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Abstract

We present a penalization parameter method for obstacle identification in an incompressible fluid flow
for a modified version of the Oseen equations. The proposed method consist in adding a high resistance
potential to the system such that some subset of its boundary support represents the obstacle. This allows
to work in a fixed domain and highly simplify the solution of the inverse problem via some suitable cost
functional. Existence of minimizers and first and second order optimality conditions are derived through
the differentiability of the solutions of the Oseen equation with respect to the potential. Finally, several
numerical experiments using Navier-Stokes flow illustrate the applicability of the method, for the localization
of a bi-dimensional cardiac valve from MRI and ultrasound flow type imaging data.

1. Introduction

The pathway of blood flow through the heart is regulated by four membrane structures or valves, opening
and closing by differential blood pressures. Valvular heart diseases affect 20% of the population. Among
them, aortic valve stenosis is the most prevalent one in developed countries [21].

Imaging the 3D shape of the valves is a challenging task. For instance, the aortic valve is very thin
(0.5 mm), and therefore its shape can be imaged nowadays using only two modalities: computerized tomog-
raphy (CT) and transesophageal echocardiography (TEE). Since CT is based on X-rays, it is only used in
patients that are selected for valvular replacement in order to obtain the aortic root dimensions for sizing
the prosthesis. Such CT images are usually obtained when the valve is closed. Obtaining the image at open
valve position requires about 5 times larger radiation dose since the complete cardiac cycle has to be imaged.
This is equivalent to the annual recommended total radiation dose (see [25]). TEE is a newer technique, but
highly invasive: a wire is inserted through the esophagus of the patient involving a cumbersome procedure.
TEE is most of the time applied to monitor valve surgeries (see [18]), and is therefore rarely applied in a
diagnostic phase.

Magnetic resonance imaging (MRI) allows to image anatomical structures in a non-invasive and non-
ionising way. Unfortunately, the aortic valve geometry is not directly visible with MRI, since the valve
thickness is smaller than the image voxel size.

However, visual inspection of 3D Flow MRI Imaging (4D Flow, see [17]) data sets clearly shows that
the valvular shape could be retrieved from the flow pattern in the valve surroundings. This fact motivates
to formulate, analyze and numerically assess the inverse problem of inferring rigid obstacles from interior
velocity measurements, with the ultimate goal of recovering the shape of cardiac valves at the opening
position from velocity images.
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Available approaches studied and reported in the mathematical literature are limited to the detection
of obstacles in viscous fluid flows using boundary stress measurements, which limits the inverse problem to
oversimplified shapes, usually of circular nature [3, 7, 14, 15]. Noteworthy, boundary stress measurements
would mean in practice to introduce a catheter close to the valve.

The novelty of this work is the identification of flow obstacles by a distributed resistance inverse method.
That is, we propose the incorporation of a large resistance term that allows to model the effect of an
obstacle in the viscous fluid. This method reduces the obstacle identification to a simpler potential inverse
problem. This idea is inspired by [13, 5, 19], who model cardiac valves using a resistive immerse surface
(RIS) given by a Dirac distribution. The problem of using RIS for valve identification would be the need
of modifying the discretization of the domain at every iteration of the identification procedure. In contrast,
the distributed resistance term that we propose here allows us to work in a fixed domain to solve the valve
shape identification problem. This distributed resistance method can also be useful to estimate porosity in
porous media flows following Brinkman’s law [12, 6].

The paper is structured as follows. In Section 2, a parameter identification problem is defined for the
Oseen equations (as a linearization of Navier-Stokes equations) adding a resistive potential term with the
form γu, where u is the velocity field and γ ≥ 0 is a function that takes large values in zones where is
the obstacle should be located, or 0. In Section 3, a proof of the existence of minimizers using appropriate
techniques is presented. In Sections 4 and 5, first and second order optimality conditions for some suitable
cost functions are established, motivating the choice of suitable spaces for the parameter and the feasibility
of implementing optimization algorithms to numerically solve this problem. Section 6 presents numerical
examples that illustrate the feasibility of the proposed penalty method using Navier-Stokes equations from a
2D reference case representing the blood flow passing through the aortic valve. We reconstruct the position
of the valve from global or local velocity field measurements. For this purpose, synthetic images based on
MRI and ultrasound type measurements are used. Finally, conclusions and future work are presented in
Section 7.

2. Model problem

Consider a non-empty bounded domain Ω ⊆ RN , N ∈ {2, 3}. The Lebesgue measure of Ω is denoted
by |Ω|, which extends to lesser dimension spaces. The norm and seminorms for Sobolev spaces Wm,p (Ω)
is denoted by ‖·‖m,p,Ω and |·|m,p,Ω, respectively. For p = 2, the norm, seminorms and inner product

of the space Wm,2 (Ω) = Hm (Ω) are denoted by ‖·‖m,Ω, |·|m,Ω and (·, ·)m,Ω, respectively. Also, ‖·‖∞,Ω
denotes the norm of L∞ (Ω). The spaces Hm (Ω) and Wm,p (Ω) are defined by Hm (Ω) = [Hm (Ω)]

N
and

Wm,p (Ω) = [Wm,p (Ω)]
N

. The notation for norms, seminorms and inner products will be extended from
Wm,p (Ω) or Hm (Ω).

Consider α > 0, ν > 0, s ≥ 0, M > 0, Ω with a Lipschitz boundary ∂Ω = ΓD ∪ ΓN such that
int(ΓD) ∩ int(ΓN ) = ∅, an open subset ω ⊆ Ω, uR ∈ H1 (ω)

d
, uD ∈ H1/2 (ΓD) and a ∈ W 1,∞ (Ω) such

that diva = 0 and a · n ≥ 0 on ΓN , where n is the outer normal vector. The model problem is defined by

minimize J (γ,u) =
1

2
‖u− uR‖20,ω +

α

2
‖γ‖2s,Ω (1)

subject to −ν4u + (∇u)a +∇p+ γu = 0 in Ω (2)

divu = 0 in Ω

u = uD on ΓD

−ν ∂u
∂n

+ pn = 0 on ΓN

u ∈H1 (Ω) , γ ∈ Hs (Ω)

0 ≤ γ ≤M a.e. in Ω.
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The modified version of Oseen equations given by Equation (2) models the velocity u and pressure p
of a fluid that passes through the control volume Ω. The term γu, with γ ≥ 0, represents the distributed
resistance that Ω imposes to the fluid. A zero value of γ represents that the fluid follows the Oseen
equations. As the γ values increases in a certain area, the magnitude of u tends to decrease to 0. According
to Brinkman’s law [12, 6], 1/gamma is an indicator of permeability. The media is completly permeable
when γ = 0, while γ tends to +∞ in zones where there are obstacles. Bounded values of γ model porous
media, where porosity decreases as gamma increases.

In order to simplifying the analysis of this problem, an equivalent formulation with homogeneous Dirichlet
boundary condition is proposed. Let G ∈ H1 (Ω) such that G = uD on ΓD. Taking v = u − G, f =

ν4G − (∇G)a − γG in H−1 (Ω), g = −divG in L2(Ω) and h = ν
∂G

∂n
in H1/2 (ΓN ), the model problem

can be written in a new equivalent form.

minimize J (γ,u) =
1

2
‖v + G− uR‖20,ω +

α

2
‖γ‖2s,Ω (3)

subject to −ν4v + (∇v)a +∇p+ γv = f in H−1 (Ω) (4)

div v = g in Ω

v = 0 on ΓD

−ν ∂v
∂n

+ pn = h on ΓN

v ∈H1 (Ω) , γ ∈ Hs (Ω)

0 ≤ γ ≤M a.e. in Ω.

Remark 1. The boundary condition imposed in ΓN strongly depends of a · n ≥ 0, but that hypothesis
can be restrictive for some existing phenomena in the applied case. For example, if a vortex crosses the
outlet, there may be a region where the flow returns to the domain. To overcome this problem, the so called
“backflow” stabilization techniques [8] can be applied. For example, directional do-nothing condition can
be used for this problem. This condition verifies

−ν ∂u
∂n

+ pn +
1

2
(a · n)− u = 0

where (x)− = min {x, 0}. For this case, the existence of a solution of the Oseen equations is verified [11].

3. Existence of solution

The demonstration of the existence of an optimal solution presented follows the same scheme as [4]. A
first step is to introduce some helpful notations.

Definition 2. Let s ≥ 0. The set of admissible parameter functions is defined by

A = {γ ∈ Hs (Ω) | 0 ≤ γ ≤M} .

Definition 3. The space H1
ΓD

(Ω), subspace of H1 (Ω), is defined by

H1
ΓD

(Ω) =
{
v ∈H1 (Ω) | v = 0 on ΓD

}
.

Definition 4. Let γ ∈ L∞ (Ω), the mapA : L∞ (Ω)→H1
ΓD

(Ω)×L2
0 (Ω) is defined byA (γ) = [A1 (γ) , A2 (γ)] =

[v, p], where v ∈ H1
ΓD

(Ω) and p ∈ L2
0 (Ω) are the unique variational solutions of the Problem (4). In what

follows, it is denoted H = H1
ΓD

(Ω)× L2
0 (Ω), which is a Banach space behind the norm

‖[v, p]‖H = ν |v|1,Ω + ‖p‖0,Ω
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Remark 5. It is possible to ensure that A is well defined, because (4) has an unique solution for every
γ ∈ A (see Lemma 5.8 on [22]). Futhermore, there exists a constant C > 0, independent of γ, ν, uD and G,
such that

ν |v|21,Ω + (γv,v)0,Ω ≤ C max

{
ν,
‖a‖2∞
ν

, ‖γ‖∞,Ω

}
‖G‖21,Ω

‖p‖20,Ω ≤ C max

{
ν, ‖a‖∞,Ω ,

‖a‖2∞,Ω
ν

, ‖γ‖∞,Ω

}
‖G‖1,Ω .

The uniformly boundedness of ‖v‖1,Ω and ‖p‖0,Ω are obtained because ‖γ‖∞,Ω ≤M .

Theorem 6. Problem (3) has at least one solution γ∗ ∈ A with optimal states A (γ∗) = [v∗, p∗], i.e.

(∀γ ∈ A) J (γ,A1 (γ)) ≥ J (γ∗,v∗) .

Proof. First, J (γ) = J (γ,A (γ)) is bounded below by 0 and

(∀γ ∈ A) J (γ) ≥ α

2
‖γ‖2s,Ω .

Thus, m = inf
γ∈A

J (γ) is well defined. Let {γn}n∈N ⊆ A and {[vn, pn]}n∈N ⊆ H1
ΓD

(Ω) × L2
0 (Ω) such that

A (γn) = [vn, pn], {J (γn)} is decreasing and J (γn)→ m. It is clear that

(∀n ∈ N) J (γn) ≤ J (γ1) .

Then, {γn}n∈N is uniformly bounded in Hs (Ω). Since A is weakly closed, there exists a subsequence
(denoted by {γn}n∈N) such that γn ⇀ γ∗ in Hs (Ω), with γ∗ ∈ A. In particular, γn ⇀ γ∗ in L2 (Ω). By

the same way, {vn}n∈N and {pn}n∈N are also uniformly bounded (see Remark 5) on H1
ΓD

(Ω) and L2
0 (Ω),

respectively. Applying the Sobolev embedding Theorem (see Section 6.6 in [16]), there exists a subsequence
(also denoted by {vn}n∈N) such that vn ⇀ v∗ weakly in H1

ΓD
(Ω), with v∗ ∈ H1

ΓD
(Ω), and vn → v∗ in

Lp (Ω) for p ∈ [2, 6) when N ≥ 3, or for p ≥ 2 when N = 2. In particular,

vn → v∗ in L4 (Ω) and L2 (Ω) .

Let w ∈H1
ΓD

(Ω). Since d ∈ {2, 3}, then w ∈ L4 (Ω). Later, vn·w → v∗·w in L2 (Ω) and (∇vn)a⇀ (∇v)a

weakly in L2 (Ω). Thus, for every w ∈H1
ΓD

(Ω)

(γnvn,w)0,Ω → (γ∗v∗,w)0,Ω ((∇vn)a,w)0,Ω → ((∇v∗)a,w)0,Ω .

Repeating this argument, there exists a subsequence also denoted by {pn}n∈N such that

pn ⇀ p∗ in L2
0 (Ω) .

In conclusion, (v∗, p∗) ∈ H is the variational solution of Equation (4). In other words, A (γ∗) = [v∗, p∗].
Now, γ∗ is optimal. Indeed,

m = lim
n→∞

J (γn)

≥ lim
n→∞

1

2
‖vn + G− uR‖20,ω +

α

2
lim inf
n→∞

‖γn‖2s,Ω

≥ 1

2
‖v∗ + G− uR‖20,ω +

α

2
‖γ∗‖2s,Ω = J (γ∗) ≥ m.

Hence, J (γ,A1 (γ)) ≥ J (γ∗,v∗) for every γ ∈ A, proving this theorem.



5

4. First order necessary optimality condition

In order to implement a descent method to numerically solve this problem, it is necessary to establish
the differentiability of functional J . However, this directly depends on the differentiability of map A. From
this result, it is possible to establish necessary optimality conditions.

Theorem 7. The map A is Fréchet-differentiable. For each γ, γ1 ∈ A, if A (γ) = [v, p], then the Fréchet
derivative A′ (γ) [γ1] = [v′1, p

′
1] can be described by the weak solution of the following problem

−ν4v′1 + (∇v′1)a +∇p′1 + γv′1 = −γ1 (v + G) in Ω (5)

div v′1 = 0 in Ω

v′1 = 0 on ΓD

−ν ∂v
′
1

∂n
+ p′1n = 0 on ΓN .

Proof. See Appendix A

Defining B (v) =
1

2
‖v + G− uR‖20,ω and C (γ) =

α

2
‖γ‖2s,Ω, an expression for Frechét derivatives of B

and C is given by
B′ (v) [w] = (v + G− uR,w)0,ω C ′ (γ) [β] = α (γ, β)s,Ω .

Applying chain rule, it is obtained that

J ′ (γ) [γ1] = B′ (v) [A′1 (γ) [γ1]] + C ′ (γ) [γ1]

= (v + G− uR,v
′
1)0,ω + α (γ, γ1)s,Ω .

In order to reduce this expression, the following definition is introduced similarly to [1].

Definition 8. Let γ ∈ A and A (γ) = [v, p]. The adjoint states A∗ (γ) = [ϕ, ξ] are defined as the unique
weak solution of the problem

−ν4ϕ− (∇ϕ)a +∇ξ + γϕ = χω (v + G− uR) in Ω (6)

divϕ = 0 in Ω

ϕ = 0 on ΓD

−ν ∂ϕ
∂n

+ ξn− (a · n)ϕ = 0 on ΓN .

where χω is the indicator function of ω.

Using this defintion, it is possible to rewrite J ′ (γ1) depending of the adjoint state. That expression is
simpler to analyze, since it depends on the adjoint state, allowing a simple form of a first order optimality
condition using a variational inequality.

Theorem 9. Let γ, γ1 ∈ A and s ≥ 0. Then,

J ′ (γ) [γ1] = − (γ1 (v + G) ,ϕ)0,Ω + α (γ, γ1)s,Ω ,

where A (γ) = [v, p]. If γ∗ ∈ A is an optimal for Problem (3), then

(∀γ ∈ A) − ((γ − γ∗) (v∗ + G) ,ϕ)0,Ω + α (γ∗, γ − γ∗)s,Ω ≥ 0

where A (γ∗) = [v∗, p∗] and A∗ (γ∗) = [ϕ, ξ] are the states and adjont states of γ∗, respectively.
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Proof. First, using integration by parts with the adjoint states [ϕ, ξ] as tests functions, it is obtained that

−ν
∫

Ω

4v′1 ·ϕ dx = −ν
∫

Ω

4ϕ · v′1 dx +

∫
∂Ω

ϕ ·
(
−ν ∂v

′
1

∂n

)
− v′1 ·

(
−ν ∂ϕ

∂n

)
dS∫

Ω

[(∇v′1)a] ·ϕ dx = −
∫

Ω

[(∇a)v′1] ·ϕ dx +

∫
∂Ω

(a · n) (ϕ · v′1) dS∫
Ω

∇p′1 ·ϕ dx = −
∫

Ω

p′1 divϕ dx +

∫
∂Ω

ϕ · (p′1n) dS

−
∫

Ω

ξ div v′1 dx =

∫
Ω

∇ξ · v′1 dx−
∫
∂Ω

v′1 · (ξn) dS.

Then,

− (γ1 (v + G) ,ϕ)0,Ω = −ν
∫

Ω

4v′1 ·ϕ dx +

∫
Ω

[(∇v′1)a] ·ϕ dx +

∫
Ω

∇p′1 ·ϕ dx +

∫
Ω

γv′1 ·ϕ dx−
∫

Ω

ξ div v′1 dx

= −ν
∫

Ω

4ϕ · v′1 dx−
∫

Ω

[(∇ϕ)a] · v′1dx +

∫
Ω

∇ξ · v′1 dx +

∫
Ω

γv′1 ·ϕ dx−
∫

Ω

p′1 divϕ dx

+

∫
ΓN

ϕ ·
(
−ν ∂v

′
1

∂n
+ p′1n

)
−
∫

ΓN

v′1 ·
(
−ν ∂ϕ

∂n
+ ξn− (a · n)ϕ

)
dS

= −ν
∫

Ω

4ϕ · v′1 dx−
∫

Ω

[(∇v′1)a] ·ϕ dx +

∫
Ω

∇ξ · v′1 dx +

∫
Ω

γv′1 ·ϕ dx−
∫

Ω

p′1 divϕ dx

= ((v + G− uD) ,v′1)0,ω

Thus,
J ′ (γ) [γ1] = − (γ1 (v + G) ,ϕ)0,Ω + α (γ, γ1)s,Ω

Later, if γ∗ ∈ A is optimal for the problem, then

(∀γ ∈ A) J (γ) ≥ J (γ∗) ,

Finally, it is obtained that

J ′ (γ∗) [γ − γ∗] = lim
ε→0+

J (γ∗ + ε (γ − γ∗))− J (γ∗)
ε

≥ 0,

proving this theorem.

5. Second order sufficient optimality condition.

The stability results of the optimization algorithms depend, for the most part, on the existence of the
second derivative of J . Likewise, it is possible to establish second order sufficient optimality conditions.

In first place, it is necesary to introduce new forms of emebedding inequalties.

Theorem 10. There exists a constant q∗ > 2, dependent only of Ω, such that for each p ∈ [2, q∗] there
exists a constant C > 0, dependent only of Ω, M , ν and p such that

‖v‖1,p,Ω ≤ C ‖G‖−1,p,Ω

where G ∈W−1,p (Ω) (the dual of W 1,q
0 (Ω)) is defined by(

∀w ∈W 1,q
0 (Ω)

)
〈G (v) ,w〉 = 〈f ,w〉H−1(Ω),H1(Ω) + (h,w)0,ΓN

with q ≥ 2 such that
1

p
+

1

q
= 1.
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Proof. See Theorem 1 in [20].

Remark 11. The hypotheses uR ∈ L∞ (ω) and uD ∈ L∞ (ΓD) appear frequently. Asumming uR ∈ L∞ (ω)
and uD ∈ L∞ (ΓD), it is clear that G ∈W 1,∞ (Ω). Then, there exists a constant Cp > 0, depending only
of p and Ω, such that

‖G‖−1,p,Ω ≤ Cp max
{
ν, ‖a‖∞,Ω , ‖γ‖∞,Ω

}
‖G‖1,∞,Ω .

Futhermore, using Theorem 10,

‖v‖1,p,Ω ≤ CCp max
{
ν, ‖a‖∞,Ω ,M

}
‖G‖1,∞,Ω

So, ‖v‖1,p,Ω is uniformly bounded for each p ∈ [2, q∗]. Also, Theorem 1 in [20] allows us to be more precise
about the asymptotic behavior of q∗. Indeed, if the value of ‖γ‖∞,Ω increases, q∗ decreases to 2.

Lemma 12. Let s > 0 and p ∈ [1, N ].

1. If N > sp, then the embedding from W s,p (Ω) to Lr (Ω) is continuous for r ∈
[
p,

d

d− sp

]
.

2. If N = sp, then the embedding from W s,p (Ω) to Lr (Ω) is continuous for r ∈ [p,+∞).

Proof. See Section 6.6 in [16]

Remark 13. Using this embedding result with s ≥ N

q∗
and p = 2, Lemma 12 can be written by

1. If q∗ > 2, then the embedding from Hd/q∗ (Ω) to Lr (Ω) is compact for r ∈

[
2,

1
1
p −

1
q∗

]
.

2. If q∗ = 2, then the embedding from Hd/q∗ (Ω) to Lr (Ω) is compact for r ∈ [2,+∞).

Then, for 2 ≤ p ≤ 1
1
2 −

1
q∗

there exists C > 0 such that

(∀γ ∈ A) ‖γ‖0,p,Ω ≤ C ‖γ‖s,Ω .

In order to establish and prove second order optimality conditions, a first step is to show that the map
A is twice Fréchet-differentiable.

Theorem 14. The map γ 7−→ A′ (γ) [γ1] from L∞ (Ω) to H for each γ1 ∈ A is Fréchet-differentiable. Let
γ, γ1, γ2 ∈∈ A, the Fréchet derivative of A′ (γ) [γ1] on γ2 direction is given by A′′ (γ) [γ1, γ2] = [v′′, p′′], where
[v′′, p′′] is the unique weak solution of the problem

−ν4v′′ + (∇v′′)a +∇p′′ + γv′′ = − (γ2v
′
1 + γ1v

′
2) in Ω (7)

div v′′ = 0 in Ω

v′′ = 0 on ΓD

−ν ∂v
′′

∂n
+ p′′n = 0 on ΓN .

and A′ (γ) γj =
[
v′j , p

′
j

]
, for j ∈ {1, 2}.

Proof. See Appendix B



8

Let γ, γ1, γ2 ∈ A. An expresion for the Fréchet second derivative of J (γ) on directions γ1 and γ2 is given
by

J ′′ (γ) [γ1, γ2] = B′′ (A (γ)) [A′1 (γ1) , A′ (γ2)] +B′ ((A (γ))) [A′′1 (γ) [γ1, γ2]] + C ′′ (γ) [γ1, γ2]

= (v′1,v
′
2)0,Ω + (v + G− uD,v

′′)0,ω + α (γ1, γ2)s,Ω ,

where, reasoning as in the proof of Theorem 9,

(v + G− uD,v
′′)0,ω = − (γ1v

′
2 + γ2v

′
1,ϕ)0,Ω .

In consequence,

J ′′ (γ) [γ1, γ2] = B′′ (A (γ)) [A′1 (γ1) , A′ (γ2)] +B′ ((A (γ))) [A′′1 (γ) [γ1, γ2]] + C ′′ (γ) [γ1, γ2]

= (v′1,v
′
2)0,Ω − (γ1v

′
2 + γ2v

′
1,ϕ)0,Ω + α (γ1, γ2)s,Ω .

In what follows, a second order optimality condition is proved. For this, a series of technical results are

required. Consider r such that
1

q∗
+

1

r
=

1

2
. For γ, γ1, γ2, h ∈ A, consider A (γ) = [v, p], A (γ + h) = [vh, ph],

with respective adjoint states [ϕ, ξ] and [ϕh, ξh], A′ (γ) [γk] = [v′k, p
′
k] and

[
v′h,k, p

′
h,k

]
= A′ (γ + h) [γk] for

k ∈ {1, 2}. Using this, it is possible to obtain the following estimations.

Lemma 15. For each q ∈ [2, q∗], there exists C > 0, independent of v, γ, γ1, γ2 and h such that
‖vh − v‖1,q,Ω ≤ C ‖h‖∞,Ω,

Proof. subtracting the equations of A (γ + h) and A (γ), it is obtained

−ν4 (vh − v) + [∇ (vh − v)]a +∇ (ph − p) + γ (vh − v) = −h (G + vh) .

Using Theorem 10 twice and triangular inequality, there exist c1, c2 > 0 such that

‖v‖1,q,Ω ≤ c1 ‖h (G + vh)‖−1,q,Ω

≤ c1 ‖h‖∞,Ω ‖(G + vh)‖1,q,Ω
≤ c2 ‖h‖∞,Ω ‖G‖1,∞,Ω .

Taking C = c2 ‖G‖1,∞,Ω, the estimation is proved.

Lemma 16. Let k ∈ {1, 2}. There exists C > 0 independent of v, γ, γ1, γ2 and h such that
∣∣∣v′k,h∣∣∣

1,Ω
≤

C ‖γk‖s,Ω.

Proof. First, testing the equation of v′h,k with v′h,k and appliying Friedichs-Poincaré and Hölder inequalities,
there exists a constant c1 > 0 such that

ν
∣∣v′h,k∣∣1,Ω ≤ c1 ∥∥γk (G + vk,h

)∥∥
0,Ω

≤ c1 ‖γk‖0,r,Ω
∥∥(G + vk,h

)∥∥
0,q∗,Ω

From Remark 11,
∥∥(G + vk,h

)∥∥
0,q∗,Ω

is uniformly bounded by c2 > 0. Also, due to r = 1
1
2− 1

q∗
, Remark 13

points out that there exists c3 > 0 such that ‖γk‖0,r,Ω ≤ c3 ‖γk‖s,Ω. In conclusion,

ν
∣∣v′h,k∣∣1,Ω ≤ c2c3 ‖γk‖s,Ω ,

proving this estimation.
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Lemma 17. There exists C > 0 such that∣∣∣(v′h,1 − v′1,v
′
2

)
0,Ω

∣∣∣ ≤ C ‖γ1‖s,Ω ‖γ2‖s,Ω ‖h‖∞,Ω∣∣∣(v′h,1,v′h,2 − v′2
)

0,Ω

∣∣∣ ≤ C ‖h‖∞,Ω ‖γ1‖s,Ω ‖γ2‖s,Ω .

Proof. Using Cauchy-Schwartz and Friedrichs-Poincaré inequalities, there exist c1, c2 > 0 such that∣∣∣(v′h,1 − v′1,v
′
2

)
0,Ω

∣∣∣ ≤ c1 |v′2|1,Ω ∣∣v′h,1 − v′1
∣∣
1,Ω
≤ c2 ‖γ2‖s,Ω

∣∣v′h,1 − v′1
∣∣
1,Ω

Using previous lemmas, Friedrichs-Poincaré inequality and Remark 13, there exist c3, c4, c5, c6 > 0 such that

ν
∣∣v′h,1 − v′1

∣∣
1,Ω
≤ c3

(
‖h‖∞,Ω

∣∣v′h,1∣∣1,Ω + ‖γ1 (vh − v)‖1,Ω
)

≤ c3
(
c4 ‖h‖∞,Ω ‖γ1‖s,Ω + c5 ‖γ1‖0,r,Ω ‖(vh − v)‖1,q∗,Ω

)
≤ c3 (c4 + c6) ‖h‖∞,Ω ‖γ1‖s,Ω ,

concluding that ∣∣∣(v′h,1,v′h,2 − v′2
)

0,Ω

∣∣∣ ≤ C ‖h‖∞,Ω ‖γ1‖s,Ω ‖γ2‖s,Ω .

The proof of the second inequality is similar.

Lemma 18. Let k, j ∈ {1, 2}, with j 6= k. There exists C > 0 such that∣∣∣(γjv′h,k,ϕh −ϕ
)

0,Ω

∣∣∣ ≤ C ‖h‖∞,Ω ‖γ1‖s,Ω ‖γ2‖s,Ω .

Proof. First, applying Hölder and Friedrichs-Poincaré inequalties, there exist c1, c2 > 0 such that∣∣∣(γjv′h,k,ϕh −ϕ
)

0,Ω

∣∣∣ ≤ c1 ‖γj‖0,r,Ω ∥∥v′h,k∥∥1,q∗,Ω
|ϕh −ϕ|1,Ω

≤ c2 ‖γj‖s,Ω ‖γk‖s,Ω |ϕh −ϕ|1,Ω ,

where [ϕh −ϕ, ξh − ξ] verifies

−ν4 (ϕh −ϕ)− [∇ (ϕh −ϕ)]a +∇ (ξh − ξ) + γ (ϕh −ϕ) = vh − v − hϕh
div (ϕh −ϕ) = 0.

By repeating the previous procedures, since |ϕh|1,Ω is uniformly bounded, there exist c2, c3 > 0 such that

ν |ϕh −ϕ|1,Ω ≤ c2
(
‖vh − v‖1,q,Ω + ‖h‖∞,Ω |ϕh|1,Ω

)
≤ c3 ‖h‖∞,Ω .

Thus, there exists C > 0 such that

∣∣∣∣(γjv′h,k,ϕh −ϕ
)

0,Ω

∣∣∣∣ ≤ C ‖h‖∞,Ω |γj |s,Ω |γk|s,Ω.

Theorem 19. Let γ, γ1, γ2, h ∈ L∞ (Ω). There exists L > 0 such that

|(J ′′ (γ + h)− J ′′ (γ)) [γ1, γ2]| ≤ L ‖h‖∞,Ω |γ1|s,Ω |γ2|s,Ω .
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Proof. Applying triangular inequality, we obtain

|(J ′′ (γ + h)− J ′′ (γ)) [γ1, γ2]| ≤
∣∣∣(v′h,1,v′h,2 − v′2

)
0,Ω

∣∣∣+
∣∣∣(v′h,1 − v′1,v

′
2

)
0,Ω

∣∣∣
+
∣∣∣(γ1v

′
h,2,ϕh −ϕ

)
0,Ω

∣∣∣+
∣∣∣(γ1

(
v′h,2 − v′2

)
,ϕ
)

0,Ω

∣∣∣
+
∣∣∣(γ2v

′
h,1,ϕh −ϕ

)
0,Ω

∣∣∣+
∣∣∣(γ2

(
v′h,1 − v′1

)
,ϕ
)

0,Ω

∣∣∣ ,
where every term were bounded with estimations of the form C ‖h‖∞,Ω |γ1|s,Ω |γ2|s,Ω (see Lemmas 17 and
18). In conclusion, there exists L > 0 such that

|(J ′′ (γ + h)− J ′′ (γ)) [γ1, γ2]| ≤ L ‖h‖∞,Ω |γ1|s,Ω |γ2|s,Ω .

Corollary 20. There exists L > 0 such that, for every θ ∈ [0, 1]

|(J ′′ (θγ∗ + (1− θ) γ)− J ′′ (γ∗)) [γ − γ∗, γ − γ∗]| ≤ L ‖γ − γ∗‖∞,Ω |γ − γ
∗|2s,Ω .

Finally, a second order sufficent optimality condition is presented and proved.

Theorem 21. Let s ≥ N

q∗
and γ∗ ∈ A such that γ∗ verifies the first orden optimality condition. If there

exists δ > 0 such that
(∀γ ∈ A) J ′′ (γ∗) [γ − γ∗, γ − γ∗] ≥ δ ‖γ − γ∗‖2s,Ω

Then, there exist σ, ε > 0, independent of γ and γ∗, such that

(∀γ ∈ A) ‖γ − γ∗‖∞,Ω ≤ ε⇒ J (γ) ≥ J (γ∗) + σ ‖γ − γ∗‖2s,Ω .

In consequence, J has a local minimum at γ∗.

Proof. Applying a Taylor expansion, there exists θ ∈ (0, 1) such that

J (γ) = J (γ∗) + J ′ (γ∗) [γ − γ∗] +
1

2
J ′′ (θγ∗ + (1− θ) γ) [γ − γ∗, γ − γ∗] .

Using Corollary 20, if ε ≤ δ

2L
, σ =

δ

4
and ‖γ − γ∗‖∞,Ω ≤ ε, then

J (γ) = J (γ∗) + J ′ (γ∗) [γ − γ∗] +
1

2
J ′′ (θγ∗ + (1− θ) γ) [γ − γ∗, γ − γ∗]

≥ J (γ∗) +
1

2
J ′′ (θγ∗ + (1− θ) γ) [γ − γ∗, γ − γ∗]

≥ J (γ∗) +
1

2
(J ′′ (θγ∗ + (1− θ) γ)− J ′′ (γ∗)) [γ − γ∗, γ − γ∗] +

1

2
J ′′ (γ∗) [γ − γ∗, γ − γ∗]

≥ J (γ∗) +
δ

2
‖γ − γ∗‖2s,Ω −

L

2
‖γ − γ∗‖∞,Ω ‖γ − γ

∗‖2s,Ω

≥ J (γ∗) +
δ

2
‖γ − γ∗‖2s,Ω −

δ

4
‖γ − γ∗‖2s,Ω = J (γ∗) + σ ‖γ − γ∗‖2s,Ω ,

proving the theorem.

Remark 22. The result obtained in Theorem 21 is conditioned to s ≥ N

q∗
. Considering the most pessimistic

case, when q∗ = 2, it is possible to establish that the simplest spaces for γ∗, where Theorem 21 is valid, are
H1 (Ω) and H2 (Ω) when N = 2 and N = 3, respectively.
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6. Numerical results

In this section, the previous analysis is complemented by numerical experiments for the new parameter
identification problem. Realistic synthetic cases are analyzed in 2D, which represent a longitudinal section
of the structure of a cardiac valve in an arbitrary position. However, the numerical results presented below
were obtained using the Navier-Stokes equation. So, the numerical problem to be solved is given by

minimize J (γ,u) =
1

2
‖u− uR‖20,ω +

α

2
‖γ‖21,Ω (8)

subject to −ν4u + (∇u)u +∇p+ γu = 0 in Ω (9)

divu = 0 in Ω

u = uD on ΓD

−ν ∂u
∂n

+ pn = 0 on ΓN

u ∈H1 (Ω) , γ ∈ H1 (Ω)

0 ≤ γ ≤M a.e. in Ω

This special formulation of (9) is similar to (2) in terms of the resistance term. In the following sub-
sections, the configurations of the reference case is explained, as well as the numerical solutions of the
inverse problems associated with MRI images or Doppler ultrasound. Due to our lack of real images, our
experiments are fully synthetic.

6.1. Reference test

First, a reference geometry is defined. This geometry Ω represents the area around the aortic valve. The
inflow ΓI has a parabolic profile following Poiseuille’s Law given by

uD (x, y) = −Ux (d− x)n,

where x = (x, y) are the cartesian coordinates of the domain, n is the outer normal vector and d is the
diameter of the inflow, while do-nothing conditions are imposed on the outflow ΓO given by

−ν ∂u
∂n

+ pn = 0.

In the walls of the structure, represented by ΓW , the fluid has no-slip conditions given by u = 0.

−0.5 0 0.5 1.0 1.5 2.0 2.5

1

2

3

4

x [cm]

y [cm]

ΓI

ΓO

ΓW ΓW

Figure 1: Domain for the numerical tests.
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The valves are modeled on the resistance term γu using the function γ. This function assumes a constant
value M � 1 in the regions where the valve is and assumes the value 0 where the valve is not. In order
to define γ, a parabolic figure is drawn on each side Ω with an approximate thickness of 1 mm. When the
valves are fully closed, they are symmetrical with respect to the vertical axis of symmetry. When the valves
are open, these parabolas are rotated with respect to a reference system whose origin is at the point where
the valve coincides with the walls of the structure given by ΓW . Since blood flow is modeled, the kinematic
viscosity is considered equal to ν = 0.035 cm2 / s, the density is assumed as ρ = 1 g / cm3, and the dimensions
d = 2 cm and U = 30 cm / s, resulting in a peak Reynolds number on the inlet of

Re =
Ud

ν
= 1714.

The Navier-Stokes equations are discretized using the finite element method (FEM) with Taylor-Hood
elements (P2 for the velocity u and P1 for the pressure) on an unstructured triangular mesh. The mesh used
was generated by domain triangulation with h = 0.05 cm, which corresponds to 9950 elements and 4976
nodes. The solver is implemented using the finite element library FEniCS [2] with the default configuration.
To solve the nonlinear problems, a Newton’s method was used. The resistance γ is defined as a discontinuous
function with discrete values in each element, assuming the value of M = 108 if the element intersects the
valve or, otherwise, assumes the value 0. We define the set O, that represents the valve inside of Ω, by

O =
{
x ∈ Ω | γ(x) = 108

}
.

Figure 2: Plots of unstructured mesh (left) and γ (right).

Figure 3: Reference solutions u and p.
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6.2. Numerical solution of the inverse problem

Using the solution of the reference test as reference solution uR, the following version of the model
problem is solved numerically using FEniCS and dolfin-adjoint

minimize J (γ,u) =
1

2
‖u− uR‖20,ω +

α

2
‖γ‖20,Ω +

β

2
|γ|21,Ω (10)

subject to −ν4u + (∇u)u +∇p+ γu = 0 in Ω (11)

divu = 0 in Ω

u = uD on ΓI

u = 0 on ΓW

−ν ∂u
∂n

+ pn = 0 on ΓN

u ∈H1 (Ω) , γ ∈ H1 (Ω)

0 ≤ γ ≤ C a.e. in Ω.

For this example, we considered a measurement area ω = Ω and the values C = 103, α = 10−4 and
β = 10−8. The use of two different weights for the norm and seminorm is consistent with the theoretical
analysis of the previous sections, so this problem has a solution. The dolfin-adjoint library [26] allows to
implement automatic derivation of the discrete adjoint equations for pde models and implement minimization
algorithms from the Python 3 libraries. In particular, the L-BFGS-B algorithm (see Section 4.3 in [28]) was
used with the following stopping criteria on the step k

|J (γk)− J (γk+1)|
max {|J (γk)| , |J (γk+1)| , 1}

≤ 10−6 or max
j∈{1,...,n}

{∣∣∣(∇Jk)j

∣∣∣} ≤ 10−6

where (∇Jk)j is the j−th component of the projected gradient on the step k. To start the algorithm, γ0 = 0
was used as the inital solution.

As a way to define a valve reconstruction algorithm sketch, we follow these steps.

1. We defined an axis that crosses the domain from the inflow to the outflow.

2. For a uniform discretization of the axis, we defined perpendicular lines.

3. The solution γ∗ obtained by the algorithm is interpolated on each of the lines. Three points are
selected on each side of the axis. The first and second point are the limits of an interval where ∇γ∗ ·n
has the maximim positive values with 1% of tolerance. The third point is the local maximum closest
to the interval.

4. An average is obtained between the three points.

5. A polyline is drawn on each side of the axis. Each polyline passes through all the average points.

Numerical results are presented in Figure 4. The polyline is drawn in white, which presents a great
approximation to the interface between the different values of the reference given by γ.

The optimal γ∗ has values close to 0 in the areas before and after the valves. On the other hand, in the
interior area where there are no valves, the optimal solution takes values close to 0. Likewise, the magnitude
and direction of u∗ is similar to uR, where u∗ corresponds to the optimal state.
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Figure 4: Real γ and reconstructed valve, optimal γ, optimal u, and reference solution uR (from left to right). Reference test,
148 iterations.

It is necessary to corroborate that this algorithm is able to solve the inverse problem measuring only a
part of uR given by the reference velocity. In this case, choosing ω as the area where the valves should be
(see Figure 5 right), given by

ω = Ω ∩
{

(x, y) ∈ R2 | 1 ≤ y ≤ 3
}
,

the expected result should be similar to that found above.
Figure 5 presents the numerical results, the polyline and the references. In the case of the reference

solution uR, a pink rectangle was drawn that allows delimiting the measurement area ω. In particular, this
problem required more iterations than the case with measurements on Ω, obtaining very similar results.

Figure 5: Real γ and reconstructed valve, optimal γ, optimal u, and reference solution uR (from left to right). Reference test
with subdomain, 240 iterations.

6.3. Measurements of MRI type

Using the reference solutions, it is possible to generate synthetic measurements that represent the be-
havior of MRI velocity type measurements. A 2D plane is chosen on which the velocity is measured in one
specified direction d ∈ R2, with |d| = 1. Then, the measurement is given by

uR = uR · d.

The MRI type velocity measurement data is represented in a mesh of uniform quadrilaterals of 2 mm×2 mm.
They are obtained by projecting uR to the Q0 finite element space, given by piecewise constant discontinuous
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functions on the quadrilateral mesh. In practical applications, the input speed is unknown and must be
estimated. Then, a direction d for this MRI can be chosen as that which is an inner normal to ΓI . To
determine U , the projection of uR in L2 (ΓI) with respect to Ux(2− x) is calculated by

U =

∫
ΓI
uR [x (2− x)] dS∫

ΓI
[x (2− x)]

2
dS

.

Thus, U approaches in a least squares sense. Figure 6 shows the synthetic MRI generated from the reference
solution.

Figure 6: Reference uR (left) and synthetic MRI type velocity measurement (uR, right).

The new problem to solve is given by

minimize J (γ,u) =
1

2
‖(u− uR) · d‖20,Ω +

α

2
‖γ‖20,Ω +

β

2
|γ|21,Ω (12)

subject to −ν4u + (∇u)u +∇p+ γu = 0 in Ω (13)

divu = 0 in Ω

u = uD on ΓI

u = 0 on ΓW

−ν ∂u
∂n

+ pn = 0 on ΓN

u ∈H1 (Ω) , γ ∈ H1 (Ω)

0 ≤ γ ≤ C a.e. in Ω.

where the values C = 103, α = 10−4 and β = 10−8 were used. It is possible to prove the existence of solution
of this problem in the same way as in the proof of the theorem. Figure 7 shows the numerical results and the
references. The parameter γ has some jumps that coincide with the vertical lines between the MRI voxels,
while the polyline tends to have segments parallel to those vertical lines, but it acceptably approximates the
space between the valves.
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Figure 7: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic MRI (from left to right). MRI noiseless.

The white noise intensity in the velocity measurements from MRI is proportional to the velocity encoding
parameter (also called VENC [17]) of the scan. This parameter is configured with a value greater than the
maximum expected velocity, in order to eliminate signal aliasing. Then, the noise in all voxels is proportional
to the maximum velocity in the measurement area. In the clinical practice it can be expected that high-
quality MRI contains a velocity noise of 10% of the maximum velocity in each voxel [17]. Gaussian noises
were added to this MRI with a standard deviation of 5%, 10% and 20% of the maximum value of uR.

Figure 8 shows the results of this experiment with a 5% of Guassian noise, but changing the weights to
α = 10−4 and β = 10−6 in terms to decrease the effects of noise. The results are similar to the experiment
without noise in terms to the tendency of the polyline to approximate the valve shape and draw lines parallel
to the voxels.

Figure 8: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic MRI (from left to right). MRI with 5% of noise.

This approximation seems weaker as noise increases, in the sense that the polyline has a lower quality in
its approximation and that the gamma function tends to overfit the data. The following two figures show
the result of the experiment with 10% and 20% of Gaussian noise, respectively. The noise is exactly the
same than the 5% Gaussian noise case, but increasing the level noise.
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Figure 9: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic MRI (from left to right). MRI with 10% of
noise.

Figure 10: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic MRI (from left to right). MRI with 20% of
noise.

Table 1 shows the mean square error (MSE) between the reconstructed valve given by the polylines
obtained using MRI in Figures 7, 8, 9 and 10, and the polyline obtained in the reference test (see Figure 4).
To quantify this error, we consider only the points of the polyline in Figure 4 that are at a distance less
than or equal to 0.5 mm from O. There are minor differences between the valve reconstructions for the cases
with a noise level of 5% and 10%. However, the quality of the reconstruction decreases when the level noise
increases up to 20%.

Noise level MSE
0% 4.4680 · 10−3

5% 8.6308 · 10−3

10% 8.1992 · 10−3

20% 1.5016 · 10−2

Table 1: MSE of reconstructed valves using MRI with different noise levels.

Figure 11 shows the reconstructed polyline for three experiments with independent noises at same level of
noise. Each polyline color represents the final result of this experiment with a Gaussian noise independent



18

of the others, whose amplitude was adjusted for the noise level of 5%, 10% and 20%. We can see that
the rebuilt valves are more irregular as the noise level increases, especially for 20% of level noise, which is
consistent with Table 1.

Figure 11: Comparison of reconstructed valves with three different noises, with 5%, 10% and 20% of noise (from left to right).

6.4. Measurements of ultrasound imaging type

It is possible to generate synthetic measurements similar to ultrasound images. From a given focal point,
directional velocities are measured at each point in a domain with the form of a circular sector with center
in the focal point. The chosen directions d (x) are given by unit vectors parallel to the vector that joins the
measurement point with the focal point. Then, the measurement is given by

uR = uR · d (x)

The measurement data is represented in a structured triangular mesh of 2116 nodes and 4050 triangles
with h = 0.067 cm. The measurements are obtained by interpolation of uR to the P1 finite element space
defined on the structured mesh. Again, the input speed is unknown and must be estimated from a preliminary
measurement. To determine U , the projection of uR in L2 (ΓI) with respect to Ux(2 − x) [n · d (x)] is
calculated by

U =

∫
ΓI
uR [x (2− x)] [n · d (x)] dS∫

ΓI
[x (2− x)]

2
[n · d (x)]

2
dS

d

Figure 12: Ultrasound imaging domain, mesh and synthetic ultrasound imaging.
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The new problem to solve is given by

minimize J (γ,u) =
1

2
‖(u− uR) · d (x)‖20,ω +

α

2
‖γ‖20,Ω +

β

2
|γ|21,Ω (14)

subject to −ν4u + (∇u)u +∇p+ γu = 0 in Ω (15)

divu = 0 in Ω

u = uD on ΓI

u = 0 on ΓW

−ν ∂u
∂n

+ pn = 0 on ΓN

u ∈H1 (Ω) , γ ∈ H1 (Ω)

0 ≤ γ ≤ C a.e. in Ω

where ω is the subdomain on Ω covered by the ultrasound imaging and the values C = 103, α = 10−4

and β = 10−8 were used. This problem has solution, and the proof of the existence of solution is similar
to the proof of the theorem. Figure 13 presents the numerical results, the polyline and the references. The
results obtained are very similar to those obtained in the reference tests with measurements in the entire
domain and in a subdomain.

Figure 13: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic ultrasound imaging(from left to right).

There are multiple sources of noise in ultrasound images, such as reverberation, ghosting, or fake echo,
among others. Therefore, it is not possible to define a simplified structure of noise in this type of images
[10, 24]. In order to study the effect of the noise, we assume an additive Gaussian noise that is proportional
to the maximum of |uR| in the measurement area. From [23], an experiment with a straight-vessel phantom
had a 9.6% of standard deviation. Then, is acceptable to simulate an ultrasound imaging with a velocity
noise of 10% of the maximum velocity in each node. Gaussian noises were added to this ultrasound imaging
with a standard deviation of 10% and 20% of the maximum of |uR|.

Figures 14 and 15 show the results of this experiment with a 10% and 20% of Guassian noise, respectively,
but changing the weights to α = 10−4 and β = 10−6 in terms to decrease the effects of noise. The results
are similar to the experiment without noise in terms to the tendency of the polyline to approximate the
valve shape.
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Figure 14: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic ultrasound imaging(from left to right) with
10% of noise.

Figure 15: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic ultrasound imaging(from left to right) with
20% of noise.

Table 2 shows the mean square error (MSE) between the reconstructed valve given by the polylines ob-
tained using MRI in Figures 13, 14 and 15, and the polyline obtained in the reference test with measurement
in a subdomain (see Figure 5). The MSE was quantified by the same way as in Table 1. There are minor
differences between the valve reconstructions for the cases with a noise level of 10% and 20%.

Noise level MSE
0% 3.0985 · 10−3

10% 8.1993 · 10−3

20% 8.6772 · 10−3

Table 2: MSE of reconstructed valves using ultrasound imaging with different noise levels.

7. Conclusions

We have presented a new parameter identification problem for the Oseen equation, contributing to the
detection of obstacles in fluid dynamic studies. For this problem, the existence of solution and optimality
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conditions were determined. The study of optimality conditions is necessary to validate the use of optimiza-
tion algorithms. In particular, the second order optimality condition allowed to specify the Hs space where
the parameter γ belongs.

The numerical experiments developed in this work allow us to conjecture that it would be possible
to extend this analysis for the Navier-Stokes equation. Indeed, the numerical tests without noise had
satisfactory results in terms of rebuilding the simulated valve. Furthermore, experiments with Gaussian
noise show that disturbances in the reference image are reflected in bounded changes in the parameter and
in the reconstructed valve. The quality of the solutions is worse as noise increases, as expected.

There are several ways to deepen this work. From an analytical perspective, it is necessary to repeat the
theoretical analysis for Problem (9), in the same way as we worked with Problem (1), looking for obtaining
similar results. Furthermore, it is required to study the uniqueness of the solution and stability results
for the control. Based on the favorable numerical results, the next step is to perform experiments with
3D domains, including structures and real images (both MRI and ultrasound imaging), whether obtained
from phantoms or real patients. The 3D case is of medical interest, since it will contribute to simplify
the detection of defects in the function of aortic valves, among other structures. Therefore, designing an
algorithm to recreate the aortic valve in 3D is also one of the future improvements.
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Appendix A. Proof of Theorem 7

Theorem. A is Fréchet-differentiable. For each γ, γ1 ∈ A, if A (γ) = [v, p], then the Fréchet derivative
A′ (γ) [γ1] = [v′1, p

′
1] can be described by the weak solution of the following problem

−ν4v′1 + (∇v′1)a +∇p′1 + γv′1 = −γ1 (v + G) in Ω

div v′1 = 0 in Ω

v′1 = 0 on ΓD

−ν ∂v
′
1

∂n
+ p′1n = 0 on ΓN .

Proof. Let γ, γ1 ∈ A, it will be proved that there is a linear application D : L∞ (Ω)→ H such that

A (γ + γ1)−A (γ) = D (γ1) + r (γ, γ1) ,

where

‖γ1‖∞,Ω → 0⇒
‖r (γ, γ1)‖H
‖γ1‖∞,Ω

→ 0.

Let [v1, p1] = A (γ + γ1). Taking D (γ1) = [v′1, p
′
1] and r (γ, γ1) = [δv, δp] = [v1 − v − v′1, p1 − p− p′1], it is

possible to see that D (γ1) is linear. Also, r (γ, γ1) is solution of the problem

−ν4 (δv) + (∇δv1)a +∇ (δp) + γ (δv) = γ1 (v − v1) in Ω

div (δv) = 0 in Ω

(δv) = 0 on ΓD

−ν ∂ (δv)

∂n
+ (δp)n = 0 on ΓN .
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Thus, there exists a constant c1 > 0, independent of γ and γ1 (see Lemma 5.8 on [22]), such that

‖r (γ, γ1)‖H = ν |δv|1,Ω + ‖δp‖0,Ω ≤ c1 ‖γ1‖0,Ω ‖v − v1‖0,Ω .

subtracting the equations of v y v1 and using integration by parts,

ν |v − v1|21,Ω + (γ (v − v1) ,v − v1)0,Ω = (γ1 (G + v1) ,v − v1)0,Ω .

Applying Cauchy-Schwarz and Friedrichs-Poincaré inequalities, there exists c2 > 0 such that

ν |v − v1|21,Ω ≤ (γ1 (G + v1) ,v − v1)0,Ω

≤ ‖γ1‖∞,Ω ‖G + v1‖0,Ω ‖v − v1‖0,Ω
≤ c2 ‖γ1‖∞,Ω ‖G + v1‖0,Ω |v − v1|1,Ω .

But, using Friedrichs-Poincaré inequality again, there exists c3 > 0 such that ‖G + v1‖0,Ω ≤ c3 ‖G‖1,Ω (see
Remark 5). Then, there exists C1 > 0 such that

ν |v − v1|1,Ω ≤ C1 ‖γ1‖∞,Ω ‖G‖0,Ω .

Finally, applying Friedrichs-Poincaré inequality, there exists a constant C > 0 such that

‖r (γ, γ1)‖H = ν |δv|1,Ω + ‖δp‖0,Ω ≤ C ‖γ1‖2∞,Ω ‖G‖0,Ω .

Thus,
‖r (γ, γ1)‖H
‖γ1‖∞,Ω

≤ C ‖γ1‖0,Ω ‖G‖0,Ω
‖γ1‖∞,Ω→0
−→ 0,

proving the theorem.

Appendix B. Proof of Theorem 14

Theorem. The map γ 7−→ A′ (γ) [γ1] from L∞ (Ω) to H for each γ1 ∈ A is Fréchet-differentiable. Let
γ, γ1, γ2 ∈∈ A, the Fréchet derivative of A′ (γ) [γ1] on γ2 direction is given by A′′ (γ) [γ1, γ2] = [v′′, p′′],
where [v′′, p′′] is the unique weak solution of the problem

−ν4v′′ + (∇v′′)a +∇p′′ + γv′′ = − (γ2v
′
1 + γ1v

′
2) in Ω (B.1)

div v′′ = 0 in Ω

v′′ = 0 on ΓD

−ν ∂v
′′

∂n
+ p′′n = 0 on ΓN .

and A′ (γ) γj =
[
v′j , p

′
j

]
, for j ∈ {1, 2}.

Proof. Let γ, γ1 ∈ A, it will be proved that there is a linear application D2 : L∞ (Ω)→ H such that

A′ (γ + γ2) [γ1]−A′ (γ) [γ1] = D2 (γ, γ1) [γ2] + r (γ, γ1, γ2) ,

where

‖γ2‖∞,Ω → 0⇒
‖r (γ, γ1, γ2)‖H
‖γ2‖∞,Ω

→ 0.

Let A′ (γ + γ2) [γ1] = [w′1, q
′
1], A′ (γ) [γ1] = [v′1, p

′
1] (see Theorem 7), A (γ) = [v, p] and A (γ + γ2) = [w, q]

(see Definition 4). Defining D (γ, γ1) [γ2] = [v′′, p′′] as function of γ2 and

r(γ, γ1, γ2) = [δv, δp] = [w′1 − v′1 − v′′, q′1 − p′1 − p′′] ,
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it is possble to see that D (γ, γ1) is linear and r(γ, γ1, γ2) is solution of the problem

−ν4 (δv) + (∇δv)a +∇ (δp) + γ (δv) = γ2 (v′1 −w′1) + γ1 (v′2 + v −w) in Ω

div (δv) = 0 in Ω

(δv) = 0 on ΓD

−ν ∂ (δv)

∂n
+ (δp)n = 0 on ΓN .

Then, applying Friedrichs-Poincaré inequality, there exists c1 > 0, independent of γ, γ1, γ2 such that

ν |δv|1,Ω + ‖δp‖0,Ω ≤ c1
(
‖γ2‖∞,Ω |v

′
1 −w′1|1,Ω + ‖γ1‖∞,Ω |v

′
2 + v −w|1,Ω

)
.

Later, subtracting the equations of v′1 and w′1, testing with v′1−w′1 and p′1− q1, respectively, and applying
Friedrichs-Poincaré inequality, there exists c2 > 0 such that

ν |v′1 −w′1|
2
1,Ω ≤ (γ2w

′
1,v
′
1 −w′1)0,Ω + (γ1 (w − v) ,v′1 −w′1)0,Ω

≤ ‖γ2‖∞,Ω ‖w
′
1‖0,Ω ‖v

′
1 −w′1‖0,Ω + ‖γ1‖∞,Ω ‖w − v‖0,Ω ‖v

′
1 −w′1‖0,Ω

≤ c2
(
‖γ2‖∞,Ω |w

′
1|1,Ω + ‖γ1‖∞,Ω |w − v|1,Ω

)
|v′1 −w′1|1,Ω .

Hence,

ν |v′1 −w′1|1,Ω ≤ c2
(
‖γ2‖∞,Ω |w

′
1|1,Ω + ‖γ1‖∞,Ω |w − v|1,Ω

)
.

Analogously, from the equations of w and v, there exists c2 > 0 such that

ν |w − v|21,Ω ≤ − (γ2 (v + G) ,w − v)0,Ω

≤ ‖γ2‖∞,Ω ‖v + G‖0,Ω ‖w − v‖0,Ω
≤ c2 ‖γ2‖∞,Ω |v + G|1,Ω |w − v|1,Ω ,

but there exists c3 > 0 such that |v|1,Ω ≤ c3 ‖G‖1,Ω (see Remark 5). Then,

ν |w − v|1,Ω ≤ c2c3 ‖γ2‖∞,Ω ‖G‖1,Ω .

Futhermore, there exists c4 > 0 such that

ν |w′1|1,Ω ≤ c4 ‖G‖1,Ω .

In conclusion, there exists C1 > 0 such that

ν |v′1 −w′1|1,Ω ≤ C1 ‖γ1‖∞,Ω ‖γ2‖∞,Ω ‖G‖1,Ω .

Repeating this analysis for the term v′2 + v −w, there exists c5 > 0 such that

ν |v′2 + v −w|0,Ω ≤ c5 ‖γ2‖∞,Ω |w − v|1,Ω
≤ c5 ‖γ2‖2∞,Ω ‖G‖1,Ω .

Then, there exists C2 > 0 such that

‖r (γ, γ1, γ2)‖H = ν |δv|1,Ω + ‖δp‖0,Ω
≤ c1

(
‖γ2‖∞,Ω |v

′
1 −w′1|0,Ω + ‖γ1‖∞,Ω |v

′
2 + v −w|1,Ω

)
≤ c1

(
c2 ‖γ1‖∞,Ω ‖γ2‖2∞,Ω ‖G‖1,Ω + c5c2 ‖γ1‖∞,Ω ‖γ2‖2∞,Ω ‖G‖1,Ω

)
≤ C2 ‖γ1‖∞,Ω ‖γ2‖2∞,Ω ‖G‖1,Ω .
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In conclusion,
‖r (γ, γ1, γ2)‖H
‖γ2‖∞,Ω

≤ C2 ‖γ1‖∞,Ω ‖γ2‖∞,Ω ‖G‖0,Ω
‖γ2‖∞,Ω→0
−→ 0,

proving the theorem
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