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Abstract

We review recent models of choices under uncertainty that have been proposed in

the economic literature. In particular, we show how different concepts and methods

of economic decision theory can be directly useful for problems in environmental eco-

nomics. The framework we propose is general and can be applied in many different

fields of environmental economics. To illustrate, we provide a simple application in

the context of an optimal mitigation policy under climate change.
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1 Introduction

Uncertainty is pervasive in most decision problems, but is of particular importance

when considering decisions with global, long-lasting and potentially irreversible conse-

quences. Such are the decisions that cope with the environmental challenge of global

climate change, which have to be made in the presence of uncertainty about both the

science of climate and some basic socio-economic and technology drivers.

There is a growing awareness that the uncertainty encountered when dealing with prob-

lems such as climate change goes well beyond the classical notion of “risk” typically used

by economists. Put simply, the term risk refers to situations in which the probabilities

of events’ occurrence are known, while the notion of uncertainty is broader and refers to

situations in which this may not be the case. Most decisions indeed must be made in sit-

uations in which some events do not have an obvious, unanimously agreed-on, probability

assignment. This might be because too little information is available or because different

predictions exist, resulting from different models or datasets or from different experts’

opinions.

The evaluation of climate policy is generally performed using decision criteria that, like

the standard expected utility theory criterion developed by von Neumann and Morgenstern

(1947) and Savage (1954), do not distinguish between risk and uncertainty but actually

reduce any kind of uncertainty to risk. As the treatment of uncertainty has recently

received a great deal of attention in climate policy,1 an increasing number of concerns

have been raised about the use of standard techniques, originally developed to deal with

risk, in problems involving uncertainty. For example, according to the IPCC (2007, p.

134),

In most instances, objective probabilities are difficult to estimate. Further-

more, a number of climate change impacts involve health, biodiversity, and

future generations, and the value of changes in these assets is difficult to cap-

ture fully in estimates of economic costs and benefits. Where we cannot mea-

sure risks and consequences precisely, we cannot simply maximize net benefits

mechanically. This does not mean that we should abandon the usefulness of

cost-benefit analysis, but it should be used as an input, among others in cli-

mate change policy decisions. The literature on how to account for ambiguity

in the total economic value is growing, even if there is no agreed standard.

As a result, calls have been made for using alternative tools and methods developed in

other disciplines, such as economics and statistics, to deal with uncertainty. For example,

Kunreuther et al (2013, p. 447, 449) argue the following:

1See, for example, Pindyck (2007, 2013b); Heal and Millner (2014); Convery and Wagner (2015); Millner
et al (2013); and Berger et al (2017).
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The selection of climate policies should be an exercise in risk management re-

flecting the many relevant sources of uncertainty. Studies of climate change

and its impacts rarely yield consensus on the distribution of exposure, vulner-

ability or possible outcomes. Hence policy analysis cannot effectively evaluate

alternatives using standard approaches, such as expected utility theory and

benefit-cost analysis. [...] For most issues relevant to policy choices, the solu-

tion is to use more robust approaches to risk management that do not require

unambiguous probabilities. Risk management strategies designed to deal with

the uncertainties that surround projections of climate change and their impacts

can thus play an important role in supporting the development of sound policy

options.

In Burke et al’s (2016), twenty-eight climate scientists outlined three areas in severe

need of research progress on climate change economics. One involves refining the estimates

of the so-called social cost of carbon (SCC) to improve the way they are used in policy.2 To

achieve this objective, the authors highlighted different research directions, among which

the treatment of uncertainty.

The treatment of uncertainty in integrated assessment models needs improve-

ment, with research needed on the computational challenges of explicitly in-

cluding decision-making under uncertainty (p. 293).

Background While the treatment of uncertainty has typically not received particular

attention in the environmental economic literature, the field is moving forward, and several

attempts have been made in the past few years to answer the aforementioned calls. For

example, Lange and Treich (2008) and Berger (2016) provide comparative statics results

of the role of ambiguity in a simple two-period analytical model; Millner et al (2013) and

Lemoine and Traeger (2016) propose numerical climate-economic models under ambiguity

aversion; Berger et al (2017) consider explicitly the presence of uncertainty about catas-

trophic climate events in both an analytical model and a numerical application; Athanas-

soglou and Xepapadeas (2012); Rudik (2016), and Xepapadeas and Yannacopoulos (2017)

use a robust control approach developed by Hansen and Sargent (2001, 2008) in either

analytical control problems or integrated assessment contexts; Drouet et al (2015) numer-

ically disentangle model uncertainty and risks about mitigation costs, climate dynamics,

and climate damages using the results of the most recent assessment of IPCC; Cham-

bers and Melkonyan (2017) compare three alternative decision criteria in climate change

2The SCC is the damages caused by emitting carbon. According to Burke et al (2016, p. 292), the SCC
estimates the “monetized change in social welfare over all future time from emitting one more tonne of
carbon today, conditional on a specific trajectory of future global emissions and economic and demographic
growth.”
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cost-benefit analysis in the presence of uncertainty; and Bradley et al (2017) address the

uncertainty as presented by the IPCC by applying Hill’s (2013) in which confidence in

the different models is not represented by a standard probability measure quantifying the

uncertainty, but rather has a qualitative, ordinal structure assessing the confidence in the

probability judgements.

This paper In this paper, we review recent decision criteria under uncertainty that

have been proposed in the economic literature and apply them to a simple climate change

decision problem. While the framework we propose is general and thus can be applied in

many different fields of environmental economics, we provide a simple illustrative appli-

cation in the context of an optimal mitigation policy. Our objective is to offer guidance

to policy makers who face uncertainty when designing climate policies. A related study

is that Brock and Hansen (2017), who address, with a long term uncertainty perspective,

some important climate policy issues by considering recent decision theoretic models.

Framework We consider decision problems in which uncertainty is addressed through

models. In this case, uncertainty can be decomposed into distinct layers: (i) aleatory

or physical uncertainty (risk), (ii) model uncertainty or model ambiguity, and (iii) model

misspecification.3 Before elaborating on the key distinctions between these three layers,

we more closely examine the notion of “model uncertainty” because it may have different

meanings depending on the field of analysis. In its colloquial sense, a “model” is generally

considered as a stylized representation of a phenomenon of interest that a natural or social

scientist wants to study. Models serve as tools that provide a logically consistent way to

organize thinking about the relationships among variables of interest and provide clarity

on the implications of those relationships (Mäki, 2011; Pindyck, 2015; Beck and Krueger,

2016). In environmental and climate change economics, a distinction is generally made

between scientific models (climate and impact models), which explicate the consequences

of increased greenhouse gas (GHG) concentrations and emissions on the climate system

as well as about the scale and nature of what might happen to lives and livelihoods,

and economic models, which are used for cost-benefit analysis and policy assessments of

alternative actions. A hybrid class of models, known as integrated assessment models,

combines the key elements of both economic and scientific models. These models help

calculate the SCC or evaluate fiscal and abatement policies. Policy makers then directly

use these SCC estimates or evaluations (known as model runs) in cost-benefit analyses of

climate change mitigation policies (Stern et al, 2016). There are many models in all the

different categories. Each model has its own advantages and limits, its own complexity,

and its own key relationships and parameter values. Model uncertainty in the climate

3See Arrow (1951); Hansen (2014); Marinacci (2015); and Hansen and Marinacci (2016) for a discussion,
and Aydogan et al (2018) for empirical evidence.
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change literature therefore arises from the possibility that different models may provide

different responses to the same external forcing (e.g., as a result of differences in physical

and numerical formulations; see Deser et al, 2012).

The approach that we follow in this paper is, in part, different. We consider a general

decision problem in which consequences depend on the states of the environment that

are viewed as realizations of an underlying economic or physical generative mechanism

(Marinacci, 2015). A model is a probability distribution induced by a such mechanism.

It describes states’ variability by combining a structural component based on theoretical

knowledge (e.g., economic or physical) and a random component coming from, for example,

shocks representing minor omitted explanatory variables (Koopmans, 1947; Marschak,

1953).4 We assume that decision makers posit a collection of such models, based on

their information that might well include the economic and scientific modelling previously

mentioned (as next section will clarify). Model uncertainty therefore results from the

uncertainty about the true underlying mechanism: within the posited collection, there is

uncertainty about which model actually governs states’ realizations. However, even after

a model is specified, there is still the aleatory uncertainty about which specific state will

actually obtain; this is the notion of risk typically considered in economics. Finally, a

third layer of uncertainty, known as model misspecification, arises when the true model

might not belong to the posited collection of models, reflecting the idea that all posited

models have an inherent approximate nature.5

An important instance of a similar approach in climate change economics concerns the

estimations of climate sensitivity – the temperature change in response to increased atmo-

spheric CO2 (carbon dioxide) concentration – presented in Millner et al (2013) and Heal

and Millner (2014). As these authors mention, while climate sensitivity is an important

metric for the study of climate change, it is nonetheless difficult to estimate. Different

complex scientific “models” attempt to predict its value but often do not agree with one

another. Each scientific model therefore delivers its own probability model for climate

sensitivity (see Fig. 1 in Millner et al, 2013). Model uncertainty thus arises from the

uncertainty about which is the most correct scientific model or, in other words, about the

true probability distribution for climate sensitivity.

Organization The remainder of this paper proceeds as follows: we first present a general

decision problem under uncertainty framed in the context of climate change and discuss the

different notions of uncertainty. We then present different decision criteria that can help

4A model probabilizes uncertainty using “analogies with canonical random mechanisms that serve as
benchmark” (Marinacci, 2015, p. 1000). So, we can regard random mechanisms as the thermometers of
probability.

5The notion of “a true model” is methodologically delicate one that here we take in a pragmatic sense.
It permits, inter alia, to abstract from model misspecification issues (a decision-theoretic attempt to model
these issues is in Cerreia-Vioglio et al (2020).
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find the optimal climate policy, before applying them to a concrete example. We conclude

with a discussion on the status of non-expected utility models in assessing climate policy.

2 The decision problem

2.1 Setup

An important challenge for environmental policy makers is choosing a suitable mitiga-

tion strategy. Put simply, policy makers need to decide how much GHG emissions should

be allowed to avoid the climate system to reach damaging temperature levels. Reducing

GHG emissions is costly but helps to limit the damages of global temperature increases.

The cumulative level of GHG emissions that an economy can reach over a given period

(e.g., the twenty-first century) is called ”carbon budget”. It is a variable that is supposed

to be directly under the control of the policy maker and is strictly related to global warm-

ing and climate targets (Meinshausen et al, 2009; Drouet et al, 2015). So, this decision

(or control) variable – an action in the decision theory terminology – represents a policy

that the policy maker can perform.

At this point, it may be useful to better structure the decision problem under un-

certainty. Formally, the problem that the decision maker (in particular, a policy maker)

faces is to choose an action a among a set A of possible alternatives, whose material con-

sequences c (within a consequence space C) depend on the realization of a state of the

environment s (within a state space S), which is outside the decision maker’s control.

The relationship among consequences, actions and states is described by a consequence

function ρ : A× S → C such that

c = ρ(a, s). (1)

In other words, this function details the consequence c of action a if the state that obtains

is s. Decision makers have a (complete and transitive) preference relation % over actions

that describes how they rank the different alternative actions.6

The quintet (A,S,C, ρ,%) characterizes the decision problem under uncertainty. Before

making a decision, ex ante, the decision maker knows the different elements of the quintet.

After the decision, ex post, she observes the consequence ρ(a, s) that obtained.7 Her

objective is to select the action â that is optimal according to her preference in the sense

that â % a for all actions a ∈ A.

Preferences are often assumed to admit a numerical representation via a decision cri-

6As is usual, we write a % b if the DM prefers action a to action b (i.e., either strictly prefers action a
to action b, a � b, or is indifferent between the two, a ∼ b).

7The state that obtained is possibly not observable. In a dynamic setting, ex post observability becomes
a key modelling issue (see Battigalli et al 2017).
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terion V : A→ R such that

a % b⇐⇒ V (a) ≥ V (b)

for all actions a, b ∈ A. Here V is a numerical representation of the underlying preference

% that enables formulating the decision problem as an optimization problem

max
a

V (a) sub a ∈ A. (2)

In climate policy, for example, in principle the policy maker would desire to set a global

temperature increase to a level that maximizes a given decision criterion. Global tempera-

ture, however, is not a decision variable under the control of the policy maker. In practice,

what the policy maker controls is the level of emissions through an abatement policy that

is put in place.

2.2 Uncertainty

Decisions about the climate change phenomenon are generally taken in situations of

uncertainty. Consider, for example, a policy maker who must choose the optimal emission

pathway to be followed by an economy. It is reasonable to expect that the policy maker

does not know, for example, how the climate system – in particular, global mean temper-

atures – will respond to the targeted level of emissions or how an increase in the global

mean temperature will affect the socio-economic system. In that sense, the selection of the

optimal action (level of emissions) is an exercise performed in a situation of uncertainty.

The classical study of decision under uncertainty dates back to Savage (1954), while its

modern study began with the behavioral paradoxes of Ellsberg (1961) and the theoretical

analysis of Schmeidler (1989), with some key insights going back to Keynes (1921, 1936)

and Knight (1921). Following the decomposition of climate change uncertainty according

to its sources, proposed by Heal and Millner (2014), the decision problem faced by the

policy maker must be taken in the presence of both a scientific and a socio-economic

component. The next two examples illustrate this.

Scientific uncertainty A first source of uncertainty comes from the science of climate.

While most scientists agree that climate change is a reality and that humans are primarily

responsible for the unprecedented changes in global temperature that have occurred for

several decades (Hansen et al, 2006; IPCC, 2013), the exact relationship between anthro-

pogenic emissions of GHG into the atmosphere and climate change remains uncertain.

Relying on the available observations and the current scientific state of knowledge, the

scientific community has tried to construct precise climate models to predict and quantify

the impact of human activity on global temperatures. Different metrics have been pro-

posed to measure the global temperature response to increases in atmospheric emissions or

7



concentrations. Knowledge about the physical laws governing the climate system permits

to narrow the scope of possible interactions between emissions and temperature increases.

Yet, a large degree of uncertainty still surrounds the estimates of these constructed climate

metrics. For example, different scientific models typically provide different probabilistic

assessments of the value of some key climate parameters (Meinshausen et al, 2009; IPCC,

2013; Millner et al, 2013). As a consequence, still unknown with certainty, for example,

is how much the global climate will exactly respond to changes in future atmospheric

conditions, or the precise timing at which this change will occur.

The carbon-climate response (CCR) is an intuitive metric that Matthews et al (2009)

recently proposed to provide policy-relevant information about the allowable level of emis-

sions for a given temperature target. As Figure 1 illustrates this metric synthesizes the

global temperature response to anthropogenic emissions. Formally, the CCR refers to the

LETTERS

The proportionality of global warming to cumulative
carbon emissions
H. Damon Matthews1, Nathan P. Gillett2, Peter A. Stott3 & Kirsten Zickfeld2

The global temperature response to increasing atmospheric CO2 is
often quantified by metrics such as equilibrium climate sensitivity
and transient climate response1. These approaches, however, do not
account for carbon cycle feedbacks and therefore do not fully
represent the net response of the Earth system to anthropogenic
CO2 emissions. Climate–carbon modelling experiments have
shown that: (1) the warming per unit CO2 emitted does not depend
on the background CO2 concentration2; (2) the total allowable
emissions for climate stabilization do not depend on the timing
of those emissions3–5; and (3) the temperature response to a pulse
of CO2 is approximately constant on timescales of decades to
centuries3,6–8. Here we generalize these results and show that the
carbon–climate response (CCR), defined as the ratio of temper-
ature change to cumulative carbon emissions, is approximately
independent of both the atmospheric CO2 concentration and its
rate of change on these timescales. From observational constraints,
we estimate CCR to be in the range 1.0–2.1 6C per trillion tonnes of
carbon (Tt C) emitted (5th to 95th percentiles), consistent with
twenty-first-century CCR values simulated by climate–carbon
models. Uncertainty in land-use CO2 emissions and aerosol
forcing, however, means that higher observationally constrained
values cannot be excluded. The CCR, when evaluated from climate–
carbon models under idealized conditions, represents a simple yet
robust metric for comparing models, which aggregates both
climate feedbacks and carbon cycle feedbacks. CCR is also likely
to be a useful concept for climate change mitigation and policy; by
combining the uncertainties associated with climate sensitivity,
carbon sinks and climate–carbon feedbacks into a single quantity,
the CCR allows CO2-induced global mean temperature change to
be inferred directly from cumulative carbon emissions.

We propose a new measure of the climate response to anthro-
pogenic carbon dioxide emissions: the ‘carbon–climate response’

(CCR). The CCR is illustrated schematically in Fig. 1, which shows
the progression from carbon emissions to climate change. The CCR
incorporates the standard concept of climate sensitivity (the temper-
ature response to increased atmospheric CO2), in addition to a
‘carbon sensitivity’ (the amount by which atmospheric CO2 concen-
trations increase in response to CO2 emissions, as mediated by
natural carbon sinks, and including also the effect of feedbacks
between climate change and carbon uptake).

The CCR thus represents the net climate response to CO2 emis-
sions, and can be defined as DT/ET, where DT is the global mean
temperature change over some period of time, and ET is the total
cumulative carbon dioxide emitted over that period. We assign units
of trillion tonnes of carbon to ET (1 Tt 5 1 teratonne, or 1018 grams,
of carbon, which is equivalent to 3.7 trillion tonnes of CO2), so the
CCR as defined here carries units of uC per Tt C emitted. CCR can be
written as:

CCR 5DT/ET

5 (DT/DCA) 3 (DCA/ET)

where DCA is the change in atmospheric carbon (in Tt C). Written in
this way, CCR represents the product of the temperature change per
unit atmospheric carbon increase (DT/DCA) and the airborne frac-
tion of cumulative carbon emissions (DCA/DET). If defined under
conditions of constant doubled pre-industrial atmospheric CO2, DT
is equal to the equilibrium climate sensitivity, and if defined under
doubled CO2 conditions in a simulation in which CO2 increases at
1% per year, DT is equal to the transient climate response1.

Both the airborne fraction of cumulative emissions and the tem-
perature change per unit atmospheric carbon increase are dependent
on the atmospheric CO2 concentration and its rate of increase;
however, the CCR (as the product of the two) shows a remarkable
constancy with time. This can be seen in Fig. 2, which shows three
model simulations using the University of Victoria Earth System
Climate Model9 (UVic ESCM, see Methods), an intermediate-
complexity coupled climate–carbon model. In all simulations, we
prescribed atmospheric CO2 concentrations and used the model’s
interactive carbon sinks to diagnose the implied anthropogenic
CO2 emissions consistent with the prescribed concentration
changes10. In the first simulation (Fig. 2a) we increased atmospheric
CO2 by 1% per year for 70 years; in the second and third simulations
(Fig. 2b), atmospheric CO2 was doubled (solid lines) or quadrupled
(dashed lines) instantaneously and held constant for 1,000 years. In
all simulations, the airborne fraction of cumulative emissions
decreased over time, whereas the temperature change per unit change
in atmospheric carbon increased with time. After an initial adjust-
ment period of about a decade, the CCR remained almost constant at
,1.7 uC per Tt C emitted.

1Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve Blvd W., Montreal, Quebec, H3G 1M8, Canada. 2Canadian Centre for Climate
Modelling and Analysis, Environment Canada, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada. 3Met Office Hadley Centre, FitzRoy Road, Exeter, Devon, EX1 3PB, UK.

CO2 concentrationCO2 emission Climate change

Carbon sensitivity Climate sensitivity

Climate–carbon feedbacks

Carbon–climate response (CCR)

Figure 1 | Schematic representation of the progression from CO2 emissions
to climate change. We define ‘carbon sensitivity’ as the increase in
atmospheric CO2 concentrations that results from CO2 emissions, as
determined by the strength of natural carbon sinks. ‘Climate sensitivity’ is
shown here as a general characterization of the temperature response to
atmospheric CO2 changes. Feedbacks between climate change and the
strength of carbon sinks are shown as the upper dotted arrow
(climate–carbon feedbacks). The CCR aggregates the climate and carbon
sensitivities (including climate–carbon feedbacks) into a single metric
representing the net temperature change per unit carbon emitted.
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Figure 1: Schematic representation of the progression from CO2 emissions to climate
change. [Reprinted by permission from Macmillan Publishers Ltd: Nature 459: 829–832,
copyright 2009.]

ratio of temperature change to cumulative carbon emissions. It aggregates the well-known

concept of climate sensitivity (the temperature change in response to increased atmo-

spheric CO2) and of ‘carbon sensitivity’ (the increase in atmospheric CO2 concentrations

resulting from CO2 emissions as mediated by natural carbon sinks), while accounting for

climate carbon cycle feedbacks. The CCR is claimed to be directly policy relevant, es-

pecially for climate change mitigation decisions. It combines the uncertainties related to

climate sensitivity, carbon sinks and climate-carbon feedbacks into a single metric.

According to available historical data and observations, the CCR belongs to the interval

[1.0-2.1◦C] per trillion tones of carbon (TtC) for the period 1990-1999, with a best-guess

estimate of 1.5◦C per TtC (Matthews et al, 2009). Figure 2 illustrates the observational

estimates of CCR. As the figure shows, even when data about emissions and temperature

changes are available, the exact relationship between the two cannot be established with

certainty. We posit a stochastic linear relationship between emissions E and temperature

increases T given by

T = θTE + εT . (3)

Here, θT is a structural CCR parameter and εT is a shock, a random component that, as
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Figure 2: Observational estimates of CCR. [Reprinted by permission from Macmillan
Publishers Ltd: Nature 459: 829–832, copyright 2009.]

previously mentioned, represents the unexplained variation caused by – possibly many –

minor explanatory variables that decision makers are “unable and unwilling to specify”

(Marschak, 1953). The value of the CCR parameter is remarkably constant within a given

climate model, though it may vary across models from differences in the way climate and

carbon sensitivities are integrated. Figure 3 reports the results of the estimated CCR

from 11 coupled climate-carbon cycle models participating in a model inter-comparison

project (Friedlingstein et al, 2006). The figure presents the global temperature change as a

function of cumulative carbon emissions. The relationship is remarkably linear for almost

all the different models, thus justifying the linear form posited in (3). In this case, the

CCR parameter θT for each model is nothing but the slope of the line that represents the

intrinsic value of temperature change per unit of carbon emitted.

Table 1 presents the value of the CCR for each model. As the table shows, model-based

Table 1: Values of the estimated CCR parameters from the 11 coupled climate-carbon
models participating in the C4MIP project

Model name CCR (◦C/TtC) Model name CCR (◦C/TtC)

BERN-CC 1.1 IPSL-CM4-LOOP 1.9
CSM-1 1.0 LLNL 1.4
CLIMBER2-LPJ 1.5 MPI 1.9
FRCGC 1.7 UMD 1.6
HADCM3LC 2.1 UVIC-2.7d 1.9
IPSL-CM2C 1.7 Mean 1.6

9



be used as an estimate of the centennial-scale temperature legacy of
these emissions. As a result, our estimates of CCR can be inverted to
estimate the total allowable anthropogenic carbon emissions per
degree of long-term temperature change.

From our model-based estimate of CCR, we estimate allowable
emissions of 1.25 TtC (range, 0.95–2TtC) for 2 uC warming relative
to pre-industrial temperature; our observationally based best estimate
of allowable emissions for 2 uC of warming is 1.4 TtC (5–95% con-
fidence interval, 1.0 to 1.9 TtC). Given total CO2 emissions until now
of approximately 0.5Tt C from fossil fuels and land-use change14,15,
this implies that total future carbon emissions consistent with 2 uC of
warming must be restricted to a best estimate of about 0.8Tt C
(0.7 Tt C based on themodel ensemblemean; 0.9 TtC based on obser-
vational constraints).

We emphasize, however, that the calculated uncertainty on this
number is quite large (0.4 to 1.5 Tt C). Furthermore, we are unable to
exclude the possibility of higher values of CCR (and consequently
lower values of allowable emissions), owing particularly to poorly

quantified uncertainties in historical land-use change emissions and
structural uncertainties in the simulated sulphate aerosol response.
For example, the allowable emissions for a particular warming
target calculated by ref. 5 were lower, because they used a higher
observational estimate of CO2-attributable warming as well as a
climate–carbon model which simulated non-negligible zero emis-
sions commitment under conditions of high climate sensitivity.
We note also that our analysis of allowable emissions applies specif-
ically to CO2-induced warming, and does not account for the effects
of other greenhouse gases or aerosols.

The CCR is a simple, yet robust representation of the global tem-
perature response to anthropogenic CO2 emissions, and as such is
directly relevant to current policy negotiations surrounding inter-
national climatemitigation efforts. The EuropeanUnionhas proposed
restricting global warming to less than 2 uC above pre-industrial tem-
peratures16; however, large uncertainty in equilibrium climate sensi-
tivity17 prevents confident estimates of the CO2 stabilization level
required to avoid 2 uCwarming, and climate sensitivity alone provides
no policy-useful information about the allowable CO2 emissions for a
given stabilization level. The CCR represents a synthesis of previous
efforts to quantify the temperature response to anthropogenic CO2

emissions by aggregating the uncertainties associated with climate
sensitivity, carbon sinks and climate–carbon feedbacks into a single
well-constrained metric of climate change that is related directly to
cumulative carbon emissions.

METHODS SUMMARY
For the idealized model experiments (1% per year CO2 increase; doubled/quad-
rupled CO2) we used the UVic ESCM version 2.8 (refs 9, 18–20). The UVic
ESCM is a computationally efficient coupled climate–carbon model, with inter-
active representations of three-dimensional ocean circulation, atmospheric
energy and moisture balances, sea ice dynamics and thermodynamics, dynamic
vegetation and the global carbon cycle (including land and both inorganic and
organic ocean carbon). Version 2.7 of the UVic ESCM was one of the 11 par-
ticipating models in C4MIP11, in which models were driven by a common CO2

emissions scenario and carbon sinks and atmospheric CO2 concentrations were
calculated interactively until the year 2100. From the C4MIP simulations, we
estimated CCR using globally averaged temperature change and accumulated
carbon emissions at the year of CO2 doubling in each simulation.
Our observational estimate of CCR was derived using estimates of CO2-attri-

butable warming and cumulative CO2 emissions for each decade of the twentieth
century relative to 1900–09. We estimated CO2-attributable warming using an
estimate of greenhouse-gas-attributable warming12, scaled by the ratio of CO2 to
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Figure 4 | Observational estimates of CCR. CCR was estimated for each
decade of the twentieth century after 1910 by scaling an observationally
constrained estimate of greenhouse-gas-attributable warming relative to
1900–09 by the ratio of CO2 forcing to total greenhouse gas forcing, and
dividing by cumulative anthropogenic carbon emissions over the same
period. This observationally constrained estimate of CCR is both stable in
time and consistent with the estimates derived from model simulations.
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Figure 3 | CCRestimated from theC4MIP simulations11. a, Decadal-average
temperature change plotted as a function of cumulative carbon emissions,
showing a near-linear relationship for both individual models (coloured
lines) and the ensemble mean (black line). b, Temperature change per
cumulative carbon emitted for each decade from 1900 to 2100 relative to the
first decade of each model simulation. Over most of the twenty-first century
portion of the simulations, CCR values in each model are remarkably
constant in time.
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Figure 3: CCR estimated from different coupled climate-carbon simulation models.
[Reprinted by permission from Macmillan Publishers Ltd: Nature 459: 829–832, copy-
right 2009.]

estimates of CCR range from 1.0 to 2.1◦C per TtC.8 Note, however, that the uncertainty

about the correct linear model (3), or about the CCR parameter, is epistemic. Within

each such specification, there is still a layer of risk via the random component εT .

Socio-economic uncertainty The second source of uncertainty for policy makers in

the context of climate change is the relationship between global temperature increases

and economic impacts. In an ideal world, physical and economic sciences would provide a

theoretical underpinning for such a relationship. In reality, the economic impact of global

warming is complex and difficult to predict (Pindyck, 2007). In the language of climate

change economics, there is little information about the damage function d that represents

the relationship between an increase in temperature T and the economic damage D or

loss (usually expressed as a fraction of GDP, see Pindyck 2013a, 2015). In other words,

there is no economic or physical theory to help assess the “correct” functional form of this

relationship. Moreover, because climate change mainly pertains to events that have never

been encountered before, little data or empirical information can be used to assess both

the degree of steepness of the damage function and the point at which steepness begins.

Traditionally, integrated models of climate have dealt with this problem by using arbitrary

functions to describe how GDP decreases when temperature increases. These functions,

8The differences observed in the projection of the climate response to CO2 emissions are due to different
reasons such as different transient climate responses or carbon sensitivities as explained in the Supplemen-
tary Information of Matthews et al (2009).
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which rely on strong assumptions and have been subject to substantial criticism (Pindyck,

2013a; Howard et al, 2014; Howard, 2014), constitute the best approximation that policy

makers have at their disposal. A quadratic damage function used in literature is

D = θDT
2 + εD, (4)

It appears, for example, in the DICE model.9 The standard approach to calibrate this

function is to concentrate on the domain of relatively small increases in temperature,

which is the only approach for which we have some information at our disposal. In the

past few years, several studies have attempted to assess the impacts of global warming

(or equivalently, the benefits from reducing GHG emissions).10 These studies have used

different methods, including expert elicitation, enumeration, and statistical methods, and

have assessed different warming scenarios (usually within the range 1.0-3.0◦C warming).

The results of these studies, summarized in Table SM10-1 of IPCC (2014a), currently

represent the best information available on the potential impacts of climate change.

The lack of theoretical or empirical foundations for the damage function and its “cor-

rect” functional form does not matter much when considering relatively small temperature

increases, as there is wide consensus that damages will be low at these levels. Yet this is

no longer the case for higher increases in temperature, which are associated with much

stronger degrees of uncertainty. For example, scientists have almost no idea of what

damage to expect if temperature increases reach +5◦C relative to preindustrial levels.

Considering a temperature increase of T = 5◦C in (4) may therefore be misleading when

analyzing climate policy, given that calibration has been realized with data limited to small

fluctuations in temperature occurring over relatively short periods (Pindyck, 2013a).

In a recent contribution, Drouet et al (2015) summarize the information on total dam-

ages from global warming coming from the latest IPCC report. They use 20 estimates of

total economic effects of climate change to fit three different probabilistic damage func-

tions. Figure 4 illustrates the results. By aggregating the specifications of Drouet et al

(2015), we have a damage function with the following expression:

D = θ1DT + θ2DT
2 + θ3DT

6 + θ4D(e−θ5DT
2 − 1) + εD, (5)

We consider three specifications of parameters. First, when θ3D = θ4D = 0, the damage

function has a quadratic form (first column of the figure) analogous to the one used in DICE

9DICE stands for Dynamic Integrated Climate and Economy (Nordhaus, 1993; Nordhaus and Sztorc,
2013). The damage function presented in equation (4) is the one in the DICE code in (Nordhaus and Sztorc,
2013). It is a slight variant of the version of the quadratic form presented in the theoretical description
of DICE, in which climate damages are bounded to 100% (i.e., climate change is assumed to only reduce
current income, but may not destroy pre-existing assets). At low temperature increases, the two versions
are virtually identical.

10For an overview of these studies, see Pindyck (2013a), and Heal and Millner (2014).
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Supplementary Figure S7: Probabilistic economic damage functions of temper-
ature increase: quadratic, exponential and sextic. The brown dots are the 20
estimates of the global economic loss expressed in % of the gross world production,
the confidence interval is also indicated when available. The plain black line is
the fitted curve of the estimates. The two colored areas around the fitted curves
represent the distribution of the economic loss, respectively around the 25th-75th
and the 10th-90th quantiles.

12

Figure 4: Probabilistic economic damage functions of temperature increase. [Reprinted
by permission from Macmillan Publishers]

and in most integrated assessment models. Second, when θ1D = θ2D = θ3D = 0 and θ4D =

1 (second column of the figure), we obtain a probabilistic version of the exponential damage

function proposed by Weitzman (2009). This functional form is clearly steeper. It excludes

the possibility of potential benefits from climate change and allows for higher damages

when temperature increases reach 4◦C and 5◦C. Third, when θ1D = θ4D = 0 (third

column of the figure), the damage function has the sextic form proposed by Weitzman

(2012). According to this specification, high temperature increases are disastrous.

To illustrate the difference among the possible specifications of the damage function,

consider Table 2. It presents the mean damages (and the 5th-95th percentiles) associated

with global warming expressed as percentages of world GDP and obtained under the

previous three specifications of the damage function. The first row presents the results if

temperature increases above preindustrial level reach +2◦C. This is the threshold that 195

countries have agreed to struggle for at the COP21. The second row presents the possible

economic damages if the temperature increases reach +3◦C. This level of warming roughly

corresponds to the median 2100 temperature increase projection if nationally determined

contributions (i.e., climate pledges that each country made to tackle the problem of climate

change) are implemented as planned (see Bosetti et al 2017).11 Finally, the last two rows

pertain to the more extreme temperature increases of +4◦C and +5◦C. These levels of

warming roughly determine the bounds of the temperature changes that could be expected

11Models used for projections of future temperature increases are those whose results on transient cli-
mate response are reported in the IPCC fifth assessment report. The hypothesis that current nationally
determined contributions are projected beyond 2030 is made here for these projections. See Bosetti et al
(2017) for more details.
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under a business-as-usual situation (i.e., if no additional efforts are made to constrain

emissions; see IPCC, 2014b).

Table 2: Economic damages from climate change (in % of world GDP)

Temperature increase
Type of damage function

since preindustrial level Quadratic Exponential Sextic

2◦ C
1.01 0.54 0.49

[0.74; 2.09] [0.44; 0.63] [0.37; 0.90]

3◦ C
2.42 1.66 1.93

[2.04; 3.81] [1.28; 2.02] [1.72; 2.73]

4◦ C
4.45 4.68 8.5

[3.96; 6.00] [3.34; 6.14] [8.04; 10.49]

5◦ C
7.07 14.09 30.54

[6.49; 8.63] [8.93; 20.56] [29.40; 36.14]

Notes: Mean damages, 5th-95th confidence interval in brackets

Importantly, these three damage functions do not have a clear theoretical underpin-

ning. They just fit the best data currently available on potential losses using different

specifications. The random component εD accounts for shocks. There is, therefore, a high

degree of structural uncertainty about the “correctness” of the functional form represent-

ing this relationship. This uncertainty is of an epistemic nature: the policy maker does not

know which is the most accurate model to describe the relationship between global warm-

ing and GDP among the three potential models proposed by economists. The probability

that may be attached to each model is therefore a representation of the policy maker’s

degree of belief. Yet, a layer of risk is also present within each model via the term εD.

2.3 Decision under uncertainty

We now go back to the decision problem facing our policy maker, who must choose the

action – represented by the level of emissions, i.e., a = E – knowing that it will affect global

temperatures via the carbon-climate equation (3), which in turn will affect the economic

output through a damage function.

To simplify the computation, we assume that damages have the quadratic form (4). As

we argued in the previous section, the relevant scientific and socio-economic relationships
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can be summarized by the following nonlinear system: T = θTa+ εT

D = θDT
2 + εD.

(6)

States have both random and structural components, so they have the form

s = (ε, θ) ∈ S.

In our decision problem, the vector ε = (εT , εD) represents the pair of random shocks

affecting the climate and economic systems, while the vector θ = (θT , θD) specifies the

structural coefficients, parametrizing through θT a model climate system and through θD

a model economy. By substitution from the system (6), the damage function has the form

d (a, ε, θ) = θDθ
2
Ta

2 + θDε
2
T + 2θDaεT + εD.

For each policy a, the consequence function

ρ (a, ε, θ) = −d (a, ε, θ)− c (a)

specifies the overall monetary outcome in terms of some economic variable of interest –

e.g., consumption or GDP – given the random components and the monetary cost c (a) of

the policy itself.

We assume that scientific and socio-economic information enables the policy maker to

posit a set of potential models M describing the likelihoods of the different states. This set

of models is taken as a datum of the decision problem: the policy maker behaves as if she

knows that states are generated by a probability model m that belongs to the collection

M . We thus abstract from model misspecification, which magnifies the issues we discuss.

Shocks have the form

εD = σDw and εT = σTw
′

where w and w′ are uncorrelated “white noises” with zero mean and unit variance. The

vector parameter

σ = (σD, σT ) ∈ Σ

then specifies the standard deviations of shocks. The policy maker knows their distribution,

up to the standard deviations σ.

The positive scalar

m (θ, ε)

gives the joint probability of parameters and shocks under a posited model m ∈ M . We
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factor this model as:

m = δθ × qσ

that is,

m
(
ε, θ′

)
=

 qσ (ε) if θ′ = θ

0 else,
(7)

where qσ (ε) is the probability of ε and δθ is the probability distribution concentrated on

θ.12 Each model m corresponds to a shock distribution qσ parametrized by σ and to a

model climate system/economy parametrized by θ. Uncertainty on θ reflects a theoretical

uncertainty about the correct specification of the consequence function. Uncertainty on σ

is about the statistical adequacy of a such economic specification due to shocks.

With this, we write the consequence function as ρθ (a, ε) to emphasize the structural

component θ over the random one ε. Moreover, we index models as

mθ,σ = qσ × δθ

and denote by M = {mθ,σ} the set of models that the policy maker posits.

To address the uncertainty across models, the policy maker has a subjective prior

probability distribution µ that quantifies beliefs about the correct model. In particular,

µ(m) is the policy maker subjective belief that m is the correct model. Because of the

factorization, this belief is actually over the values of θ and σ, so has the form

µ (θ, σ) .

This is the policy maker subjective belief that θ parametrizes the correct model climate

system/economy and that σ is the correct vector of shocks’ standard deviations.

Now that we have introduced all the elements of the decision problem under uncer-

tainty, we turn to the way they can be combined to make the best possible decision. For

this purpose, we describe different decision criteria developed in economic theory that can

be used for problems of decision under uncertainty.

3 Classical subjective expected utility

We begin with the description of the decision criterion that, for several decades, has

been the standard way to consider rational decision making under uncertainty. This cri-

terion dates back to the seminal works of von Neumann and Morgenstern (1947); Wald

(1950); Savage (1954) and Marschak and Radner (1972). It has recently been revisited by

Cerreia-Vioglio et al (2013) to accommodate explicitly the presence of model uncertainty.

12That is, δθ (θ) = 1 and δθ (θ′) = 0 if θ′ 6= θ.
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We consider a classical decision problem (A,S,C, ρ,M,%), which is a decision problem,

as defined in Section 2, enriched with a set M of models that the DM posits. Assume that

a von Neumann-Morgernstern utility function u : C → R represents % and thus translates

economic consequences, measured in monetary terms, into utility levels. As well-known,

this function captures risk attitudes (i.e., attitudes toward aleatory uncertainty). For each

model mθ,σ, we can compute the expected reward of a given action:

R(a, θ, σ) =
∑
ε

u (ρθ(a, ε)) qσ(ε).

For example, under risk neutrality we have

R (a, θ, σ) = −θDθ2
Ta

2 − θDσ2
T − c(a),

Given that different models exist and that the policy maker does not know which is

the correct one, she considers the expected payoff of each possible model and aggregates

them out through a weighted average according to her prior probability µ. The classical

subjective expected utility decision criterion is

Veu(a) =
∑
θ,σ

(∑
ε

u (ρθ(a, ε)) qσ(ε)

)
µ(θ, σ) =

∑
θ,σ

R (a, θ, σ)µ(θ, σ). (8)

The optimal policy is therefore the action â that maximizes this criterion.13 Formally, this

means solving the optimization problem (2), which here takes the form

max
a

Veu(a) sub a ∈ A. (9)

Optimal actions depend on the policy maker’s preferences via the utility function u and

the prior probability µ. For instance, if the prior distribution is uniform, criterion Veu

consists of an average of the expected rewards, where all the models are equally weighted.

The optimal policy maximizes such average expected reward.

Criterion (8) is a Bayesian two-stage criterion that describes both layers of uncertainty,

risk and model uncertainty, through standard probability measures. Following Savage

(1954), we can write this as a single-stage criterion:

Veu(a) =
∑
ε

u (ρθ(a, ε)) m̄θ(ε), (10)

where m̄θ (ε) =
∑

σ qσ (ε)µ(θ, σ) is the so-called predictive distribution on states. In our

example, it would correspond to the model that features the mean CCR and the mean

damage under a uniform prior. The equality between expressions (8) and (10) indicates

13To ease matters, we restrict our attention to finite state and model spaces. Integrals with respect to
probability density functions would arise without such assumption.
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the following: considering a collection of models M and aggregating them is equivalent

to considering a unique average model. This is possible because the policy maker has the

same attitude towards risk and model uncertainty (see Marinacci 2015). To show this, we

rewrite criterion (8) as

Veu(a) =
∑
θ,σ

(
u ◦ u−1

)
(R (a, θ, σ))µ(θ, σ)

=
∑
θ,σ

u (c (a, θ, σ))µ(θ, σ),

The outer u represents attitude toward model uncertainty and the inner u – entering the

monetary certainty equivalent c (a, θ, σ) = u−1 (R (a, θ, σ)) – represents risk attitude. In

this sense, criterion (8) overshadows the policy maker’s reaction to the variability that

may exists across models. Considering equally the different CCRs or a single CCR= 1.6

on which everyone would agree, for example, leads exactly to the same optimal emission

policy. Indeed, these different scenarios reduce to the same predictive model m̄. Criterion

(8) therefore presupposes that the policy maker has the same attitude toward aleatory and

epistemic uncertainty.

Two special cases of criterion (8) are noteworthy. First, suppose that the policy maker

considers (possibly wrongly) a single pair (θ, σ) to be the correct one; formally, µ(θ, σ) = 1.

The two-stage criterion (8) then reduces to Veu (a) = R(a, θ, σ). In this case, model

uncertainty is still part of the decision problem, but the policy maker is dogmatic about

a specific model being the correct one and therefore does not take into account any other

model.

Second, suppose that the collection Θ×Σ is a singleton, with a unique element (θ, σ);

for example, shocks have a prespecified distribution and there is no scientific uncertainty

about the value of the CCR parameter or economic uncertainty about the correct damage

function. In this case, the policy maker knows that the pair (θ, σ) is correct. Epistemic

uncertainty is no longer present in the decision problem, which is a decision problem

under risk – as represented by model mθ,σ. Criterion (8) reduces to Veu (a) = R (a, θ, σ)

interpreted as a von Neumann-Morgenstern risk criterion. This is typically what is implied

by the rational expectations hypothesis often adopted in economics, which assumes that

policy makers know the correct model. We now move beyond the classical subjective

expected utility criterion (8) and discuss alternative decision criteria under uncertainty.14

Before doing this, we close with an especially tractable version of criterion (8) in which,

with an abuse of notation, beliefs have the separable form

µ (θ, σ) = µ (θ)µ (σ) . (11)

14Note that these decision criteria have axiomatic behavioral foundations that clarify their nature. We
refer interested readers to Gilboa and Marinacci (2013).
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In this case, the criterion is easily seen to take the form

Veu(a) =
∑
θ

(∑
ε

u (ρθ(a, ε)) q̄(ε)

)
µ (θ) =

∑
θ

R̄ (a, θ)µ(θ) (12)

where q̄(ε) =
∑

σ qσ (ε)µ (σ) and R̄ (a, θ) =
∑

ε u (ρθ(a, ε)) q̄(ε). If q̄ has a prespecified

distribution, models are now indexed only by θ and we can write

Veu(a) =
∑
θ

u (c̄ (a, θ))µ(θ)

where c̄ (a, θ) = u−1
(
R̄ (a, θ)

)
. A similar analysis can be carried out for the other criteria

that we will present, which simplify accordingly. Yet, for brevity we will omit details.

4 Unanimity preferences

One way to deal with uncertainty is to allow preferences to be incomplete. Because of

the lack of knowledge about both the science of climate and the impact of climate change on

the economy, the policy maker might not be able to rank some pairs of alternative actions.

If this is the case, preference % is no longer complete (as so far assumed). Assume, following

the classical analysis of Bewley (2002), that the policy maker knows her tastes and is able

to rank consequences through a utility function u, yet is unable to rank some pairs of

actions because of insufficient information about them. Because of its incompleteness,

preference % cannot be represented by a numerical decision criterion V , but only by a

non-numerical unanimity rule:

a � a′ ⇐⇒ R(a, θ, σ) ≥ R(a′, θ, σ) ∀ (θ, σ) ∈ Θ× Σ. (13)

In other words, action a is preferred to another action a′ if and only if, according to all the

probability models mθ,σ, the expected reward associated with action a is higher than that

associated with action a′.15 In our emission example, this would be the case if and only if

policy a is better than policy a′ according to all the different climate/economy models.

An unanimity criterion is often unable to specify what the policy maker should do. This

is the case, for example, if a policy (e.g., a low level of emission policy) performs better

than another policy (e.g., a high level of emissions policy) according to some models, but

performs worse according to other models. Nevertheless, if a decision must be made, a

policy maker needs to “complete” the criterion when it remains silent. A possibility is to

adopt a default decision rule that relies on a status quo action that remains the default

action until it is replaced by an alternative action that is unanimously better. In climate

15The unanimity criterion (13) is based on the general form of Bewley’s (2002) model studied by Gilboa
et al (2010) but it is conceptually different in that here Θ× Σ is posited.
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change economics, this status quo action has typically consisted of the “wait-and-see”

policy, and uncertainty has long been considered an excuse for inaction in climate policy.

Other approaches suggest to complete preferences with one of the criteria that we present

subsequently (Gilboa et al, 2010; Cerreia-Vioglio, 2016), to take care of the burden of

choice in a less ad hoc manner than status quo.

In summary, the unanimous criterion (13) may turn out to be useless in situations in

which a choice must be made. In the next sections, we present alternative criteria that

preserve completeness (so, the numerical nature of the decision criterion). In particular, we

relax the assumption of classical subjective expected utility theory that the same function

u captures both risk and model uncertainty attitudes. Indeed, in principle there is no

reason to expect these two attitudes to be equal: a policy maker might well be more prone

to face risk due to the intrinsic randomness of some events than to face model uncertainty

due to a lack of, for example, scientific knowledge. Recent experimental evidence on

both students and real-life policy makers shows that this is indeed the case (Berger and

Bosetti, 2020). A policy maker fulfilling this condition will be more averse to model

uncertainty than to risk and consequently will exhibit uncertainty (or ambiguity) aversion.

This latter behavioral characteristic, first highlighted by Ellsberg (1961), robustly describes

the behavior of individuals in situations of uncertainty.

5 Classical maxmin analysis

The maxmin criterion of Wald (1950) is a first decision criterion that considers attitudes

toward risk and model uncertainty differently. This criterion is extremely cautious because

it makes the policy maker to consider only the model providing the lowest expected reward.

In our examples, this means that only the “worst” out of all possible climate/economy

models is considered when choosing the optimal climate policy. Prior probabilities do not

play any role here, so we are in a classical statistics setting. Formally, the maxmin decision

criterion is

Vmxm(a) = min
θ,σ

R (a, θ, σ) . (14)

Choosing the optimal policy under this criterion corresponds to finding the value of a

that maximizes the minimal expected reward obtained over the set of possible probability

models (this is why this criterion is called “maxmin”). Recently, Rezai and van der

Ploeg (2017) used this criterion to examine the impact of scientific uncertainty about the

“correct” climate models to be used in the context of integrated assessment models.
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6 Uncertainty averse preferences

6.1 Bayesian analysis

Another way to distinguish attitudes to model uncertainty and risk is to adapt the

smooth ambiguity decision criterion

Vsmt(a) =
∑
θ,σ

φ (R (a, θ, σ))µ(θ, σ), (15)

developed by Klibanoff et al (2005), where φ ≡ v ◦ u−1 represents the attitude toward

uncertainty that results from the combination of attitudes toward model uncertainty v

and risk u. Concavity of φ reflects uncertainty aversion that, in this setup, amounts to

a stronger aversion to model uncertainty than to risk (i.e., v is more concave than u, see

Marinacci 2015).

Similar to (8), the smooth ambiguity criterion is also a two-stage Bayesian criterion in

which both layers of uncertainty are described by standard probability measures. It can

be written as ∑
θ,σ

v
(
u−1 (R (a, θ, σ))

)
µ(θ, σ)

and interpreted as follows: in the first stage, the policy maker evaluates the expected

reward of policy a per each possible model mθ,σ and expresses it in monetary terms through

a certainty equivalent

c (a, θ, σ) = u−1 (R (a, θ, σ)) .

These certainty equivalents represent the amount of the economic variable of interest, like

GDP or consumption, that would make the policy maker indifferent between obtaining

such amount for sure and facing the risk that model (θ, σ) involves. A certainty equivalent

cθ,σ can be computed per each model. It depends on risk attitude via the function u: the

more risk averse the policy maker is, the lower cθ,σ is. In the second stage, the policy

maker addresses model uncertainty, the decision theoretic scope of which is described by

the collection

{c (a, θ, σ) : (θ, σ) ∈ Θ× Σ}

of certainty equivalents. The policy maker summarizes the value of policy a by evaluating

an overall expected reward ∑
θ,σ

v(c (a, θ, σ))µ(θ, σ)

across the certainty equivalents depending on her attitude toward model uncertainty v and

prior belief µ. This is exactly what represents the two-stage decision criterion (15).

As before, if the prior distribution is uniform, the certainty equivalents are given the
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same weight in computing the overall expected welfare. If model uncertainty in the second

stage is evaluated using risk attitude u, so that u = v, we are back to the classical

subjective expected utility criterion (8), which corresponds to a situation of ambiguity

neutrality (function φ is linear in this case). Note that, the maxmin criterion (14) is a

limit case of the smooth decision criterion (15) when model uncertainty tends to infinity.

For example, if φλ(x) = −e−λx, we have16

lim
λ→+∞

φ−1
λ

∑
θ,σ

φλ (R (a, θ, σ))µ(θ, σ)

 = min
(θ,σ)∈suppµ

R (a, θ, σ) ,

which reduces to (14) when µ has full support. As here uncertainty aversion results from

higher aversion to model uncertainty than to risk, it should be clear that the classical

maxmin criterion corresponds to an extreme aversion to model uncertainty relative to

risk.

In a recent contribution, Berger et al (2017) explicitly made the distinction between

attitudes toward risk and model uncertainty while using the smooth criterion to examine

the impact of scientific uncertainty about the possibility of a particular climate catastrophe

on the optimal level of GHG emissions. Another example of application of this criterion

in climate change economics is in Millner et al (2013).

6.2 Non-Bayesian analysis

We already performed non-Bayesian analysis when presenting Wald’s maxmin crite-

rion, where priors play no role. Yet, a different departure from the Bayesian framework

originates in the work of Gilboa and Schmeidler (1989).

Multiple priors The multiple priors approach of Gilboa and Schmeidler (1989) relaxes

the assumption that the policy maker’s information about model uncertainty is quantified

through a single probability distribution µ. Instead, it allows for the possibility that it

is quantified by a set C because the policy maker does not have sufficient information to

specify a single prior over the different models. The multiple priors decision criterion is

Vmp(a) = min
µ∈C

∑
θ,σ

R (a, θ, σ)µ(θ, σ). (16)

In contrast with Wald’s extreme criterion – with which it is sometimes confused – the

multiple priors criterion of Gilboa and Schmeidler (1989) considers the least favorable

among all the classical subjective expected utilities determined by each prior µ in C. In our

climate policy example, a particular prior distribution may be the uniform that gives equal

16See Klibanoff et al (2005), who show that λ can be interpreted as the coefficient of absolute of ambiguity
aversion.

21



weights to all the possible models, while another prior may not consider some values of

the CCR as plausible (in which case, some µ(θ, σ) have a value 0). The classical subjective

expected utilities are then computed for each prior distribution, with the optimal policy

being the one that maximizes the expected reward obtained with the “worst prior”.

Criterion (16) has also often been called the maxmin criterion, but it is less extreme

than it may appear at a first glance. The set C of possible priors incorporates both the

attitude toward uncertainty and an information component: a smaller set C may reflect

both better information and/or less uncertainty aversion. In any case, Ghirardato et al

(2004) axiomatize a more general α-version

Vα-mp(a) = αmin
µ∈C

∑
θ,σ

R (a, θ, σ)µ(θ, σ) + (1− α) max
µ∈C

∑
θ,σ

R (a, θ, σ)µ(θ, σ)

that may accommodate milder, even positive, attitudes toward uncertainty.

Two criteria that we have already encountered are special cases of the multiple priors

model. First, the classical subjective expected utility criterion (8) is recovered when the

set C is singleton (i.e., it contains only one element). Second, we return to Wald’s maxmin

criterion (14) when the set C is maximal in that it consists of the set ∆ (Θ× Σ) of all

possible prior probabilities. Indeed, we have

min
µ∈∆(Θ×Σ)

∑
θ,σ

R (a, θ, σ)µ(θ, σ) = min
(θ,σ)∈Θ×Σ

R (a, θ, σ) .

So, Wald’s maxmin can be interpreted as the extreme case of maximal “prior uncertainty”.

Robustness A more general criterion, known as the variational decision criterion, has

been axiomatized by Maccheroni et al (2006). It is written as

Vvr(a) = min
µ∈∆(Θ×Σ)

∑
θ,σ

R (a, θ, σ)µ(θ, σ) + c (µ) .

Under this criterion, priors are weighted by a convex function c. Importantly, if c is strictly

convex, the criterion Vvr becomes differentiable.

This criterion has a penalization form familiar from robust control theory. In particular,

if c is dichotomous (i.e., it is 0 if µ belongs to some set C and +∞ otherwise), we are

back to the multiple priors criterion (16). By contrast, if c has the relative entropy form

λ−1H (µ ‖ ν) with respect to a reference prior ν and a coefficient λ > 0, we have the

multiplier decision criterion

Vrb(a) = min
µ∈∆(Θ)

∑
θ,σ

R (a, θ, σ)µ(θ, σ) +
1

λ
H (µ ‖ ν) .
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of Hansen and Sargent (2001, 2008). Because of a convex analysis equality (Dupuis and

Ellis 1997, p. 27), the multiplier decision criterion can be equivalently written in the

smooth ambiguity form

Vrb(a) = φ−1
λ

∑
θ,σ

φλ (R (a, θ, σ))µ(θ, σ)

 = − 1

λ
log
∑
θ,σ

e−λR(a,mθ,σ)µ(θ, σ)

Indeed, as Hansen and Sargent (2007) and Cerreia-Vioglio et al (2011) note, the multiplier

decision criterion is, essentially, the intersection of smooth ambiguity averse and variational

representations.

Examples of applications in climate change economics of the multiplier decision cri-

terion are in Athanassoglou and Xepapadeas (2012); Rudik (2016), and Xepapadeas and

Yannacopoulos (2017).

6.3 Other approaches

The approaches discussed so far have a normative motivation. They assume that

policy makers must cope with uncertainty without expecting to reduce everything to risk,

a pretension that tacitly presumes better information than they typically have. Making

decisions under a fictitious, even delusional state of information seems hardly a rational

way to proceed. That said, research has proposed other approaches with a descriptive

motivation. These include, for example, prospect theory (see Wakker 2010). However,

their descriptive motivation makes them less relevant for the climate policy problem that

we consider.

Finally, another criterion known as minmax regret, due to Savage (1951), is also some-

times used in the environmental literature. Because it violates the independence of irrele-

vant alternatives, a basic rationality tenet, we do not discuss this criterion here and refer

interested readers to Marinacci (2015).

In summary, Figure 5 illustrates the numerical decision criteria we discussed.

7 Application

To illustrate the different optimal climate policy prescribed by the decision criteria

that we presented, again consider our example of a policy maker wanting to choose the

optimal mitigation policy to put in place. For the sake of simplicity, we assume that

the objective is to choose the level of GHG emissions that will maximize the net level of

output of the economy. This level simply corresponds to the level of output net of the

damages due to climate change and the costs necessary to reduce emissions (the so-called
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Figure 5: Representation of alternative decision criteria

abatement costs). Because of the presence of scientific and socio-economic uncertainties,

the net level of output is itself uncertain.17 Given the best available scientific and economic

information at her disposal, the policy maker knows that 33 climate/economy “models”

may potentially describe the impact of climate change on the economy. These models

come from the combination of the 11 CCR values describing the possible relationship

between GHG emissions and temperatures and the three different relationships between

temperature increases and economic damages (see Section 2.2). Each model contains an

aleatory component. Assuming that beliefs have the separable form (11), we can index

these 33 models by θ only. It is then possible to compute the expected reward R̄ (a, θ)

associated with any emission policy a.18 We can then express these 33 reward functions

in monetary terms by computing the certainty equivalents c̄ (a, θ) = u−1
(
R̄(a, θ)

)
. Figure

6 plots these certainty equivalents.

The certainty equivalents represent, for each of the 33 models and each level of cu-

mulative anthropogenic emission, the certain amount of net output that a policy maker

deems worth as much as the risky net output. In other words, each certainty equivalent

17The gross level of output and the abatement cost are also potentially uncertain. However, because we
focus on the type of uncertainty described previously, here we do not consider these additional sources of
uncertainty.

18In this example, the consequence function is simply the net output computed as ρ(a, ε, θ) =
Ygross−C(a)

1+D(a,ε,θ)
,

where Ygross is the gross output, D(a, ε, θ) represents the damages associated with climate change, and C(a)
is the abatement cost. Both damages and costs depend on the action taken (a represents the level of GHG
emissions). The abatement cost function is assumed to be nearly cubic as in Nordhaus and Sztorc (2013).
The von Neumann-Morgernstern utility function u used is a power function, with a constant relative risk
aversion coefficient of 1.5.
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Figure 6: Certainty equivalents of output (net of climate damages and of abatement
costs) as functions of cumulative emissions, for different CCR values and different damage
functions: quadratic (1st column), exponential (2nd column) and sextic (3rd column)

represents a measure of net output that integrates the attitude toward the aleatory part

of uncertainty. The policy maker, however, does not know which is the correct certainty

equivalent. The certainty equivalent is, in that sense, itself uncertain because it depends

on the values of the different structural parameters used. There are thus 33 potential

certainty equivalents, depending on whether the damage function is quadratic (first col-

umn), exponential (second column) or sextic (third column) and also on the value of the

CCR parameter (represented by different colors in Figure 6). For each particular model

representing the impact of climate policy on economic output, it is possible to determine

the optimal action to put in place. To do so, the policy maker needs to find the level

of cumulative emissions maximizing the certainty equivalents (represented by the dashed

vertical lines). These optimal levels of cumulative GHG emissions since preindustrial levels

range from 1.54 TtC to 2.26 TtC, depending on the model considered. Unsurprisingly,

lower CCR parameters induce higher optimal levels of emissions, while the use of a sextic

damage function to characterize the impact of climate change tends to favor lower emission

policies.

As the ranking of the certainty equivalents is the same as that of the expected utilities,19

we can first analyze the results of Figure 6 in the light of the unanimity criterion. As we

show, up to the level of 1.54 TtC any level of cumulative emissions is unanimously better

than any inferior level of emissions. To see this, consider, for example, the climate policy

geared to 1.5 TtC of cumulative emissions. For any of the 33 models presented in Figure

6, we find that this policy dominates (i.e., it leads to a higher level of certainty equivalent)

any other policy with a lower level of cumulative emissions (e.g., 1 TtC). Analogously,

for emission levels superior to 2.26 TtC, a policy geared to a specific level of cumulative

19A certainty equivalent is nothing but a monotonic transformation of an expected utility.
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emissions is always unanimously dominated by any policy geared to a lower level. For levels

of cumulative emissions between these thresholds 1.54-2.26 TtC, however, it is impossible

to find any policy satisfying the unanimity condition. The incompleteness of unanimity

preferences therefore prevents any decision to be taken in such a situation, so other decision

criteria need to be followed if the policy maker must make a choice.

If the policy maker decides to behave in a very prudent way by taking into account

only the model providing the lowest expected reward, she only considers the combination

CCR= 2.1/sextic damage and fixes the level of cumulative emissions to 1.54 TtC. This

policy maker is extremely uncertainty averse, using Wald’s maxmin criterion (14) illus-

trated in black in Figure 7. Alternatively, if the policy maker considers aleatory and model

uncertainty the same way, she aggregates the expected rewards by taking a weighted aver-

age over them, where the weights represent the degree of belief in each specific model. In

practice, this means that an overall certainty equivalent aggregating the different certainty

equivalents associated with each specific model can be computed. This overall certainty

equivalent incorporates the policy maker’s attitude toward model uncertainty exactly in

the same way as it incorporates her attitude toward risk. The overall certainty equivalent
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Figure 7: Decision making criteria and optimal decisions under uncertainty

under a uniform prior over the possible models – µ(θ) = 1/33 for all θ – is represented

in blue in Figure 7. The decision criterion in this case is the classical subjective expected

utility (SEU) criterion (8). The optimal decision is a cumulative level of emissions of 1.85

TtC since preindustrial levels, which corresponds to the solution of problem (9).

Instead, if the policy maker is averse to uncertainty and thus dislikes more epistemic

uncertainty than risk, but is not as prudent as the classical maxmin criterion presupposes,

she may compute an overall certainty equivalent by means of a function v – more concave

than function u – representing her attitude toward model uncertainty. An example of such
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Table 3: Example of optimal policies under uncertainty

Criterion used
Optimal decision

[in cumulative emissions since predindustrial levels (TtC)]

Vmxm a∗mxm = 1.54
Veu a∗eu = 1.85
Vsmt a∗smt = 1.81
Vmp a∗mp = 1.77

overall certainty equivalent is represented in red in Figure 7.20 In this case, the decision

criterion is the smooth one (15), and the optimal level of cumulative emissions is lower

than under expected utility. It approximately corresponds to 1.81 TtC since preindustrial

levels.

Finally, following the multiple priors approach (16), the policy maker considers different

probability measures over the models, computes the expected utility for each of them, and

considers only the one providing the lowest level of expected reward. An example of such

overall certainty equivalent is represented in purple in Figure 7. It represents the minimum

expected reward obtained for two distinct priors: the prior, in which all the 33 models are

weighted equally, and the prior that considers the lower values of CCR as implausible (and

therefore puts a weight 0 on them and a uniform prior over the remaining models). The

optimal level of cumulative emissions under the multiple priors model in this situation is

lower than under the expected utility one. It corresponds to 1.77 TtC since preindustrial

levels. Table 3 summarizes the optimal decisions for each of these criteria.

8 Discussion

While the application we presented in the previous section may be too simplistic to

be actually used by policy makers to design climate policies, it illustrates the differences

between alternative decision criteria that can be used in the presence of uncertainty.

When making a choice in the presence of uncertainty, which criterion should policy

makers adopt? As previously argued, the standard line of reasoning that has traditionally

been followed in climate policy is that, to make coherent choices, policy makers should use

either von Neumann-Morgenstern expected utility if they know the true model or Savage’s

subjective expected utility with respect to their subjective probabilities over alternative

models. In the context of our example, this approach implicitly assumes that if model

uncertainty is present, policy makers treat it in the same way as risk, so they will use the

20In this example, the model uncertainty aversion function v is also a power function, with a constant
relative model uncertainty aversion coefficient of 15. The prior distribution remains the uniform one.
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“predictive” model (10). For a long time, expected utility theory has been viewed as the

only convincing approach to make rational choices under uncertainty. Following this idea,

Broome (2012, p. 129) writes that, in the context of policy decisions regarding global

warming:

The lack of firm probabilities is not a reason to give up expected value theory.

You might despair and adopt some other way of coping with uncertainty; you

might adopt some version of the precautionary principle, say. That would be

a mistake. Stick with expected value theory, since it is very well founded, and

do your best with probabilities and values.

While the axiomatic foundations of the expected utility approach appear compelling

at first glance, the claim that they constitute a necessary condition for rationality in

decision making has, however, been challenged at least since Ellsberg (1961). For example,

Gilboa et al (2008, 2009, 2012) and Gilboa and Marinacci (2013) argue that behaving in

accordance with Savage’s axioms raises several difficulties and that relaxing the assumption

that policy makers are Bayesian might well be rational. It does not mean that policy

makers are unable to think probabilistically or fail to compute probabilities correctly, but

rather that they acknowledge that expected utility requires more information than they

actually have, so its use would require some arbitrary assumptions that supplement the

limited information.

The decision frameworks we present herein are consistent with such an interpretation of

rationality, so they are compatible with a normative assessment of optimal climate policies.

In a context in which a variety of alternative models exist – each implying a different

stochastic forecast – but in which information about the accuracy of each is limited, such

alternative decision frameworks may prove to be desirable. Indeed, the decision adopted is

robust in that the selected action does reasonably well across a range of models (Mukerji,

2009). This property seems particularly valuable when the consequences of the actions

taken have long-lasting and global impacts, as in the case of climate change.

When being asked to take actions under uncertainty, policy makers might well believe

it is more rational to use these alternative criteria than to follow a standard expected

utility approach. All too often, uncertainty has been used as an excuse for insufficient

action in climate policy making. The most important – but potentially most difficult –

thing to do is to acknowledge that there are things that are just not known and then to

act nevertheless.
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