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Foreword

This talk was first given at the LIMOS on July the 9th 2020 and was
mainly intended for an audience of non specialists of Gaussian
processes (GPs). It was then updated for the GDR MascotNum
ETICS2020 school in October and the Webinar Data analytics & AI
at Mines Telecom in November.
The first slides (up to slide 12) about GPs and Bayesian Optimization
should probably be skipped by readers already aware about these
topics.
The review of dimension reduction techniques is an attempt at
providing a unified point of view on this ubiquitous topic. The two
research contributions on variable selection for optimization 1) by
kernel methods and, 2) by penalized likelihood in a mapped space,
may be of interest to many experts.
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Context: optimization of costly functions

min
x∈S

f (x)

S: search space, continuous, discrete, mixed, others (graphs?).
Default S ∈ Rd (hyper-rectangle). d is the dimension.

Costly: one call to f takes more CPU than the rest of the
optimization algorithm. Examples: nonlinear partial differential
equations (finite elements), training of a neural network, real
experiment . . .

An exciting part of machine learning: algorithm design critical to
performance, use expert knowledge.
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Context: optimization of costly functions

To save calls to f , build a model of it based on previous evaluations
and rely on it whenever possible −→ metamodel / surrogate based
optimization.

Gaussian process as metamodel : Bayesian Optimization.
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Outline

1 Bayesian Optimization in a nutshell.

2 BO & dimension reduction: review of principles.

3 Reduce dimension by selecting variables.

4 Gaussian process and optimization in reduced dimension for
shapes.
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Gaussian Process Regression (kriging)

0 5 10 15
x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Y

0 5 10 15
x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Y

Y (x)|Y (X)=F is N (m(.), c(., .)) with

m(x) = E[Y (x)|Y (X)=F] = k(x ,X)k(X,X)−1F
c(x , x ′) = Cov[Y (x),Y (x ′)|Y (X)=F] = k(x , x ′)−

k(x ,X)k(X,X)−1k(X, x ′)
Y (x) is parameterized through k(x , x ′; θ).

Ex: k(x , x ′) = σ2 exp(−∑d
i=1

(xi−x ′i )2

2θ2
i

).

Learn the GP typically by max. likelihood, θ? = arg maxθ L(θ;F).
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Bayesian Optimization

Global optimization methods are a trade-off between

Intensification in known good regions

Exploration of new regions

How can kriging models be helpful?
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(EGO figures from [Durrande and Le Riche, 2017])
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In our example, the best observed value is 1.79
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We need a criterion that uses the GP and seeks a compromise
between exploration and intensification: the expected improvement
(among other acquisition criteria).
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The Expected Improvement

Measure of progress: the improvement,
I (x) = max (0, (min(F )− Y (x) | Y (X)=F)).
Acquisition criterion: EI(x) =

∫ +∞
−∞ I (x) dy(x) = · · · =√

c(x , x) [w(x)cdfN (w(x)) + pdfN (w(x))]

with w(x) = min(F )−m(x)√
(c(x ,x))

.
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Expected Improvement

x t+1 = arg maxx∈S EI(x)

Let’s see how it works... iteration 1
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Expected Improvement

x t+1 = arg maxx∈S EI(x)... iteration 2
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Expected Improvement

x t+1 = arg maxx∈S EI(x)... iteration 3
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Expected Improvement

x t+1 = arg maxx∈S EI(x)... iteration 4
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Expected Improvement

x t+1 = arg maxx∈S EI(x)... iteration 5
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This algorithm is called Efficient Global Optimization (EGO,
[Jones et al., 1998]), an instance of Bayesian Optimization (BO):

1 make an initial design of experiments X and calculate the
associated F , t = length(F )

2 build a GP from (X ,F ) (max. likelihood → θ )

3 x t+1 = arg maxx EI(x) (with another optimizer, e.g. CMA-ES
[Hansen and Ostermeier, 2001])

4 calculate Ft+1 = f (Xt+1), increment t

5 stop (t > tmax) or go to 2.

State-of-the-art for costly functions.
Note the 2 internal optimization problems, one in S (d dimensions),
one in the number of parameters of the GP (typically O(d)).
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Bayesian optimization and COCO

COCO : COmparing Continuous Optimizers [Hansen et al., 2016]
with 24 functions of the BBOB noiseless suite [Hansen et al., 2010].
15 repetitions of runs of length 30× d (=2,3,5,10) → 360 optimizations
per dimension, 432000 maximizations solved, millions of covariance
matrices inversions.

QuadMean : Bayesian Optimizer with quadratic trend optimized every 5
iterations.

best09 : utopic algorithm made of the best (for each cost and dimension)
of the 32 algorithms competing at BBOB 2009.
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Bayesian optimization and COCO
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Outline

1 Bayesian Optimization in a nutshell.

2 BO & dimension reduction: review of principles.

3 Reduce dimension by selecting variables.

4 Gaussian process and optimization in reduced dimension for
shapes.
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Bayesian optimization and dimension

Bayesian optimizers are very competitive at low number of function
evaluations but they loose this advantage with dimension.
Intuitively logical since they attempt to build a model of the function
throughout the search space S.
Recent efforts for improving BO performance in more than 5
dimensions:

search locally around good points (trust regions).

search in low dimensional linear subspaces.

search in low dimensional nonlinear subspaces.

“search” = build a metamodel + perform internal optimizations.
2 ingredients to dimension issue in BO.
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BO and trust regions

Principle: counteract the effect of
increasing dimension (volume) by
restricting the search to a smaller
(controlled) trust region.
Research questions: how to control
the trust region? Global (outside
TR) vs. local (inside) steps?

x1

x2

xd

TRIKE, Trust-Region Implementation in Kriging-based
optimization with Expected Improvement, [Regis, 2016].

TURBO, a TrUst-Region BO solver, [Eriksson et al., 2019].

TREGO, a Trust-Region framework for EGO,
[Diouane et al., 2020]
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BO in a linear subspace

Principle: build the statistical
model and optimize fR(α) = f (Aα)
where A is d × δ , δ � d . Linear
embedding x = Aα.
Research questions: choice of A,
link between bounds on x and α.

x1

x2

xd

A1

Aδ

(R)REMBO & improvements, Random EMbedding Bayesian
Optimization, [Wang et al., 2016, Binois et al., 2020].

Choice of A by Partial Least Squares, SEGOKPLS
[Amine Bouhlel et al., 2018] (internal optim in high dimensions),
EGORSE (EGO coupled with Random and Supervised
Embeddings [Priem, 2020]).

Choice of A by the active subspace method [Li et al., 2019].

R. Le Riche et al. (CNRS EMSE) Reducing dimension in BO 17/45 July 2020 17 / 45



BO with variable selection

Principle: a special case of embed-
ding, only keep some of the vari-
ables xi ’s (≡ A as a selection of
basis vectors).
Research questions: what to do
with non selected xi ’s? How
to adapt selection as progress is
made?

x1

x2

xd

(x1, xd ) selected

x2 fixed

Select variables from GP length scales: Split-and-Doubt
[Ben Salem et al., 2019], L1-regularized likelihood
[Gaudrie et al., 2020].

Sensitivity analysis for optimization (using sublevel sets and
mean embeddings in RKHS) [Spagnol et al., 2019]: in Appendix
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BO within a manifold

Principle: find a low dimen-
sional manifold. Compose a
nonlinear map, φ(x), with lin-
ear analysis (cf. before).
Research questions: how to find
the nonlinear map? Pre-image
problem: find an inverse map
x(α). x1

x2

xd
α = V>(φ(x)− φ̄)

α1

α2

αd

αD

φ̄

Kernel PCA [Schölkopf et al., 1997]: φ(x) implicit.
In the field of shape optimization, φ(x) is natural: x are CAD
parameters, φ(x) is the shape. Use φ(x) to infer manifolds and
optimize in
[Raghavan et al., 2013, Li et al., 2018, Cinquegrana and Iuliano, 2018].
BO and manifold search in [Gaudrie et al., 2020]. Sum it up later.
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Outline

1 Bayesian Optimization in a nutshell.

2 BO & dimension reduction: review of principles.

3 Reduce dimension by selecting variables. Joined work with
Adrien Spagnol and Sébastien Da Veiga [Spagnol et al., 2019].

4 Gaussian process and optimization in reduced dimension for
shapes.
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Kernel based sensitivity indices for optimization

Global sensitivity analysis: quantify the importance of a given set of
variables for the function f .
Classically, the part of the function variance attributed to the set of
variables

Sobol indices
[Sobol, 1993]

Si =
Var(E(Y | Xi))

Var(Y )

But optimization is focused on low regions of f (as opposed to all the
fluctuations).
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A goal-oriented index for optimization

Natural to use sublevel sets in optimization:
Dq = {x ∈ S | f (x) ≤ q}
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Dixon-Price function, f (X ) = (X1 − 1)2 + 2(X 2
2 − X1)2

X1 unimportant to reach q = 10000, both X1 and X2 important and coupled for q = 50
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An optimization oriented sensitivity for Xi : distance between the
non-informative p(Xi) and the marginal distribution of the good
points p(Xi | X ∈ Dq).
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A robust statistics: the MMD

How to measure the distance between P ≡ p(Xi) and
Q ≡ p(Xi) | X ∈ Dq ?
Use the Maximum Mean Discrepancy (MMD), a kernel-based
measure that is less sensitive to the number of points and dimension
(adaptation to the data):

MMD2(P,Q) =

(
sup

f ∈H,‖f ‖≤1

[EP(f (X ))− EQ(f (X ))]

)2

Function Showing Difference in Distributions

• Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F ) := sup
f∈F

[EPf(x) − EQf(y)] .
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Smooth function

H RKHS induced by kernel k(., .).
See Gretton et al., [Smola et al., 2007,

Fukumizu et al., 2009]
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MMD estimation

Mean embedding : µP(.) =

∫
k(x , .)p(x)dx

MMD2(P,Q) =

(
sup

f∈H,‖f ‖≤1
[EP(f (X ))− EQ(f (X ))]

)2

EP(f (X )) =

∫
f (x)p(x)dx =

∫
〈k(x , .), f 〉Hp(x)dx = 〈µP(.), f 〉H

sup
f∈H,‖f ‖≤1

[EP(f (X ))− EQ(f (X ))] = sup
f∈H,‖f ‖≤1

〈µP(.)− µQ(.), f 〉H = ‖µP(.)− µQ(.)‖H

MMD2(P,Q) = 〈µP(.)− µQ(.), µP(.)− µQ(.)〉H

develop, get terms like 〈µP(.), µQ(.)〉H =
∫ ∫

k(x , x ′)p(x)q(x ′)dxdx ′ and take the empirical

means from input sample Xi = {x1
i , . . . , x

n
i } and subsample X̃i = {x1

i , . . . , x
m
i | x ∈ Dq}

MMD2(P,Q) ≈
1

n(n − 1)

n∑
p=1

n∑
q 6=p

k(xpi , x
q
i )+

1

m(m − 1)

m∑
p=1

m∑
q 6=p

k(x̃pi , x̃
q
i )−

2

nm

n∑
p=1

m∑
q=1

k(xpi , x̃
q
i )

Easy to calculate. Equivalent to an independence measure between Xi and 1(f (X ) ≤ q)
[Spagnol et al., 2019].
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Kernel-based sensitivity index

Sensitivity of variable i to reach the sublevel set Dq:

Si =
MMD2(p(Xi), p(Xi | X ∈ Dq))∑d
j=1 MMD2(p(Xj), p(Xj | X ∈ Dq))

For costly functions, estimate Si

with the Gaussian process trajecto-
ries (account for model error) ⇒
one S

(l)
i per trajectory l .
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KSA-BO
Kernel-based Sensitivity Analysis Bayesian Optimization

1 make an initial design of experiments X and calculate the
associated F , t = length(F )

2 build a GP from (X ,F ) (max. likelihood)
3 Select active variables a ∈ {1, . . . , d} : variable i selected if

p-value: P
[
S̄i = 1/Ntraj

∑
l S

(l)
i < S random sample

]
≤ 0.01 or 0.05

determ.: or S̄i > 1/d

4 x t+1
a = arg maxxa EI(xa) , x t+1

ā = best so far or random with
proba 0.5, component-wise

5 calculate Ft+1 = f (Xt+1), increment t

6 stop (t > tmax) or go to 2.

Robustified version of the KSA-BO from [Spagnol et al., 2019]. Some tuning omitted here :

how to choose xā, initial p(Xi ) and q? Details in [Spagnol, 2020].
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Preliminary results

Welded beam problem, a priori selec-
tion of the active variables (no GP),
d = 4 but a = {1, 4} (deterministic
strategy), 10000 repetitions of opti-
mization.

Note the compromise accuracy of the
optimum vs. cost.
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Results : test set

20 repetitions on

Name deff d Expression

Branin 2 25 f (X) =
(
X2 − 5.1

4π2 X
2
1 + 5

π
X1 − 6

)2
+

10
(
1− 1

8π

)
cos(X1) + 10

Rosenbrock 5 20 f (X) =
∑d−1

i=1 100
(
Xi+1 − X 2

i

)2
+ (Xi − 1)2

Borehole 8 25 f (X) = 2πX3(X4−X6)

ln(X2/X1)(1+
2X7X3

ln(X2/X1)X2
1
X8

+
X3
X5

)

Ackley 6 20 f (X) = −20 exp

(
−0.2

√
1
d

∑d
i=1 X

2
i

)
−

exp
(

1
d

∑d
i=1 cos(2πXi )

)
+ 20 + exp(1)

Schwefel 20 20 f (X) =
∑d

i=1

(∑i
j=1 Xj

)2

Stybtang 20 20 f (X) = 1
2

∑d
i=1(X 4

i − 16X 2
i + 5Xi )

easy, medium, hard = 90 , 50 , 10% solved
Hard
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All runs for Rosenbrock function
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Results : variables selection rates
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Branin 25d, 2 first variables are active, 23 dummy.
Idem on other functions: variables are correctly selected.

@30 iterations set more ambitious goals: (p, q) go from (100%, 30%) to (30%, 5%).
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Results : task solving rate
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KSA-BO outperforms EGO and Dropout. Versions with trajectories
perform better. Deterministic approach better overall.
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Outline

1 Bayesian Optimization in a nutshell.

2 BO & dimension reduction: review of principles.

3 Reduce dimension by selecting variables.

4 Gaussian process and optimization in reduced dimension for
shapes. Joined work with David Gaudrie and Victor Picheny
[Gaudrie et al., 2020].

R. Le Riche et al. (CNRS EMSE) Reducing dimension in BO 32/45 July 2020 32 / 45



Dimension reduction for shapes : summary

Shapes are described by CAD parameters
x ∈ Rd

Nonlinear map to a high dimensional
space φ(x) ∈ RD , D � d
(free from biases created by CAD
choices): here by contour discretization
[Stegmann and Gomez, 2002]
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From a database of possible shapes [φ(x (1)), . . . , φ(x (n))],

extract a basis of most impor-
tant shapes by principal component
analysis, {V 1, . . . ,V δ}.
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Then work (build a GP, optimize) in this basis,

i.e. in the (α1, . . . , αδ) manifold.

The choice of φ(x) is important.
Other choices: characteristic
function [Raghavan et al., 2013],
signed distance to contour
[Raghavan et al., 2014]
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Further reduce dimension of the GP within the α-space of
eigencomponents:

Likelihood that favors sparsity [Yi et al., 2011]:
maxθ Likelihood(θ; f (X))− λ‖θ−1‖1

GP with zonal anisotropy [Allard et al., 2016]:
Y (α) = Y a(αa) + Y ā(αā), Y a(αa) detailed (anisotropic),
Y ā(αā) isotropic

Expl NACA22 : Card(a) = 3 , δ = 10 , d = 22 , D = 600
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and optimize in the reduced dimensional space:

α(t+1)∗ comes from max([αa, α︸ ︷︷ ︸
∈Rδ+1

]) ,

α coordinate along a random line
in non-active space

Solve pre-image problem:
x (t+1) = arg min

x∈S
‖V>(φ(x)− φ)− α(t+1)∗‖2

and evaluate f (x (t+1)). Eigencomp. α(t+1) = V>(φ(x (t+1))− φ)

Replication: update GP with both
α(t+1)∗ and α(t+1)
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Example: NACA 22 airfoil drag minimization
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Faster decrease of the objective function in the reduced eigenshape basis (left) compared
with the standard approach (right, CAD parameter space).

Smoother airfoils are obtained because a shape basis is considered instead of a
combination of local parameters.
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Conclusions

BO’s performance degrades with dimensionality. 2 techniques for
reducing dimensions in BO:

variable selection specific to optimization because based on
sublevel sets; select variables from a robust statistics, the
maximum mean discrepancy in the RKHS; x = (xa, xā), optimize
on the active xa.

build an embedding, φ(x), and identify its most active directions
(eigenshapes), V a, from the regularized likelihood; build a GP
and optimize with more details in V a while not completely
overlooking V ā.

Perpectives: generalize and cumulate: create embeddings for
general optimization problem and select variables from sublevel
sets in this better parameterized space.
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Comparing results of 31 algorithms from the black-box optimization benchmarking
bbob-2009.
In Proceedings of the 12th annual conference companion on Genetic and evolutionary
computation, pages 1689–1696. ACM.

Hansen, N. and Ostermeier, A. (2001).
Completely derandomized self-adaptation in evolution strategies.
Evol. Comput., 9(2):159–195.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998).
Efficient Global Optimization of expensive black-box functions.
Journal of Global optimization, 13(4):455–492.

R. Le Riche et al. (CNRS EMSE) Reducing dimension in BO 42/45 July 2020 42 / 45



References IV

Li, J., Bouhlel, M. A., and Martins, J. (2018).
A data-based approach for fast airfoil analysis and optimization.
In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, page 1383.

Li, J., Cai, J., and Qu, K. (2019).
Surrogate-based aerodynamic shape optimization with the active subspace method.
Structural and Multidisciplinary Optimization, 59(2):403–419.

Priem, R. (2020).
High dimensional constrained optimization applied to aircraft design.
PhD thesis, Univ. de Toulouse - ISAE.
(in French).

Raghavan, B., Breitkopf, P., Tourbier, Y., and Villon, P. (2013).
Towards a space reduction approach for efficient structural shape optimization.
Structural and Multidisciplinary Optimization, 48(5):987–1000.

Raghavan, B., Le Quilliec, G., Breitkopf, P., Rassineux, A., Roelandt, J.-M., and Villon, P.
(2014).
Numerical assessment of springback for the deep drawing process by level set interpolation
using shape manifolds.
International journal of material forming, 7(4):487–501.

R. Le Riche et al. (CNRS EMSE) Reducing dimension in BO 43/45 July 2020 43 / 45



References V

Regis, R. G. (2016).
Trust regions in Kriging-based optimization with expected improvement.
48:1037–1059.

Schölkopf, B., Smola, A., and Müller, K.-R. (1997).
Kernel principal component analysis.
In International conference on artificial neural networks, pages 583–588. Springer.

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007).
A hilbert space embedding for distributions.
In International Conference on Algorithmic Learning Theory, pages 13–31. Springer.

Sobol, I. M. (1993).
Sensitivity estimates for nonlinear mathematical models.
Math. Model. Comput. Exp, 1(4):407–414.

Spagnol, A. (2020).
Kernel-based sensitivity indices for high-dimensional optimization problems.
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