
HAL Id: hal-02914177
https://hal.science/hal-02914177

Submitted on 11 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A recipe for quantum graphical languages
Titouan Carette, Emmanuel Jeandel

To cite this version:
Titouan Carette, Emmanuel Jeandel. A recipe for quantum graphical languages. ICALP 2020, 2020,
Saarbrücken, Germany. �hal-02914177�

https://hal.science/hal-02914177
https://hal.archives-ouvertes.fr

A recipe for quantum graphical languages
Titouan Carette
Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France
titouan.carette@loria.fr

Emmanuel Jeandel
Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France
emmanuel.jeandel@loria.fr

Abstract
Different graphical calculi have been proposed to represent quantum computation. First the ZX-
calculus [4], followed by the ZW-calculus [12] and then the ZH-calculus [1]. We can wonder if new
Z∗-calculi will continue to be proposed forever. This article answers negatively. All those language
share a common core structure we call Z∗-algebras. We classify Z∗-algebras up to isomorphism in
two dimensional Hilbert spaces and show that they are all variations of the aforementioned calculi.
We do the same for linear relations and show that the calculus of [2] is essentially the unique one.

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory
of computation → Semantics and reasoning; Mathematics of computing; Theory of computation →
Equational logic and rewriting

Keywords and phrases Categorical Quantum Mechanics, Quantum Computing, Category Theory

Funding ANR-17-CE25-0009, PIA-GDN/Quantex

The most common formalization of quantum computing is the circuit model, a diagram-
matical language representing unitary matrices in a two dimensional Hilbert space, see [20] for
an introduction. Verification of quantum processes requires a sound and complete equational
theory for quantum circuits, i.e. a complete presentation of unitaries by generators and
relations. This is known to be a difficult open problem.

By relaxing the unitarity condition and allowing all linear maps, at least three different
complete equational theories were found. The ZX-calculus was introduced in [4] and was
designed as a part of the categorical quantum mechanics program. It relies on the interaction
between two complementary observables. The ZX-calculus has proven to be a good language
to reason about quantum processes [7, 11]. However, finding a set of rules to make it complete
has been open for a long time, and part of the solution [15] involved a secondary graphical
language: the ZW -calculus [12, 5]. This calculus is built on two tripartite entanglement
classes (GHZ and W-states) unraveling new structures. Yet another complete graphical
language was later introduced, the ZH-calculus [1], inspired by hyper-graph states.

Compared to quantum circuits, these three languages share an important advantage.
Processes and matrices are not represented merely by diagrams, but by graphs (hence the
term graphical language). Isomorphic graphs represent the same quantum evolution. This
peculiarity is embedded in the only topology matters paradigm. This is a subtle feature: a
usual diagrammatic language (like quantum circuits) starts with a given set of primitives
(usually quantum gates) for which the notion of inputs and outputs is significant. When only
topology matters, one can readily switch an input into an output, and conversely.

This property follows from some specificities of the building blocks of those languages.
One goal of this article is to give a formal definition of these specificities.

Then, we will be able to prove that the three existing graphical calculi for quantum
computing, ZX, ZH and ZW , are essentially the only possible graphical calculi for quantum
computing.

https://orcid.org/0000-0002-1825-0097
mailto:titouan.carette@loria.fr
https://orcid.org/0000-0002-1825-0097
mailto:emmanuel.jeandel@loria.fr

2 A recipe for quantum graphical languages

To do this, we identify in this paper a common structure underlying the already defined
calculi, that we call a Z∗-algebra. Formally, the structure consists in two Frobenius algebras
interacting via a bialgebra rule. To this, we add one additional property, called compatibility,
to ensure the only topology matters paradigm. We then describe all the Z∗-algebras in two
dimensional Hilbert spaces and show that they all happen to be phase-shifted versions of
four structures we call ZX, ZH, ZW and ZZ. The first three appear respectively in the
ZX, ZH and ZW -calculus. The last one corresponds to a degenerate calculus arising from
only one self-interacting special Frobenius algebra.

It is important to note that languages for quantum computing are not the only known
to enjoy these nice properties. In particular Bonchi and his coauthors [2] gave in 2017 a
graphical language for linear relations, with striking similarities to the ZX, ZH and ZW
calculi. In fact, we will prove that their language is essentially the only graphical language
for linear relations.

There exist some other formalisms trying to unify graphical languages, in particular in
the context of interacting Frobenius algebras [10] or Hopf-Frobenius algebras [6]. However,
these formalisms usually require too much structures, and fail to capture all three examples
simultaneously. Typically they do not capture the ZW -calculus.

Some of our work indirectly has to do with the classification of finite dimensional algebras,
bialgebras and Frobenius algebras. In the general case, an exact classification of algebras
is not known, even in the commutative case. It is known that there is an infinite number
of algebras up to isomorphism of dimension d for any d > 6. All of them are known for
d ≤ 6 [22]. We find a classification of low dimension bialgebras in [8]. We can find some
constructions related to Z∗-algebras in [17] and [9].

This paper starts by introducing the prop formalism for graphical languages. The second
section introduces various algebraic structures culminating in the definition of Z∗-algebras.
The third section provides a classification of Z∗-algebras up to isomorphism for qubits.
The last section gives some hint towards classification in higher dimension and provides a
classification of Z∗-algebras in the context of linear relations.

1 Diagrammatical quantum computing

In this paper all processes are represented by a combinatorial structure called a prop [26].

I Definition 1 (prop). A prop P is a collection of sets P[n,m], indexed by N2. An element
f ∈ P[n,m] is called a morphism and is usually written f : n→ m. These sets are linked by
the following operators:

A composition ◦ : P[b, c]×P[a, b]→ P[a, c] satisfying: (f ◦ g) ◦ h = f ◦ (g ◦ h).

A tensor product ⊗ : P[a, b]×P[c, d]→ P[a+c, b+d], satisfying: (f⊗g)⊗h = f⊗(g⊗h)
and (f ◦ g)⊗ (h ◦ k) = (f ⊗ h) ◦ (g ⊗ k).

An empty morphism 1 : 0→ 0 such that f ⊗ 1 = 1⊗ f = f for all f : a→ b.

An identity id : 1 → 1 such that f ◦ id⊗a = id⊗b ◦ f = f for all f : a → b. With the
convention id⊗0 = 1.

A symmetry σ : 2→ 2 satisfying: σ2 = id⊗2 and such that, σa ◦ (f ⊗ id) = (id⊗ f) ◦ σb,
for all f : a→ b, where σn+1 = (1⊗n ⊗ σ) ◦ (1⊗ σn), with σ0 = id.

T. Carette and E. Jeandel 3

In the language of categories [18], a prop is a small strict symmetric monoidal category
whose monoid of object is spanned by a unique object. They can be seen as resource sensitive
Lawvere theories where multiple outputs are allowed [3].

Props admit a nice diagrammatical representation that gives a topological interpretation
to the axioms [23]. A morphism f : n → m is represented as a box with n inputs and m
outputs. Composition is represented by plugging the boxes. The tensor product by drawing
the boxes side by side. The identity is represented by a single wire, the empty morphism by
an empty diagram and the symmetry by wire crossing.

...

f

...

...

f

...
g

...

...

f

...

...

g

...

f : n→ m id : 1→ 1 f ◦ g f ⊗ g σ : 2→ 2

That choice of notation fits nicely with the axioms of props. The corresponding equations
are natural in the diagrammatic notation. In particular the symmetry axioms express that
the boxes can move through wires:

=

...
f

...

...

=

...

...
f

...

This diagrammatical language is sound [16]. So we can equivalently work with equations or
diagrams.

I Example 2 (sets and functions). Let X be a set. In the prop FunX , the set FunX [n,m] is
exactly the set of functions from Xn to Xm, with composition being the usual composition,
and tensor product being the cartesian product.

I Example 3 (matrices). For an integer d and a field K, the prop MatKd is defined by
MatKd [n,m] :=Mdm×dn(K), the matrices of size dm by dn over the field K. The composition
is the matrix product and the tensor is the Kronecker product. Keeping with quantum
computing traditions, we will denote by (|ei〉)1≤i≤d a basis of Kd.

The main prop of interest for quantum computing is Qubits := MatC2 . The quantum
analog of bits, the qubits, are described by vectors in C2. A register of n qubits is then a
vector in the tensor product C2n .

2 Graphical structures

While the diagrammatical languages presented in the previous section make reasoning about
props easier, it is still somewhat strict: inputs come to the top of the box representing f ,
outputs goes out at the bottom. Graphical languages do not have this restriction, and we
will explain here what additional properties should be satisfied to obtain a better framework.

4 A recipe for quantum graphical languages

2.1 Half a spider
We start by studying elementary associative binary operations with units: monoids.

I Definition 4. A monoid is a morphism µ : 2→ 1 (the product) and a morphism η : 0→ 1
(the unit) that satisfy the equations: µ ◦ (η ⊗ id) = µ ◦ (id⊗ η) = id and µ ◦ (µ⊗ id) = µ ◦ (id⊗ µ).

If we depict the product and the unit , the equations becomes: = =

and = . The monoid is commutative if µ ◦ σ = µ. In pictures, = .

All the monoids in this paper are supposed to be commutative.
Once we have a monoid (µ, η), we can define an n-ary product inductively by µ0 = η, µ1 = id

and µn+1 = µ ◦ (µn ⊗ id). As an example, here is µ4: = .

Using the equations, we have more generally µn+p = µ ◦ (µn ⊗ µp), so how to transform
the operator µn into compositions of µ and η doesn’t matter.

I Example 5. A monoid in FunX is exactly what is usually called a monoid on X. Monoid
in MatKd are exactly the d-dimensional K-algebras.

In the following we will be mainly interested in the two following examples:

I Example 6 (co-copy). Given a basis (|i〉)1≤i≤d of Kd, the co-copy monoid is define in

MatKd by η : 1 7→
∑d
i=1 |i〉 and µ : |i〉|j〉 7→

{
|i〉 if i = j

else 0

I Example 7 (monoid algebra [21]). Given a monoid M = (X, ∗, e) in FunX with X of
cardinality d, we can define a monoid K[M] in MatKd by indexing each element of a basis
by the elements of M . We then take: η : 1 7→ |e〉 and µ : |a〉|b〉 7→ |a ∗ b〉. If M is a group, we
will speak of a group algebra.

Starting from a monoid M in FunX with X of cardinality d + 1 that contains a zero
element (that we note ⊥), we can build a contracted algebra KM in MatKd by essentially
the same construction, but identifying the element ⊥ with the matrix 0. One can see that
the previous example of the co-copy actually fits in this framework: it is exactly KM for the
monoid in Fun{⊥,1,...,n} defined by i ∗ j = i if i = j and ⊥ otherwise.

Any commutative monoid defines a group of phases:

I Definition 8 (phase). Given a commutative monoid (µ, η), a phase is an invertible

morphism α : 1→ 1 such that: α ◦ µ = µ ◦ (id⊗ α). Pictorially:
α
= α .

The phases form an abelian group. In general we will write this group multiplicatively
and write αβ instead of α ◦ β. In the following, the notations α and β will be reserved for
elements of the phase group.

T. Carette and E. Jeandel 5

I Discussion 9. An invertible scalar (a 0→ 0 morphism) is obviously a phase. Therefore
the group of invertible scalars S is always a subgroup of the phase group G. If it is a direct
summand, i.e. if G = S ×H for some group H, then one can simplify the presentation by
“dropping out” the scalars and only consider nontrivial phases. This will be the case later on
for the Qubit prop, but there are examples for which such a simplification cannot be made.

Once we have phases, we can introduce a new sequence of operators µn(α) and η(α) defined

by µn(α) = α ◦ µn and η(α) = α ◦ η . Pictorially
α

...

=
α

...

and α= α .

These operators satisfy the following equation:
α

...
β

...

= α+ β

...

It is interesting to note that µ(α) itself defines a monoid, by taking as unit η(α−1). We
will call it a phase-shifted monoid of the original monoid.

Monoids dualize to co-monoids:

I Definition 10. A co-monoid in a prop is a morphism ∆ : 1→ 2 (the co-product) and a
morphism ε : 1→ 0 (the co-unit) that satisfies the equations: (∆⊗ id) ◦∆ = (id⊗∆) ◦∆

and (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id. If we depict the co-product and the co-unit , the

equations become: = and = = . A co-monoid is co-commutative

if it satisfies: σ ◦∆ = ∆. In pictures, = .

All the co-monoids in this paper are supposed to be cocommutative.
Again we can inductively define ∆n by ∆0 = ε,∆1 = id and ∆n+1 = (∆n ⊗ id) ◦∆.
We define phases for co-commutative co-monoids in the same way as phases for commu-

tative monoids, they are the invertible morphisms satisfying: α =
α

.

We can also define the morphisms ∆(α) and ε(α) as well as the phase-shifted co-monoid
(∆(α), ε(1/α)).

I Example 11 (copy in FinX). The functions ∆ : x 7→ (x, x), with ε the only function from
X to X0, defines a co-monoid in FinX . This is the only co-monoid in this prop.

I Example 12 (copy in MatKd). Given a basis of (|i〉)1≤i≤d, the copy co-monoid is defined
in MatKd by ε : |i〉 7→ 1 and ∆ : |i〉 7→ |i〉|i〉.

I Example 13 (group co-algebra). Given a finite group G of size d we can define a co-monoid

in MatKd by |x〉 7→ 1
d

∑
a∗b=x |a〉|b〉, the co-unit is |x〉 7→

{
1 if x = e

else 0
.

6 A recipe for quantum graphical languages

2.2 One spider

A monoid and a co-monoid can interact forming a Frobenius algebra.

IDefinition 14. A monoid (µ, η) and a co-monoid (∆, ε) form a Frobenius algebra iff they sat-

isfy: (id⊗ µ) ◦ (∆⊗ id) = (µ⊗ id) ◦ (id⊗∆) = ∆ ◦ µ. Pictorially: = = .

A Frobenius algebra is commutative if the monoid is commutative and the co-monoid is
cocommutative. All the Frobenius algebras in this paper are commutative.

In a Frobenius algebra the phases of the monoid coincide with the phases of the co-monoid.
Thus we can speak without ambiguity of the phases of a Frobenius algebra.

I Example 15 (In FinX). There are no Frobenius algebras in FinX (unless |X| = 1).

I Example 16 (copy and cocopy). Given a basis (|i〉)1≤i≤d of Kd, the co-copy monoid and
copy co-monoid form a Frobenius algebra in MatKd .

I Example 17 (group Frobenius algebra). Given a group G of size d, the group algebra and
the group co-algebra form a Frobenius algebra in MatKd .

When we have a Frobenius algebra (µ, η,∆, ε) we can define a family of morphisms

Sn,m : n → m by Sn,m := µn ◦∆m. We call them spiders and depict them
...

...

. They

satisfy the following equation:

... ...

... ...

=
...

...

. As we have done for monoids and

co-monoids, provided a phase α, we define decorated spiders Sn,m(α) by Sn = mn ◦ α ◦∆p.

These new morphisms satisfy the equation:

... ...
β

α

... ...

=
...

αβ

...

.

2.2.1 Compact structure

The symmetry in a prop allows various topological moves involving the wires. We can go
further by providing a way to bend them. This is done by compact structures.

I Definition 18 (compact structure). A compact structure is given by two morphisms δ : 0→ 2
and ν : 2→ 0 depicted as and satisfying the snake equation (ν ⊗ id) ◦ (id⊗ δ) =

(id ⊗ ν) ◦ (δ ⊗ id) = id. Pictorially: = = . A compact structure is

symmetric if ν ◦ σ = ν ◦ (id ⊗ id): pictorially, = . (This implies a similar

statement on δ). All compact structures in this paper are symmetric.

T. Carette and E. Jeandel 7

A compact structure allows to bend the wire leading to new topological properties. This
extends the diagrammatical language [23]. Any Frobenius algebra directly provides a compact

structure given by δ = ∆ ◦ η and ν = ε ◦ µ, pictorially: = and = .

If the Frobenius algebra is commutative then this compact structure is symmetric.
This compact structure behaves well with the Frobenius algebra, we have: (id⊗ µ) ◦ (δ ⊗

id) = ∆, pictorially: =

This equation is interesting from a topological point of view. Bending the wires of a
diagram gives a diagram representing the same morphism. This has been referred to as the
only topology matters paradigm [4]. For us, the only topology matter paradigm is the
key property of a graphical language.

In particular, we can by abuse of notation write: which may represent any of the fol-

lowing diagrams : = = = = =

In general, we can give an unambiguous meaning to any multi-graph with input and
outputs. We emphasize that this property plays a central role in the elegance of the Z∗
calculi.

2.3 Two spiders

The ZX, ZW and ZH-calculii all have two Frobenius algebras. In fact a language based on
only one spider is not expressive enough. The next step is therefore to have two of them.

In this setting, the only topology matters paradigm doesn’t apply anymore. Indeed, coloring

the two algebras in white and black, we have: = and = using the

two compact structures corresponding to the two algebras, but in general 6= .

So we cannot hope for the two compact structures to be equal, but we can hope for some
sort of compatibility:

I Definition 19 (compatibility). Two Frobenius algebras are compatible if their compact
structure satisfy:

=
. We call the left hand side the dualizer.

Note that the snake equation(s) implies that the left hand side is always the inverse of
the right hand side. In compatible case the dualizer is an involution.

When the two Frobenius algebras are compatible, we can adjust the language so that
we can bend wires on both structures. This is done at the price of a slight modification of
the second algebra. We introduce now a new generator (represented by a black node) that
represents the dualizer, and introduce four new generators in place of the original structures:

8 A recipe for quantum graphical languages

= = = = and more generally
...

α

...

=
...

α

...

With the new generators, we succeed in obtaining a new language: Indeed: we can now
bend the wires of the new generator, and we keep a form of the spider rule:

=

... ...
β

α

... ...

=
...

αβ

...

I Discussion 20. One could decide similarly to change the first Frobenius algebra rather
than the second one. In fact, if there is a preexisting compact structure, it also make sense
to search for a compatibility between the preexisting compact structure and the two algebras.
This is somehow what has been done in [12].

2.4 Two spiders interacting
We now require the two spiders to interact in a precise way.

I Definition 21 (Bialgebra). A co-monoid and a monoid form a bialgebra iff they satisfy the
three following equations:

=
= = =

Bigebra (B) Copy (C1) Cocopy (C2) Identity (Id)

The four bialgebra laws enforces some kind of commutation property between the co-
monoid and the monoid. There are conflicting definitions in the literature on which properties
one should impose on a bialgebra. The one we take is from Sweedler[25].

We now come to our main definition:

I Definition 22 (Z∗-algebra). A Z∗-algebra is formed by two compatible Frobenius algebras
such that the co-monoid of the first one satisfies the bigebra rule (B) with the monoid of the
second one.

A Z∗-algebra formed by two Frobenius algebras F and G will be denoted FG.

I Discussion 23. One could give a different definition of a Z∗-algebra, by imposing all four
conditions of the bialgebra law, or even impose it to both monoid/co-monoid pairs. However
it turns out that the most important examples (esp. the ZW-calculus) do not satisfy all
equations. We isolate the bigebra law as being central.

Using the notations from the previous section, we see that a Z∗-algebra leads to a
graphical-calculus, formed by two spiders that are subject to the following rules1:

1 The white node is the same as the white lozenge, but represented differently to emphasize that the
whole calculus is different

T. Carette and E. Jeandel 9

... ...
β

α

... ...

=
...

αβ

...

... ...
β

α

... ...

=
...

αβ

...

= = =

Together with the only topology matters paradigm, which means we can bend the wires
of any node, changing an input into an output.

The rules we obtain are a common subset of the rules of the Z∗-calculi [2, 4, 12, 1].

3 Classification of Z∗-algebras in Qubits and LinRel

Now that we have defined what we think is a graphical calculus, we can proceed to the
main theorem: there are essentially only four possible calculi for quantum computing up
to isomorphism: the ZX-calculus, the ZW-calculus, the ZW-calculus, and the (trivial) ZZ-
calculus. Before we can give a formal statement of the theorem, we need to explain what we
mean by “essentially”.

Consider a Z∗-algebra formed of two Frobenius algebras named A and B. Suppose that
λ is a invertible scalar (i.e. a 0→ 0 morphism). If we multiply, say, the generators of the
monoid of A by λ and the generators of the co-monoid of B by 1/λ, then we obtain a new
Z∗-algebra. This new algebra is usually not isomorphic to the first one, but for all practical
purposes, they behave the same.

More generally, suppose we add a phase α to the monoid of A (replacing µ, η by µ(α)
and η(α)) and we add similarly a phase β to the co-monoid of B. Then we obtain two new
Frobenius algebras that we will call Aα and Bβ which satisfies all axioms of a Z∗-algebra,
except possibly the compatibility relations. We call this a phase-shifted versions of the original
Z∗-algebra. We will show that all possible graphical calculi for quantum computing are
phase-shifted version of four basic ones.

Phase-shifted algebras are a bit subtle. To ease the understanding, we provide here the
graphical calculus that corresponds to AαBβ in terms of the original generators, with the
caveat that it is a graphical calculus only if the compatibility relation is satisfied (equivalently,
the black node below is an involution). n and m denote respectively the number of inputs
and outputs and we represent the compact structure of the white algebra differently in both
calculi to avoid confusion:

...
ℵ

...

=
...
ℵαn−1

...

= α−1 =
β

α

...

i

...

=
...

iβm−1

...

3.1 Z∗-algebras in Qubits
We now investigate the particular case of graphical calculi for quantum computing. This
corresponds to the special case Qubits = MatC2 .

A monoid in Qubit is exactly the same as a C-algebra of dimension 2. Algebras in
dimension 2 have been classified [24]: there are only two algebras up to isomorphism. A
proof is in Appendix A.1.

For our purpose however, we will introduce four algebras (the first three being isomorphic),
that we call Z, X, H and W . Working in the basis (|0〉, |1〉). They correspond to contracted
algebras CM , see 7.

10 A recipe for quantum graphical languages

Z |0〉 |1〉
|0〉 |0〉 0
|1〉 0 |1〉

X |0〉 |1〉
|0〉 |0〉 |1〉
|1〉 |1〉 |0〉

H |0〉 |1〉
|0〉 |0〉 |0〉
|1〉 |0〉 |1〉

W |0〉 |1〉
|0〉 |0〉 |1〉
|1〉 |1〉 0

Those multiplication tables describe the behavior of the algebras on |0〉 and |1〉.
We see that Z behaves like a Kronecker delta ensuring equality, X is the XOR gate, H

the AND gate and W is the effect algebra on two elements.
The matricial representation in the computational basis are:

, :=
Z

µZ ηZ(
1 0 0 0
0 0 0 1

) (
1
1

)
X

µX ηX(
1 0 0 1
0 1 1 0

) (
1
0

)
H

µH ηH(
1 1 1 0
0 0 0 1

) (
0
1

)
W

µW ηW(
1 0 0 0
0 1 1 0

) (
1
0

)

The phase group of Z is C∗×2. The phase group of W is C∗× × C+.
If we write the phases for our four favorite monoids, they read:

(a, b) :=
Z

a, b ∈ C∗

a

(
1 0
0 b

)
X

a, b ∈ C∗

a
2

(
1 + b 1− b
1− b 1 + b

)
H

a, b ∈ C∗

a

(
1 1− b
0 b

)
W

a ∈ C∗ b ∈ C
a

(
1 0
b 1

)

As explained in Discussion 9, in the case of Qubit, we can write2 the phase group
G = C? ×H where the first component C? corresponds to the invertible scalars, and H is
some commutative group (H = C?× in the first three cases, and H = C+ in the last case). One
could then index the phases only by this subgroup H (i.e. always take a = 1), introducing
scalars when necessary. This is what has been done in the literature.

All four monoids form Frobenius algebras, with the following co-monoids3, co-units, and
compact structures:

, :=

Z

∆Z εZ1 0
0 0
0 0
0 1

 (
1 1

)

X

∆X εX

1
2

1 0
0 1
0 1
1 0

 (
2 0

)

H

∆H εH1 2
0 −1
0 −1
0 1

 (
1 2

)

W

∆W εW0 0
1 0
1 0
0 1

 (
0 1

)

, :=

Z

δZ νZ1
0
0
1

 (
1 0 0 1

)

X

δX νX

1
2

1
0
0
1

 (
2 0 0 2

)

H

δH νH 2
−1
−1
1

 (
1 1 1 2

)

W

δW νW0
1
1
0

 (
0 1 1 0

)

We can now state our main theorem:

I Theorem 24. The only Z∗-algebras up to isomorphism in Qubits are, with a, b ∈ C∗:
Z(a, b

a)Z(1
a ,

a
b), Z(a, b

a)Z(− 1
a ,

a
b), Z(a, b

a)Z(1
a ,−

a
b), Z(a, b

a)Z(− 1
a ,−

a
b), Z(a,1)X(2

a ,1), Z(a,1)X(− 2
a ,1),

Z(a,−1)X(2
a ,1), Z(a,−1)X(− 2

a ,1), Z(a
b ,b

2)X(2
a ,−1), Z(a,−1)X(2b

a ,
1

b2), Z
(a, 1

b2−1
)
H(b

a ,
1−b2

b2) with b
2 6=

1, Z(a, 1
b2)W(b

a ,0) and W (a,0)Z(b
a ,

1
b2).

2 This can be done more generally in any prop if the group of scalars is divisible.
3 The co-monoids have been choosen such that the three first Frobenius algebras are isomorphic, hence

the weird 1
2 factor in X.

T. Carette and E. Jeandel 11

The proof is detailed in Appendix A.2. The idea is to show that, up to isomorphism,
there are only five possible monoids/co-monoid pairs satisfying the bigebra rule, and then
show how they can possibly extend to Z∗-algebras.

We will now compare the calculi we obtain with the literature.

The ZZ-calculus never has been really considered, as having two spiders that are identical
is not useful. However, its existence is not happenstance: in general a Frobenius algebra
would not make a bigebra with itself. In this case, it works as Z is a special Frobenius
algebra.
The ZX-calculus [4] corresponds to what we call ZX(2,2). This is a particular calculus as
the dualizer is trivial: both algebras have the same compact structure (up to scalars). We
say that the two algebras are coflexible. There are a few substantial differences between
our calculus and the ZX-calculus. Instead of using all possibles phases in C?, the authors
use phases in the unit circle. Subsequent work [19] introduced so-called lambda-boxes to
restore all phases. Second, the ZX(2,2)-calculus is a bit awkward as the two Frobenius
algebras Z and X(2,2) are not isomorphic, but only isomorphic up to a scalar. By rescaling
the X algebra, we can obtain a calculus where both algebras are dual, at the price of a
slightly different bigebra rule. The isomorphism corresponds to the Hadamard matrix;
as this matrix is symmetric, we can add it to our language without changing the only
topology matters paradigm, and we obtain this way the ZX-calculus defined in [4].
The fact that other calculi of the form ZαXβ exist corresponds to some commutation
properties between phases of the two algebras. In fact, they correspond to what is called
the π-commutation rule: (1, λ)Z ◦ (1,−1)X = λ(1,−1)X ◦ (1, 1

λ)Z where (a, b)Z is a phase
of Z and (a, b)X is a phase of X.
The original rules [4] of the ZX-calculus correspond exactly to:

The only topology matters paradigm (rule T)
The rules above valid on any graphical calculi (rules S1, S2, B2), including in this case
the copy rule (B1) and some form of the identity rule (rule D1)
one rule relative to the π-commutation (rule K2)
one rule relative to Hadamard, the isomorphism between Z and X (rule C)
one rule stating that Z is a special Frobenius algebra (hidden in rule S1)
one rule called π-copying (K1), and one rule related to the scalars (rules D2). The
second rule is anecdotal. The first one relates to what are the automorphisms of Z.

Therefore, with one omission, all original rules of the ZX-calculus could be rediscovered
again in a systematic way using our definition.
The ZW -calculus as discussed in [13, 14] is exactly what we call ZW . The calculus
however do not use phases on the black nodes. The original ZW -calculus introduced in
[12] by the same author is slightly different. Intuitively it corresponds to a different kind
of graphical languages where the two Frobenius algebras have been made compatible with
a third compact structure. The fact that other calculi of the form ZαWβ exist essentially
amounts to the same π-commutation rule as before.
The ZH-calculus as discussed in [1] is exactly what we call ZH(

√
2,− 1

2). However the
authors do not use phases on the white node, and use a different parametrizations of the
phases on the black node. The phase they call x is what we would call the phase (1, 1−2x)H .
This makes the spider rule more awkward in their calculus. The fact that other calculi
of the form ZαHβ exist is linked to the following rule: 2λ+1

λ (1, λ)Z ◦H ◦ (1, 1
2

1
λ+1)H =

(1, 2(λ+ 1))H ◦H ◦ (1, 1
λ)Z where (a, b)Z is a phase of Z, (a, b)H is a phase of H and H

is the Hadamard gate.

12 A recipe for quantum graphical languages

3.2 Generalization for qudits
A similar classification could be theoretically done for other dimensions, i.e. for the prop
MatCd . However difficulties arise. Indeed, all possible algebras have been classified only in
dimension d ≤ 6 [22] (in fact there are an infinite number of non isomorphic commutative
algebras of dimension 7), and the work is even more terse on bigebras (some work [8] has
been done for bialgebras in dimension 2 and 3) or Frobenius algebras (although a theoretical
characterization exist).

We will therefore focus here on generalizations of the existing structures of dimension 2
to higher dimension.

The ZX-structure corresponds to an interaction between the two algebras C2 and C[Z/2Z].
One could readily generalize this to higher dimensions replacing Z/2Z by Z/dZ, or actually
any other commutative group of size d. In higher dimension, the dualizer actually becomes
non trivial: it corresponds to the morphism x 7→ −x in Z/dZ, which is trivial only if d = 2.

The ZW -structure can also be generalized easily. We again replace the algebra C2 by Cd.
and we can generalize the W algebra in dimension 2 to the algebra C[X]

/(
Xd
) .

We did not find any generalization of ZH that work in arbitrary dimension. The obvious
d-dimensional generalization of H would be as a contracted monoid algebra CM where M
is the monoid (F ,∩) for a family of subsets F closed under intersection (the 2-dimensional
version corresponding to F = {{1}, ∅}). This generalization gives indeed two Frobenius
algebra that satisfy a bigebra law, but they usually are not compatible (unless F = 2X for
some set X).

3.3 In LinRelK
Quantum computing is not the only place where graphical calculi appear: another Z∗-algebra
that occurs in the literature is Graphical linear algebra [2] in the prop LinRelK. In LinRelK
a map n→ m is a linear subspace of Kn+m.

It turns out that there are only two monoids in LinRelK, and they are not isomorphic: the
monoid given by the subspace {(x, x, x), x ∈ K} and the monoid given by {(x, y, x+y), x, y ∈
K}. Their respective phase groups are both trivial. Both these monoids, that we call B and
N , actually happen to have Frobenius algebra structures.

I Proposition 25. There are only four Z∗-algebras in LinRelK: BB, NN , BN and NB.

As these are the only potential candidates, we just have to check that they indeed give
Z∗-algebras. A detailed proof is given in Appendix A.3. BB and NN are trivial, and BN is
just a dual version of NB, therefore the graphical calculi of [2] is THE only possible graphical
calculus for this prop.

4 Future works

We have classified Z∗-algebras in MatC2 and LinRelK. Further investigations will concern
other categories. In the case of MatR for a semiring R, generalizations of ZW and ZX exist.
A natural question is which other Z∗-algebras exist in this setting. All the monoids and
co-monoids we considered were commutative, the non commutative case is also of interest,
leading to a more general notion of graphical language involving port graphs or rotation
systems. An other direction would be to drop the unit and the compact structure and find
what defines a graphical language in this case. This is necessary in infinite dimensional
Hilbert spaces for example.

T. Carette and E. Jeandel 13

References
1 Miriam Backens and Aleks Kissinger. ZH: A complete graphical calculus for quantum

computations involving classical non-linearity. arXiv preprint arXiv:1805.02175, 2018.
2 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Interacting Hopf algebras. Journal of

Pure and Applied Algebra, 221(1):144–184, 2017.
3 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Deconstructing Lawvere with distributive

laws. Journal of logical and algebraic methods in programming, 95:128–146, 2018.
4 Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and

diagrammatics. New Journal of Physics, 13(4):043016, 2011.
5 Bob Coecke and Aleks Kissinger. The compositional structure of multipartite quantum

entanglement. In International Colloquium on Automata, Languages, and Programming, pages
297–308. Springer, 2010.

6 Joseph Collins and Ross Duncan. Hopf-Frobenius algebras and a simpler Drinfeld double.
Electronic Proceedings in Theoretical Computer Science, 2019.

7 Niel de Beaudrap and Dominic Horsman. The ZX calculus is a language for surface code
lattice surgery. Quantum, 4:218, 2020.

8 Khadra Dekkar and Abdenacer Makhlouf. Bialgebra structures of 2-associative algebras. arXiv
preprint arXiv:0809.1144, 2008.

9 Yukio Doi and Mitsuhiro Takeuchi. BiFrobenius algebras. Contemporary Mathematics,
267:67–98, 2000.

10 Ross Duncan and Kevin Dunne. Interacting Frobenius Algebras are Hopf. In 2016 31st Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–10. IEEE, 2016.

11 Ross Duncan, Aleks Kissinger, Simon Perdrix, and John Van De Wetering. Graph-theoretic
simplification of quantum circuits with the ZX-calculus. arXiv preprint arXiv:1902.03178,
2019.

12 Amar Hadzihasanovic. A diagrammatic axiomatisation for qubit entanglement. In 2015 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, pages 573–584. IEEE, 2015.

13 Amar Hadzihasanovic. The algebra of entanglement and the geometry of composition. PhD
thesis, University of Oxford, 2017. URL: https://arxiv.org/abs/1709.08086.

14 Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. Two complete axiomatisations of
pure-state qubit quantum computing. In 2018 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), pages 502–511. ACM, 2018. doi:10.1145/3209108.3209128.

15 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation of the
ZX-calculus for Clifford+ T quantum mechanics. In 2018 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 559–568, 2018.

16 André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in mathematics,
88(1):55–112, 1991.

17 M Koppinen. On algebras with two multiplications, including Hopf algebras and Bose–Mesner
algebras. Journal of Algebra, 182(1):256–273, 1996.

18 Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
19 Kang Feng Ng and Quanlong Wang. Completeness of the zx-calculus for pure qubit clifford+

t quantum mechanics. arXiv preprint arXiv:1801.07993, 2018.
20 Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.
21 J.S. Ponizovskii. Semigroup rings. Semigroup Forum, 36:1–46, 1987.
22 Bjorn Poonen. Isomorphism types of commutative algebras of finite rank. Computational

arithmetic geometry, 463:111–120, 2008.
23 Peter Selinger. A survey of graphical languages for monoidal categories. In New structures for

physics, pages 289–355. Springer, 2010.
24 E Study. Über systeme complexer zahlen und ihre anwendung in der theorie der transforma-

tionsgruppen. Monatshefte für Mathematik und Physik, 1:283–354, 1890.
25 Moss E. Sweedler. Hopf Algebras. W.A. Benjamin, Inc., 1969.

https://arxiv.org/abs/1709.08086
http://dx.doi.org/10.1145/3209108.3209128

14 A recipe for quantum graphical languages

26 Fabio Zanasi. Interacting hopf algebras: the theory of linear systems. arXiv preprint
arXiv:1805.03032, 2018.

A Proofs

A.1 Classification of two dimensional algebras

I Theorem 26 ([24]). In Qubit, any algebra is isomorphic either to Z or to W .

Proof. We are looking for all unital algebras up to isomorphism in K2, whith char(K) 6= 2.
Given an algebra with unit, we choose a basis (|0〉, |1〉) where |0〉 is the unit. Then the

matrix representation of the monoid is
(

1 0 0 x

0 1 1 y

)
. The change of basis

(
1 y

2
0 1

)
gives(

1 0 0 λ

0 1 1 0

)
with λ := x+ y2

2 . Let
(
a b

c d

)
be an invertible matrix. Its determinant is

∆ := ad− bc 6= 0. We want:

(
a b

c d

)(
1 0 0 λ

0 1 1 0

)(
d −b
−c a

)⊗2

= ∆2
(

1 0 0 µ

0 1 1 0

)

this gives the following system:



∆ = ad− bc 6= 0
∆2 = ad2 − 2bcd+ λac2

0 = c
(
b2 − λa2)

∆2µ = λa3 − ab2

0 = c
(
λc2 − d2)

∆2 = ad2 − λac2

0 = b2c− 2abd+ λa2c

If c 6= 0 then we have d2 = λc2 and then ∆2 = 0, a contradiction. Setting c = 0 the
system reduces to:



∆ = ad 6= 0
∆2 = ad2

∆2µ = λa3 − ab2

0 = −2abd
c = 0

⇒



∆ = ad 6= 0
∆2 = ad2

∆2µ = λa3

b = 0
c = 0

⇒



d 6= 0
µ = λ

d2

a = 1
b = 0
c = 0

Finally we have a = 1, b = 0, c = 0 and d 6= 0. The equivalence classes correspond to the
elements of K up to multiplication by non-zero squares. We have three equivalence classes in
R: λ < 0, λ > 0 and λ = 0. In C there are only two λ = 0 and λ 6= 0. The case λ 6= 0 admit

a very simple representative: the change of basis 1√
2

(
1 −1
1 1

)
gives

(
1 0 0 0
0 0 0 1

)
.

J

T. Carette and E. Jeandel 15

A.2 Proof of Theorem 24
To simplify our classification up to isomorphism, we start by identifying all the algebra
automorphisms in Qubits.

I Proposition 27. The unique non-trivial automorphisms of µZ and µW are respectively(
0 1
1 0

)
and the matrices of the form

(
1 0
0 a

)
with a ∈ C∗.

Proof. We start with µZ :(
a b

c d

)(
1 0 0 0
0 0 0 1

)(
d −b
−c a

)⊗2

= ∆2
(

1 0 0 0
0 0 0 1

)
this gives the following system:

∆ = ad− bc 6= 0
∆2 = ad2 + bc2

0 = −ab (c+ d)
0 = ab (a+ b)
0 = cd (c+ d)
0 = −cbd− dac
∆2 = cb2 + da2

If a = 0 then: 

∆ = bc 6= 0
∆2 = bc2

0 = cd (c+ d)
0 = −cbd
∆2 = cb2

⇒


∆ = bc 6= 0
∆2 = bc2

∆2 = cb2

d = 0

⇒


d = 0
b = 1
c = 1

the solution is
(

0 1
1 0

)
. If a 6= 0 and b 6= 0 we then have ∆ = 0, a contradiction. If a 6= 0

and b = 0: 

∆ = ad 6= 0
∆2 = ad2

0 = cd (c+ d)
0 = −dac
∆2 = da2

b = 0

⇒



∆ = ad 6= 0
∆2 = ad2

∆2 = da2

c = 0
b = 0

⇒


a = d = 1
c = 0
b = 0

the solution is
(

1 0
0 1

)
. Now for µW :

(
a b

c d

)(
1 0 0 0
0 1 1 0

)(
d −b
−c a

)⊗2

= ∆2
(

1 0 0 0
0 1 1 0

)
this gives the system:

16 A recipe for quantum graphical languages



∆ = ad− bc 6= 0
∆2 = ad2 − 2bcd
0 = b2c

0 = ab2

0 = cd2

∆2 = ad2

0 = cb2 − abd

⇒


∆ = ad 6= 0
∆2 = ad2

b = c = 0
⇒


d 6= 0
a = 1
b = c = 0

the solutions are the matrices
(

1 0
0 d

)
with d 6= 2.

J

This result allows to find all the monoid/co-monoid pair satisfying the (B) rule.

I Lemma 28. In Qubits, up to isomorphism, the only monoid/co-monoid pair satifying the
(B) rule are µZ/∆Z , µX/∆Z , µW /∆Z , µH/∆Z , and µZ/∆W .

Proof. There are only two co-algebras up to isomorphism, ∆Z and ∆W .

Any algebra is of the form:
(
a b b c

d e e f

)
.

We start by finding all the algebras satisfying (B) with ∆W .
We want:

∆W ◦
(
a b b c

d e e f

)
=
(
a b b c

d e e f

)⊗2

I2 ⊗


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⊗ I2

∆W
⊗2

This gives the following system:



0 = a (a− 1)
0 = d (a− 1)
0 = d2

0 = b (2a− 1)
0 = e (a− 1) + dc

0 = de

0 = c (2a− 1) + 2b2

0 = f (a− 1) + 2be+ cd

0 = 2df + 2e2

⇒



0 = a (a− 1)
d = 0
0 = b (2a− 1)
0 = c (2a− 1) + 2b2

0 = f (a− 1) + 2bc
e = 0

⇒



if a = 0:


a = 0 b = 0

c = 0 d = 0

e = 0 f = 0

if a 6= 0:


a = 1 b = 0

c = 0 d = 0

e = 0 f ∈ C

The only rank 2 solution are the
(

1 0 0 0
0 0 0 f

)
with f ∈ C∗. They are algebras with

units
(

1
1
f

)
. Since

(
1 0
0 f

)
is an automorphism of ∆W this gives a unique pair up to

isomorphism: µZ/∆W .
Now with ∆Z , we want:

T. Carette and E. Jeandel 17

∆Z ◦
(
a b b c

d e e f

)
=
(
a b b c

d e e f

)⊗2

I2 ⊗


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⊗ I2

∆Z
⊗2

This gives the following system:


a = a2 0 = ad d = d2

b = b2 0 = be e = e2

c = c2 0 = cf f = f2

⇔


a, b, c, d, e, f ∈ {0, 1}
(a 6= 1) ∨ (d 6= 1)
(b 6= 1) ∨ (e 6= 1)
(c 6= 1) ∨ (f 6= 1)

The rank 2 solutions are:(
1 0 0 0
0 0 0 1

) (
1 0 0 1
0 1 1 0

) (
0 1 1 0
1 0 0 1

) (
1 1 1 0
0 0 0 1

)
(

1 0 0 0
0 1 1 1

) (
1 0 0 0
0 1 1 0

) (
0 1 1 0
0 0 0 1

) (
0 0 0 1
1 0 0 0

)
(

0 1 1 1
1 0 0 0

) (
0 0 0 1
1 1 1 0

) (
0 0 0 1
0 1 1 0

) (
0 1 1 0
1 0 0 0

)

Since
(

0 1
1 0

)
is an automorphism of ∆Z , this reduces the possibilities to:

(
1 0 0 0
0 0 0 1

) (
1 0 0 1
0 1 1 0

) (
1 1 1 0
0 0 0 1

) (
1 0 0 0
0 1 1 0

)
(

0 0 0 1
1 0 0 0

) (
0 0 0 1
1 1 1 0

) (
0 1 1 0
1 0 0 0

)
But among them the last three are not algebras, they are not associative, a counter

example for the three maps is the evaluation of (|0〉 ∗ |0〉) ∗ |1〉 versus |0〉 ∗ (|0〉 ∗ |1〉). The
other are the algebras µZ , µX , µH and µW .

This gives 4 pairs, µZ/∆Z , µX/∆Z , µW /∆Z and µH/∆Z . J

Now we characterize all the possible Frobenius algebras given a fixed monoid or co-monoid.

I Lemma 29. Given a commutative Frobenius algebra F := (µ, η,∆, ε), the co-monoids
forming Frobenius algebras with (µ, η) are exactly the phase shifted co-monoids (∆ϕ, εϕ).
(µ, η,∆ϕ, εϕ) is called the phase shifted Frobenius algebra.

Proof. (⇒) Given a phase α, the phase-shifted co-monoid (∆(α), ε(−α)) forms a Frobenius
algebra with (µ, η) (just moving around the phases).

(⇐) Let

 ,

 be a co-monoid forming a Frobenius algebra with (µ, η). We define the

morphisms and . Those morphisms satisfy the phase equation:

18 A recipe for quantum graphical languages

= and =

Furthermore they are inverse of each other:

= = = = and

= = = =

We call them α and α−1. Furthermore we have:

= = = and =

Finally ∆′ = ∆(α) and ε′ = ε(−α). J

We are ready to classify the Z∗-algebras.

I Theorem 30. The only Z∗-algebras up to isomorphism in Qubits are, with a, b ∈
C∗: Z(a,b)Z(1

a ,
1
b), Z(a,b)Z(− 1

a ,
1
b), Z(a,b)Z(1

a ,−
1
b), Z(a,b)Z(− 1

a ,−
1
b), Z(a,1)X(2

a ,1), Z(a,1)X(− 2
a ,1),

Z(a,−1)X(2
a ,1), Z(a,−1)X(− 2

a ,1), Z
(a, 4

a2b2)X(b,−1), Z(a,−1)X(b, 4
a2b2), Z

(a, 1
a2b2−1

)
H(b, 1−a2b2

a2b2) with

a2b2 6= 1, Z(a, 1
a2b2)W(b,0) and W (a,0)Z(b, 1

b2a2).

Proof. The candidate Z∗-algebras are ZαZβ , ZαXβ , ZαWβ , ZαHβ and WαZβ . We only
need to check compatibility. If d is without phase-shift and α and β are the phase we do the
phase-shifts with, compatibility corresponds to the equation: β ◦ d ◦ α = α−1 ◦ d−1 ◦ β−1.

ZαZβ : The dualizer of ZZ is the identity. Let α = (a, b) and β = (c, d), a, b, c, d ∈ C∗.
Zα and Zβ are compatible iff

c

(
1 0
0 d

)
a

(
1 0
0 b

)
= 1

a

(
1 0
0 1

b

)
1
c

(
1 0
0 1

d

)
This gives the system:

T. Carette and E. Jeandel 19

{
a2c2 = 1
b2d2 = 1

The Z∗-algebras are then Z(a,b)Z(1
a ,

1
b), Z(a,b)Z(− 1

a ,
1
b), Z(a,b)Z(1

a ,−
1
b) and Z(a,b)Z(− 1

a ,−
1
b).

The dualizer is the identity for Z(a,b)Z(1
a ,

1
b).

ZαXβ : The dualizer of ZX is 1
2 , its inverse is 2. let α = (a, b) and β = (c, d), a, b, c, d ∈ C∗.

Zα and Xβ are compatible iff

c

(
1 + d 1− d
1− d 1 + d

)
a
2

(
1 0
0 b

)
= 1

a

(
1 0
0 1

b

)
2
c

(
1 + 1

d 1− 1
d

1− 1
d 1 + 1

d

)
This gives the system:


(da2c2 − 4)(1 + d) = 0
(a2c2bd+ 4)(1− d) = 0
(a2c2b2d− 4)(1 + d) = 0

⇔



if d = −1 then
{
d = −1
a2c2b = 4

if d = 1 then


d = 1
a2c2 = 4
b2 = 1

else
{
b = −1
da2c2 = 4

The Z∗-algebras are then Z(a,1)X(2
a ,1), Z(a,1)X(− 2

a ,1), Z(a,−1)X(2
a ,1), Z(a,−1)X(− 2

a ,1),
Z(a, 4

a2b2)X(b,−1) and Z(a,−1)X(b, 4
a2b2). The dualizer is the identity for Z(a,1)X(2

a ,1).

ZαHβ : The dualizer of ZH is
(

2 −1
−1 1

)
and its inverse is

(
1 1
1 2

)
. let α = (a, b) and

β = (c, d), a, b, c, d ∈ C∗. Zα and Hβ are compatible iff

c

(
1 1− d
0 d

)(
2 −1
−1 1

)
a

(
1 0
0 b

)
= 1

a

(
1 0
0 1

b

)(
1 1
1 2

)
1
c

(
1 1− 1

d

0 1
d

)
This gives the system: 

a2c2(d+ 1) = 1
a2c2bd = −1
a2c2b2d2 = 1 + d

⇔


a2c2 6= 1
b = 1

a2c2−1

d = 1−a2c2

a2c2

The Z∗-algebras are Z(a, 1
a2b2−1

)
H(b, 1−a2b2

a2b2) with a2b2 6= 1. The dualizer is the Hadamard

gate in the case a = 1 and b =
√

2.

ZαWβ : the dualizer of ZW is
(

0 1
1 0

)
. Let α = (a, b) and β = (c, d), a, b, c ∈ C∗, d ∈ C.

Zα and Wβ are compatible iff

c

(
1 0
d 1

)(
0 1
1 0

)
a

(
1 0
0 b

)
= 1

a

(
1 0
0 1

b

)(
0 1
1 0

)
1
c

(
1 0
−d 1

)

This gives the system:
{
d = 0
a2c2b = 1

.

The Z∗-algebras are Z(a, 1
a2b2)W(b,0). The dualizer is the NOT gate in the case a = 1 and

b = 1.

20 A recipe for quantum graphical languages

WαZβ : The dualizer of WZ is
(

0 1
1 0

)
. Let α = (a, b) and β = (c, d), a, c, d ∈ C∗, b ∈ C.

Wα and Zβ are compatible iff

c

(
1 0
0 d

)(
0 1
1 0

)
a

(
1 0
b 1

)
= 1

a

(
1 0
−b 1

)(
0 1
1 0

)
1
c

(
1 0
0 1

d

)

This gives the system:
{
b = 0
c2a2d = 1

.

The Z∗-algebras are W (a,0)Z(b, 1
b2a2). The dualizer is the NOT gate in the case a = 1 and

b = 1.

J

A.3 Proof of Proposition 25
I Proposition 31. There are only four Z∗-algebras in LinRelK: BB, NN , BN and NB.

Proof. Using the equations of [2] this amount to show that µN and µB are the only monoids
and that there phase groupos are trivial.

A subspaceM ofK3 is unital iff ∃u ∈ K,∀x, y ∈ K, ((u, x, y) ∈M ⇔ x = y)∧((x, u, y) ∈M ⇔ x = y).
The trivial subspaces {0, 0, 0} and K3 don’t satisfy this property.
If M is of dimension one then there is a vector (a, b, c) such that ∀x, y, z ∈ K, (x, y, z) ∈

M ⇔ ∃λ ∈ K, (x, y, z) = (λa, λb, λc).
If M has a unit u, given an x ∈ K we have (x, u, x) ∈ M and then ∃λK, x = λa, u =

λb, x = λc). We know that λ 6= 0 else all triples (x, u, y) would be in M . This gives a = c,
by symmetry we have also b = c. The only unital subspace of dimension one is µN . It is also
associative and thus is a monoid.

If M is of dimension 2 then there is a vector (a, b, c) such that ∀x, y, z ∈ K, (x, y, z) ∈
M ⇔ ∃λ ∈ K, ax+ by + cz = 0.

If M has a unit u, given any x ∈ K we have (x, u, x) ∈M and then ax+bu+cx = 0. This
gives bu = 0 and c = −a. By symmetry we also have au = 0 and c = −b. If a = b = c = 0
then all triple would be in M . We deduce that a = b = −c 6= 0 and u = 0. The only unital
subspace of dimension 2 is µB. It is also associative and thus is a monoid. ◦ is matrix
product and ⊗ is kronecker product. Finally µB and µN are the only monoids in LinRelK.

Now let α be a phase of µN , if (x, y) ∈ α then the phase’s definition gives us that x = y,
so α = id or α = (0, 0) the only invertible possibility is id. Now let β be a phase of µB, if
(x, y) ∈ α then the phase’s definition gives us that for all z ∈ K (x+z, y+z) ∈ α, thus α = id

or α = K2 the only invertible possibility is id. Finally both phase groups are trivial. J

B All graphical calculi for quantum computing

B.1 The ZZ-calculis

B.1.1 Z(a,b/a)Z(1/a,a/b)

This is the first calculus presented in the Theorem, up to a re-parametrization that makes it
slightly better looking:

T. Carette and E. Jeandel 21

=
(
a 0 0 0
0 0 0 b

)
=
(1
a
1
b

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

=
(
a 0 0 b

)
=


1
a

0
0
1
b

 =
(

1 0
0 1

)

=
(

1 0 0 0
0 0 0 1

)
=
(

1
1

)
=


1
a 0
0 0
0 0
0 1

b

 =
(
a b

)
(x, y) = x

(
1 0
0 y

)

B.1.2 Z(a,b/a)Z(1/a,−a/b)

The only difference with the previous calculus is in the following generators:

=
(

1 0
0 −1

)
=
(

1 0 0 0
0 0 0 −1

)
=
(

1
−1

)

=


1
a 0
0 0
0 0
0 − 1

b

 =
(
a −b

)
(x, y) = x

(
1 0
0 −y

)

B.1.3 Z(a,b/a)Z(−1/a,a/b) and Z(a,b/a)Z(−1/a,−a/b)

These calculi differ from the previous ones only by the presence of a global scalar “-1” in all
matrices corresponding to the black nodes.

B.2 The ZX-calculi

B.2.1 Z(a,1)X(2/a,1)

In the case a = 1, this is almost the ZX-calculus of [4]:

= a

(
1 0 0 0
0 0 0 1

)
= 1

a

(
1
1

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

= a
(
1 0 0 1

)
= 1

a


1
0
0
1

 =
(

1 0
0 1

)

=
(

1 0 0 1
0 1 1 0

)
=
(

1
0

)
= 1

a


1 0
0 1
0 1
1 0

 = a
(
1 0

)

(x, y) = 1
2 x

(
y + 1 −y + 1
−y + 1 y + 1

)

22 A recipe for quantum graphical languages

B.2.2 Z(a,1)X(2/a,−1)

The only difference with the previous calculus is in the following generators:

=
(

0 1
1 0

)
=
(

0 1 1 0
1 0 0 1

)
=
(

0
1

)

= 1
a


0 1
1 0
1 0
0 1

 = a
(
0 1

)
(x, y) = 1

2 x

(
−y + 1 y + 1
y + 1 −y + 1

)

B.2.3 Z(a,1)X(−2/a,−1) and Z(a,1)X(−2/a,1)

These calculi differ from the previous ones only by the presence of a global scalar “-1” in all
matrices corresponding to the black nodes.

T. Carette and E. Jeandel 23

B.2.4 Z(a/b,b2)X(2/a,−1)

This is a quite different calculus:

= a

(1
b 0 0 0
0 0 0 b

)
= 1

a

(
b
1
b

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

= a
(1
b 0 0 b

)
= 1

a


b

0
0
1
b

 =
(

0 b
1
b 0

)

=
(

0 b b 0
1
b 0 0 1

b

)
=
(

0
1
b

)
= 1

a


0 b2

1 0
1 0
0 1

b2

 = a
(
0 1

)

(x, y) = 1
2 x

(
−by + b by + b
y+1
b −y−1

b

)

B.2.5 Z(a,−1)X(2b/a,1/b2)

This is a calculus dual to the previous one, but the equations look more intricate:

= a

(
1 0 0 0
0 0 0 −1

)
= 1

a

(
1
−1

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

= a
(
1 0 0 −1

)
= 1

a


1
0
0
−1

 = 1
2b

(
b2 + 1 1− b2

b2 − 1 −1− b2

)

= 1
2b

(
b2 + 1 1− b2 1− b2 b2 + 1
b2 − 1 −1− b2 −1− b2 b2 − 1

)
= 1

2b

(
b2 + 1
b2 − 1

)

= 1
2ab


b2 + 1 1− b2

b2 − 1 −1− b2

b2 − 1 −1− b2

b2 + 1 1− b2

 = a
2b
(
b2 + 1 1− b2)

(x, y) = x
2b

(
b2y + 1 1− b2y

b2y − 1 −1− b2y

)

24 A recipe for quantum graphical languages

B.3 The ZH-calculi
B.3.1 The Z(a,1/(b2−1))H(b/a,(1−b2)/b2) calculus

= a

(
1 0 0 0
0 0 0 1

b2−1

)
= 1

a

(
1

b2 − 1

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

= a
(

1 0 0 1
b2−1

)
= 1

a


1
0
0

b2 − 1

 = 1
b

(
1 1

b2 − 1 −1

)

= 1
b

(
1 1 1 1

b2 − 1 b2 − 1 b2 − 1 −1

)
= 1

b

(
1
−1

)
= 1

ab


1 1

b2 − 1 b2 − 1
b2 − 1 b2 − 1

(b2 − 1)2 1− b2


= a

b

(
1 1

1−b2

)
(x, y) = x

b

(
1 1

b2 − 1 b2 − 1− b2y

)

B.3.2 The Z(a,1/cH(
√

c+1/a,−c/(c+1)) calculus
This is an alternative presentation of the previous calculus taking c = b2 − 1. While not
a new calculus per se, we think it is easier to understand than the previous one.

√
c+ 1

represents one of the two square roots of c+ 1.

= a

(
1 0 0 0
0 0 0 1

c

)
= 1

a

(
1
c

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

= a
(
1 0 0 1

c

)
= 1

a


1
0
0
c

 = 1√
c+1

(
1 1
c −1

)

= 1√
c+1

(
1 1 1 1
c c c −1

)
= 1√

c+1

(
1
−1

)
= 1

a
√
c+1


1 1
c c

c c

c2 −c

 = a√
c+1

(
1 −1

c

)

(x, y) = x√
c+1

(
1 1
c c− (c+ 1)y

)

T. Carette and E. Jeandel 25

B.3.3 The case a = c = 1
Here is the calculus we obtain when a = c = 1. This is almost the ZH-calculus [1] (black nodes
are represented by a white rectangle in ZH), with a slight differences in the parametrization
of the phases:

=
(

1 0 0 0
0 0 0 1

)
=
(

1
1

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

=
(
1 0 0 1

)
=


1
0
0
1

 = 1√
2

(
1 1
1 −1

)

= 1√
2

(
1 1 1 1
1 1 1 −1

)
= 1√

2

(
1
−1

)
= 1√

2


1 1
1 1
1 1
1 −1

 = 1√
2

(
1 −1

)

(x, y) = x√
2

(
1 1
1 1− 2y

)

B.4 The ZW-calculi
B.4.1 The Z(a,1/c2)W(c/a,0)

= a

(
1 0 0 0
0 0 0 1

c2

)
= 1

a

(
1
c2

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

= a
(
1 0 0 1

c2

)
= 1

a


1
0
0
c2

 =
(

0 1
c

c 0

)

=
(

0 1
c

1
c 0

c 0 0 0

)
=
(

0
c

)
= 1

a


0 1

c

c 0
c 0
0 0

 = a
(
0 1

c

)
(x, y) = x

(
cy 1

c

c 0

)

26 A recipe for quantum graphical languages

B.4.2 The case a = c = 1
This is the ZW-calculus of [13, 14]:

=
(

1 0 0 0
0 0 0 1

)
=
(

1
1

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

=
(
1 0 0 1

)
=


1
0
0
1

 =
(

0 1
1 0

)

=
(

0 1 1 0
1 0 0 0

)
=
(

0
1

)
=


0 1
1 0
1 0
0 0

 =
(
0 1

)
(x, y) = x

(
y 1
1 0

)

B.4.3 The W (a,0)Z(b/a,1/b2) calculus
This is very similar to the previous calculus, except that W is now chosen as the white node,
meaning that the black node is actually Z, up to the dualizer.

= a

(
1 0 0 0
0 1 1 0

)
= 1

a

(
1
0

)
=


0 0
1 0
1 0
0 1

 =
(
0 1

)
(x, y) = x

(
1 0
y 1

)

= a
(
0 1 1 0

)
= 1

a


0
1
1
0

 =
(

0 b
1
b 0

)

=
(

0 0 0 b
1
b 0 0 0

)
=
(
b
1
b

)
= 1

a


0 b

0 0
0 0
1
b 0

 = a
(1
b b

)
(x, y) = x

(
0 by
1
b 0

)

	Diagrammatical quantum computing
	Graphical structures
	Half a spider
	One spider
	Compact structure

	Two spiders
	Two spiders interacting

	Classification of Z*-algebras in Qubits and LinRel
	Z*-algebras in Qubits
	Generalization for qudits
	In LinRel

	Future works
	Proofs
	Classification of two dimensional algebras
	Proof of Theorem 24
	Proof of Proposition 25

	All graphical calculi for quantum computing
	The ZZ-calculi
	First ZZ calculus
	Second ZZ calculus
	The other ZZ-calculi

	The ZX-calculi
	The first ZX calculus
	The second ZX calculus
	The third and fourth ZX calculi
	The fifth ZX calculus
	The last ZX calculus

	The ZH-calculi
	The First ZH-calculus
	The First ZH-calculus revisited
	The original ZH-calculus

	The ZW-calculi
	The first ZW calculus
	The original ZW calculus
	The second ZW calculus

