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The cuspidalization conjecturenhich is a consequence of Grothendiecestion conjectureasserts that for
any smooth hyperbolic curv& over a finitely generated fielkl of characteristi® and any non empty Zariski
openU C X, every section ofr; (X, z) — Galy, lifts to a section ofry (U, z) — Gal,. We consider in this
article the problem of lifting Galois sections to the inteaiiate quotientri(U) introduced by MochizukiT].
We show that wheit = Q andD = X \ U is an union of torsion sub-packets every Galois sectionadlgtu
lifts to 71°(U). One of the main tools in the proof is the construction of salarsorsFp and Ep over X and
the geometric interpretation/(U) ~ w1 (Fp).
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1 Introduction

Let k be a fixed separable closure of an arbitrary fieldnd letGaly, = Gal(k/k) be the absolute Galois group
of k. For a varietyX /k, let X;; = X Xy k be the base change af to k.

1.1 Section conjecture and cuspidalization conjecture

The étale fundamental group (X, z) of X with base point: fits into an exact sequence, denotedyX /k):
1= m(X:, ) - m((X,z) = Gal, — 1. (1)

By functoriality, any rational point € X (k) induces a sectionx (z) : Gal, — m1 (X, z), well defined in the
set.”;, (x/r) Of sections of {) up to conjugation by an elementof (X3, 7).

In his 1983 anabelian letter to Faltings (sed), Grothendieck formulated th&ection conjecturenamely: if
k is afield of finite type ove®, and X is a smooth proper curve of genus at leasverk, then the section map

Sx X(k/’) — ywl(X/k)

is a bijective correspondence. He also explained how tockethe fact that x is injective from the Mordell-Weil
theorem.

Grothendieck’s original vision also contains a versionta section conjecture for a nonempty open subset
U of X. Itis however easy to see that the direct analogue failsséletion magsy : U(k) — 7%, wk) is still
injective, but not surjective in general. Indeed for eadtoreal pointz € (X\U)(k) at infinity, one can consider
the local extensiom, (U,./k) associated to a punctured formal neighbourhbpd= Spec(Ox ) \ {x} of z in
U. This gives rise to a non-empty packet. v, /x) C r, (u/k) Of cuspidal sectionsThe generalized section
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2 N. Borne, M. Emsalem, and J. Stix: Lifting Galois sections

conjecture now asserts thatifis a hyperbolic smooth curve over a fidlaf finite type overQ, then sections in
. (u/k) €ither come from rational points 6f, or are cuspidal.

The direct observation that the local extensianslU, /k) split has the following striking consequence: if
the section conjecture holds fof, then the map”;., (v k) — 7=, (x/k) IS surjective. This consequence of the
section conjecture we are fond of calling thespidalization conjecture

Besides being a test for the section conjecture, the cusmtian conjecture is also a significant part of
various strategies to prove the section conjecture itaf.example, by working with a fixed and very specific
open subsel/, namely the complement

U= X\X(k)

of the set of rational points ok, the cuspidalization conjecture enables to reduce théosecbnjecture to

the statement: if a smooth curve has no rational points,yesection is cuspidal. This version of the section
conjecture should be more tractable, considering the fettduspidal sections have been characterized among
all sections by Nakamura (se®, fl]) as those sections that cyclotomically normalize an iaestibgroup. We
emphasize thaX (k) C X is a union of torsion sub-packets in the sense to be desdoiled.

1.2 Main result

Our main result concerns lifting of sections.ifi;, x,x) to thecuspidally central fundamental groug“(U),
which is an intermediate quotient

m (U) = m*(U) — m(X)

introduced by Mochizuki (se€.], we recall the original profinite definition in382. Saidi considered{“(U) in
the context of the cuspidalization conjecture, s and we will compare below how Saidi’s approach relates
to ours.

The main novelty of this article is that one can relate thengetoy of the complemer® = X\ U to this lifting
problem. Following Baker-Poonen (se&)[ we will say that a reduced divisdp is atorsion sub-packef geo-
metrically the difference of any two points in the supporfofs torsion in the Picard group (see Definitiarg).

We can now state:

Theorem (Theorem5.10 Let X/Q be a smooth projective curve of positive genusJetCc X be a union
of torsion sub-packets, and sEt = X\D. Then every Galois section: Galg — m;(X) lifts to a section
Galg — 7§°(U).

We want to stress that TheoréilOseems to be the firsinconditional result of lifting to7{°(U): we make
no assumption on the section, in contrast to the setup]imfich defines "good" sections and shows that these
are precisely the ones that can be lifted.

An unconditional but weaker result had been obtained by thetivo authors in].

Let us now explain the main ideas of the proof of our resulte Titst step consists of introducing a torsor
Fp overX under the toru§’p = Rp,;, G,,, whose étale fundamental group(Fp) identifies withm{*(U) (see
Propositiorn3.5).

The torsorFp is itself obtained as &,,,-torsor over an intermediate torshi, over X under the torus$p =
Tp/G,,. In 82, we prove thatD is a torsion sub-packet if and only #, is torsion (see Propositidh5), a fact
that will be crucial in the last step of the proof.

We then study the obstruction of lifting a Galois sectionngl@ general torsoF over X under a torug’".
We show in Propositio8.1that, if X hasz${(X,z) = 0, the morphismE — X gives rise to a natural fibration
short exact sequence, denotedyFE /X ). The next step identifies the class of the extensidi / X') with the
arithmetic first Chern class (E) of E (see Propositiod.4).

Returning to the specific situation of Theoré&mi( and given a section of X, the last and most delicate
step consists of killing the obstructiafi(ci (Fp)). This is the aim of §. Besides the fact that the torsby, is
torsion, we use crucially that the relative Brauer gr@®upX/k) = ker(Br(k) — Br(X)) vanishes whei = Q
in presence of a section, a statement proven by the thircairtH8]. It is this result that limits the scope of
Theoremb.10to the base field = Q, a limitation that may be seen as an indication that the sectbnjecture
could be more accessible for the base figldike many other results in arithmetic).
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1.3 Notation and conventions

The notatiorR s/, 5(—) denotes Weil restriction of scalars along the finite flat dap- S which is implicit in
the notation.

By X we will denote the base changé x ¢ S’ of an S schemeX by S — S. However, we would like to
direct the kind reader’s attention to the following exceps. The notatiotyp, Tp (resp.Ep, Fp) introduced in
Section @ denote a certain torus (resp. torus torsor) associateditosaidD.

When talking about torsors, one has to fix a topology in whightbrsors trivialize locally. This will be the
étale topology always without further mention.

For a mapX — S, denote byPicy, g the relative Picard scheme. The isomorphism class of a linelle £
will be denoted by L].

Acknowledgments

The authors would like to thank Amaury Thuillier and Angel@sidli for discussions and the ENS Lyon for
hospitality during a visit of the third author. We would al#iee to thank the referees for their careful reading of
our text and their suggestions that helped to improve thestipn.

2 Torsors associated to a divisor on a curve

Let X be a smooth curve defined ovgr= Spec(k).

2.1 Definition of torsors Ep and Fp

Let A : X — X xg X be the diagonal embedding. This is a Cartier divisor, defiran invertible sheaf
Oxxsx(A). Let D be an effective, étale Cartier divisor ah We will always assume thd® # 0.

Definition 2.1 We define torsors
Fp =Rpyxgx/x (Isompy s x (Oxxsx(A)pxsx,Obxsx)) = X
under the toru§’p = Rp,s(Gm),
Ep=Fp/Gy — X

under the quotienttoru$p = Tp /G, the cokernel of the adjoint map,, — Rp/s Gmn.

Remark 2.2 The torsorEp can also be introduced in a natural way via Picard schemesieNalet X , be
the curve obtained fronX by pinchingD into a single rational point. One can check that the tofspr— X
is the pullback ofPicy,, ,, — Picx/; via the morphismX — Picx/, given by A. The construction ofp
is somewhat more subtle: one remarks that the morptism Picy/;, (thus resp.Ep — Picx,, /) factors
through the PicardtackPicx,, (resp. Picx, k). Since the canonical rational point &fp gives rise to a
morphismPicx, ;. — BG,,, one gets by composition a morphistib, — B G,,, and one verifies easily that
the corresponding,,,-torsor ist’p — Ep.

2.2 Torsion sub-packets and torsion criterion

Let k is a field of characteristi@, and X be a smooth, proper, geometrically connected curve SverSpec(k).

Definition 2.3 A (reduced) effective divisoD is atorsion sub-packeif any degree) divisor on X with
support inDjy, is torsion. This means that in the sense of Baker and Podieind divisor Dj, is contained in a
single torsion packet ok

Remark 2.4 1. Any rational point defines a torsion sub-packet.

2. If D is a torsion sub-packet, then any degbegivisor on X with support inD is torsion, because the map
Pic X — Pic X7 is injective.
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4 N. Borne, M. Emsalem, and J. Stix: Lifting Galois sections

3. However, it is not true that if any degréedivisor on X with support inD is torsion, thenD is a torsion
sub-packet. For instance fif is irreducible, then any degr@elivisor on.X with supportinD is even trivial.
But D does not need to be a torsion sub-packet. Indeed, accoal[dy Corollary 3, ifchar k£ = 0 and X
is of genus at leagt, the size of torsion packets is bounded. It is thus enoughdoseD of degree strictly
larger than this size, which is possible:ihas an infinite absolute Galois group, to get a counterexampl

Proposition 2.5 Let X be a smooth, proper, geometrically connected curve éver Spec(k). The torsor
Ep — X is torsion if and only if the étale divisdp C X is a torsion sub-packet.

Proof. The Hochschild-Serre spectral sequence gives tloevfog exact sequence:
0 — H'(k, Sp) — H'(X, Sp) — H' (X}, Sp) 2!

Moreover, the first group is torsion by Lemri& below, thusEp is torsion if and only if(Ep); is torsion. As
the formation ofEp, also commutes with base change, we can assume ikatlgebraically closed. The group

of characterdlom(Sp, G,,) of Sp is the group(@D(k)Z)Zzo of divisorsd of degree) with support inD.
Since it is free of finite rank, it is enough to show that forlsdavisord, theG,,-torsor obtained by reduction of
the structure group aFp, is torsion. But thisG,,,-torsor is nothing else thalsom(Ox, Ox (d)), and the result
follows. O

Definition 2.6 (1) For anyk-schemeY’, we define the relative Brauer groljr(Y/k) as the kernel of the
natural morphisnBr(k) — Br(Y').
(2) For anyk-scheméy” of finite type, we define the index

ind(Y) = ged {deg(y) ; v is a closed pointo¥'},

wheredeg(y) = [k(y) : k] is the degree of the residue field extensiop.at
Lemma 2.7 We have

H'(k, Sp) = Br(D/k),
and, in particular,H' (k, Sp) is torsion and killed bynd(D).
Proof. This follows from the Galois cohomology exact seqeeassociated to
0= Gwn—=Tp=Rp;s(Gm) = Sp — 0, (2
Shapiro’s Lemma and Hilbert's Theorem 90. For an extenkigh andx € D(k’), the pullback
x* (RD/S(Gm))k, = Gm i
splits (2) and so
Br(D/k) < Br(k'/k)

which by a corestriction argument is killed By : k]. HenceBr(D/k) is killed by ind (D). O

3 Extensions of fundamental groups associated to torsors
3.1 Extensions of fundamental groups associated to fibratics

Following [9] and [L0] a noetherian schemE with a geometric poing has étale homotopy groups
(X, 7)

fori > 0. If X is geometrically unibranch, therf'(X,z) = 71 (X, z). Itis well known that smooth geometri-
cally connected curveX over any fieldk such thatX; IP% are algebraid (, 1) spaces, which in particular

means that${( X, z) = 0.
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Proposition 3.1 Letk be a field of characteristi@. Let X/k be a geometrically connected and geometrically
unibranch variety, lefl’/k be a torus and® — X atorsor underT'. Lety be a geometric point aF' with image
zeX.

If 7§Y(X, z) = 0, then the sequence

1= m(Ez,y) - m(E,y) = m(X,z) > 1 3)
is exact.

Proof. Because of the exact sequerid¢r &/ and X', we may assume théatis algebraically closed. Then
T ~ Gy, is atrivial torus, andv — X is Zariski locally isomorphic to the triviak], -torsor. Therefordry — X
is a geometric fibration in the sense af] Definition 11.4. By [L0] Theorem 11.5 we have an exact homotopy
sequence

(X, 7) = 7Bz, 5) — 7B, 5) — 75X, T) = 76 Bz, 7)
and the claim follows fromr$( X, 7) = 0 andr§(Ez,9) = 0. O

Remark 3.2 The vanishing assumption faS'( X, z) is indeed important. As an example, we consider an
algebraically closed field, somen > 1, and theG,,-torsor

AP\ {0} — P}

associated to the line bundi®(1). Then by Zariski-Nagata purity of the branch locus we rm(e&g“ \{0}) =
0 and the sequence

Wl(Gm,;;) — 7T1(AZ+1 \ {0}) — Fl(Pg) —1

is not injective on the left. Indeed, the gromgi(IP’g) # 0 does not vanish.

Remark 3.3 In the situation of Propositio8.1, the choice of; defines an isomorphisfii; ~ FE; by transla-
tion, and the group

ﬂ-l(Tia 1) = Trl(E:Ea g)

is the fundamental group of an algebraic group (in charestien, see [I] 8§13.1) and hence abelian (so that
we can neglect base points). The conjugation actiom 0F, j) on 71 (Ez, 7) thus defines & (X, z)-module
structure onry (Ez, y).

Proposition 3.4 Let X be a geometrically connected and geometrically unibrarasfety overS = Spec(k)
of characteristic), and assume that$'( X, z) = 0. LetT/S be a torus and? — X a torsor underT’. Then the
71 (X, T)-action onmy (Fz, 3) factors over the projection; (X, z) — Galy and translation is an isomorphism

T . T(T) ~ 7T1(TE, 1) = 7T1(TX@, 1) ~ Wl(EJj,g)
whereT(T") denotes the Tate moduleBf

Proof. Themr (X, z)-module structure onry (7%,1) = m1(Tx z,1) associated td’xy — X comes by
functoriality from the action associated  — Spec(k). The action thus factors through the projection
m1(X,Z) — Gal,. The identificationT(T) ~ m (7%, 1) as Galy-modules is classical, see for exampig [
Section §13.1.

We consider the isomorphistin: T'x x x ' — E x x E overX defined by multiplicatio” x x £ — E and
second projectioff’ x x £ — FE. By Propositior3.1, we obtain an isomorphism of extensions

0—>7r1((TX xx E)z, (1,;7)) ——m(Tx xx E,(1,7)) —=m(X,2) ——=0

: N

0 ——m ((E xx E)z, (,9)) ——m(E xx E,(§,§)) —m(X,2) —=0

Copyright line will be provided by the publisher



6 N. Borne, M. Emsalem, and J. Stix: Lifting Galois sections

Since® is a map ovelr via second projection, we obtain an isomorphismrfX, z)-modules

m Ty 1) = ker (m (T xx Bz, (1,9)) 2225 1 (B, )
~ ker (wl((E xx E)z, (7, g])) M 1 (Ez, g])) =m(Ez,7)

induced by®. This completes the proof. O

3.2 Comparison with the maximal cuspidally central quotiert

The aim of this paragraph is to mention the following intetption ofr (Fp, 7). LetU = X \ D be the
complement of the support of the divisor and set

N =Ker(m (U,z) —» m (X, 7)).

Recall the notion of the maximalspidally central quotientr{°(U, z) due to Mochizuki [] Definition 1.5(i):
the biggest quotient“(U,z) = m (U, Z)/N.. by a normal subgroupV.. C N such that one gets an exact
sequence

1= N = 7°(U,z) > m(X,7) = 1

whereN<¢ = N/N,. is abelian, and the action af (X}, z) by conjugation onV< is trivial.
Proposition 3.5 The canonical lift/ — Fp of the inclusionV C X induces an isomorphism

(U, i’) ~ 7T1(FD,.T).

Proof. If D istotally split, this follows from ], Proposition 1.8 iii). Since the claim is of geometric ratu
the general case follows. O

4 Obstructions to lifting Galois sections along torsors undr tori

In this section, we fix a smooth, proper, geometrically cate@ curveX of genus at least over a fieldk of
characteristi®), and7T/k a torus. LetF — X be a torsor under the tords. ThenFE is also geometrically
connected and therefore defines a fundamental exact segjapalogous tol]). The issue we want to address is:
does a given section: Gal, — w1 (X, z) of (1) lift to a sectionGal, — w1 (E,7)?

4.1 Arithmetic first Chern class

We introduce in this paragraph the notion of arithmetic fiisern class of a torsor under a torus. The relevance of
this notion for anabelian issues has been pointed out by Mokhn the case of line bundles (se&l] Definition
0.3). Our definition is the straightforward generalization

The most logical way to proceed is to use Jannsen’s cohomdsag [L7]), that is, cohomology defined on
the category of inverse systems of étale sheaves of abetiapg on the small étale site of the base schéme
In this context, the Kummer short exact sequence takes toevfog form, for a pair of integerém, n) such that
m|n:

0 T[n] T T 0 (4)
ol )
0 T[m)] T——"=T 0

Let us definel(7T") (resp.(T', 1--)) as the inverse system given by the left (resp. middle)roolof diagram 4).
Note that the Jannsen cohomology of the right column is thalu&tale cohomology dof.
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Definition 4.1 Thefirst arithmetic Chern classf aT-torsorE — X is the image of its class by the cobound-
ary morphism

e HY(X,T) — H*(X,T(T))
in the Jannsen cohomology long exact sequence associatezishort exact sequenc®.(
Proposition 4.2
1. The following morphism is an isomorphism:

H?(X, T(T)) — lim H*(X, T'[n]).
neN

2. For atorusT over a fieldk, the following sequence is exact:
0— H'(k,T) =% H? (k, T(T)) — T (H*(k,T)) — 0.
Proof. @) The short exadfm-sequence (see.?], (3.1))

0— %1 HY(X,T[n]) — H? (X, T(T)) — %HQ(X,T[n]) =0

reduces assertion (1) to the vanishing of@l—term. The Kummer sequence provides the exact sequence

0 — T(X)/nT(X)— H(X,T[n]) - HY(X,T)[n] — 0,

which by Mittag—Leffler and@2 = 0 leads to an exact sequence
O:L T(X)/nT(X %hH HY(X,T[n ->L HY(X,T)[n] — 0.
neN neN neN

The restriction ton-torsion of the short exact sequence of low degree termseofHibchschild—Serre spectral
sequence foX — Spec(k) and coefficientd” yields exactness of

0 — H'(k,T)[n] — HY(X,T)[n] — H (X7, T)[n] 2.

By Hilbert's Theorem 90, the groufi§' (k, T')[n] have finite exponent with a bound for the exponentindependen
of n. Thus the systerfi(H' (k, T)) is Mittag—Leffler zero (7], 1.10). Sincel}; = G¢ for d = dim T we find
non-canonically

H'(X;,T) = Pic(X3)?
which has finiten-torsion. Thus the projective systefii’ (X, 7')[n]) is an extension of a system of finite levels
(im(H'(X, T)[n] — H' (X5, T)[n] “*")

by a Mittag—Leffler zero system. Therefore'ﬁ@;eN vanishes and the proof is complete.
(2) The Kummer sequences férinduces exact sequences

0— H'(k,T)/nH (k, T) — H*(k, T[n]) — H*(k,T)[n] — 0.
Since by Hilbert's Thereom 90 the grotid (k, T') has bounded exponent, we have
lim H'(k,T)/nH'(k, T) = H' (k,T)

neN
lim" H'(k,T)/nH'(k,T) = 0.
neN
Therefore assertior2) follows by passing to the limit and) for X = Spec(k). O
Remark 4.3 Because the morphishrX (X, T(T LlH T'[n]) is anisomorphism, it will be often

sufficient to consider only Chern classes moduldenoted by:l( )n, and defined as the imagea@f(E) by the
morphismH? (X, T(T)) — H*(X, T[n)]).
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8 N. Borne, M. Emsalem, and J. Stix: Lifting Galois sections

4.2 Class of the fibration
Leth : F — X be aT'-torsor, and consider the exact sequence

1—>7T1(Tj€,1)—>7T1(E,?])—)7T1(X,f)—>1 (5)

from Propositior3.1 where we use the isomorphism(7%, 1) ~ w1 (Ez, y) of Proposition3.4. This yields an
abelian cohomology class

m(E/X) € H*(m1 (X, z), m1 (T}, 1)).

The sectiors lifts to (a Galois section of if and only if s*(m; (E/X)) = 0 in H*(Galy, 71 (T}, 1)). We are
therefore interested in an explicit description of the slag £/ X).

Proposition 4.4 Let X be a geometrically connected and geometrically unibraraiety over a field: of
characteristic). Assume that§{(X, z) = 0.

Then the morphisnid? (7, (X, z), m (T%,1)) — H*(X,T(T)) is an isomorphism and sends(E/X) to
C1 (E)

Proof. LetXg be the universal covering of the étale homotopy tyfzewith respect to the geometric point
Z € X. Then for any locally constant constructible torsion sh&afve have isomorphisms

HO(Xét,y) ~ Fs,
H' (Xer, F) = 0,
H?(Xg, ) ~ Hom(7$(X, ), Fz).
The exact sequence of low degree terms for the Leray spsemaknce foX¢ — X yields
H' (1 (X, %), ) ~ H (X, F)
and the exact sequence
0 — H*(m (X, 2), Fz) — H*(X, F) — Homy, (x 2 (15X, 7), Fz).
For.Z# = T'[n], using the short exad'@-sequence (seé ], (3.1)) shows that
H?(m (X, 2), (T}, 1)) ~ B (1 (X, 7), T(T)) — H*(X, T(T))

is an isomorphism.

We now prove the second claim based on ideas by Mochizukilemma 4.4+5. Denote blt(X) the small
étale site ofX, and byFEt(X) the finite étale site oK. The natural morphism : Et(X) — FEt(X) induces
for each sheaf” on FEt(X) and the corresponding locally constant shea# on Et(X) and each > 0 a
morphism

H'(m (X, 7), 75) = H'(X,7".7)
via the usual identification of sheaves BRt(X ) and representations ef (X, z). Note that this coincides with
the edge map of the spectral sequence used above.

Now the fibrationF — X gives rise to a commutative diagram of sites:

Et(EF) —— FEt(E)

-

Et(X) —— FEt(X)
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This diagram induces in turn a morphism of Leray-Serre speséquences associated to the sfg&f) corre-
sponding to ther; (E)-representation; (1%, 1) (we omit base points for readability sake):

HP (my (X), HY (1 (T,), m1(Ty))) —— HP (X, HY (T, T(T)))

ﬂ ﬂ

HP (7 (E), m (Ty)) —————— BB, T(T))

The transgression morphisnig’' : EJ' — E> are thus compatible in the sense that the following diagram
commutes:

Endgal, (m1(T%)) —= Endg (T(T))
ldgvl J{dg’l

H? (my (X), 1 (T)) — H* (X, T(T))

The top arrow is induced by, (T%) ~ T(T), in particular it sendgl to id. Now the profinite version ofl[4, I,
Theorem 4] implies that the left vertical map semdiso —m (£ /X ) and a similar argument with Cech cocycles
shows that the right vertical map seridgo —c¢; (F). O

4.3 Killing torsion obstructions
By Proposition4.4we associate to &-torsorE — X and a sectios : Gal, — (X, Z) a class

s*(e1(B)) = 5" (m (E/X)) € H2(k, T(T)).
Lemma 4.5 s*(¢1(E)) = 0 if and only ifs lifts to 71 (E, 7).
Proof. This follows from Propositioa.4. O

We can make this obstruction more tractable thanks to theWoig lemma.
Lemma 4.6 The Tate modul&(A) of an abelian groupA is torsion free.

Proof. Thisis clear from the expressi@ifA) = Hom(Q/Z, A). O

If E — X is torsion, so is*(c1(E)), and Propositiod.2together with Lemma.6 show that the obstruction
s*(c1(E)) lives in factinH' (k, T).

5 Liftingto Fp over the rationals

In this sectionk will be a field of characteristié and X /k a smooth, projective, geometrically connected curve of
genus> 1. Let D C X be an effective reduced Cartier divisor did= X \ D. We consider the associated torsors
Fp — X andEp — X from Definition2.1and study the lifting obstruction for sections Gal, — m1 (X, Z)

to the fundamental group of the respective torsors.

5.1 Vanishing of Brauer obstructions

The short exact sequence of low degree terms of the Lerayrapsequence foX — Spec(k) andG,, reads
0 — Pic(X) — Picy,(k) 2 Br(k) — Br(X). (6)

By definition the map is the Brauer obstruction map with values in the relativeuBragroupBr(X/k), see
Definition 2.6, that measures the failure of a rational point of the Picaurikty to describe an actual line bundle.
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Proposition 5.1 Let X/k be a smooth projective curve of positive genus suchith@X /k) admits a section.
Then the following holds.

1. b(L) = 0 for all torsion pointsL € Picx i (k)tors-
2. If k/Q, is afinite extension, thef Br(X/k) is a power ofp.
3. If k = R, thenBr(X/k) = 0.

Proof. Assertion (1) isq] Proposition 12, and (2) is proven i3][ Theorem 15. Assertion (3) follows
from the real section conjecture, se% §16.1. Indeed, any section: Galg — 71 (X, z) comes from a point
x € X(R), and evaluation in: yields a retraction t®r(k) — Br(X), showingBr(X/k) = 0. O

Corollary 5.2 Let X/Q be a smooth projective curve of positive genus suchith@X’/Q) admits a section.
Then the relative Brauer groupr(X/Q) vanishes.

Proof. The Hasse—Brauer—Noether theorem shows that

Br(X/Q) = ker (P Br(X xq Qu/Q,) RN Q/z)

is injective, wherev ranges over all places @). Base change of sections implies that for all placed Q the
extensionr (X xgQ,/Q,) splits. By Propositiofs.1thenBr(X xgR/R) = 0 andBr(X xgQ,/Q,) is cyclic
of p-power order. This forceBr(X/Q) = 0. O

Remark 5.3 The proof of Corollary5.2 breaks down if one replacé$ by any number field:, because a
generalk has different places with the same residue characteribhis is the point which limits Theore®.10
to the case of curves oveér.

5.2 Divisibility of line bundles
Let us recall the definition of a neighbourhood of a section.
Definition 5.4 A neighbourhoodof a sections : Gal, — 71(X, ) is a connected finite étale cover

h: X —X
together with a lift
s': Galy — m (X', %) Cm(X,7)

of s. A short notation for a neighbourhood(iX”, s’).
Neighbourhoods are geometrically connected dydrecauser; (X', ') — Galy, is surjective.

Example 5.5 A wealth of neighbourhoods are constructed as follows. @ etr; (X;,Z) — G be a charac-
teristic finite quotient. Theker(y) is a normal subgroup im (X, z) and

m (X, Z) = (ker(p), s(Galg)) = {vs(0) ; ¢(v) =1, 0 € Gal,} C m (X, Z)
together with the obvious lift describes a neighbourhood dfloreover, we have (X, , =) = ker(y), so that
deg(X, = X) = #G.

Sincer; (X3, ) is topologically finitely generated, the neighbourhoddsform a cofinal system in the system
X, = (X') of all neighbourhoods.

Proposition 5.6 Let X/k be a smooth projective curve of positive genus. detGal, — m1(X,z) be a
section and le be a line bundle otX . Then the following holds.
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1. For everyn > 1 there is a neighbourhoodX”, s’) of s, such that there is &/ € Picx/ (k) with
[£]x] =M™,

2. If, moreover, for every neighbourho¢d”, s) of s, the relative Brauer grou@r(X’/k) vanishes, then for
everyn > 1 there is a neighbourhoodX”, s’) of s, such that there is a line bundlet on X’ with

;Clx/ ~ M®n.

Definition 5.7 If the conclusion (2) of Propositioh.6 holds, then we say that thi@e bundle £ is divisible
locally in neighbourhoods ofss.

Proof of Propositiors.6. Let Pic}*/k denote the subgroup of the Picard variety of line bundleseafrele
divisible byn. The boundary map to

0 — Picx/x[n] — Picx/, — Pic}*/k — 0,
namely
Picy), (k) — H' (k, Picx,[n)),
describes the obstruction to being divisible/byn the Picard variety for line bundles of degree divisiblerby

This obstruction is natural under pullback.

We first prove assertion (1). Sinee (X}, ) has finite quotients of order divisible by we find as in Exam-
ple5.5a neighbourhoodX, s1) of s with n | deg(X1/X). Then[L|x,] € Pick] (k) because

deg(L|x, ;) = deg(X1/X) - deg(L).

Let (X5, s2) be the neighbourhood 6f associated to the maximal abelian quotient of exponerfithe group
71(X, ,71). Then the induced map

Picx, /x[n] = Hom (771(X1,,;, Z1), Z/nZ(l)) — Hom (771(X27,5, Z2), Z/nZ(l)) = Picx, /x[n]

is the zero map. Thus the obstruction [t x, ] to divisibility by » in the Picard variety vanishes after restriction
to X5. This proves (1).

Let M € Picy, (k) be annth root of [£|x,]. In order to prove (2) we have to investigate the Brauer
obstruction forM to come from an actual line bundle. But this is the cligS¥) for the mapb in (6) for Xo/k
andb vanishes by assumption. This concludes the proof of (2). O

Proposition 5.8 Let X/k be a smooth projective curve of positive genussletGal, — (X, Z) be a
Galois section, and lef be a line bundle oX'. ThenZ is locally divisible in neighbourhoods efif and only if
s*(e1(L)) = 0.

Proof. LetX, be the projective limit of the pro-system of all neighboustls ofs. ThenZ is locally divisible
in neighbourhoods of if and only if £| x, is divisible inPic(Xy).
The Kummer sequence oY, yields the exact sequence

Pic(X,) 5 Pie(X,) U H2(X,, Z/nZ(1)),

so thatl| x, is divisible byn on X if and only if ¢; (£|x. )n = 0.
Naturality of the first Chern class and the isomorphism

H2(X,,Z/nZ(1)) = H2(m1(X,, %), Z/nZ(1)) “ H2(k, Z/nZ(1))

show thate; (L] x, ), = 0if and only if s*(¢1(£),,) = 0. Moreover,s*(c1 (L)) = 0 forall n > 1 if and only if
s*(e1(L)) = 0, because by Propositieh2 (1) for ' = G, andX = Spec(k) we have
H?(k, (1)) = lim H? (k, Z,/nZ(1)). O
neN
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Proposition 5.9 Let X/k be a smooth projective curve of positive genus, and teGal, — 71 (X, Z) be a
Galois section. Consider the following assertions.

(a) Allline bundlesC on X are locally divisible in neighbourhoods ef
(b) s* o ¢y : Pic(X) — H%(k, Z(1)) vanishes.
(c) The relative Brauer grour(X/k) vanishes.
(') The relative Brauer grour(X’/k) vanishes for all neighbourhood§’ of s.
Then the following implications hold:
()= (a) = () = (c).

Proof. (¢’)= (a) was proven in Propositidn6 (2). The equivalence of (a) with (b) follows from Propo-
sition 5.8.

For (a)= (c) we have to show thdi(L) = 0 for all L € Picx,,(k). Sinceb(L) € Br(X/k) is torsion,
there is am > 1 such thatL®™ = [ M] for a line bundleM on X . By assumption (a), there is a neighbourhood
(X', s") of s such thatM | x» admits amth root

M|X’ — El®n

with a line bundle£’ on X'. The differenceA = L|x, — [£'] is ann-torsion element irPicx/ (k). By
Propositiorb.1 (1) we compute

b(L) = b(L|x+) = b(A) +b([L]) =0,

and this proves (c). O

5.3 Liftingto Fp overQ

In this section we study the lifting problem over the fi€ld

Theorem 5.10 Let X/Q be a smooth projective curve of positive genus, andlet X be a union of torsion
sub-packets. Then every Galois sectianGalg — 71 (X, ) lifts to a sectionGalg — w1 (Fp, 7).

Proof. LetD = |J!, D; be the decomposition into torsion sub-packBisC X. The torsorf is the
product (overX) of the Fp,, and similarlyr; (Fp) is the fibre product (over; (X)) of them (Fp,), SO we can
assume thab is a single torsion sub-packet.

The sections lifts if and only if s*(c1(Fp)) = 0. SinceT) is the restriction of scalars @k,,, Shapiro’s
Lemma and Hilbert's Theorem 90 imle(k;, Tp) = 0. Using Propositiort.2 and Lemma4.6, we find that
s*(c1(Fp)) takes values in the torsion free group

H?(k,T(Tp)) ~ T(H?(k, Tp)).

Hence, we may repladé, by a multiple. The result follows from a diagram chase in

//

H(XTD —>H (X, T(Tp))

(X,Z(1))

0 —H'(k,Tp) = 0 —= H?*(k, T(Tp)) — T(H*(k,Tp))
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Namely, sinceD is a torsion sub-packet, we can apply Proposifdhand choose an intege¥ > 1 so that
N - Ep is trivial. ThenN - Fp comes from aG,,-torsor, and the result follows from Propositi&m® and
Corollary5.2. O

Corollary 5.11 Let X/Q be a smooth projective curve of positive genus, and/let X \ X(Q) be the
complement of the set of &ll-rational points. Then every Galois sectien Galg — 7 (X, z) lifts to a section
Galg — 7§°(U, 7).

Proof. If X(Q) is infinite (at most forX of genusl), then we understaneg“(U, z) as the natural projective
limit of 7§¢(X \ D, z) with D ranging over all finite subsef® C X (Q). We may therefore restrict to the case
of U = X \ DandD C X(Q) afinite set.

The divisorD C X is a union of torsion sub-packets. Therefore the seciitifts to a sectionGalg —
m1(Fp,y) by Theorenb.10 and sincer$<(U, z) ~ 71 (Fp, ) by Propositior8.5, this completes the proof.OJ

Remark 5.12 Note that similar arguments enable to show over a local fi€lghrime top version of Theorem
5.10 with m (Fpp, ) replaced by its quotient by thepart of the geometric fundamental growp((7Tp)z)-
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