based matrix-approximation framework.

⊲ The definition of a 2 ( ⊗ )-optimal low-rank approximation of the kernel thus requires the knowledge of a spectral decomposition of the operator . When such a decomposition is not available, an altenative consists in considering low-rank approximations induced by an approximate operator defined from and an approximate measure ∈  ( ). More precisely and following Section 2.2, a spectral decomposition of the operator on 2 ( ) yields a spectral expansion of the reproducing kernel of the subspace  ⊂ , i.e.

(2.5)

= ∑ ∈ + ( ⊗ ),
with { } ∈ + the set of all the strictly positive eigenvalues of , and where { } ∈ + ⊂  is a set of associated 2 ( )-orthonormal canonically extended eigenfunctions. For any truncation subset trc ⊂ + , we have

,trc ∈ 2 ( ⊗ ) since diag[ ,trc ] ⩽ diag[ ],
and it is therefore meaningful to use kernels of the form ,trc to approximate the kernel in 2 ( ⊗ ).

In this framework, it appears natural to aim at sparse approximate measures corresponding to low values of

‖ -‖ 2 2 ( ⊗ ) , or of ‖ -,trc ‖ 2 2 ( ⊗ )
for a for a given fixed approximation rank. However, a direct optimisation of such criteria is generally not tractable in most practical applications.

Spectral approximation.

We consider two measures and ∈  ( ), corresponding to an initial operator and an approximate operator .

Approximate eigendecomposition.

Following Sections 2.2 and 2.4, we consider a set of eigenpairs { , } ∈ + corresponding to all the strictly positive eigenvalues of the operator on 2 ( ); the canonically extended eigenfunctions { } ∈ + are orthonormal in 2 ( ), so that { √ } ∈ + defines an ONB of the subspace  of  related to . We denote by the reproducing kernel of  , see (2.5), and let 0 = -be the reproducing kernel of the subspace  0 of , with  0 =  ⊥  . We use the set { √ } ∈ + as a set of -orthonormal approximate eigenfunctions of the operator on .

DEFINITION 3.1. For all ∈ + , we define

̂ [1] = √ | | [ √ ]  , and ̂ [2] = ‖ ‖ [ √ ] ‖ ‖ . For all ∈ ̃ + = { ∈ + | ∈  } ⊂ + , we introduce ̂ = ∕‖ ‖ 2 (
) , and we define

̂ [3] = ̂ | | [̂ ] 2 (
) , and ̂ [4] 

= ‖ ‖ [̂ ] ‖ ‖ 2 ( ) ;
if ‖ ‖ 2 ( ) = 0, i.e. ∈ + ∖ ̃ + , then we set ̂ [3] = ̂ [4] = 0. Following [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF], we refer to ̂ [1] , ̂ [2] , ̂ [3] and ̂ [4] as the four geometric approximate eigenvalues of related to the approximate eigenfunction , with ∈ + . We also refer to {̂ } ∈ ̃ + as the normalised approximate eigenfunctions of the operator on2 ( ) induced by the spectral decomposition of .

Geometric properties.

The geometric approximate eigenvalues enjoy the following properties.

{G.1} For ∈ + , ̂ [1] is the -orthogonal projection of [ ] onto the linear subpace spanned by . Also, for ∈ ̃ + , ̂ [3] is the 2 ( )-orthogonal projection of [ ] onto the linear subpace spanned by . {G.2} From (2.2), we can notice that ̂ [2] 2 = ̂ [1] ̂ [3] , so that ̂ [2] is the geometric mean of ̂ [1] and ̂ [3] . For ∈ ̃ + , we thus have and[ ] is therefore the -orthogonal projection of ̂ [3] onto the linear subpace spanned by [ ]. {G.3} From (2.2), we have ̂ [1] = ‖ ‖ 2 2 ( ) for all ∈ + , so that contrary to ̂ [2] , ̂ [3] or ̂ [4] , the approximate eigenvalue ̂ [1] can be obtained without computing [ ].

̂ [3] | | [ ]  = ‖ ‖ [ ] ‖ ‖ 2  ,
For ∈ ̃ + , we in addition have √ ̂ [1] ̂ = √ , so that

‖ ‖ ‖ ‖ - ∑ ∈ ̃ + ̂ [1] (̂ ⊗ ̂ ) ‖ ‖ ‖ ‖ 2 ( ⊗ ) = 0.

Accuracy of the approximation.

The concordance between the four geometric approximate eigenvalues is directly related to the accuracy of the underlying approximate eigenfunction . The following properties are satisfied (see also [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF]).

{A.1} For all ∈ + , we have ̂ [1] ⩽ ̂ [2] ⩽ ̂ [3] ⩽ ̂ [4] , with equality if and only if is an eigenfunction of the operator on . In case of equality, ̂ [⋅] corresponds exactly to the eigenvalue of related to the eigenfunction . Equality between the four geometric approximate eigenvalues occurs as soon as two of them are equal. {A.2} For ∈ + and ∈ ℝ, the map [1] + ̂ [2] 2 is minimum at = ̂ [1] . {A.3} For ∈ + and ∈ ℝ, the map

↦ ‖ ‖ [ ] - ‖ ‖ 2  = 1 2 -2 ̂
↦ ‖ ‖ [ ] - ‖ ‖ 2 2 ( ) = ‖ ‖ 2 2 ( )
2 -2 ̂ [3] + ̂ [4] 2 is minimum at = ̂ [3] . In addition, = ̂ [3] , with ∈ ̃ + , also minimises

↦ ‖ ‖ -(̂ ⊗ ̂ ) ‖ ‖ 3.1.3. Orthogonality defect.
By definition, the 2 ( )-normalised approximate eigenfunctions {̂ } ∈ ̃ + are orthogonal in 2 ( ) and in . Consequently, accurate normalised approximate eigenfunctions should be "close to be 2 ( )-orthonormal" (see also [START_REF] Santin | Approximation of eigenfunctions in kernel-based spaces[END_REF]); this condition is however only a necessary condition.

As an illustration, for ∈ ̃ + , the Parseval identity for ‖ ‖

[ √ ] ‖ ‖ 2  yields, for an ONB of  defined by the union of the ONB { √ } ∈ + of  and an ONB {ℎ } ∈ of  0 , (3.1) ̂ [2] 2 = ̂ [1] 2 + ∑ ′ ∈ ̃ + (1 -, ′ ) ̂ [1] ̂ [1] ′ ̂ | | ̂ ′ 2 2 ( ) + ̂ [1] (̂ ⊗ ̂ ) | | 0 2 ( ⊗ ) .
The difference ̂ [2] 2 -̂ [1] 2 is therefore in part induced by the residual orthogonality, in 2 ( ), between ̂ and {̂ ′ | ′ ∈ ̃ + and ′ ≠ }. Combined with {A.2}, equation (3.1) illustrates that the residual 2 ( )-orthogonality between the normalised approximate eigenfunctions is directly related with the accuracy of the spectral approximation of induced by ; see also {I.1} and {I.2} in Section 3.2.

From a numerical perspective, the analysis of the orthogonality defect between the normalised approximate eigenfunctions offers an affordable way to identify the eigenpairs that are likely to be accurately approximated. The approximate eigenpairs { ̂ [1] , ̂ } ∈ ̃ + can indeed be obtained without computing the functions { [ ]} ∈ ̃ + ; see also [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF]. Remark 3.2. We consider a finite truncation subset trc ⊂ ̃ + . By analogy with Section 2.4, we have, for a set of reals { } ∈ trc ,

‖ ‖ ‖ - ∑ ∈ trc (̂ ⊗ ̂ ) ‖ ‖ ‖ 2 2 ( ⊗ ) = ‖ ‖ 2 2 ( ⊗ ) + ∑ , ′ ∈ trc ′ (̂ |̂ ′ ) 2 2 ( ) -2 ∑ ∈ trc
̂ [3] ;

the set { * } ∈ trc minimising this expression therefore verifies

∑ ′ ∈ trc * ′ (̂ |̂ ′ ) 2 2 ( )
= ̂ [3] , for all ∈ trc (we may notice that * is not necessarily positive). We can thus remark that if ̂ is close to be 2 ( )-orthogonal to {̂ ′ | ′ ∈ trc , ′ ≠ }, then ̂ [3] ≈ * . ⊲

SKD and approximate Mercer expansion.

We consider the framework of Section 3.1. THEOREM 3.3. For and ∈  ( ), we have

2 ( , ) = ‖ -‖ 2 2 ( ⊗ ) + ( | 0 ) 2 ( ⊗ ) + ∑ ∈ + ̂ [2] 2 -̂ [1] 2 + ̂ [1] - 2 , (3.2)
and in particular, ‖ -‖ 2 2 ( ⊗ ) ⩽ 2 ( , ). Theorem 3.3 gives further insight into the relevance of low-SKD configurations for Nyström kernel approximation and for the computation of accurate approximations of the main eigenpairs of from the eigendecomposition of . {I.1} Denoting by {ℎ } ∈ an ONB of  0 , we obtain

∑ ∈ ‖ ‖ [ℎ ] ‖ ‖ 2  = ( | 0 ) 2 ( ⊗ ) = ‖ 0 ‖ 2 2 ( ⊗ ) + ( | 0 ) 2 ( ⊗ ) .
The inner product ( | 0 ) 2 ( ⊗ ) therefore measures the error committed when assuming that the elements of  0 belongs to the null space of ∈ HS(). In particular, the term ( | 0 ) 2 ( ⊗ ) measures the residual 2 ( ⊗ )-orthogonality of the decomposition = + 0 , in constrast to the decomposition = + 0 , where ( | 0 ) 2 ( ⊗ ) = 0. {I.2} From {A.2}, for all ∈ + , we have

‖ ‖ [ √ ] -̂ [1] √ ‖ ‖ 2  = ̂ [2] 2 -̂ [1] 2 , so that the term ∑ ∈ +
̂ [2] 2 -̂ [1] 2 can be interpreted as a measure of the overall accuracy of the approximate eigenpairs ̂ [1] , √ ∈ + for the operator on .

{I.3} The term

∑ ∈ + ̂ [1] -2 measures the difference between the eigenvalues { } ∈ + of and the corresponding approximate eigenvalues ̂ [1] ∈ + . It is the only term in the RHS of (3.2) that is not invariant under rescaling of ; see Section 4.

4.

Invariance and conic squared-kernel discrepancy. Following Remark 2.3, for any measure ∈  ( ) and for any > 0, we have = and  =  ; we can in particular notice that, as operators on , we have = . Furthermore, in the framework of Definition 3.1 and for a given initial measure ∈  ( ), the eigenpairs { , } ∈ + of the operator on 2 ( ), and the eigenpairs { , ∕ √ } ∈ + of the operator on 2 ( ), lead to the same spectral approximation of the operator . This invariance under rescaling is verified by the criterion ↦ ‖ -‖ 2 2 ( ⊗ ) (see Section 2.4); it is however not verified by the raw SKD ↦ 2 ( , ), motivating the introduction of the conic SKD. We consider ∈  ( ) and ∈  ( )∖. Following [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF], we denote by the argument of the minimum of the function ↦ 2 ( , ), with ∈ ℝ, ⩾ 0. We have = ( | ) HS() ∕‖ ‖ 2 HS() and 2 ( ,

) = ‖ ‖ 2 HS() -( | ) HS() .
The operator is the orthogonal projection, in HS(), of onto the linear subspace spanned by ; we denote by { } this projection, and by  [ ] the corresponding orthogonal projection in , of onto the linear subspace spanned by . We in addition have

‖ -1 2 ‖ HS() = ‖ 1 2 ‖ HS() ,
so that, in HS(), the approximate operator lies on the sphere centered at 1 2 and with radius ‖ 1 2 ‖ HS() . DEFINITION 4.1. For ∈  ( ) and ∈  ( )∖, we refer to

2 ( ; ) = 2 ( , ) = ‖ ‖ -{ } ‖ ‖ 2 HS() = ‖ ‖ - [ ] ‖ ‖ 2  = ‖ ‖ 2  -( | ) 2  ∕‖ ‖ 2  = ‖ ‖ 2 2 ( ⊗ ) -‖ ‖ 4 2 ( ⊗ ) ∕‖ ‖ 2 2 ( ⊗ ) ,
as the conic squared kernel discrepancy (conic SKD) of with respect to . By construction, the conic SKD is directly related to the overall accuracy of the spectral approximation of induced by the operator ; we for instance have (see Theorem 3.3)

2 ( ; ) = ∑ ∈ + ‖ ‖ [ √ ] - √ ‖ ‖ 2  + ( | 0 ) 2 ( ⊗ ) ,
and thus, from {A.2}, i.e. the optimality property of the approximate eigenvalues ̂ [1] ∈ + , ∑

∈ + ‖ ‖ [ √ ] -̂ [1] √ ‖ ‖ 2  + ( | 0 ) 2 ( ⊗ ) ⩽ 2 ( ; ) ⩽ 2 ( , ).
From Theorem 3.3, we also have

(4.1) ‖ -‖ 2 2 ( ⊗ ) ⩽ 2 ( ; ) ⩽ 2 ( , ).
In comparison with the raw SKD, the conic SKD takes into account the invariance of the spectral approximation (in the framework of Section 3.1) and of the kernel expansions induced by proportional approximate measures. Remark 4.2. In the framework of Definition 4.1, we have

( | ) 2  = ∫ ∫ ( ) ( )d ( )d ( ),
corresponding to the energy of the measure with respect to the kernel ⊗ . Consequently, the term ( | ) 2  ∕‖ ‖ 2  can be interpreted as the ratio of the energies of the measure relatively to ⊗ and 2 . ⊲ For a given initial measure ∈  ( ), we introduce

( ) = 1 2 2 ( ; ), for ∈  ( )∖.
We can notice that for all > 0 and for all ∈  such that + ∈  ( ), we have ( + ) = ( ); in particular, for = + ∈  ( ), we have ( ) = 0, corresponding to the minimum of the map on  ( )∖.

THEOREM 4.3. The map is quasiconvex on the convex unpointed cone  ( )∖. For and ∈  ( )∖, the directional derivative of at in the directionis

Θ( ; ) = ( -| -)  = ( | [ ] -)  .
For fixed and when ‖ -‖  tends to 0, we have

( ) = ( ) + Θ( ; ) + 1 2 -| | [ -]  + ‖ -‖ 2  ,
where ∶  →  is the linear symmetric operator defined as, for ∈ ,

[ ] = 2 - 4 ‖ ‖ 2  | | -1 2  ( - 1 
2 ).

The map is non-convex on  ( )∖ as soon as there exists ∈  ( )∖ such that and are non-collinear. In addition, the map is pseudoconvex on the convex unpointed cone

= ∈  ( ) | | ( | )  > 0 ⊂  ( )∖.
For and ∈ such that Θ( ; ) < 0, the function ↦ + ( -) , with ∈ [0, 1],

is minimum at = , with:

(i) if Θ( ; ) ⩽ 0, then (4.2) = ‖ ‖ 2  ( | - [ ])  ‖ ‖ 2  ( | - [ ])  + ‖ ‖ 2  ( | - [ ]) 
, and in this case

+ ( -) = ( ) - | | - [ ] 2  2 | | - [ ]  ; (ii) if Θ( ; ) > 0, then = 1.
The quasiconvexity of the map ↦ ( ) ensures that a local minimum for on a convex set of measures ⊂  ( )∖ is a global minumum on . If ∩ ≠ ∅, the pseudoconvexity of on in addition implies that gradient-descent-type algorithms may be used to build minimising sequences for on ∩ . As a remark, for ∈  ( )∖, with ∉ , we have = 0, and thus Θ( ; ) = 0 for all ∈  ( )∖; for such a measure , we have ( ) = 1 2 ‖ ‖ 2  , corresponding to a maximum of the map on  ( )∖. Remark 4.4. In view of Theorem 4.3, we can notice that

-1 2 = ( - 1 
2 ), with, by definition of and since

( | )  ⩽ ‖ ‖  ‖ ‖  , = 2 - ‖ ‖ 2  ‖ ‖ 2  ⩽ 0.
The real corresponds to the unique negative or null eigenvalue of the operator on , in accordance with the quasiconvexity of . Indeed, for all ∈  such that ( | -1 2 )  = 0, we have [ ] = 2 , so that all the other eigenvalues of are equal to 2 . ⊲ Remark 4.5. We consider a sequence of measures { } ∈ℕ ⊂  ( )∖ and a measure ∈  ( )∖. If the sequence { } ∈ℕ converges weakly to in , i.e.

∫ ( )d ( ) = ( | )  ⟶ ∫ ( )d ( ) = ( | )  for all ∈ ,
then we have ( ) ⩽ lim inf ( ). If the sequence { } ∈ℕ converges to in , then { ( )} ∈ℕ converges to ( ). ⊲ LEMMA 4.6. We define the set

= ∈ | | ( ) = 0 ;
for any measure ∈ , there always exists a measure ∈ such that ( ) ⩽ ( ) and ( ) = 0.

In view of Lemma 4.6, the search of low-conic-SKD configurations with respect to can be restricted to measures ∈ such that ( ) = 0.

Affine restrictions and sequential procedures.

We consider an initial measure ∈  ( ) and a convex cone ⊂  ( ); since is maximal outside of (see Theorem 4.3), we assume that ∩ ≠ ∅. In this section, we discuss some properties of the minimisation of on ∖. We also describe how the properties of the conic SKD and the notion of affine restriction can be combined to define sequential procedures for the design sparse approximate measures corresponding to low conic-SKD configurations.

Remark 5.1. In [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF], the design of sparse measures corresponding to low-conic-SKD configurations in was explored through regularised SKD minimisation, and based on convex minimisation problems of the form minimise ( ) + ∫ ( )d ( ) subject to ∈ , for a regularisation parameter ⩾ 0 and a suitable penalisation function . The sequential procedures described in Section 5.4 define an alternative type of approaches for the design of sparse approximate measures. For a given ∈ ℕ, notice that the direct search of an approximate measure with minimal conic SKD among all measures in supported by points is generally a difficult globaloptimisation problem. ⊲ 5.1. Generalities. We define the two minimisation problems minimise ( ) subject to ∈ ∖; and (CG) minimise ( ) subject to ∈ .

(DG)

We introduce the closed convex cone ⊂  defined as

= { | ∈ }  ,
i.e. is the closure in  of the convex cone { | ∈ }. We denote by the metric projection from  onto . By definition, we have As a remark, if the set { | ∈ } is closed in , then solutions to (CG) and (DG) always exist; this sufficient condition is for instance verified when is the conical hull of a finite set of measures in  ( ).

inf ∈ ∖ ( ) = inf ∈ ( ) = 1 2 ‖ ‖ - [ ] ‖ ‖ 2 

Affine restrictions.

We consider a real-valued measurable function on and a real > 0, and we define the convex set

, = ∈ | | | | ∫ ( )d ( ) = .
The set , can be interpreted as an affine section of the convex cone . We introduce the minimisation problem (CR) minimise ( ) subject to ∈ , ∖.

As a remark, due to the invariance of with respect to proportional measures (i.e. since ( ) = ( ) for all > 0), the parameter > 0 can actually be set to any arbitrary value; indeed simply acts as a scaling parameter (see also Remark 5.5).

DEFINITION 5.2. A real-valued measurable function on defines an admissible affine restriction for the conic-SKD minimisation problem

(CG) if inf ∈ , ∖ ( ) = inf ∈ ∖ ( ).
Remark 5.3. We assume that defines an admissible affine restriction for (CG). If it exists, a solution to (CR) is then also a solution to (CG). More generally, any minimising sequence for (CR), i.e. a sequence { } ∈ℕ ⊂ , ∖ such that

( ) → inf ∈ , ∖ ( ) as → ∞,
is then also a minimising sequence for (CG). ⊲ For ∈ ∖, we can notice that if the integral of with respect to is finite and strictly positive, then we have ∈ , , with = ∫ ( )d ( ). Since ( ) = ( ), this remark suggests the following sufficient condition for a function to define an admissible affine restriction for (CG).

LEMMA 5.4. If a real-valued measurable function on

is such that ∫ ( )d ( ) is finite and strictly positive for all ∈ ∩ , then defines an admissible affine restriction for (CG).

The sufficient condition described in Lemma 5.4 is for instance satisfied in the following cases.

• By definition of , we can readily remark that setting = always defines an admissible affine restriction. This case is further discussed in Section 5.3.

• Since we have 0 ⩽ ( ) ⩽ ‖ ‖  ( , ) for all ∈ and by definition of  ( ), setting = diag[ ] also always defines an admissible affine restriction. We may notice that we in this case have ∫ ( )d ( ) = trace( ) for all ∈  ( ). • If the set ∩ consists of finite measures, then = 1 defines an admissible affine restriction (with 1 the constant function equal to 1). In particular, the cases = and = diag[ ] illustrate that admissible affine restrictions for problem (CG) always exist. i.e. ̃ ( ) = 1 ∫ ( )d ( ) for all measurable set ∈ . The measure ̃ is then a probability measure on ( , ). Following Remark 4.2, the conic SKD 2 ( ; ), with ∈ , , is then related to the ratio of the energies of the probability measure ̃ with respect to the kernels 2 ( ⊗ )∕( ⊗ ) and 2 2 ∕( ⊗ ). We indeed for instance have

2 ( ) = ∫ ∫ 2 2 ( , ) ( ) ( ) d ̃ ( )d ̃ ( ).
As a remark, the term 2 may be omitted since in appears in both the numerator and the denominator of the ratio of kernel energies. Such a change of measure is of interest for numerical applications since it allows to recover the classical framework of probability-measure optimisation; it also yields an implementation framework independent of the choice of : the affine restriction is then indeed encoded by the function ∕ and the kernel 2 ∕( ⊗ ). ⊲

Conic SKD and energy.

We consider problem (CR) for = . By definition, for a given real > 0, we have

, = ∈ | | ( | )  = ⊂ .
We thus obtain, for all ∈ , ,

2 ( ; ) = ‖ ‖ 2  - 2 ‖ ‖ 2  ,
and we recall that ‖ ‖ 2  = 2 ( ) consists in the energy of the measure with respect to the squared-kernel 2 .

We introduce the squared-kernel-energy minimisation problem

(ER) minimise 1 2 ‖ ‖ 2  subject to ∈ , . We can notice that if { } ∈ℕ ⊂
, is a minimising sequence for (ER), then { } ∈ℕ is also a minimising sequence for (CR) with = . Since = always defines an admissible affine restriction for (CG), { } ∈ℕ is in addition a minimising sequence for (CG); see Section 5.2. In particular, if a solution # to (ER) exists, then # is also solution to (CR) with

= and to (CG). Low conic-SKD configurations on

, thus correspond to low squared-kernel-energy configurations on , , and reciprocally.

Sequential procedures.

We now describe a type of sequential procedures (for the design of sparse approximate measures corresponding to low-SKD configurations) taking advantage of the properties of the conic SKD and of the notion of affine restriction. We consider the framework of problem (CR); a similar study can also be done for problem (ER).

We assume that is the conical hull of a set of Dirac measure { } ∈ , with  ⊂ . For simplicity, we assume that  is a finite set of ∈ ℕ points; this setting in particular encompasses the matrix-approximation framework (see [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF] for a detailed discussion), and ensures that solutions to the problems (5.1), (FW) and (BI) can be obtained readily. We consider a real > 0 and a function on , and we assume that we have ( ) > 0 (see Lemma 4.6) and ( ) > 0 for all ∈ ; such a function then necessarily satisfies Lemma 5.4 and thus defines an admissible affine restriction for (CG). By construction, the extreme points of the convex set , are the measures { } ∈ , with = ( ) for all ∈ .

For a measure ∈ , , an iteration of our sequential procedure simply consists of selecting a descent direction -, with ∈  such that Θ( ; ) < 0, and in performing the descent with the corresponding optimal step size given by Theorem 4.3. Such an iteration thus results in increasing the weight of the component of the current measure while proportionally decreasing the weights of all its other components. Notice that alternative sparse descent directions and step sizes might be considered. The descent is initialised at A pseudocode of such a sequential procedure is given in Algorithm 5.1; notice that we keep the same descent criterion, i.e. either (FW) or (BI), during all the descent. The stopping criterion may for instance depends on the number of iterations , on the number of supports points of the current measure , or on the evolution of ( ). The descent should obviously also stop if is a solution to (CG), i.e. as soon as we have Θ( ; ) ⩾ 0 for all ∈ . As an important feature, in Algorithm 5.1, the measure is supported by ⩽ min( , ) points, so that early stopping of the descent ensures sparsity of the resulting measure. Algorithm 5.1 Line search with FW or BI direction and optimal step size. Compute ∈  from either (FW) or (BI).

5:

Compute the corresponding optimal stepsize .

6:

Update: set +1 = (1 -) + .

7:

Increment: ← + 1. 8: until stopping criterion is satisfied. 9: outputs Return the measure .

Remark 5.6. We assume that 1 = * is not a solution to (CG), and we consider a measure ∈

, such that ( ) ⩽ ( * ). For all ∈  such that Θ( ; ) < 0, we then have Θ( ; ) < 0: indeed, in view of Theorem 4.3-(ii), * would otherwise not verify (5.1). Therefore, if 1 is not a solution to (CG), the descents performed in Algorithm 5.1 always occur in the framework of Theorem 4.3-(i). To compute the BI direction, we can thus restrict the search to the set ∈  | | Θ( ; ) < 0 and use the analytical expression for ℑ( ; ) given in Theorem 4.3-(i). ⊲ Remark 5.7. We consider two functions 1 and 2 satisfying Lemma 5.4, and two reals 1 and 2 > 0. Then for all ∈ 1 , 1 ∩ , there always exists a real > 0 such that ∈ 2 , 2 , and we recall that we have ( ) = ( ). As a consequence, if the function satisfies Lemma 5.4, then the decay of { 2 ( ; )} ∈ℕ for the sequences generated by Algorithm 5.1 with BI direction does not depend on the considered affine restriction. From a numerical perspective, since = always satisfies Lemma 5.4, line search with bestimprovement direction may thus be performed on the energy-minimisation problem (ER).

By contrast, for Algorithm 5.1 with FW direction, the choice of the affine restriction has a significant impact on the decay of the conic SKD, as illustrated in Section 6. We can also notice that gradient-based iterations performed in the framework of (CR) with = or in the framework of (ER) lead to the same measures . Algorithm 5.1 with FW direction actually consists in performing a conditional-gradient descent; the design of sparse measures with such procedures is sometimes referred to as herding, see e.g. [START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF].

⊲ Once the values { ( )} ∈ have been computed, the numerical complexity of any iteration in Algorithm 5.1 is ( ), with the number of points in . In particular, since we have

+1 = (1 -) +
for all ⩾ 1, update formulae for the various quantities involving +1 can be obtained readily. As a general remark, the computation (or the obtaining of a suitable approximation) of the To illustrate the evolution of the measures produced by Algorithm 5.1 with FW direction as increases, the measures for = 39 and = 300 are presented in Figure 3 (in complement to the case = 150 depicted in Figure 2). At the early stage of the descent, Dirac measures with approximately equal weights are placed uniformly on  (see the case = 39); some Dirac measures with, in comparison, smaller weights are then placed in the region separating the early Dirac measures with large weights (see the cases = 150 and = 300). This behaviour is consequence of the properties of the considered problem and of the nature of the underlying line search, which consists in performing a conditional-gradient descent with Frank-Wolfe direction and optimal step size.

Figure 4 describes the evolution of the number of eigenpairs of approximated with hight accuracy, in view of the ratios ̂ [1] ∕ ̂ [2] and ̂ [3] ∕ ̂ [4] , as function of the number of iterations (Algorithm 5.1 with FW direction and = diag[ ]). For each , we report the number of approximate eigenpairs such that the ratios exceed 0.99.

We conclude this first set of experiments by comparing the behaviour of Algorithm 5.1 with FW and BI descent directions; see Figure 5. The line search with FW direction is performed for = diag[ ], while the line search with BI direction is for simplicity performed on the energy-minimisation problem (ER) (in view of Remark 5.7, the resulting decay of the conic SKD is thus equivalent to the decay obtained for Algorithm 5.1 with BI direction and = diag[ ] or , for instance). We observe that for small values of (in this case, up to ≈ 200), both descent directions lead to similar results in terms of conic SKD. For large value of (here, from ≈ 485), the FW direction is slightly more efficient, as it can be expected since Algorithm 5.1 with FW direction corresponds to a conditional-gradient descent. Notice that the differences are very small in comparison to the underlying conic SKDs.

Modified kernel.

We use the same set  as in Section 6.1.1, and we now assume that the kernel on ℝ 2 × ℝ 2 is given by

( , ) = ( ) ( ) -‖ -‖ 2 2 , with ( ) = 1 + 2 ‖ ‖ 2 2 + 2 .
We apply Algorithm 5.1 with BI direction, and with FW direction for four different affine restrictions, defined from = 1, diag[ ], 1∕diag[ ] and . As illustrated in Figure 6, in the FW-direction case, the best performances are obtained for = 1 and = diag[ ], and the decay of the conic SKD is then on par with the decay obtained using the BI direction. Again, the line search with BI direction is for simplicity performed on the energy-minimisation ̂ [1] ̂ [2] ̂ [3] ̂ [4] FIG.

2. For the synthetic example (squared-exponential kernel), values of 2 ( ; ) and 2 ( ; ) as function of =

(with the number of support points of ) for Algorithm 5.1-FW with = diag[ ]; for comparison, the error related to the 2 ( ⊗ )-optimal rank-approximations of are also reported; the coloured area highlights the difference, in terms of 2 ( ⊗ ) norm, between the optimal rank-approximations and the approximations induced by the measures with = (top-left). Measure for = 150; the size of the disks is proportional to the weight of the corresponding Dirac measures. The grey squares represent the points ∈ , and the black closed curve corresponds to the boundary of the union of the three balls used to define  (top-right). For the spectral approximation of induced by the measure with = 150, graphical representation of the orthogonality defect |(̂ |̂ ′ ) 2 ( ) |, with 1 ⩽ , ′ ⩽ 150 (bottom-left), and ratios ̂ [1] ∕ ̂ [2] and ̂ [3] ∕ ̂ [4] (bottom-right). problem (ER), see Remark 5.7. A graphical representation of the measure , for = 90, obtained with FW direction and = diag[ ] is also given; we observe that the sampling is denser around (0, 0), where the values taken by the function are the largest.

HIGGS dataset.

We consider the 7 high-level features of the HIGGS dataset (UCI Machine Learning Repository, see [START_REF] Graff | UCI machine learning repository[END_REF][START_REF] Baldi | Searching for exotic particles in high-energy physics with deep learning[END_REF]), so that we have  ⊂ = ℝ 7 . In our experiments, we either use only the first = 100,000 or = 1,000,000 entries of the dataset. The kernel ̂ [1] ̂ [2] > 0.99 card | | | ̂ [3] ̂ [4] > 0.99 is the squared-exponential kernel on ℝ 7 × ℝ 7 , given by

0
( , ) = -‖ -‖ 2 2
, with > 0 and where ‖.‖ 2 is the Euclidean norm of ℝ 7 . Remark 6.1. All the computations were performed on a 2017 laptop endowed with an Intel Core i7-7567U CPU @ 3.50GHz and 16 GB of memory. The pieces of codes used in Section 6.2 were written in C and use on-the-fly kernel evaluation: to reduce the memorystorage requirement, the entries of the various kernel matrices are computed on demand (and are not stored in memory), so that the space-complexity of such an implementation grows linearly with . Computations were performed in double-precision floating-point format (i.e. a real is encoded on 64 bits); as a remark, the storage in such a format of all the entries of a fully populated 1,000,000 × 1,000,000 matrix would require approximately 8 TB of memory.

For the case = 1,000,000 and using a parallelised implementation (4 threads), the values { ( )} ∈ were obtained in approximately 322 minutes; numerical tests indicated that, for this specific task, our parallelised implementation was approximately 3.4 times faster than the non-parallelised one. Running a non-parallelised implementation of Algorithm 5.1 with FW direction up to = 25,000 then took approximately 24 minutes. In each case, onthe-fly kernel evaluation was used. ⊲ 6.2.1. One hundred thousand. For = 100,000 and Algorithm 5.1 with FW direction and = diag[ ], Figure 7 illustrates the decay of the map ↦ 2 ( ; ), with up to 15,000, for various values of the kernel parameter ; notice that large values of correspond to small values of the kernel length-scale. We observe that the smaller is, the faster

2 ( ; )∕‖ ‖ 2 2 ( ⊗ )
tends to 0 as increases; this behaviour closely matches the impact of on the properties of the eigenvalues of the underlying operator . We may indeed notice that when tends to zero, all the entries of the kernel matrix defined by and  tend to 1; conversely, when tends to infinity, this kernel matrix tends to the identity matrix.

One million.

We now consider the case = 1,000,000, with = 75; this value of the kernel parameter is chosen to obtain a relatively fast decay of the spectrum of . We apply Algorithm 5.1-FW with = diag[ ], and 1∕ ; the results are presented in Figure 8. We observe that = diag[ ] leads to the fastest decay of the conic SKD; the decay for = is in comparison extremely slow. For = diag[ ], we compute a spectral decomposition of the operator defined by the measure for = 250, 500, 1,000, 2,000 and 4,000; in each case, is supported by = points, and we thus only explore the range of very sparse approximations. The eigenvalues { } ∈ + of are indexed by + = {1, ⋯ , } and sorted in decreasing order. For the five values of , we also compute the values ̂ ( ) ∈ for the normalised approximate eigenfunctions ̂ related to the 250 largest eigenvalues of (see Section 3), that is for

∈ trc = {1, ⋯ , 250}.
To visualise the impact of the number of iterations on the orthogonality defect (see Section 3.1.3), for each set of normalised approximate eigenfunctions {̂ } ∈ trc , i.e. for the five values of considered, we compute the map (6.1)

↦ [max] = max | | (̂ ′ |̂ ′′ ) 2 ( ) | | (1 -′ , ′′ ) | | | ′ and ′′ ⩽ ;
see Figure 8. We can observe that as increases, the orthogonality defect between the functions {̂ } ∈ trc lessens, suggesting that the accuracy of the spectral approximation improves.

For = 4,000, the geometric approximate eigenvalues ̂ [1] = ‖ ‖ 2 , with ∈ trc , are also presented.

Conclusion.

We have further explored the properties of the SKD framework for the approximation of integral operators related to SPSD kernels. We have discussed the connections between SKD, spectral approximation and kernel approximation, and investigated the properties of the conic SKD. We have also described how the invariance under rescaling of the conic SKD, combined with the notion of affine restriction, can be used to define sequentialtype procedures for the design of sparse approximate measures corresponding to low-conic-SKD configurations. Such sequential procedures appears as a complement to the regularised-SKD-minimisation-based approaches considered in [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF]. We have also highlighted an interesting connection between conic-SKD minimisation and the search of specific low-energy configurations.

For Algorithm 5.1 with FW direction, our experiments suggest that the choice of the affine restriction can have a significant impact on the decay of the conic SKD of the sequence { } ∈ℕ . We have in particular observed that the restriction = diag[ ] seems generally to be very effective. Gaining a better understanding, in the FW-direction framework, of the impact of the affine restrictions on the decay of ↦ 2 ( ; ) thus appears as an interesting perspective. We have in addition noticed that, in the range of the very sparse approximate measures, the BI direction seems to lead to a decay of the conic SKD on par with the decay ̂ [1] FIG. 8. For the HIGGS dataset with = 1,000,000, = 75 and Algorithm 5.1 with FW direction, evolution of 2 ( ; ) as function of for three different affine restrictions (top). For = diag[ ], graphical representation of the maximum orthogonality defect (6.1) between the 250 first normalised approximate eigenfunctions ̂ induced by for different values of ; in each case, we have = (bottom-left). For = 4,000, representation of the 250 first geometric approximate eigenvalues ̂ [1] = ‖ ‖ 2 From a numerical point of view, we have for simplicity only consider the design of sparse low-conic-SKD configurations on a set consisting of measures supported by a finite set of points  (a similar remark holds for [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF]). The study of how such design strategies could be efficiently extended to more general set , such as the set of all the measures supported by a given compact set , could lead to very useful developments. We may also explore the extent to which local searches (for the conic-SKD and on the set of all admissible approximate mesures supported by a fixed number of points) could be used to, for instance, further improve the measures obtained through sequential design or regularised-SKD minimisation.

Proof of Theorem 2.5. Let {ℎ } ∈ be an ONB of ; the Hilbert-Schmidt inner product between the operators and ∈ HS() is given by

| | HS() = ∑ ∈ [ℎ ] | | [ℎ ]  = ∑ ∈ [ℎ ] | | ℎ 2 ( ) = ∑ ∈ | | ℎ ⊗ ℎ 2 ( ⊗ ) ,
the second equality being consequence of (2.2). The result then follows by noticing that ∑ ∈ ℎ ⊗ ℎ converges to in 2 ( ⊗ ) (see Remark A.1), and that  ( ) = ( 2 ).

Proof of Theorem 3.3. We consider an ONB of  defined by the union of the ONB { √ } ∈ + of  and an ONB {ℎ } ∈ of  0 ; we have

‖ ‖ 2 HS() = ∑ ∈ + 2 = ∑ ∈ +
̂ [2] 2 + ( | 0 ) 2 ( ⊗ ) ;

notice that we have

∑ ∈ ‖ ‖ [ℎ ] ‖ ‖ 2  = ∑ ∈ [ℎ ] | | ℎ 2 ( ) = ( | 0 ) 2 ( ⊗ )
since  0 ⊂ , so that ∑ ∈ ℎ ⊗ ℎ converges to 0 in 2 ( ⊗ ). We in addition have

( | | ) HS() = ∑ ∈ + [ √ ] | | [ √ ]  = ∑ ∈
̂ [1] ,

and we thus obtain

(A.1) 2 ( , ) = ∑ ∈ +
̂ [2] 2 + 2 -2 ̂ [1] + ( | 0 ) 2 ( ⊗ ) . + ( | 0 ) 2 ( ⊗ ) , and (3.2) is thus obtain by simply rearranging the terms appearing in (A.1). Next, using the previous ONBs of  and  0 to expand the kernels and 0 , we obtain

( | 0 ) 2 ( ⊗ ) = ∑ ∈ + ∑ ∈ √ | | ℎ 2 2 ( ) ⩾ 0,
and since ̂ [2] ⩾ ̂ [1] , we can conclude that 2 ( , ) ⩾ ‖ -‖ 2 2 ( ⊗ )

.

Proof of Theorem 4.3. We consider and ∈  ( )∖, and ∈ [0, 1]. Since the measures and belong to the two-dimensional cone spanned by and , and by definition of , we can conclude that there always exists ′ ∈ [0, 1] such that

+ (1 -) = ′ + (1 -′ ) ⩽ ′ + (1 -′ ) .
The convexity of then yields Proof of Lemma 5.4. Since the map is maximal outside of , we consider a minimising sequence { } ∈ℕ ⊂ ( ∩ ) ≠ ∅ for (CG). Due to the invariance of with respect to rescaling, we obtain that { } ∈ℕ ⊂ ( , ∩ ), with = ∫ ( )d ( ), is by construction a minimising sequence for (CR), so that inf ∈ ∖ ( ) = inf ∈ , ∖ ( ).

Remark 5 . 5 .

 55 For positive, problem (CG) suggests the change of measure d ̃ ( ) = 1 ( )d ( ), for all ∈ , ,

  As descent-direction criterion, we consider either the Frank-Wolfe (FW) direction or the best-improvement (BI) direction, given respectively by ∈ arg min ∈ Θ( ; ), and (FW) ∈ arg max ∈ ℑ( ; ), (BI) with ℑ( ; ) = ( ) -+ ( -) ; see in particular Remarks 5.6 and 5.7.

FIG. 1 .

 1 FIG. 1. For the synthetic example (squared-exponential kernel), evolution of 2 ( ; ) and 2 ( ; ) as function of for Algorithm 5.1-FW with = diag[ ] (left) and = (right). For = diag[ ], the evolution of the number of support points of is also presented. For comparison, the values obtained for = diag[ ] are reported in light grey on the graphic corresponding to = .

FIG. 3 .

 3 FIG. 3. For the synthetic (squared-exponential kernel) and = diag[ ], graphical representation of the measures for = 39 (left) and = 300 (right) returned by Algorithm 5.1-FW; the size of the disks is proportional to the weight of the corresponding Dirac measures.

FIG. 4 .FIG. 5 .

 45 FIG. 4. For the synthetic example (squared-exponential kernel) and = diag[ ], evolution of the number of eigenpairs of approximated with hight accuracy as function of the number of iterations in Algorithm 5.1-FW (left), and largest eigenvalues of the operator (right).

FIG. 6 .

 6 FIG. 6. For the synthetic example (modified kernel), decay of the conic SKD induced by Algorithm 5.1 with FW or BI directions and different affine restrictions (left). Graphical representation of the measure , for = 90, obtained with FW direction and = diag[ ]; the size of the disks is proportional to the weight of the corresponding Dirac measures (right).

FIG. 7 .

 7 FIG. 7. For the HIGGS dataset with= 100,000 and Algorithm 5.1-FW with = diag[ ], evolution of2 ( ; )∕‖ ‖ 2 2 ( ⊗ )as function of for various values of the kernel parameter .

  bottom-right). obtained with FW direction and = diag[ ].

  we have ( | 0 ) 2 ( ⊗ ) = ‖ -‖ 2 2 ( ⊗ )

′+ ( 1 2  ‖ ‖ 4 

 124 -′ ) ⩽ ′ ( ) + (1 -′ ) ( ) ⩽ max ( ), ( ) ,and is therefore quasiconvex. A direct differentiation of givesΘ( ; ) = ( -| )  ( | ) 2  -( -| )  ( | )  ‖ ‖ = ( -| -)  = ( | [ ] -)  .

. Squared-kernel discrepancy.

  be the canonical extension of ̃ (as an element of

	2 ( ), an eigenfunction ̃ is only defined -almost everywhere, while for all ∈ ; see Remark 2.2). From (2.2), we obtain that { √ } ∈ + is an ONB of the ∈  is defined subspace  of . The reproducing kernel of  verifies
	(2.3)	( , ) =	∑ ∈ +	( ) ( ), for all and ∈ ,
	and ‖ -⊗ stands for the rank-1 SPSD kernel on × defined as ‖ 2 ( ⊗ ) = 0. We shall use the notation = ∑	∈ +	( ⊗ ), where
		( ⊗ )( , ) = ( ) ( ), for and ∈ .
	See Remark A.1 for a further discussion on the properties of the expansion (2.3). Remark 2.3. Consider a measure ∈  ( ) and denote by { √ } ∈ + an ONB of the subspace  of  obtained from an eigendecomposition of the operator on 2 ( ). For > 0, the strictly positive eigenvalues of the operator on 2 ( ) (that is, the operator defined by the kernel and the measure ) are { } ∈ + , and { ∕ √ } ∈ + is a set of associated canonically extended 2 ( )-orthonormal eigenfunctions. We thus in particular have  =  and = . ⊲
	2.3			

  1: inputs Extrem points { } ∈ ; maps and Θ; stopping criterion. 2: initialisation Set = 1 and 1 = * with * ∈ arg min ∈ ( ).

3: repeat 4:

2 ( , ).From the linearity of the map ↦ on  ( ) ⊂  ( 2 ), and from the strict convexity of ↦ ‖ ‖ 2  on , the map is convex on  ( ). For and ∈  ( ), we have

2 ( ⊗ ) = ‖ ‖ ‖ ‖ 2 2 ( ⊗ ) + 2 -2 ̂[START_REF] Boutsidis | Near-optimal column-based matrix reconstruction[END_REF] . {A.4} For ∈ ̃ + , the ratios ̂[START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF] ̂[START_REF] Baldi | Searching for exotic particles in high-energy physics with deep learning[END_REF] and ̂[START_REF] Boutsidis | Near-optimal column-based matrix reconstruction[END_REF] ̂[START_REF] Cucker | On the mathematical foundations of learning[END_REF] can be interpreted as the cosines of the angle between the vectors and [ ] for the geometries induced by the inner products of  and 2 ( ), respectively.

values { ( )} ∈ appears as the main bottleneck of SKD-based approaches: indeed and for instance, if the initial measure is a weighted sum of Dirac measures, then the numerical complexity of the computation of these values is (

). In practice, the values { ( )} ∈ are nevertheless computed only once and are next stored for the rest of the procedure; these computations can in addition be massively parallelised (see also [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF]).

Experiments.

We now illustrate the behaviour of the sequential procedure described in Section 5.4 on various examples. In both Sections 6.1 and 6.2, we consider a set  of point in , and the measure is defined as = ∑ ∈ . The strictly positive eigenvalues of thus correspond to the strictly positive eigenvalues of the kernel matrix defined by the kernel and the set  (i.e. the matrix with entries ( , ′ ) for and ′ ∈ ), so that this setting is equivalent to the classical low-rank SPSD-matrix approximation framework; see [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF] for a detailed discussion (see also Remark 2.8). In all our experiments, we use = 1. Algorithm 5.1 was implemented in the framework of Remark 5.5. Section 6.1 consists of a synthetic example aiming at illustrating some of the properties of the measures produced by Algorithm 5.1. Section 6.2 further aims at demonstrating the ability of conic-SKD-based approaches to tackle large-scale problems. A special attention is drawn to the Frank-Wolfe-direction case, in particular to illustrate the impact of the considered affine restriction on the resulting sequences of approximate measures; see Remark 5.7.

Synthetic example.

We assume that  consists of = 5,381 points in = ℝ 2 ; the set  is defined as the intersection of a 101 × 101 square grid (midpoint rule) on [-8, 8] × [-6, 10] with the region defined by the union of three closed balls centered at (0, 0), [START_REF] Damelin | On energy, discrepancy and group invariant measures on measurable subsets of Euclidean space[END_REF][START_REF] Mahoney | On the Nyström method for approximating a Gram matrix for improved kernel-based learning[END_REF]) and (-5, 6), and with radius 5, 3 and 3, respectively; see Figure 2 for an illustration.

Squared-exponential kernel.

We assume that that kernel ∶ ℝ 2 × ℝ 2 → ℝ is given by (squared-exponential kernel with unit length-scale)

, where ‖.‖ 2 stands for the Euclidean norm of ℝ 2 . A graphical representation of the largest eigenvalues of is given in Figure 4 (the eigenvalues are sorted in decreasing order). We use the notation

. We apply Algorithm 5.1 with FW direction for = diag[ ] and = (notice that

diag[ ] = 1, the constant function equal to 1). The evolution of 2 ( ; ) = 2 ( ) as function of is given in Figure 1; notice that 1 corresponds to the initialisation measure and that the value ‖ ‖ 2 2 ( ⊗ ) is reported at = 0. We observe that = diag[ ] yields a faster decay of the conic SKD. To illustrate inequality (4.1), for each affine restriction, the evolution of 2 ( ; ) as function of is also presented. In the remaining of Section 6.1.1, we only consider = diag[ ]. The evolution of 2 ( ; ) and 2 ( ; ) as function of = is given in Figure 2; these values are in addition compared with the errors ‖ -,trc ‖ 2 2 ( ⊗ ) corresponding to the 2 ( ⊗ )-optimal rank-approximations of (see Section 2.4). We observe the low-rank approximations of perform relatively well in comparison to the optimal approximations ,trc , especially since the underlying measures are supported by only = points. A graphical representation of the measure for = 150 is also given in Figure 2. To assess the accuracy of the spectral approximation of induced by , the results of the tests discussed in see Sections 3.1.2 and 3.1.3 are presented. The conclusions drawn from the analysis of the orthogonality defect |(̂ |̂ ′ ) 2 ( ) |, with and ′ ∈ + , are in total accordance with the ratios ̂ [1] ∕ ̂ [2] and ̂ [3] ∕ ̂ [4] . We for instance observe that the 30 main eigenpairs of , i.e. the pairs corresponding to the largest eigenvalues, are approximated with a relatively high accuracy (see also Figure 4).

Appendix A. Proofs and technical results.

Remark A.1. For any ONB {ℎ } ∈ of  (with a general, at most countable, index set), the sum ∑ ∈ ℎ ( )ℎ (⋅) converges in  to ( , ⋅) for all ∈ . Since norm convergence in a RKHS implies pointwise convergence, ∑ ∈ ℎ ( )ℎ ( ) also converges to ( , ) for all and ∈ . Since the sequence ℎ ( ) ∈ is square-summable for all ∈ , the same holds for |ℎ ( )| ∈ , entailing that the sum ∑ ∈ ℎ ( )ℎ ( ) is pointwise absolutely convergent. If ∈  ( ), then the sum ∑ ∈ ℎ ( )ℎ also converges in 2 ( ) for all ∈ . Importantly, for and ∈  ( ), the sum ∑ ∈ ℎ ⊗ ℎ converges to in 2 ( ⊗ ), see e.g. [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF]. These results also hold for the reproducing kernel of any closed linear subspace of . ⊲

For ∈ , we define ( ) = ( | -)  . The directional derivative of at in the directionis given by

 , leading to the expected Taylor expansion for ; we can in particular notice that

In addition, when and are non-collinear, has one negative eigenvalue, and is therefore non-convex (see Remark 4.4).

We consider and ∈ such that Θ( ; ) ⩾ 0; we then have

the RHS inequality being consequence of the Cauchy-Schwarz inequality. We thus obtain ( ) ⩽ ( ), and is therefore pseudoconvex on . To obtain the expression of the line-search optimal step size, we first notice that, for all and ∈ , For and ∈ , the function Υ ; is continuously differentiable on [0, 1] since it corresponds, up to an additive constant, to the ratio of two strictly positive second-degree polynomials on [0, 1].

For Θ( ; ) < 0 and Θ( ; ) ⩽ 0, a direct computation shows that the first derivative of Υ ; vanishes at = ∈ (0, 1], with given by (4.2). The pseudoconvexity of on ensures that = corresponds to the minimum of Υ ; on [0, 1], and we then obtain the expected expression for Υ ; ( ). For Θ( ; ) < 0 and Θ( ; ) > 0, the pseudoconvexity of on ensures that = = 1 corresponds to the minimum of Υ ; on [0, 1].

Proof of Lemma 4.6. The set is measurable since the function is measurable. For ∈ , let ∈  be defined as ( ) = ( ∖ ), for all ∈ . Since diag[ ] ⩾ 0, we have ∫ ( , )d ( ) ⩾ ∫ ( , )d ( ) = ∫ ( , )d ( ), so that ∈  ( ). Since 2 ⩾ 0, we in the same way obtain 2 ( ) ⩾ 2 ( ). We conclude the proof by noticing that we by definition have ( | )  = ( | )  .