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In

 

this

 

study

 

a

 

numerical

 

approach

 

to

 

simulate

 

elastic

 

behavior

 

of

 

lightweight

 

concrete,

 

is

 

presented,

 

at

 

mesoscopic

 

level.

 

Concrete

 

is

 

considered

 

as

 

a

 

bi-

phasic

 

material,

 

composed

 

of

 

a

 

granular

 

skeleton

 

dis-persed

 

in

 

a

 

mortar.

 

Aggregates

 

generation

 

should

 

respect

 

a

 

granular

 

model

 

where

 

a

 

maximum

 

distance

 

between

 

aggregates

 

is

 

imposed.

 

The

 

granular

 

media

 

is

 

also

 

defined

 

by

 

a

 

granular

 

curve

 

and

 

a

 

compacity.

 

A

 

numerical

 

concrete

 

sample

 

is

 

carried

 

out,

 

using

 

three-dimensional

 

finite

 

element

 

mesh.

 

Here

 

light-weight

 

concretes

 

are

 

considered,

 

where

 

Young’s

 

modulus

 

of

 

natural

 

sand

 

based

 

mortar

 

is

 

higher

 

than

 

the

 

modulus

 

of

 

the

 

lightweight

 

coarse

 

aggregates.

 

Different

 

concretes

 

are

 

carried

 

out,

 

according

 

to

 

exper-imental

 

studies

 

from

 

literature,

 

in

 

order

 

to

 

distinguish

 

the

 

influence

 

of

 

Young’s

 

modulus

 

contrast,

 

and

 

of

 

the

 

concrete

 

compacity,

 

on

 

mechanical

 

behavior.

 

Then

 

numerical

 

compressive

 

tests

 

are

 

realized

 

until

 

an

 

experimental

 

value

 

of

 

compressive

 

strength,

 

and

 

the

 

local

 

stress

 

and

 

strain

 

distribution

 

around

 

aggre-gates

 

is

 

studied,

 

still

 

remaining

 

in

 

the

 

elastic

 

domain.

 

According

 

to

 

these

 

results,

 

breaking

 

of

 

this

 

kind

 

of

 

concrete

 

occurs

 

when

 

the

 

maximum

 

strain

 

is

 

reached

 

in

 

the

 

lightweight

 

aggregates

 

surrounded

 

mortar.

1. Introduction

At mesoscopic level, concrete could be described as a group of

aggregates (inclusions) surrounded by a continued phase (matrix).

In our model, this phase is considered as the mortar, and the inclu-

sions are only the coarse aggregates. The elastic mechanical behav-

ior of this composite depends both on material and structural

properties:

� the elastic modulus for the inclusions and the matrix

respectively,

� the volume fraction for both the inclusions and the matrix,

� the shape of inclusions,

� the granular distribution of the inclusions,

� the realistic location of the inclusions in the composite material.

The characterization of the elastic behavior of concrete, must be

divided in two parts. First, the determination of a homogeneous

elastic behavior is overall influenced by the two first parameter

listed above. Several results have been carried out on this way,

by analytical homogenization methods based on the representative

volume element behavior and related to the hydrostatic forces as

the Hashin and Shtrikman bounds [1], the two-sphere model pro-

posed by Hashin [2] and the three-sphere model introduced by De

Larrard [3] and Le Roy [4]. These models are less accurate when the

contrast between the moduli of the inclusions and the matrix is

important especially when the phenomenon of creep in the matrix
⇑ Corresponding author. Tel.: +33 4 66 78 56 86.
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leads to important drop of the modulus as shown in [5]. More

sophisticated homogenization models based on the tensor of

Eshelby [6] consider the shape of the particles (spheres for the

Mori–Tanaka model [7,8] or polygonal shapes for the auto coherent

model [9]) and allow to apply any stress field on the VER. In a pre-

vious work [10], a homogeneous elastic modulus of concrete was

determined by a numerical model and compared with the analyt-

ical homogenization model [7].

On the other hand, the estimation of local stress concentration

around aggregates, needs to characterize accurately the elastic

behavior. For that, the shape, the granular distribution and the

location of inclusions must be taken into account. In this case,

numerical approaches take the place of analytical ones. Numerical

models, based on three-dimensional microstructures, obtained by

microtomography, are among the more accurate for the represen-

tation of a realistic granular skeleton [5]. The classical finite ele-

ment approaches, allow to describe a material with at most a

thousand of inclusions. Indeed, the high number of finite elements

needed for the discretization, tends to limit the number of aggre-

gates represented in a concrete sample. Finally, concrete could be

described as a granular skeleton based on coarse aggregates and

embedded in a mortar compound by a cement paste and sand

[11,12]. Aggregates are rather represented as spheres, dispersed

randomly in the mortar [12–15]. In order to represent the meso-

structure in a realistic way, a granular model could be adopted

[16]. In this model, called the ‘‘De Larrard model’’, a thickness is

imposed between coarse aggregates [17,18].

The purpose of this paper, is to propose a numerical model

which gives a characterization of the mechanical behavior of

these lightweight concretes. This kind of mesoscopic description,

is particularly well suited to concrete constituted by low rigid

lightweight coarse aggregates, coated with a more rigid mortar

based on natural sand. These families of lightweight concretes,

are useful to reduce thermal bridge in the concrete structure

[19]. Rupture mechanics on lightweight concrete, have provided

various studies and interpretations in literature. Unlike tradi-

tional concretes, some studies observed compression rupture in-

side aggregates [20–23]. Others explained the rupture by the

tensile stress concentration on the top of aggregates [24]. On

the other hand, works of De Larrard [3], proposed a model with

a perfect interface between mortar and aggregates, and supposed

that the rupture was induced by compression inside mortar. An

experimental study [25] showed that three ruptures modes, bin-

ded to the ratio between Young’s modulus of aggregate and mor-

tar, could be observed:

� tension rupture inside the bond aggregate/mortar for important

ratios,

� compression rupture inside the mortar and the aggregates for

intermediate ratios,

� compression rupture inside the aggregates for low ratios.

Experimental values of mechanical properties, provided by [21–

23], will be used on the following to calibrate the numerical model.

In a first time, a numerical generation of different concrete

samples, will be carried out, taking into account the granular

model of De Larrard [16]. Lightweight concrete samples, will be

considered as bi-phasic material, with a perfect mechanical link

between aggregates and mortar. In a second time, using a finite

element software, numerical simulation will be realized, based

on experimental data quoted previously, in order to visualize

the repartition of the principal stresses and strains inside mortar

and aggregates, and in a geometrical transition zone between

aggregates and mortar, called transition zone in the following.

An interpretation of the rupture mode will be proposed, from

the numerical results.

2. Material and methods

2.1. Generation of concrete

Numerical generation of concrete, is carried out with an open platform called

‘‘LMGC90’’, developed at the University of Montpellier [26]. The numerical concrete

sample generated, should respect both the granular model of ‘‘De Larrard’’ [16] and

a granular curve imposed. Let us first briefly recall the main properties of the gran-

ular model.

2.1.1. Granular model of ‘‘De Larrard’’

This model requires to respect a distance between two adjacent coarse aggre-

gates, in order to save the granular skeleton from the segregation phenomenon

and optimize the compacity. This distance, called the Maximum Mortar Thickness

(MMT), see Fig. 1, depends on the compacity of a sample, called g, and the virtual

compacity, g� . Compacity g is the ratio between the volume of aggregates, Vagg ,

and the total volume of a sample, V, such as:

g ¼
Vagg

V
ð1Þ

The virtual compacity is defined as the maximum density for a given mixture,

and its expression for rounded aggregates, as lightweight aggregates, is defined in

[16] as:

g� ¼ 1� 0:47
dmin

dmax

� �0:22

ð2Þ

where dmin and dmax are the minimum and maximum aggregates’ diameter.

The distance MMT is depending on g; g� and dmax by the mathematical

relationship:

MMT ¼ dmax

ffiffiffiffiffi

g�

g
3

r

� 1

� �

ð3Þ

2.1.2. Generation of a granular curve

As explained previously, the granular skeleton generated, needs to respect a

granular curve, depending on the spreading and the shape of volume distribution.

A method to generate this curve has been proposed by [27], based on the mathe-

matical theory of distribution functions, and applied to granular media. A cumula-

tive distribution function b is used, defined by the Eq. (4):

bðdr ; a; bÞ ¼
1

Bða; bÞ

Z dr

0

ta�1ð�tÞb�1dt with a > 0; b > 0 ð4Þ

where a and b are the parameters of the distribution allowing to control the shape of

the granular curve. The variable dr is the reduced parameter, defined as follow:

dr ¼
d� dmin

dmax � dmin

ð5Þ

with d the aggregate diameter. The function Bða; bÞ is a weight function, according to

distribution theory. The different shapes of the cumulative function b are repre-

sented by Fig. 2.

2.1.3. Generation of concrete at mesoscale level

The generation of concrete at mesoscale level, is now performed, according to

Fig. 1. Maximum mortar thickness between two aggregates.
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the granular model of ‘‘De Larrard’’ and a specific granular curve. Main numerical

steps are summarized by the following points:

� the location of aggregates is randomly chosen,

� the compacity and the aggregate’s content of concrete sample is imposed,

� the aggregates, represented as spheres, are generated according to a granular

curve,

� the MMT defined by (3) is taken into account during the aggregate generation.

2.1.4. Spatial discretization of the concrete sample generated

Once the concrete sample has been generated as detailed in the previous sec-

tions, a spatial discretization is needed. A finite elements meshing is chosen, using

the three-dimensional mesh generator GMSH [28]. Mortar and aggregates are

meshed separately, in order to take different sizes of tetrahedrons finite elements.

The concrete generated takes into account a perfect mechanical link between aggre-

gates and mortar, as consequence, the modelization of the interface between them

is not required. The mesh carried out is shown by Fig. 3.

2.2. Experimental data from literature

The numerical model presented here, proposes to study the mechanical behav-

ior of lightweight concrete. In order to compare, and validate this model, experi-

mental data are needed. Experimental works of [21–23], provides data on

lightweight concretes, especially on elasticity parameters and compressive

strengths. In concretes considered here, Young’s modulus of mortar is higher than

the modulus of aggregates. Two groups of aggregates are used, called 430A and

750S, dispersed in the mortar with the compacities g ¼ 12:5% and g ¼ 45%. These

aggregates are embedded by two mortars, called by the authors M8 and M10.

Young’s modulus of these two mortars have been determined experimentally by

compression tests. Values of Young’s modulus of lightweight aggregates, have been

carried out using the phenomenological relationship (6) provided by [23,29]:

Eagg ¼ 8000 � q2
G ð6Þ

where Eagg is Young’s modulus of lightweight aggregates and qG the density deter-

mined experimentally. Values of Young’s modulus coming from this calculation,

have been validated with two methods [10]. Indeed, using a Mori–Tanaka homoge-

nization method and a numerical model, an homogeneous Young’s modulus of the

concrete based on mortar M10 and lightweight aggregates 430A and 750S, has been

calculated. In each case, values of Young’s modulus coming from Eq. (6), allowed to

identify the homogeneous Young’s modulus obtained experimentally by [21].

Elastic parameters of the two materials composing the concretes, are summa-

rized in Table 1, where E is Young’s modulus and fc the compressive strength. Final-

ly, the numerical model has been validated on the concretes called M8-430A, M8-

750S, M10-430A and M10-750S, with the two compacities listed below.

Material parameters of the 8 concretes used in the numerical model, are shown

on Table 2. The concretes realized with the more rigid mortar (M10) are stronger

than the others. In the following Young’s modulus of aggregates will be called

Eagg and the compressive strength of mortar and concrete, repectively fcm and fc .

3. Calculation

3.1. Numerical simulation

The finite element model of concrete presented in past sections

is now used, to realize mechanical tests. All the simulations are

carried out with the open platform LMGC90, used for modeling

interacting objects with different shapes and mechanical behavior

in two or three dimensions [26]. In a first time concrete is gener-

ated using geometrical, and material parameters presented previ-

ously. Then boundary conditions will be applied, in order to

simulate a compression test, as close as experimental study.

Compacities of 12:5% and 45% are imposed, on concrete cylin-

ders with a diameter of 40 mm and a height of 80 mm. Granular

curves of both concretes, calculated with the distribution theory,

are shown on Fig. 4. One can notice that dmax ¼ 10 mm for both

concretes. Thus the maximum aggregate diameter is four times

higher than the diameter of the sample, which is enough to neglect

boundary effects [30]. In Table 3 are recalled geometrical parame-

ters of the granular skeleton, according to the ‘‘De Larrard’’ model.

Elastic parameters of the experimental concretes, presented in

Table 2, are imposed, using the pre-processor of the software

LMGC90. Then a compression loading is applied in each concrete,

until the compressive strength fc , determined experimentally and

recalled in Table 2.

4. Results

Compression loadings applied on concrete samples, have given

a mechanical elastic response. The validation of the numerical

model has been realized in other studies [10], as noticed in previ-

ous section. In the following the principal stresses and strains,

around aggregates will be studied.

4.1. Principal stresses

Concrete is an heterogeneous material and a compression load-

ing cannot give a pure compression field in the material. For that,

principal stresses are calculated, called r1; r2; r3, and

V1; V2; V3 are the principal axis associated. One can notice that

Fig. 2. Cumulative distribution curves for different values of a and b from [27].

Fig. 3. Concrete meshed by finite elements with a compacity of 45%.

Table 1

Material parameters of mortar and aggregates from [23].

Material Type E (GPa) fcm (MPa)

Mortar M8 28 40

Mortar M10 35:4 86

Aggregate 430A 4:3

Aggregate 750S 20
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V1 is quasi collinear with the compression axis, ð0; zÞ. Principal

stresses are calculated, on each node of the sample, but the results

presented here are focused around aggregates.

The local stress evolution around an aggregate, is presented by

Figs. 5 and 6. The aggregate with the maximum diameter

(dmax ¼ 10 mm) is chosen. Previously, some numerical tests have

been made to study the influence of the size and the location of

the aggregate chosen. It has appeared that these two parameters

did not provide significant change on numerical results. Principal

stresses values given here, have been selected on nodes along the

axis ð0; xÞ and ð0; zÞ, and passing by the aggregate center. It is

important to mention that negative stresses indicate compression

stresses while positive values are the tensile stresses. The stress r1

is higher than the two others and is always a compressive stress.

On the other hand, r2 and r3 give sometimes tensile stresses.

Aggregates and mortar zones are delimited, and as explained pre-

viously, a geometrical transition zone is defined, between mortar

and aggregates, with a length included between 0:5 mm and

1:5 mm. Maximum compression stress r1 is found along the

ð0; xÞ axis, perpendicular to the loading axis. Moreover the maxi-

mum tensile values of r2; r3 are found along the ð0; zÞ axis. In

the center of each aggregate, an uniform compressive stress is visu-

alized. In this zone, r2 and r3 are approximately equal to zero. This

uniform stress r1 is presented in Figs. 5 and 6 inside the gray cir-

cles. Highest tensile and compression stress values have been

founded on concretes with mortar M10.

4.2. Principal strains

Principal strains are calculated using the Hooke’s law for isotro-

pic materials (7), m being the Poisson’s ratio, E Young’s modulus, I

the identity matrix, e and r are respectively the second order strain

tensor, and stress tensor.

e ¼ �
m
E
TrðrÞIþ

1þ m
E

r ð7Þ

The evolution of the principal strain e1, around an aggregate and

along the ð0; xÞ axis is represented in Fig. 7 and Fig. 8. One can no-

tice that strain distribution is not symmetric about the axis passing

by the center of the inclusion. It can be due to the location of the

Table 2

Elastic material for concretes from [23].

Concrete g (%) E (GPa) fc (MPa)

M8-430A 12.5 25 37

45 16 26

M8-750S 12.5 27 42

45 24 43

M10-430A 12.5 30 63

45 20 34

M10-750S 12.5 34 82

45 33 73

 0
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Fig. 4. Granular curves for the two kinds of lightweight concretes studied.

Table 3

Parameters of the granular skeleton calculated from the ‘‘De Larrard’’ model.

g (%) Aggregate dmin (mm) g� (%) MMT (mm)

12:5 430A 4 61:5 7

750S 2 67 7:4

45 430A 4 61:5 1:1

750S 2 67 1:4

Fig. 5. Principal stresses evolution around an aggregate for concrete M8.
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selected grain, or to the neighboring aggregates. Moreover, princi-

pal stresses and strains are calculated on nodes, and their position

can influence the results.

5. Discussion

Numerical results have given internal stress and strain fields,

for lightweight concretes with a perfect mechanical link between

mortar and aggregates, loaded at the compressive strength value.

In this section, we focused on stress and strain distribution in mor-

tar and aggregates, and we will try to link them with possible fail-

ure modes. A comparison with numerical results and a rheological

model for predicting the compressive strength of lightweight con-

crete, proposed by De Larrard [3,16], will be presented in order to

justify a sole and unique failure mode, shared by every concretes

studied here.

5.1. Uniform state on compression inside aggregates

The compression rupture inside aggregates has been proposed

by some studies, as cited previously [3]. Figs. 5 and 6 show an

uniform compressive stress aggregate core. These values depend

on mortar and aggregate types, and present a convergence. Never-

theless values of compressive stress inside aggregates are higher

for concrete with mortar M10, than for the ones with mortar M8.

For example, in the center of aggregates 750S, compressive stress

equals to 38 MPa for concrete with mortar M8 and around

55 MPa for concrete with mortar M10. Assuming that 55 MPa be

the compressive strength of aggregate 750S for concrete with mor-

tar M10, it means that for concrete with mortar M8 the compres-

sive strength would be 38 MPa, for the same aggregate. It would

be an inconsistency result. This tendancy is noticeable for both

concretes. Moreover, the lack of knowledge in experimental com-

pressive strength of lightweight aggregates, does not allow to con-

clude on the failure of concrete inside aggregates.

5.2. Rupture when maximum admissible strain is reached in mortar

On Figs. 7 and 8, one can notice that, in the mortar, away from

the geometrical transition zone, strains converge. Let us study

accurately this phenomenon, and compare them with the maxi-

mum admissible strain determined experimentally by [22]. Since

the mechanical behavior in mortar is purely compressive, the

admissible total strain before the rupture can be approximated as:

emax ¼
fcm
Em

ð8Þ

where fcm is the compressive strength for mortar and Em Young’s

modulus, and assuming that the mechanical behavior is quasi-elas-

tic until the compressive strength. Using experimental data of mor-

tars, Eq. (8) gives a maximum strain such as emax ¼ 1:45� 10�3 for

mortar M8 and emax ¼ 2:45� 10�3 for mortar M10. All values are

summarized in Table 4. For each value, the location where the strain

has been performed is indicated, dc representing the distance from

the center of aggregate. A correlation is observed between numeri-

cal strain calculated inside the mortar, far from the aggregate cen-

ter, and the experimental maximum strain. The difference

between numerical and experimental values, is included between

0:8% and 13:8% for concrete with mortar M10 and between 3:4%

and 16:5% for the one with mortar M8. On can notice that for a

loading until the compressive strength of concrete, the maximum

admissible strain is reached on mortar, for every concretes tested

Fig. 6. Principal stresses evolution around an aggregate for concrete M10.
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here. Thus it is allowed to consider that the concrete compressive

strength is only induced by the failure of mortar.

In order to determine the influence of the error in numerical

strain calculated, it is interesting to use the numerical model as a

prediction tool for concrete compressive strength. Indeed if the

failure in concrete is induced by the mortar, then the numerical

simulation performed until the maximum admissible strain, would

give a stress imposed around the compressive strength. For that,

boundary conditions of the numerical concrete sample are modi-

fied, in order to apply in mortar a strain about 1:45� 10�3 in con-

crete with mortar M8 and 2:45� 10�3 in concrete with mortar

M10. When this strain is reached on points located in Table 4,

numerical computation is stopped and stresses in lower and upper

faces of numerical concrete samples are picked up and compared

with the experimental compressive strength. In Table 5 the aver-

age of stresses calculated on either side of aggregates, is compared

with experimental values of compressive strength. One can notice

that the numerical models gives a quite accurate prediction.

A linear regression is performed between experimental and

numerical results, see Fig. 9. The slope of the line equals 1:01

and the regression coefficient is about R2 ¼ 0:98. Thus, the

numerical simulation, remaining in the elastic domain, and assum-

ing that the failure occurs in mortar, allows to predict the compres-

sive strength of the lightweight concrete studied here.

Let us now compare this result, with the rheological model par-

allel/series proposed by De Larrard in [16]. This rheological model

is used to predict the compressive strength of lightweight concrete.

As in the numerical model proposed here, the failure of concrete is

supposed governed by the part of the mortar in parallel. The sim-

plest rheological model used for the prediction of compressive

strength, is presented by De Larrard as shown in Fig. 10. In this

model, where the aggregates are assumed to be cubic, aggregates

are called LWA for lightweight aggregates, and their compacity

equals to g. It is an uniaxial parallel/series model, with a compacity

of mortar about 1� g, decomposed as: 1� g ¼ 1� g1=3 þ g1=3 � g.

According to this model, the relationship between the compres-

sive strength of mortar fcm, and the compressive strength of con-

crete fc is:

fcm ¼ fc
Em

1� g2=3ð ÞEm þ g2=3Eg

ð9Þ

where Em is Young’s modulus of mortar and Eg Young’s modulus of

aggregates. Compressive strength of concrete can be deduced from

(9) as follows:

fc ¼ 1� 1�
Eg

Em

� �

g2=3

� �

fcm ð10Þ

Using (10) values of predicted compressive strength of concrete are

provided in Table 6 and called fcsp
In order to compare these values with experimental values, a

linear regression has been made and presented in Fig. 11. One

can notice a good prediction of the concrete compressive strength,

however less accurate than numerical model. Indeed, the slope of

the linear regression equals 0:94 versus 1:01 for the numerical

model. In the same way, the calculation of the correlation coeffi-

cient, has given R2 ¼ 0:94 which is lower than R2 calculated before.

Thus the numerical and rheological model presented, have shown

a maximum strain reached in mortar when the concrete is loaded

at the compressive strength. Then for the lightweight concrete

studied here, the failure seems to be drived by the mortar.

5.3. Stress concentrations in the geometrical transition zone

In the geometrical transition zone defined previously, one can

notice an increase of compressive stresses, moreover for concretes

with the highest ratio between Young’s modulus of mortar and

aggregates. Indeed values of compressive stresses, given by numer-

ical simulation, can reach until 100 MPa for concrete M10-430 for a

compacity of 12:5%, as shown by Fig. 6. These phenomena are also

visible with strains. In Figs. 7 and 8, peaks of strains are observ-

ables in the geometrical transition zone, even more for aggregates

430A, with the lowest Young’s modulus. As explained previously,

in these concretes, a cracking inside mortar is proposed. These

peak of strains, and stresses, probably show the limits of an elastic

modelization of concretes. Indeed in this modelization, no damage

effects have been taking into account. Since a damage evolution oc-

curs, it stays confined and does not impact breaking in the mortar.

If the rupture occured in this transition zone, it would be impossi-

ble to reach the maximum admissible strain in the mortar. More-

over this hypothesis is suggested by works of [31,3], where the

mechanical modelization of the interface is not always needed

for compressive strength prediction.
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Table 4

Strain values inside both concrete with mortar M8 and M10.

Concrete type dc (mm) enum eexp Error (%)

M8-430A 12:5% �7:6 1:65� 10�3 1:45� 10�3 13:8

6:18 1:40� 10�3 1:45� 10�3 �3:4

M8-430A 45% �5:8 1:31� 10�3 1:45� 10�3 �9:6

5:9 1:56� 10�3 1:45� 10�3 7:6

M8-750S 12:5% �6:43 1:65� 10�3 1:45� 10�3 13:8

6:1 1:69� 10�3 1:45� 10�3 16:5

M8-750S 45% �5:5 1:65� 10�3 1:45� 10�3 13:8

5:41 1:61� 10�3 1:45� 10�3 11

M10-430A 12:5% �6:45 2:55� 10�3 2:45� 10�3 4

6:18 2:34� 10�3 2:45� 10�3 �4:7

M10-430A 45% �5:8 2:28� 10�3 2:45� 10�3 �6:9

5:41 2:11� 10�3 2:45� 10�3 �13:8

M10-750S 12:5% �6:43 2:47� 10�3 2:45� 10�3 0:8

6:1 2:57� 10�3 2:45� 10�3 4:9

M10-750S 45% �5:5 2:23� 10�3 2:45� 10�3 �8:9

5:41 2:43� 10�3 2:45� 10�3 �0:8
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6. Conclusion

This work proposes a numerical model for lightweight concrete,

with a three-dimensional modelization of the granular skeleton,

following the ‘‘De Larrard’’ granular model. All the tests have been

based on experimental works, studying concrete with different ra-

tios between Young’s modulus of mortar and aggregates. Concretes

have been modelized as a bi-phasic material, only composed of

mortar and aggregates, with a perfect mechanical link between

them. The visualization of local strain distribution, for an elastic

mechanical behavior, has shown that a phenomenon of strain con-

centration exists in the geometrical transition zone defined, and it

increases with the ratio between Young’s modulus of mortar and

aggregates. Nevertheless, the maximum strain is reached in mor-

tar, out of the transition zone, when the experimental compressive

strength value is applied. This means that, for the concrete studied

here, the compressive strength of concrete is only binded to the

compressive strength of mortar, and it is possible to predict the

compressive strength of concrete, knowing the maximum admissi-

ble strain of mortar, still remaining in elastic domain. Other stud-

ies, on different concretes, have to be realized in order to improve

this result. Moreover, a modelization of the mechanical behavior of

the interface between aggregates and mortar is needed, with for

example a cohesive zone model [32–34], in order to take into ac-

count damage effects in the stress concentration zone.
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