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A B S T R A C T

Among the most studied models in mathematical physics, Timoshenko beam is outstanding for its importance
in technological applications. Therefore it has been extensively studied and many discretizations have been
proposed to allow its use in the most disparate contexts. However, it seems to us that available discretization
schemes present some drawbacks when considering large deformation regimes. We believe these drawbacks
to be mainly related to the fact that they are formulated without keeping in mind the mechanical phenomena
for describing which Timoshenko continuum model has been proposed. Therefore, aiming to analyze the
deformation of complex plane frames and arches in elastic large displacements and deformation regimes, a
novel intrinsically discrete Lagrangian model is here introduced whose phenomenological application range
is similar to that for which Timoshenko beam has been conceived. While being largely inspired by the ideas
outlined by Hencky in his renowned doctoral dissertation, the presented approach overcomes some specific
limitations concerning the stretch and shear deformation effects. The proposed model is applied to get the
solutions for some relevant benchmark tests, both in the case of arch and frame structures. It is proved
that, also when shear deformation effects are of relevance, the enriched, yet simple, model and numerical
computation scheme herein proposed can be profitably used for efficient structural analyses of non-linear
mechanical systems in rather nonstandard situations.

1. Introduction

Since the fundamental works by Euler and Bernoulli, the phe-
nomenology of the deformation of slender bodies has been described
using the so-called reduced continuum models, like Euler–Bernoulli
beam, see, e.g., [1] for a general introduction to beam models and
their relations (Timoshenko model approaches to the Euler–Bernoulli
model when the beam thickness approaches to zero with respect to
certain mathematical measures, see also [2] for plate models). The
fundamental idea of reduced models, in this context, is simple, and has
been traced back to Galileo and Leonardo by Benvenuto [3]. Indeed,
in the literature, it is widely accepted that in Galileo’s works one
finds traces of an attempt to develop a form of reduced model for the
deformation of slender bodies, i.e. what is usually called a version of a
theory of beam.

On the other hand such an attempt has been recognized also in
some manuscripts by Leonardo (see [4]) even if Leonardo’s originality,
competence and knowledge in mechanics has been bitterly disputed

(see [5]). The important observations found in Leonardo’s manuscript
did not manage to give an efficient picture of the phenomenology,
as one does not find in it any trace of elastic constitutive laws or
any form of differential calculus in his treatment, even if a kind of
one-dimensional model is sketched. On the other hand, also Galileo’s
theory is flawed by some wrong assumptions about the beams’ section
deformation modalities. There is the possibility that Leonardo, as he did
in other situations, based his considerations on more ancient sources.

In facts, a reduced model deduces (or postulates) a deformation
modality in the sections of the considered slender deformable body
by introducing displacement and deformation fields depending only on
the curvilinear abscissa along its axis. The first modern beam theory is
usually attributed to Jacob and Daniel Bernoulli, together with Euler,
even if the crucial results in Calculus of Variations which are needed in
the model development must be credited to Lagrange. Bernoulli–Euler
beam theory represents one of the first scientific models successfully
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Fig. 1. Reference (light gray) and current (dark gray) configurations: stretch deformation 𝛥𝐰𝑎,𝑗+1 and shear deformation 𝛥𝐰𝑐,𝑗+1, both in red color, for a Hencky-type discrete
Timoshenko beam in plane.

Fig. 2. Superimposed deformation modes. First test (left-top), second test (right-top), and third test (bottom).

applied to engineering and technology design, proving that mathemat-
ical models could be safely applied in the applications.

However, reduced models fail to describe some important defor-
mation phenomena: de Saint-Venant did apply Cauchy 3D continuum
models to describe some of them, as anticlastic curvature, shear de-
formation or warping. However, Timoshenko1 did manage to improve
Euler–Bernoulli theory by using, instead of a more detailed 3D model,
still a 1D continuum model which considers an extra kinematical de-
scriptor, i.e. the descriptor of section rotation. Among the most studied
models in mathematical physics, Timoshenko beam is outstanding for
its importance in technological applications: for instance it allowed for
the safe design of airplane wings.

Timoshenko beam model is richer than Euler–Bernoulli beam model,
as the cross-section rotation is a kinematic descriptor independent
of the displacement field. This choice supplies us a more predictive
model, when compared with Euler–Bernoulli beam, however at the
price of being more expensive computationally. On the other hand it
is less descriptive and less computationally expensive when compared
with 3D continuum models: it can be a good compromise in several
situations.

Therefore, it has been studied by scholars in many different fields
of mechanics and related subjects: applied mathematics [7], structural
mechanics (in both static [8] and dynamic [9,10] problems), and com-
putational mechanics [11–14], just to name a few. The abounding deal

1 According to Elishakoff [6], one should write Timoshenko and Ehrenfest.

of literature about Timoshenko beam theory is an evident proof of its
importance: it is traditionally exploited in all structural problems where
a description of slender shear deformable structural elements is needed.
It is often considered also as a prototype example in the theory of media
with micro-strains. In addition, the interest for the use of Timoshenko
model in the mechanical analysis of metamaterials has exponentially
growth in the last year. In fact, very often the internal structure of
mechanical metamaterials requires the exploitation of beam models
with a richer kinematics than that of the Euler–Bernoulli beam model,
see, e.g., [15–19]. As Timoshenko beam is a continuous model, a
discretization is necessary in order to get predictions by numerical
codes, see, e.g., [20,21]. However, many different schemes among those
available present relevant drawbacks, especially when considering the
case of large deformations regimes: most likely these drawbacks are
mainly related to the fact that usually discretization schemes are for-
mulated mathematically or, in general, without explicitly considering
the true nature of mechanical phenomena whose description motivated
the formulation of Timoshenko continuum model, see, e.g., [22] for a
classic work and [21] for a more recent one.

In this paper, as we intend to start the construction of a tool aimed
to analyze the large elastic deformation phenomena of complex plane
frames and arches, a novel intrinsically discrete Lagrangian model
is directly postulated with a twofold aim: (i) to supply an effective
model having a phenomenological application range similar to that for
which continuum Timoshenko beam has been conceived and (ii) to take
into account in a detailed and judicious way the true nature of the
considered mechanical systems.
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Fig. 3. Strain energy as split into scaled stretch, bending and shear contributions for
tests 1, 2 and 3 against 𝑢∕𝓁, 𝑣∕𝓁, and 𝜑, respectively.

The presented intrinsically discrete model is clearly and largely
inspired by the ideas presented by Hencky in his doctoral dissertation:
however it is general enough to be able to describe also the most
important stretch and shear deformation effects. In this paper, the

Fig. 4. Shear-to-stretch strain energy ratio versus the dimensionless displacement 𝑣∕𝓁
for the second test as the ratio 𝑐∕𝑎 from 0.1 to 10 varies.

Fig. 5. Dimensionless shear strain energy 𝐸𝑐∕𝑐𝓁2 versus 𝜑 for the third test as the
non-dimensional stiffness ratio 𝑐𝓁2∕𝑏 varies from 0.1 to 10.

Fig. 6. Roorda’s frame.

postulated Hencky-type model is used to show how it allows for the
correct determination of the solutions of some relevant benchmark tests
where both arches and frames are involved. We additionally prove
that, also when shear deformation effects are to be described, the
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Fig. 7. Roorda’s frame: equilibrium paths obtained by increasing the number of discrete
elements 𝑛 utilized to model the beams forming the frame (𝑎𝐿2∕𝑏 = 1000, 𝑐𝐿2∕𝑏 = 1000
and 𝜀 = 0.0001).

Fig. 8. Roorda’s frame: evolution of deformed configuration for subsequent load steps
(𝑛 = 32, 𝑎𝐿2∕𝑏 = 1000, 𝑐𝐿2∕𝑏 = 1000, 𝜀 = 0.0001).

Fig. 9. Roorda’s frame: dimensionless energy for subsequent load steps as split in
stretch, bending and shear contributions (𝑛𝑒 = 32, 𝑎𝐿2∕𝑏 = 100, 𝑐𝐿2∕𝑏 = 1, 𝜀 = 0.001).

proposed discrete model is very efficient in describing the deformation
of non-linear mechanical structures in nonstandard situations.

Fig. 10. Roorda’s frame: equilibrium paths obtained with 𝑛 = 32 discrete elements by
increasing the imperfection magnitude 𝜀 (𝑎𝐿2∕𝑏 = 1000, 𝑐𝐿2∕𝑏 = 1000).

As in the literature the existence of multiple solutions to the problem
of large deformations of structures in presence of dead loads has been
considered a serious and difficult challenge, from both the numerical
and analytical points of view, we apply the proposed discrete model
(as implemented in a numerical computation scheme) to find the two
stable deformation shapes of a cantilever beam under a vertical dead
load. This simple structure has represented a challenge which caused
the failure of many other numerical schemes and supplied interesting
problems in the field of direct calculus of variations (see [23]).

The proposed model and numerical scheme have easily allowed for
the computation of both said stable configurations, simply by suitably
changing the two introduced dead load parameters: it is therefore
reasonable to conjecture that they can be successfully exploited in
the design and study of those novel mechanical metamaterials which
are constituted, at a suitable mesoscopic length-scale, by a system of
complex beam lattices.

In this context, we recall the study of so-called pantographic meta-
materials in [24,25]: the slender elements constituting the panto-
graphic lattice might have axial length and/or cross-section dimensions
not allowing the use of Euler–Bernoulli beam model, i.e. the use of a
model which is neglecting a priori the shear deformation phenomena.
Indeed, there is no reason to ignore the contribution of shear defor-
mation without a preliminary analysis aimed at defining its influence.
Moreover one may be willing to exploit shear deformation effects in
the design of some novel metamaterials: this research perspective is
rather promising as the analyses by discrete mesomechanical modeling
of lattice structures have been often exploited with remarkably good
results for the design of complex metamaterials, where more detailed
modeling is not amenable to current computational capabilities.

In facts this idea was exploited already in [26], whose aim was to
determine an evaluation of the buckling load for an inextensible Euler–
Bernoulli beam in large deformations by using a discrete formulation:
Hencky limited his treatment to the case of large deformations of an
Elastica, i.e. a beam model where only the flexural deformability is
considered. Hencky procedure has been later firmly mathematically
based, as it is well established now that in the limit for vanishing
characteristic length of a discrete mesomechanical model many discrete
models approximate a corresponding homogenized continuum. On the
other hand, often, such a continuum model is then again discretized
without any reference to the underlying micro-structure when numer-
ical solutions are needed by, e.g., a finite element analysis. When
amenable to computations, it seems to us that it is less intricate to solve
numerically directly the problem for the mesomechanical model. This
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Fig. 11. Roorda’s frame: results obtained by using 𝑛 = 32 discrete elements with 𝑎𝐿2∕𝑏 = 10, on the left, and 𝑎𝐿2∕𝑏 = 100000, on the right, (𝜀 = 0.0001, 𝑐𝐿2∕𝑏 = 1000). Equilibrium
path (1st row), evolution of non-dimensional strain energy contributions (2nd row) and of deformed configuration (3rd row) for subsequent load steps.

kind of analysis has been proved to be very effective in predicting the
nonlinear mechanical behavior of complex materials.

Based on the previous considerations, we present in this article a
discrete mesomechanical beam formulation, see also [27,28], which
takes into account not only beam stretch, i.e. avoiding the inextensibil-
ity hypothesis, but also shear deformability. Subsequent developments
of the present papers will involve the generalization of the works [29–
31]. In these works the bending strain is defined for beams moving in
the three-dimensional space, while here for the sake of simplicity we
limit our attention to in-plane beams. Anyway, the formulation of the
present discrete model can be easily transferred to beams moving in a
three-dimensional space, see [32,33].

The plan of the paper is the following. In Section 2, the proposed dis-
crete Hencky-type formulation of in-plane Timoshenko beam is given
by defining its kinematics and strain energy. Successively, both the
structural reaction, i.e. the gradient of strain energy with respect to

the Lagrangian parameters, and the stiffness matrix, i.e. its Hessian
with respect to the Lagrangian parameters are introduced. These last
quantities are the main ingredients used in Section 3 to implement a
path-following solution strategy using a method largely inspired to the
Riks’ arc-length method [34]. In Section 4 there is a brief discussion
50 about the influence of the shear deformability and in Section 5
the proposed model is solved in relevant benchmark tests for arch and
frame structures and the influence of the shear stiffness is investigated.
Finally, some concluding remarks and future challenges are discussed
in Section 6.

2. Modeling of two-dimensional Timoshenko beams

We consider a planar beam, not necessarily rectilinear, made up by
the finite arrangement of straight links connected by joints, that are
sketched in Fig. 1 as gray circles.
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Fig. 12. Roorda’s frame: results obtained by using 𝑛 = 32 discrete elements assuming 𝑐𝐿2∕𝑏 = 10, on the left, and 𝑐𝐿2∕𝑏 = 100000, on the right, (𝜀 = 0.0001, 𝑎𝐿2∕𝑏 = 1000).
Equilibrium path (1st row), evolution of non-dimensional strain energy contributions (2nd row) and of deformed configuration (3rd row) for subsequent load steps.

The positions of the 𝑗th joint in the reference and current config-
urations are 𝑃𝑗 and 𝑝𝑗 , respectively, with 𝑗 = 1, 2,… , 𝑁 . Exploiting
the same rational of polar media continuum mechanics, each joint is
also equipped, in the reference configuration, with a unit vector 𝐃1,𝑗 =
𝑃𝑗+1 − 𝑃𝑗

‖𝑃𝑗+1 − 𝑃𝑗‖
. Although it is not mandatory in the two-dimensional case,

in order to extend in the next future the Hencky-type beam element
presented here, we consider for each joint a right-hand orthogonal triad
{𝐃1,𝑗 ,𝐃2,𝑗 ,𝐃3,𝑗}, where 𝐃3,𝑗 = 𝐃1,𝑗 × 𝐃2,𝑗 .

The orthogonal 3-tuple {𝐃1,𝑗 ,𝐃2,𝑗 ,𝐃3,𝑗} is transformed in the current
configuration into the 3-tuple {𝐝1,𝑗 = 𝐐𝑗𝐃1,𝑗 ,𝐝2,𝑗 = 𝐐𝑗𝐃2,𝑗 ,𝐝3,𝑗 =
𝐐𝑗𝐃3,𝑗}, being 𝐐𝑗 a proper orthogonal second-rank rotation tensor.

Reference and current configurations are hence described by the
following pairs of Lagrangian parameters {𝑃𝑗 ,𝐃1,𝑗} and {𝑝𝑗 ,𝐝1,𝑗}, re-
spectively.

Making reference to Fig. 1, we define as strain measures the vector
𝛥𝐰𝑗+1 given by

𝛥𝐰𝑗+1 = (𝑝𝑗+1 − 𝑝𝑗 ) − ‖𝑃𝑗+1 − 𝑃𝑗‖𝐐𝑗𝐃1,𝑗 , (1)

and the tensor 𝛥𝐐𝑗+1 given by

𝛥𝐐𝑗+1 = 𝐐𝑇
𝑗 𝐐𝑗+1 − 𝐈 , (2)

with 𝐈 being the identity second-rank tensor. The vector 𝛥𝐰𝑗+1 is
the difference between 𝑝𝑗+1 − 𝑝𝑗 and ‖𝑃𝑗+1 − 𝑃𝑗‖𝐐𝑗𝐃1,𝑗 . The former
is the vector connecting the 𝑗th and (𝑗 + 1)-th nodes in the current
configuration, while the latter is the vector having norm ‖𝑃𝑗+1−𝑃𝑗‖ and
obtained rotating 𝐃1,𝑗 by 𝐐𝑗 . The strain vector 𝛥𝐰𝑗+1 can be sub-divided
additively as

𝛥𝐰𝑎,𝑗+1 =
(

𝑝𝑗+𝑖 − 𝑝𝑗
)

(

1 −
‖𝑃𝑗+1 − 𝑃𝑗‖

‖𝑝𝑗+1 − 𝑝𝑗‖

)

, (3)
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Fig. 13. Hinged–hinged frame under compression loads and horizontal imperfection
load.

𝛥𝐰𝑐,𝑗+1 = 𝛥𝐰𝑗+1 − 𝛥𝐰𝑎,𝑗+1 , (4)

being the graphic representation of each quantity above sketched in
Fig. 1.

The norms of the two vectors in (3)–(4) describe stretch and shear
deformations, respectively, of the link in-between the 𝑗th and (𝑗 +1)-th
joints.

The tensor 𝛥𝐐𝑗+1 is a measure of beam bending, which is defined
in the present discrete formulation as the relative rotation between the
two adjacent links concurring at node 𝑗 + 1. The quantity 𝛥𝐐𝑗+1 +
𝐈 = 𝐐𝑇

𝑗 𝐐𝑗+1 is a proper orthogonal tensor. When 𝐐𝑗 = 𝐐𝑗+1 then
𝛥𝐐𝑗+1 is the null tensor. As done in [33] for the discrete formulation
of an inextensible Euler–Bernoulli beams moving in space, owing to
Rodrigues’ formula [35], a rotation of amplitude 𝜑 about the unitary
axis 𝐞 can be represented by the proper orthogonal tensor 𝐐 given by

𝐐 = cos𝜑𝐈 + (1 − cos𝜑)𝐞⊗ 𝐞 + sin𝜑𝐄 , (5)

where 𝐄 denotes the skew tensor whose axial vector is 𝐞, i.e. 𝐄𝐮 = 𝐞×𝐮.
Eq. (5) expresses the rotation tensor in terms of the rotation angle 𝜑
and the rotation axis 𝐞. In two-dimensional motions the kinematics
simplifies since the rotation axis 𝐞 is always directed along the unit
vector 𝐞3 = 𝐞1 × 𝐞2, see again Fig. 1, it being {𝐞1, 𝐞2, 𝐞3} a triad of
orthogonal unit vectors.

For example, the skew tensor 𝐄 and the rotation tensor 𝐐, as
expressed in the vector basis {𝐞1, 𝐞2, 𝐞3}, become

𝐄 =
⎡

⎢

⎢

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

, (6)

and

𝐐 =
⎡

⎢

⎢

⎣

cos𝜑 − sin𝜑 0
sin𝜑 cos𝜑 0
0 0 1

⎤

⎥

⎥

⎦

, (7)

respectively.
So far, we have described the relationships between the independent

Lagrangian parameters used to describe the motion, i.e. displacements
of joints and rotations of the links, and the chosen strain measures
𝛥𝐰𝑎,𝑗 , 𝛥𝐰𝑐,𝑗 and 𝛥𝐐𝑗+1. At this point, we define the strain energy
of the whole beam as the summation of the following elementary
contributions

2𝐸𝑎 = 𝑎‖𝛥𝐰𝑎,𝑗+1‖
2 , (8)

2𝐸𝑏 = 𝑏‖𝛥𝐐𝑗+1‖
2 , (9)

2𝐸𝑐 = 𝑐‖𝛥𝐰𝑐,𝑗+1‖
2 , (10)

where ‖𝛥𝐰𝑎,𝑗+1‖ and ‖𝛥𝐰𝑐,𝑗+1‖ are the Euclidean norms of the vectors
𝛥𝐰𝑎,𝑗+1 and 𝛥𝐰𝑐,𝑗+1, respectively, ‖𝛥𝐐𝑗+1‖

2 = tr(𝛥𝐐𝑇
𝑗+1𝛥𝐐𝑗+1), and 𝑎,

𝑏, and 𝑐 are stiffness parameters corresponding to stretch, bending and
shear deformations of the beam, respectively.

Remark that when 𝐝𝑗 is required to be parallel to the segment
connecting the 𝑗th and (𝑗 + 1)-th nodes, then there is no shear defor-
mation and one retrieves the Hencky approximation of the non-linear
inextensible Euler–Bernoulli model as described, e.g., in the work [36].

In what follows, the one-dimensional continuum limit of the pro-
posed discrete system will be derived for arbitrarily large deformations
by means of a heuristic asymptotic homogenization argument. The total
size of the system will be kept fixed in the homogenization process,
while the number of the cells will be let tending to infinite. The con-
tinuum limit will be then specialized to the small-strain case and Timo-
shenko beam will be recovered, showing that the proposed formulation
is a novel discrete non-linear generalization of Timoshenko model. For
simplicity, in the undeformed configuration, cells are considered to
be arranged upon a straight line in direction 𝐃1. Furthermore, the
quantity ‖𝑃𝑗+1 − 𝑃𝑗‖ = 𝓁 will be assumed to be independent of the
index 𝑗. The target one-dimensional continuum, to be obtained in the
limit of vanishing 𝓁, is considered as parametrized by the arc-length
𝑠 ∈ [0, 𝐿] of the straight segment of length 𝐿 connecting all points
𝑃𝑗 . The independent kinematic Lagrangian descriptors of the target
continuum macro-model are assumed to be the functions

𝜒 ∶ [0, 𝐿] → E2 , 𝜙 ∶ [0, 𝐿] → [0, 2𝜋) . (11)

The function 𝜒 places the 1D-continuum into E2 and is intended to
describe the points 𝑝𝑗 ∈ E2 of the discrete system on a macro-level,
while the function 𝜙 is meant to describe on a macro-level the rotation
of unit vectors 𝐃1,𝑗 . In the sequel, prime will denote differentiation with
respect to the reference arc length 𝑠. Owing to notational convenience,
the quantity 𝐐𝑗𝐃1,𝑗 , which is equal to 𝐝1,𝑗 , will be henceforth denoted
with 𝐞(𝜙𝑗 ). By Piola’s ansatz, generalized coordinates of the discrete
system are related with the functions (11) evaluated at 𝑠𝑗 = 𝑗ℎ
according to the following relations

𝜒(𝑠𝑗 ) = 𝑝𝑗 , 𝜙(𝑠𝑗 ) = 𝜙𝑗 (12)

where 𝜙𝑗 is the rotation amplitude associated to the rotation tensor
𝐐𝑗 . The energies (8)–(10) shall now be expanded with respect to
𝓁. Preliminarily, it is remarked that tr(𝛥𝐐𝑇

𝑗+1𝛥𝐐𝑗+1) = tr[(𝐐𝑇
𝑗 𝐐𝑗+1 −

𝐼)𝑇 (𝐐𝑇
𝑗 𝐐𝑗+1 − 𝐼)] can be written in terms of 𝜑𝑗 as

tr(𝛥𝐐𝑇
𝑗+1𝛥𝐐𝑗+1) =2

{ [

cos(𝜙𝑗 ) sin(𝜙𝑗+1) − sin(𝜙𝑗 ) cos(𝜙𝑗+1)
]2

+
[

sin(𝜙𝑗 ) sin(𝜙𝑗+1) + cos(𝜙𝑗 ) cos(𝜙𝑗+1) − 1
]2 } , (13)

which, by elementary trigonometric relations, can be simplified to

tr(𝛥𝐐𝑇
𝑗+1𝛥𝐐𝑗+1) = 4[1 − cos(𝜙𝑗+1 − 𝜙𝑗 )] . (14)

The expansions of 𝜒 and 𝜙 up to first order with respect to ℎ are now
considered
𝜒(𝑠𝑗+1) = 𝜒(𝑠𝑗 ) + 𝓁𝜒 ′(𝑠𝑗 ) + 𝑜(𝓁)

𝜙(𝑠𝑗+1) = 𝜙(𝑠𝑗 ) + 𝓁𝜙′(𝑠𝑗 ) + 𝑜(𝓁) .
(15)

Plugging Eq. (13) and, subsequently, the asymptotic expansions (15)
in the energies (8)–(10), following elementary algebraic manipulations,
the deformation energy of the discrete system reads as

𝐸 =
∑

𝑗
𝐸𝑎 + 𝐸𝑏 + 𝐸𝑐 =

∑

𝑗

{

𝓁2𝑎
2

‖

‖

‖

‖

𝜒 ′ −
𝜒 ′

‖𝜒 ′
‖

+ 𝑜(𝓁)
‖

‖

‖

‖

2

𝑠=𝑠𝑗

+ 𝓁2𝑏 [𝜙′2 + 𝑜(𝓁0)]𝑠=𝑠𝑗 +
𝓁2𝑐
2

‖

‖

‖

‖

𝐞(𝜙) − 𝜒 ′

‖𝜒 ′
‖

+ 𝑜(𝓁)
‖

‖

‖

‖

2

𝑠=𝑠𝑗

}

.
(16)

The parameters 𝑎, 𝑏, 𝑐 > 0 are now defined to be constants which
are independent of 𝓁. These constants are assumed to be related to the
stiffnesses of the discrete system by the following scaling power laws

𝑎 = 𝑎𝓁−1 , 𝑏 = 𝑏𝓁−1 , 𝑐 = 𝑐𝓁−1 . (17)

7
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Fig. 14. Hinged–hinged frame made up of 𝑛 = 48 discrete elements. Equilibrium paths along with the reference solution for the buckling load in red color (a), energy evolution
(b), and deformed configuration evolution (c) for 𝑎𝐿2∕𝑏 = 1000 and 𝑐𝐿2∕𝑏 = 1000 (𝜀 = 0.0001).

Fig. 15. Semicircular arch on sliders subjected to a vertical load on the midpoint.

Reminding that ∑

𝑖 𝑜(𝓁𝑛) = 𝑜(𝓁𝑛−1), after the application of the scaling
laws (17), the global remainder in the energy (16) becomes 𝑜(𝓁0). This
remainder specifies the deformation energy error between the discrete
and the continuum model. The continuum limit can now be obtained
by letting 𝓁 → 0 and reminding that Riemann sums turn into integrals
according to ∑

𝑗 𝑔(𝑠𝑗 )ℎ
𝓁→0
⟶ ∫ 𝐿

0 𝑔 d𝑠, where 𝑔 is a real valued function
defined on [0, 𝐿]. Using (16) together with the scaling law (17), the

deformation energy for the homogenized macro-model becomes

�̃� = ∫

𝐿

0

(𝑎
2
‖

‖

‖

‖

𝜒 ′ −
𝜒 ′

‖𝜒 ′
‖

‖

‖

‖

‖

2
+ 𝑏 𝜙′2 +

𝑐
2
‖

‖

‖

‖

𝐞(𝜙) − 𝜒 ′

‖𝜒 ′
‖

‖

‖

‖

‖

2)

d𝑠 . (18)

Let the displacement function 𝐮 ∶ [0, 𝐿] → R2 be defined such
that 𝜒(𝑠) = 𝑠 𝐃1 + 𝐮(𝑠). Then, the relation 𝜒 ′ = 𝐃1 + 𝐮′(𝑠) is
obtained by deriving with respect to the spatial variable. The following
strain measures, which depend non-linearly upon 𝜒 ′ and 𝜙 are clearly
identifiable at continuum scale in Eq. (18)

1.
‖

‖

‖

‖

𝜒 ′ −
𝜒 ′

‖𝜒 ′
‖

‖

‖

‖

‖

(extension) ,

2. 𝜙′ (bending) ,

3.
‖

‖

‖

‖

𝐞(𝜙) − 𝜒 ′

‖𝜒 ′
‖

‖

‖

‖

‖

(shearing).

(19)

Remark that the following representation formula holds for 𝐞(𝜙)

𝐞(𝜙) = cos(𝜙)𝐃1 + sin(𝜙)𝐃2 . (20)

By making use of McLaurin expansions it is easily seen that

‖

‖

‖

‖

𝜒 ′ −
𝜒 ′

‖𝜒 ′
‖

‖

‖

‖

‖

= |𝐮′ ⋅ 𝐃1| + 𝑜(𝐮′) , (21)

8
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Fig. 16. Semicircular arch on sliders discretized with 𝑛 = 36 elements. Equilibrium paths (a), energy evolution (b), and deformed configuration evolution (c) for 𝑎𝑟2∕𝑏 = 100000
and 𝑐𝑟2∕𝑏 = 100000.

and that
‖

‖

‖

‖

𝐞(𝜙) − 𝜒 ′

‖𝜒 ′
‖

‖

‖

‖

‖

= |𝜙 − 𝐮′ ⋅ 𝐃2| + 𝑜(𝐮′) + 𝑜(𝜙) . (22)

When small 𝐮′, 𝜙 and 𝜙′ are considered, then the remainders in Eqs.
(21) and (22) can be neglected. In that case, the deformation energy
(18) thus recasts as

�̃� = ∫

𝐿

0

(𝑎
2
(

𝐮′ ⋅ 𝐃1
)2 + 𝑏 𝜙′2 +

𝑐
2
(

𝜙 − 𝐮′ ⋅ 𝐃2
)2
)

d𝑠 , (23)

i.e. as in Timoshenko beam model.

3. Computation of the equilibrium path

Let us denote the nodal displacement row vector of node 𝑗 with
𝐮𝑗 . Let us also denote with 𝜑𝑗 the rotation angle in Eq. (5), having
replaced 𝐐 by 𝐐𝑗 . Let us denote the column vector of the independent
Lagrangian variables as 𝐰 = [𝐮1 𝜑1 ⋯𝐮𝑗 𝜑𝑗 ⋯𝐮𝑁 ]𝑇 . By requiring
the potential energy to be stationary with respect to the independent
Lagrangian variables 𝐰 one gets the following nonlinear system of
equilibrium equations

𝐬[𝐰] − 𝐩[𝜆] = 𝟎 , (24)

Fig. 17. Hinged semicircular arch subjected to a force on its midpoint.

where the vector 𝐬 is the so-called structural reaction, which depends on
independent Lagrangian variables 𝐰, and 𝐩[𝜆] is the vector of external
loads which is parametrized by the dimensionless quantity 𝜆. The
structural reaction 𝐬 can be computed as

𝐬 = 𝑑𝐸
𝑑𝐰

, (25)

9
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Fig. 18. Hinged semicircular arch modeled with 𝑛 = 36 elements: equilibrium paths (a), energy evolution (b) and deformation evolution (c) for 𝑎𝑟2∕𝑏 = 100000 and 𝑐𝑟2∕𝑏 = 100000
(𝜆ℎ = 0).

where the quantity 𝐸 denotes the total strain energy of the system
obtained by summing up all the contributions (8), (9) and (10) in the
system.

The external load vector is assumed have the following linear
dependence upon the load parameter 𝜆

𝐩[𝜆] = 𝐩0 + 𝜆�̂� . (26)

It is worth to remark that such an external load representation is con-
venient when modeling so-called load imperfections or perturbations.

In principle, a stepwise procedure making use of the Newton’s
method might be exploited to solve the non-linear system of equilib-
rium equations (24) in the variables 𝐰 and 𝜆. Let the pair (𝐰𝑖, 𝜆𝑖) be the
𝑖th equilibrium point. Assuming that the equilibrium path containing
(𝐰𝑖, 𝜆𝑖) is differentiable, we can obtain an additional, close, equilibrium
point (𝐰𝑖 + 𝛥𝐰𝜆𝑖 + 𝛥𝜆) by linearizing Eq. (24) in a neighborhood of the
𝑖th equilibrium point

𝐬[𝐰𝑖] +𝐊𝛥𝐰 −
(

𝐩0 + (𝜆𝑖 + 𝛥𝜆)�̂�
)

≈ 𝟎 , (27)

where the stiffness matrix 𝐊 is computed in 𝐰𝑖 as

𝐊 = 𝑑𝐬
𝑑𝐰

. (28)

In Newton’s method, the value of 𝛥𝜆 is fixed and, noting that 𝐬[𝐰𝑖] −
𝐩[𝜆𝑖] = 0, (27) gives

𝛥𝐰 = −𝛥𝜆𝐊−1�̂� . (29)

As it is well-known, owing to the necessity of computing the inverse
of the stiffness matrix, Newton’s method does not converge when 𝐊
is zero-determinant or close to it. In order to bypass this limitation,
Riks [34] proposed to parametrize the equilibrium path by using its
arc-length instead of the dimensionless load parameter 𝜆 that is indeed
fixed at each step in Newton’s method. Riks’ approach is not affected by
the above-mentioned convergence problems, but an additional equation
is clearly needed to find the unknown quantity. Riks’ arc-length scheme
applies a correction to the extrapolation obtained from Newton’s for-
mula (29). Let (𝛥𝐰, 𝛥𝜆) be the Newton’s extrapolation obtained at the
equilibrium point (𝛥𝐰𝑖, 𝛥𝜆𝑖), then the Riks’ correction (�̇�, �̇�) can be
evaluated by making use of the linearization (24) centered in (𝐰𝑖 +
𝛥𝐰, 𝜆𝑖 + 𝛥𝜆)

𝐬
[

𝐰𝑖 + 𝛥𝐰
]

+𝐊�̇� − (𝐩0 + (𝜆𝑖 + 𝛥𝜆 + �̇�)�̂�) ≈ 𝟎 , (30)

where the stiffness matrix 𝐊 is now computed in 𝐰𝑖 + 𝛥𝐰. From (30)
follows that �̇� can be computed from

�̇� = −𝐊−1 (𝐬[𝐰𝑖 + 𝛥𝐰] − (𝐩0 + (𝜆𝑖 + 𝛥𝜆 + �̇�)�̂�)
)

, (31)

10
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Fig. 19. Hinged semicircular arch with 𝑛 = 36 discrete elements. Equilibrium paths (a), energy evolution (b) and deformed configuration evolution (c) for 𝑎𝑟2∕𝑏 = 100000 and
𝑐𝑟2∕𝑏 = 100000 (𝜆𝑣 = 0).

There are several ways to provide the additional equation required to
compensate the appearance of the unknown �̇�. One of the simplest and
most computationally convenient choices is

𝛥𝐰 ⋅𝐊�̇� = 0 , (32)

which requires the 𝐊-orthogonality between the Newton extrapolation
𝛥𝐰 and the Riks’ correction �̇�. Plugging (31) in (32), by taking into ac-
count (29), simple algebra operations lead to the following expression

�̇� = �̂� ⋅ 𝐫
�̂� ⋅ �̂�

, (33)

where 𝐫 = 𝐬[𝐰𝑖+𝛥𝐰]−(𝐩0+(𝜆𝑖+𝛥𝜆)�̂�) denotes the equilibrium equations
residual and �̂� = 𝐊−1�̂� (cf (29)). It is concluded that, by (31), the Riks’
correction �̇� can be computed using the Newton extrapolation 𝛥𝐰. Eqs.
(33), (31) and (29) completely define the Riks-based algorithm. Riks’
correction is applied recursively to the quantities

𝛥𝜆 = 𝛿(𝜆𝑖 − 𝜆𝑖−1) , (34)

𝛥𝐰 = 𝛿(𝐰𝑖 − 𝐰𝑖−1) , (35)

until the norm of the equilibrium equations residual is below a given
tolerance. The quantity 𝛿 in Eq. (34) is an adaptive coefficient that can

be computed as suggested in [37,38]

𝛿 = 1 −
𝑟𝑙 − 𝑛𝑙
𝑟𝑙 + 𝑛𝑙

, (36)

where the quantity 𝑟𝑙 is the number of Riks’ corrections required for
converging to the previous equilibrium point and the quantity 𝑛𝑙 is the
expected number of Riks’ corrections needed to get convergence. The
usual choice for the quantity 𝑛𝑙 is 𝑛𝑙 = 5. At the very first step of the
analysis it is assumed 𝛿 = 1.

4. A short digression on the shear stiffness coefficient based on
classical de Saint-Venant theory

Among the panoply of situations where the utilization of shear-
deformable beam elements is neatly necessary, in this section we shall
provide a simple example thereof by means of standard results in the
so-called de Saint-Venant theory. Differences between Euler–Bernoulli
and Timoshenko beam models can be discussed by considering the
cantilever problem for a beam with length 𝐿 subjected to a transversal
force 𝐹 acting on its free end. It is classically well-known that for
the Euler–Bernoulli model the displacement at the free end is equal to
𝐹𝐿3∕3𝑌 𝐼 , with 𝑌 being the Young modulus of the material constituting

11
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Fig. 20. Hinged semicircular arch with 𝑛 = 36 discrete elements. Equilibrium paths (a), energy evolution (b) and deformed configuration evolution (c) for 𝑎𝑟2∕𝑏 = 100000 and
𝑐𝑟2∕𝑏 = 100000.

the beam and 𝐼 the moment of inertia of its cross-section. It is also well-
known that in the Timoshenko beam model one must take into account
an additional addend due to the shear deformability, i.e., 𝐹𝐿∕𝐺𝐴∗, with
𝐺 being the shear modulus of the material constituting beam and 𝐴∗

the reduced ‘‘effective’’ area of its cross-section. Starting from these two
simple results it is concluded that the ratio between the displacement
at the free end due to shear, 𝑤𝑠, and that due to bending, 𝑤𝑏 can be
expressed as

𝑤𝑠
𝑤𝑏

=

𝐿
𝐺𝐴∗

𝐿3

3𝑌 𝐼

. (37)

It is therefore clear that this ratio is inversely proportional to the square
of the beam length 𝐿. For instance, if we consider a beam with a
rectangular cross-section having a depth 𝐵 and a height ℎ, the ratio
in (37) becomes

𝑤𝑠
𝑤𝑏

∝
( ℎ
𝐿

)2
, (38)

where its dependence from the Poisson’s ratio of the material consti-
tuting the beam has been omitted [39]. To have a rough idea, applying

Fig. 21. Half regular hexagon cell.

the previous result to a beam with ℎ
𝐿

= 1
2

(clearly falling out of De

Saint-Venant theory hypotheses) then 𝑤𝑠 = 1
4
𝑤𝑏 and, therefore, the

ratio (37) becomes by no means negligible.
At this point, aimed at providing an insight into the possible dif-

ferent contributions which can be given by each cell to behavior
of the whole discrete system, a numerical study is presented where
three relevant deformation modes (see Fig. 2) are superimposed to the
discrete Timoshenko beam system introduced above when only one/
two straight links are considered:

12
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Fig. 22. Half regular hexagon cell with 𝑛 = 15 discrete elements. Equilibrium path (1st row), energy evolution (2nd row) and deformed configuration evolution (3rd row) for
𝑎𝐿2∕𝑏 = 100 and 𝑐𝐿2∕𝑏 = 1 (1st column), 𝑐𝐿2∕𝑏 = 10 (2nd column) and 𝑐𝐿2∕𝑏 = 100 (3rd column).

(1) the points 𝑃𝑗 and 𝑃𝑗+1 are considered; the condition 𝑝𝑗+1 =
𝑃𝑗+1 + 𝑢𝐃1,𝑗 is applied while keeping 𝑝𝑗 = 𝑃𝑗 and 𝐝1,𝑗 = 𝐃1,𝑗 ;

(2) the points 𝑃𝑗 and 𝑃𝑗+1 are again considered; the condition 𝑝𝑗+1 =
𝑃𝑗+1 + 𝑣𝐃2,𝑗 is applied while keeping 𝑝𝑗 = 𝑃𝑗 and 𝐝1,𝑗 = 𝐃1,𝑗 ;

(3) the points 𝑃𝑗 , 𝑃𝑗+1 and 𝑃𝑗+2 are considered; a rotation of the
𝐝1,𝑗+1 is applied while keeping 𝐝1,𝑗 = 𝐃1,𝑗 .

The dimensionless strain energy contributions 𝐸𝑎∕𝑎𝓁2, 𝐸𝑏∕𝑏, and
𝐸𝑐∕𝑐𝓁2 have been computed for each test, with 𝓁 being the link length.
Fig. 3 shows the strain energy as divided into the above mentioned
scaled energy contributions (a – stretch; b – bending; c – shear) as
functions of the scaled parameters 𝑢, 𝑣 and 𝜑, being the latter the
superimposed angle in-between the vectors 𝐝1,𝑗+1 and 𝐝1,𝑗 . Remark
that the first test entails only extension deformation, the second test
entails stretch and shear deformations and, finally, the third test entails
stretch, shear, and bending deformations. Fig. 4 shows the shear-to-
stretch strain energy ratio versus the dimensionless displacement 𝑣∕𝓁
for the second test as the ratio 𝑐∕𝑎 from 0.1 to 10 varies and for a
constant 𝑏. Fig. 5 shows the dimensionless shear strain energy 𝐸𝑐∕𝑐𝓁2

versus 𝜑 for the third test as the non-dimensional stiffness ratio 𝑐𝓁2∕𝑏
varies from 0.1 to 10 and for a constant 𝑎. We remark that in this
case the shear-to-bending strain energy ratio 𝐸𝑐∕𝐸𝑏 is constant as 𝜑
increases until 𝜋.

These last two plots highlight well the influence of the shear de-
formability. It is remarkable that, owing to the chosen material behav-
iors (i.e. Hookean) and to the (geometric) strains definition, the shear
energy contribution becomes relatively less important when the control
variable increases, i.e. for large deformations.

5. Buckling of frames and arches

In this section, aimed at testing the discrete Timoshenko beam
formulation presented above, several problems inspired by classic tests
related to buckling of frames and arches are presented and solved by
the Riks’ strategy introduced above. The main goal of this analysis is
to show the peculiarities of the obtained mechanical behavior when
the stiffness parameters change. The analysis will be especially focused
on understanding said mechanical behavior when the shear stiffness
changes leading from Euler–Bernoulli, i.e. 𝑐 → ∞, to Timoshenko
model.

The following case studies will be considered: (i) Roorda’s frame;
(ii) hinged–hinged frame; (iii) hinged semicircular arch and (iv) half-
hexagonal cell. Moreover, the static equilibrium position problem for a
cantilever beam subjected to a transversal force on its free tip will be
considered. For this last problem, besides the trivial final configuration
also an exotic equilibrium configuration will be computed in large
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Fig. 23. Cantilever under a shear load 𝜇 (a), compression 𝜆 and shear imperfection
load 𝜀 (b), shear 𝜇 and traction load 𝜆 (c).

deformations, finding agreement with previous mathematical and nu-
merical investigations [40]. In addition, thanks to the stepwise strategy
which we used, we are able to trace the complete path to achieve such
a curled configuration.

All the problems mentioned above require to fix the constitutive
parameters of the Hencky beam, i.e. the stiffness parameters 𝑎, 𝑏 and
𝑐. Almost always, reference solutions are given for inextensible beams
and neglecting shear deformability, therefore we start by considering
the identification of the bending stiffness parameter 𝑏. A simple way
to estimate 𝑏 consists in considering a cantilever beam with length 𝐿
subjected to a couple 𝑀 acting on its free end. It is well-known that
the rotation of the free end 𝜑 is equal to 𝑀𝐿∕𝐸𝐼 . On the other hand,
for a beam discretized with 𝑛 links a measure of the rotation on the
free end is (𝑛−1)𝑀∕𝑏 where 𝑏 denotes the bending stiffness parameter
corresponding to the chosen bending strain measure.2 Matching the free
end rotation of the continuum and of the discrete model it is possible to
estimate the stiffness 𝑏. Alternatively, one can choose 𝑏 so as to match
the buckling load of the continuum cantilever with that of the discrete
one for a sufficiently large number 𝑛 of links, obtaining practically the
same result. The same procedures can be used with proper adaptations
to estimate the stiffnesses 𝑎 and 𝑐.

5.1. Roorda’s frame

The Roorda’s frame problem, see [41], is depicted in Fig. 6. The
frame is loaded with a vertical force 𝜆 on the corner and a horizontal
load 𝜀, representing an imperfection load, on the midpoint of the
vertical beam.

The buckling load 𝜆ref for this frame is reported in [41] by neglect-
ing both the axial and shear deformability.

Fig. 7 shows equilibrium paths obtained by increasing the number
of discrete elements 𝑛 used to model the beams of the frame. All
element lengths are equal to 𝓁. Each point of the equilibrium path

2 We remark that the bending strain measure used for the proposed model
is given by Eq. (9).

is a dimensionless pair formed by the dimensionless load 𝜆𝓁∕𝑏 and
the corresponding dimensionless displacement ‖𝐰‖∕𝐿, where 𝐰 denotes
the vector collecting the Lagrangian parameters used to model the
displacements of the frame.

Fig. 8 shows the subsequent equilibrium configurations obtained by
using 32 elements of equal length, dimensionless stiffnesses 𝑎𝐿2∕𝑏 =
100 and 𝑐𝐿2∕𝑏 = 1, and an imperfection load with magnitude 𝜀 = 0.001.
Henceforth, black is used to graphically present displacements, whereas
green arrows indicate rotations. For the same data, Fig. 9 shows the
dimensionless strain energy 𝐸∕𝑏 corresponding to the dimensionless
load parameter 𝜆𝐿∕𝑏. Aimed at highlighting the prevalent contributions
to the dimensionless strain energy, strain energy is split into stretch,
bending and shear parts. Fig. 10 shows the influence of the magnitude
𝜀 of the imperfection load on the dimensionless equilibrium path (𝜆𝓁∕𝑏,
‖𝐮‖∕𝐿) obtained by considering the dimensionless stiffnesses 𝑎𝐿2∕𝑏 =
1000 and 𝑐𝐿2∕𝑏 = 1000. Fig. 11 shows the influence of the dimensionless
parameter 𝑎𝐿2∕𝑏. By using 32 elements, 𝜀 = 0.001 and 𝑐𝐿2∕𝑏 = 1,
the equilibrium path, the strain energy evolution and the deformed
configuration evolution are plotted for 𝑎𝐿2∕𝑏 = 1 (left) and 𝑎𝐿2∕𝑏 =
10000 (right). Finally, Fig. 11 shows the influence of the dimensionless
parameter 𝑐𝐿2∕𝑏. By using 32 discrete elements, 𝜀 = 0.0001 and
𝑎𝐿2∕𝑏 = 1000, the equilibrium path, the strain energy evolution and
the deformed configuration evolution are plotted for 𝑐𝐿2∕𝑏 = 10 (left)
and 𝑐𝐿2∕𝑏 = 100000 (right) (see Fig. 12).

5.2. Hinged–hinged frame

The hinged–hinged frame depicted in Fig. 13, with depth and height
equal to 𝐿, shall now be addressed. Loads act on the upward corners
compressing the vertical beams and, in addition, an imperfection hor-
izontal load with magnitude 𝜀 is considered. Reference solution was
given in neglecting, also in this case, the extensibility and the shear
deformation of the beams constituting the frame.

Fig. 14 account for a numerical simulation performed by using 48
discrete elements with equal length, an imperfection load magnitude
𝜀 = 0.0001, 𝑎𝐿2∕𝑏 = 1000 and 𝑐𝐿2∕𝑏 = 1000. Particularly, Fig. 14(a)
reports the computed dimensionless equilibrium path (the reference
solution, in red color, for the buckling load given in [42] is also
reported), Fig. 14(b) reports the evolution of the dimensionless energy
as split into stretch, bending and shear parts. Finally, Fig. 14(c) shows
the evolution of the deformed configuration for subsequent load steps.

5.3. Semicircular arch on sliders

In this subsection a semicircular arch on sliders of radius 𝑟 is
considered, see Fig. 15. The arch is loaded at its midpoint with a
vertical force 𝜆𝑣.

The simulation uses 36 discrete elements with equal length, and
dimensionless stiffness parameters 𝑎𝑟2∕𝑏 = 100000 and 𝑐𝑟2∕𝑏 = 100000.
The bending stiffness 𝑏 was identified by using the same procedure
sketched at the beginning of this section. Fig. 16(a) shows for this
set of data the dimensionless equilibrium path for the lengthening of
the points bounded with the sliders (in color red) and the vertical
displacement of the arch midpoint (in color blue). On the same figure
is also drawn the reference solution, in magenta and cyan color, respec-
tively, given in [43]. Fig. 16(b)–(c) report the strain energy evolution
– again split in stretch, bending and shear parts – and the deformed
configuration evolution, respectively.

5.4. Hinged semicircular arch

With the same bending stiffness parameter 𝑏 used in the previous
test we consider the case reported in Fig. 17.

Fig. 18 accounts for the case 𝜆ℎ = 0 while the other stiffnesses
are left unchanged (first simulation): dimensionless equilibrium path
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Fig. 24. Static cantilever beam problem with a transversal load on its free tip (trivial solution): equilibrium path (a); energy evolution split in stretching, bending and shear parts
(b); deformation evolution (c).

(a), dimensionless strain energy evolution (b) – again split in stretch,
bending and shear parts – and deformed configuration evolution (c) are
plotted.

Fig. 19 accounts for the case 𝜆𝑣 = 0 while the other stiffnesses
are left unchanged (second simulation): dimensionless equilibrium path
(a), dimensionless strain energy evolution (b) – again split in stretch,
bending and shear parts – and deformed configuration evolution (c) are
plotted.

Fig. 20 collects the results of the simulation by considering the
case of vertical force 𝜆𝑣 along with a horizontal force as imperfection
𝜆ℎ = 0.01 while the other stiffnesses are left unchanged (third simula-
tion): dimensionless equilibrium path (a), dimensionless strain energy

evolution (b) – again split in stretch, bending and shear parts – and
deformed configuration evolution (c) are plotted.

5.5. Half regular hexagon cell

This case study is frequently studied in the mechanics of architec-
tured materials. A half regular hexagon is analyzed with the boundary
conditions sketched in Fig. 21.

Fig. 22 accounts for simulation performed by using 𝑛 = 15 discrete
elements and 𝑎𝐿2∕𝑏 = 100. The equilibrium path, the evolutions of
the strain energy and of the deformed configuration are plotted for
𝑐𝐿2∕𝑏 = 1 (1st column), 𝑐𝐿2∕𝑏 = 10 (2nd column) and 𝑐𝐿2∕𝑏 = 100
(3rd column). All the plots show the influence of the shear stiffness
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Fig. 25. Static cantilever beam problem (curled solution): equilibrium path (a); energy evolution split in stretching, bending and shear parts (b); deformation evolution (c).

coefficient 𝑐 both on the equilibrium path and on the deformation
evolution.

5.6. Curled equilibrium configuration for a cantilever beam

This case study has been chosen aimed at verifying some results pre-
sented in [7,44]. More precisely, by referring to a cantilever beam with
length 𝐿, we look for equilibrium configurations when a transversal
load 𝜇 is applied on the tip, see Fig. 23(a).

By using 40 elements, each one characterized by the nodal displace-
ments of its ends – four Lagrangian parameters – and by the rotation
– one Lagrangian parameter – and for the stiffness ratios 𝑎𝐿2∕𝑏 = 100
and 𝑐𝐿2∕𝑏 = 10000, an analysis developed by using the tools exposed in
the foregoing produces the following results. Fig. 24, where besides the
equilibrium path (a) and the energy evolution (b), split in stretching,

bending and shear parts, shows also the evolution of the deformation
(c), in a stroboscopic fashion, when the load parameter 𝜇 increases.

It is possible to reach different equilibrium configurations for the
same transversal tip force. Aimed at finding the curled configuration
obtained by said (only) transversal tip force, a loading process has been
devised which consists in two consecutive steps. First, the buckling
of the cantilever is achieved by increasing with a compression load 𝜆
on the tip complemented by a fixed transversal imperfection load 𝜀,
see Fig. 23(b). Successively, starting from the final equilibrium point
obtained by the first loading, a transversal tip force, which rapidly
nullifies the imperfection 𝜀, along with a horizontal force, which grad-
ually nullifies the buckling force of the previous step, are applied (see
Fig. 23(c)). In this way, we reach the desired equilibrium configuration
(see Fig. 25) different from that presented in Fig. 24 with the same final
force.
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Fig. 25 reports the numerical simulation carried out by combining
the two loading processes, separated by a dot-dashed line, mentioned
above. In order to distinguish the two loading processes different colors
have been used for the deformations: cold colors – blue and cyan –
for the first one and warm colors – red and magenta – for the second
one, see Fig. 25(a) and (c). As before, Fig. 25(b) shows the total energy
evolution as split in stretching, bending and shear parts.

6. Concluding remarks and future challenges

In this work we considered the problem of predicting the equilib-
rium shapes of largely deformed slender bodies in which extension and
shear phenomena cannot be neglected. We limited our analysis to the
case of planar deformations, albeit the techniques presented here can
be easily generalized to the case of bodies moving in 3D space: in
fact, Section 2 presents a formulation which is already suitable for 3D
motions.

In the literature Timoshenko beam model is formulated to the same
aim. One has, however, to make two remarks concerning Timoshenko
model: (i) there are different possibilities to generalize Timoshenko
theory, which is intrinsically linear, to the case of large deformations
and large displacements (see [7,45]); (ii) Timoshenko model is a con-
tinuum model: therefore, when it is not possible to find closed form
solutions, its discretization is needed. This discretization, usually, is
chosen without taking into account the true nature of the mechanical
system which is described and the mathematical structure of the de-
formation energy postulated in Timoshenko models. Therefore many
undesired difficulties (like locking) arise: to overcome these difficulties
remarkable efforts were required (see e.g. [46,47]).

In the present paper we formulated a Lagrangian Hencky type non-
linear model aimed to model the mechanical behavior of shareable
extensible slender deformable bodies. It is intrinsically discrete and the
introduced Lagrangian parameters have an immediate mechanical in-
terpretation in terms of extension, bending and shear deformation. The
postulated energy has a clear physical interpretation and can be easily
used in the formulation of the numerical code used for computations.
Moreover the algorithm which we use for calculating the deformed
shapes is very efficient and allows for the determination of equilibrium
shapes also in presence of multiple solutions of the same deformation
problem.

Our motivation in formulating a more efficient computing tool
alternative to Timoshenko theory is related to our intention to consider
complex beam structures in novel metamaterials design. The formu-
lated Lagrangian Hencky type non-linear model is clearly inspired by
the Hencky’s dissertation and it is coded in a general stepwise solution
strategy based essentially on an adaptive Riks’ arc-length approach
which proves to be very efficient for reconstructing equilibrium path
containing limit points. Several numerical tests, mostly suggested by
the intended applications to the design of architectured materials, have
been performed to highlight the peculiarities of the proposed discrete
model: indeed the modularity of the formulation in terms of discrete
elements is easily adaptable for simulating the non-linear behavior
of latticed metamaterials. It is foreseen that, for this reason, such a
formulation could be used as a short-cut tool to guide the development,
optimization and experimentation of new metamaterials and, possibly,
also to validate their continuum description. The influence of shear
stiffness on the overall mechanical behavior of considered structures
has been investigated too. Such a stiffness – as well as the others – can
be purposely tuned to achieve desired behaviors.

Open problems and challenges that could be tackled in the next
future include: (i) a careful analysis of the stiffness parameters used
to characterize the elastic response of the whole beam in the large-
deformation regime, and in general when de Saint-Venant estimate
of stiffness parameters does not apply; such parameters should be
related to the material constitutive parameters of the material con-
stituting the meso-beams such as the Young and tangential moduli,

and to geometrical parameters of the beams cross-section, as the area,
the shear correction factor, and the moment of inertia; (ii) the de-
velopment of functionally graded materials, meaning those materials
having stiffness parameters which are varying along the beam axis;
an extended campaign of numerical simulations might unveil new and
exotic mechanical behaviors, see [48–51]; (iii) the development of
continuum models, as those developed and exploited, e.g., in [52–60],
aimed at describing for large displacements systems with many discrete
elements of the type presented here; besides being useful in unveil-
ing so-called emerging phenomena, continuum models could help in
identifying stiffness parameters; (iv) the exploitation of the presented
approach to provide a validation and insight into new and existing
approaches for the extension of stability theory in classical elastic
media to micromorphic, strain-gradient [61,62], and Cosserat media,
see, e.g., [12,63–70]; (v) the extension of the presented approach to
problems where dynamics effects are non-negligible, see, e.g., [71–73],
like those studied in the active control of vibrations [74]; (vi) the
validation of continuum approaches to the study of plane and curved
structures moulded as, e.g., shells and tubes, see [75–77]. It seems also
interesting the extension of the present work to kinematically higher-
order – Levison–Bickford–Reddy type – beam models allowing curved
cross-sectional fibers, see [78].
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