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+is work focuses on predicting corrosion onset induced by concrete carbonation or chloride ingress when using analytical
predictive models.+e paper proposes a procedure that helps building and infrastructure managers to select an appropriate model
depending on the available information and the means granted to auscultation campaigns. +e approach proposed combines the
costs of input parameters, their relative importance, the benefits brought through obtaining parameters, and the maintenance
strategy of the manager. Costs represent the intellectual investment to obtain parameters. +is encompasses the time spent to
obtain and analyze a result and the required expertise. Relative importance and benefits are obtained from sensitivity analysis. +e
effect of the maintenance strategy is introduced through a scalar called efficiency of the model. +e proposed methodology is
illustrated with two case studies where it is supposed that more or less extended information is available. +ree concrete qualities
are also considered in the case studies. +e results highlight that the available data and concrete type have significant impacts on
the selection of the most appropriate model.

1. Introduction

It is widely accepted that a suitable maintenance strategy helps
to lengthen the service life cycle of structures [1]. Corrosion of
steel is known as one of the phenomena that significantly
reduces the life cycle of reinforced concrete structures [2, 3]
increasing failure risks [4]. Some studies have been conducted
to improve maintenance strategies against this pathology and
taking into account uncertainties [5–11].

+e theory of value of information (VoI) shows how
information could improve the performance of a given system
[12, 13]. Some other studies considered expected value of
perfect information (EVPI) such as Daneshkhah et al. [14]
and Zitrou et al. [15]. Within a maintenance strategy, the
prediction of the evolution along time of the degradation
provided by models is an unavoidable crucial information.
Indeed, this is necessary for helping to schedule repair or
maintenance actions [16]. On the contrary, obtaining the

values of input parameters could involve more or less im-
portant financial resources. Depending on their strategies,
managers would not be willing to pay the same amount to
obtain such model parameters. Consequently, in order to
provide better help to managers for decision-making,
quantification of benefits brought by obtaining parameters
and hence using a given model should be provided.

A selection of degradation models is required for some
purposes. First, models must be user-friendly (complex fi-
nite element models for instance are not always convenient
for the daily practice of building managers, and their use is
rather intended for specific problems). Second, the owners of
structures and engineers working for them are prone to use
models presented in standards and recommendations be-
cause these are generally recognized by insurance compa-
nies. +ird, the prediction of carbonation and chloride
ingress is improved by accounting for the uncertainties
related to material properties, exposure, and specific
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adjusting factors. +en, the models should be able to
propagate these uncertainties in a comprehensive way. Fi-
nally, the benefits brought by using the model must com-
mensurate with the resources required for its use.
Consequently, models must be able to propagate uncer-
tainties, provide relevant results from a physical viewpoint,
be updated especially from auscultations by nondestructive
techniques, and provide a good cost/benefit ratio.

Within this framework, this paper proposes a procedure
for comparing and selecting analytical carbonation models.
+e procedure combines (i) a sensitivity analysis that aims at
quantifying the relative importance of each parameter and
the ability of the models for propagating uncertainties [17]
and (ii) an effectiveness analysis that integrates the cost
required for estimating input parameters of the models. +e
objective is to provide a relevant tool for advising owners
and managers in the choice of an appropriate model, with
respect to the available maintenance resources.

+e paper is organized as follows: in Section 2, we
present the models and the main results of sensitivity
analysis; in Section 3, we detail the structure and materials
studied; and the methodology for the assessment of costs,
benefit, and efficiency for each model and study case is
detailed and illustrated in Sections 4, 5, and 6, respectively.

2. Summary of the Methodology

We provide in the current section a summary of the
methodology. It is illustrated in the flowchart in Figure 1.
+is methodology could be applied to other degradation
processes and is summarized by the following steps:

(1) To collect initial information concerning the deg-
radation process and maintenance strategy: (i)
degradation processes to be studied, (ii) data con-
cerning the structure studied, and (iii) economical
strategy of the building manager.

(2) To identify the existing models able to describe the
degradation.

(3) For each degradation model, to identify all possible
methods for determining each input parameter:
expert assessment or by carrying out nondestructive
or semidestructive testing.

(4) To assess the cost of each model:

(a) According to information obtained from pre-
vious step (step 3), to determine the cost (in-
stallation, workforces, etc.) of each input
parameter of each model.

(b) Using the cost of parameters to compute costs
for each model.

(5) To define realistic ranges of input parameter. +is
may require important literature review, as pre-
sented in a previous study [18]. +is is useful for the
following:

(a) Carry out sensitivity analysis (see step 6).
(b) Avoid unconsistent values when identifying

inputs: in some practical cases, models are used

to identify inputs using measurements of out-
puts (e.g., Bayesian inference). +is was not the
case in the current study. However, in such
situations, compensations could appear be-
tween inputs resulting from the identification
process, especially when model has too many
parameters. +is leads to unconsistent values.
Parameters should hence be identified into
realistic imposed ranges of values.

(6) To quantify the relative importance of each pa-
rameter of the models using sensitivity analysis: in
the current study, we used various sensitivity in-
dicators in order to have further information
concerning the model behaviour [17].

(7) To compute the benefit for each model as follows:

(a) Using the results of the sensitivity analysis to
estimate the improvement of the prediction of
the model studied when obtaining a given
parameter.

(b) Using the previous information to estimate the
benefit of each model.

(8) In parallel with all previous steps, we characterize
the maintenance strategy of the building manager:
is the manager prone to invest importantly, poorly,
or nothing at all for auscultation (nondestructive or
semidestructive testing) campaigns?

(9) To identify which parameters could be supplied
through auscultations given the strategy and fi-
nancial resources of the manager.

(10) To compute the efficiency of each model by com-
bining (i) model cost, (ii) benefit of model, and (iii)
the financial strategy of the building manager.

(11) To compare the efficiencies of models by combining
the previously mentioned factors and then to select
the one which has the highest efficiency.

3. Models and Sensitivity Analysis

+is section provides an overview of some models and
sensitivity analysis results from a previous work [17] that are
useful for the understanding of some trends in outcomes
highlighted in the current paper.

3.1. Summary of Analytical Models. +e analytical concrete
carbonation and chloride ingress models collected in this
work are summarized in Table 1. +e notations used for
these models are also given in this table. +ese input pa-
rameters can be gathered at three levels (Figure 2 and
Table 2).

3.1.1. Chloride Ingress Models. +e chloride ingress models
can be classified into two groups: (i) models without time-
dependent parameters and (ii) models with time-dependent
parameters. +ese models are expressed according to the
following equation:
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C(x, t) � Cserfc
x

2
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ξ(X, t)

  + Cini, (1)

where C(x, t) is the chloride content (% wt. of concrete or %
wt. of binder) at distance x from the concrete surface (m)
and at time t (s), Cs is the chloride content at the concrete
surface that could be constant or time-dependent (% wt. of
concrete or % wt. of binder), and ξ(X, t) is a general function
of concrete diffusivity, which depends on a vector X of input
parameters that are specific to each model and the time t (s);
depending on the models, concrete diffusivity could be
constant or time-dependent, and Cini is the initial chloride
content of the concrete (% wt. of concrete or % wt. of
binder). +e expressions of ξ(X, t) for each model are de-
tailed in [17]. Table 3 presents the input parameters X for
each studied chloride ingress model.

3.1.2. Concrete Carbonation Models. +ese models can be
written in a generalized expression:

2. Identification of existing
predictive models of the

degradation studied (Section 3.1)

3. Identification of possible
methods to determine

inputs of models (expert
advice/auscultations)

(Section 5.1)

8. Characterization
of the strategy of

the building
manager (Section 5.2)

5. Searching for
realistic ranges of values

for inputs of models

6. Relative importance of each
input parameter using

sensitivity analysis (Section 3.2)

9. Identifying which
parameters could

be supplied through
auscultations given

the strategy
financial resources

of the manager
(Section 5.2)

10. Efficiency of each
model (Section 7)

11. Selection

1. Initial information

7. Benefit for each
model (Section 6)

Using the results of sensitivity
analysis to assess the improvement
of the prediction of the model
studied when obtaining a given
parameter
Using the previous information
to estimate the benefit for
each model

(i)

(ii)

4. Cost of models (Section 5)
To etablish cost of each input
parameter of each model
(Section 5.1)
To assess each model cost us-
ing parameters cost.
(Section 5.2)

(i)

(ii)

Degradation process (carbonation, chloride ingress, etc.)
Available data concerning the structure studied
Strategy of the building manager

(i)
(ii)

(iii)

Figure 1: Flowchart of the method.

Table 1: Analytical models of concrete carbonation and chloride
ingress.
Model Notation
Chloride ingress
Collepardi et al. [19] Col
JSCE [20] JSCE
Petre-Lazar [21] LEO
EuroLightCon [22] Eur
DuraCrete [23] Du
Tang and Gulikers [24] Lu
Carbonation
Ying-Yu and Qui-Dong [25] Yi
Papadakis et al. [26] Pa
CEB [27] CE
DuraCrete [23] Du
Miragliotta [28] Mi
Petre-Lazar [21] Ox
Hyvert [29] Hy
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x(t) �
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kexpkexekPDCO2
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t

√
, (2)

where x(t) (m) is the carbonation depth at time t (s), kexp is a
factor which introduces environmental conditions, kexe is a
factor accounting for execution conditions, and kP is a factor
accounting for the interaction between the diffusion coef-
ficient of the carbon dioxide DCO2

(m2/s) and the concrete
porosity ϕ. In some models [21, 25, 29], kP is expressed as

kP � kP,MkP,E, (3)

where kP,M is related to material properties and kP,E to
exposure conditions. Expressions of kP,M, kP,E, kexp, and kexe
for eachmodel are detailed in [17]. Table 4 presents the input
parameters for each studied carbonation model.

3.2. Summary of Results of the Sensitivity Analysis

3.2.1. Methodology. +e indicators used in [17] for the
sensitivity analysis are (i) elasticity coefficient, (ii) Pearson’s
coefficient, (iii) bias factor, and (iv) uncertainty propagation
(output’s standard deviation).

+ese indicators provide different information con-
cerning the sensitivity of models to their input variation.

Elasticity provides an assessment of the effect of a deter-
ministic disruption of a given input of the model on the
output. Pearson’s coefficient quantifies the linear correlation
between inputs and the output of the model. +e bias factor
is an assessment of the part of the variability of the model
output caused by each input. Finally, the last indicator
(uncertainty propagation) quantifies the variability in the
model output when a given input varies.

In order to study the effect of the concrete quality, three
typical concrete mixes have been accounted for: they are
referred as C25, C35, and C45. +e compositions of CEM I
cement and mixes of these concretes are reported in Tables 5
and 6, respectively. Some physicochemical properties of
these concretes are also given in Table 7. Outer surfaces of
concrete structures considered in this study are supposed
sheltered and exposed to commonly encounter yearly av-
erage conditions. Average relative humidity and tempera-
ture were thus 72% and 11°C, respectively.

+e values of input parameters are summarized in Ta-
bles 8 and 9 for chloride ingress models and carbonation
models, respectively. +e range of variability in each pa-
rameter corresponds to the possible realistic variability for
the three studied concretes. +e bounds of each variation
interval [ai; bi] have been proposed from literature review

Level 1: parameters that can be
directly measured

Level 2: parameters estimated from
level 1

Chloride
ingress
models

Data
(observables) Modelling Outputs

Model input parameters
(Table 2)

Carbonation
models

Chloride
content
c (x, t)

Carbonation
depth
x (t)

Level 3: parameters derived from
level 2 (only carbonation)

Meteorogical
data
Destructive or
ND tests
Project archive

(i)

(ii)

(iii)

Figure 2: General representation of input parameters for analytical carbonation and chloride ingress models by Rakotovao Ravahatra
et al. [17].

Table 2: Classification and data required for determining model input parameters.

Level Chloride ingress Carbonation

1a∗ RH (relative humidity), T (temperature) RH (relative humidity), T (temperature), PCO2
(CO2 pressure),

Patm (atmospheric pressure)

1b∗∗ ϕ (porosity), Sr (saturation degree), ρ (concrete density),
migration coefficient, chloride profiles

Rc (28 days compressive concrete strength), ϕ (porosity), Sr

(saturation degree), ρ (concrete density)
1c∗∗∗ Concrete mix, cement composition, execution conditions Concrete mix, cement composition, execution conditions

2
Diffusion coefficient, w (water content), n (aging parameter), ke

(environmental parameter), kc (execution parameters), kt (test
method parameter), Cs (surface chloride content)

a (binding capacity for CO2), a′ (required quantity of CO2 for a
complete carbonation), n (aging parameter), C0 (carbon dioxide
content), fp (volumetric ratio of cement paste), hydrate content,
unhydrate content, Cabs (required carbon dioxide content for a
complete hydration of the concrete), αhyd (hydration degree), α1

et n1 (fitting parameters of the model of Hyvert), ke

(environmental parameter), kc (execution parameters), kt (test
method parameter)

3
kexp(exposure model factor),kexe (execution model factor), kP

(factor accounting for the interaction between the diffusion
coefficient and the carbon dioxide), DCO2

(diffusion coefficient)
∗Meteorological data; ∗∗tests or project archives; ∗∗∗project archives.
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[23, 31, 32] or experimental data. Uniform distributions
were used for generating random values.

Although cement paste hydrate and unhydrate contents
are input parameters for some models, it was decided to
consider their variability through hydration degree αhyd and
cement content c, using the empirical expressions, found in
[29].

3.2.2. Chloride Ingress Models. For illustration purposes, we
present in Table 10 results for all indicators for Collepardi
and Lupingmodels.+esemodels were selected because they
represent cases with constant (group 1) and time-dependent
(group 2) parameters, respectively. All results for the other
models are detailed in [17].

+e main tendencies are summarized as follows:

Table 4: Input parameters of analytical models of carbonation by Rakotovao Ravahatra et al. [17].

Parameter Model

Description Symbol
Ying-Yu and
Qui-Dong

[25]

Papadakis
et al. [26]

CEB
[27]

DuraCrete
[23]

Miragliotta
[28]

Petre-
Lazar
[21]

Hyvert
[29]

Env.

CO2 pressure PCO2
× ×

Temperature T ×

Relative humidity RH × × ×

CO2 content C0 × × × ×

Material

Porosity ϕ ×

Saturation degree Sr ×

Compressive strength Rc ×

Absorbed CO2 Cabs ×

Concrete density ρ ×

Binding capacity for CO2 a ×

Required quantity of CO2
for a complete carbonation a′ ×

CSH content CSH × × ×

CH content CH × × ×

AFt content AFt × ×

AFm content AFm × ×

C3S content C3S × ×

C2S content C2S × ×

C3A content C3A ×

C4AF content C4AF × ×

Reference period t0 × ×

Fitting parameters α1 and
n1

×

Table 5: Cement composition (%).

Concrete SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O

C45 20.1 5 3 64.1 1 3.2 0.72
C35 20.43 4.9 1.83 65.4 1.06 3.5 0.25
C25 20.29 5.56 2.32 64.22 2 3.17 0.57

Table 6: Concrete mixes (kg/m3).

Concrete Cement Fly ash Sand 0/4 Aggregates 4/12 Aggregates 12/20 Water Superplasticizer w/c
C45 350 80 900 320 630 177 3 0.51
C35 350 0 815 998 0 195 1.4 0.56
C25 295 0 989 792 0 200 0 0.68

Table 7: Physicochemical properties (mol/L).

Concrete AFm AFt CSH CH SiO2 Porosity (%) Rc (MPa)

C45 0.41 0.25 3.16 3.11 0 11.8 58
C35 0.41 0.15 3.185 3.585 0 12.7 46.2
C25 0.34 0.25 2.879 2.90 0 14 40.2

6 Advances in Civil Engineering



Table 8: Values of input parameters for chloride ingress models by Rakotovao Ravahatra et al. [17].

Parameters Units Mean Coef. of variation Min ai Max bi

Cs-C45 6.24 — 5.29 7.19
Cs-C35 % mass of binder 8.76 — 8.37 9.17
Cs-C25 10.01 — 9.52 10.49
T Kelvin 284.04 0.067 282.55 285.53
Da-C45 2.99 0.136 1.95 2,57
Da-C35 10− 12m2/s 3.45 0.136 2.99 3.92
Da-C25 7.09 0.133 6.15 8,04
Wgel-C45 205.19 — 198.62 211.76
Wgel-C35 kg/m3 208.56 — 201.88 215.23
Wgel-C25 174.58 — 168.99 180.17
w-C45 118 0.05 112.1 123.9
w-C35 kg/m3 127 0.012 125.47 128.52
w-C25 140 0.06 131.6 148.4
kc 0.656 0.26 0.48 0.82
kt 0.832 0.029 0.80 0.85
ke-C45, C35 1.325 0.17 1.09 1.55
ke-C25 0.676 0.18 0.55 0.79
n-C45 0.69 0,07 0.6417 0.7383
n-C35, C25 0.3 0.17 0.249 0.351
α-C45, C35 0.60 0,07 0.558 0.642
α-C25 0.40 0.17 0.332 0.468
Drcm-C45 4.14 0.136 3.57 4,70
Drcm-C35 10− 12m2/s 6.33 0.136 5.47 7,19
Drcm-C25 13 0.133 11.27 14.73
ccl — — 1.00 1.30
w/c-C45 0.51 0.027 0.50 0.52
w/c-C35 0.56 0.027 0.54 0.57
w/c-C25 0.68 0.027 0.66 0.70
−, no data.

Table 9: Values of input parameters for carbonation models by Rakotovao Ravahatra et al. [17].

Parameter Unit Mean Coef. of variation (%) Min ai Max bi

RH % 72.91 3 70.68 75.14
Rc-C45 58 6 54.52 61.48
Rc-C35 MPa 46.2 4 44.35 48.04
Rc-C25 40.2 3 38.99 41.40
kc — 0.63 26 0.46 0.79
kt — 0.98 2.3 0.96 1.005
n — 0.4 20 0.32 0.48
Rcarb-C45 1010 kg CO2/m3/(m2/s) 2 7.5 1.9 2.1
Rcarb-C35 0.4 8.9 0.36 0.43
Rcarb-C25 0.28 5 0.271 0.3
T K 284.04 6.7 282.55 285.53
ϕ-C45 0.118 5 0.112 0.124
ϕ-C35 — 0.127 1.6 0.124 0.129
ϕ-C25 0.14 8 0.129 0.151
c-C45 350 14 345 355
c-C35 kg/m3 350 13.6 345 355
c-C25 295 16 290 300
αhyd-C45 0.81 3.9 0.778 0.842
αhyd-C35 — 0.84 3.8 0.808 0.872
αhyd-C25 0.89 3.6 0.858 0.922
Sr — 0.65 10 0.59 0.72

Advances in Civil Engineering 7



(i) Differences were observed between the two groups
regarding sensitivity analysis: the models belonging
to the second group are more sensitive to material
parameters.

(ii) It was found for both groups of models that, at early
age, material parameters are themost influential (Da
for the Collepardi model and Dar and n for Luping
model).

(iii) At advanced age, environmental parameters be-
come more influential (Cs for Collepardi and
Luping models).

3.2.3. Concrete Carbonation Models. Table 11 gives the
results of the sensitivity analysis for all carbonation models.
For each model, the maximum and minimum values of each
indicator are highlighted with bold text. +e main ten-
dencies are summarized as follows:

(i) +e impact on the mean and standard deviation of
the output varies over time, but the results of elas-
ticity and the linear Pearson’s correlation coefficient
remain fairly constant.

(ii) +e results show that the most influencing pa-
rameters are those which are linked to the con-
crete porosity and its condition state: these are the
relative humidity RH, the curing factor kc, and the
porosity ϕ.

4. Categories of Structures and Materials

Two typical study cases for existing constructions with re-
spect to their available data are investigated in this work: (i)
structure A with a complete building archive, with

exhaustive information, and (ii) structure B with a slight
building archive and quite poor information. +ese struc-
tures were chosen within the framework of the ANR-
EVADEOS project (http://www.agence-nationale-
recherche.fr/Projet-ANR-11-VILD-0002). +e 2 building
archives of the considered structures are presented in
Table 12.

For each case (structures A and B), the three concrete
types previously considered in the sensitivity analysis are
considered again.

5. Assessment of Costs

5.1. Input Parameters Costs. When supplying input pa-
rameters for a predictive model, the engineer may adopt two
possible approaches that can be combined eventually. +e
expert advice approach consists in gathering all available
information, deal with them for using the model if these
information are more or less direct input parameters. He can
also complete them by additional computations or engi-
neering knowledge if these information can be introduced as
input parameters of intermediate models whose outputs
would be used as input parameters of the predictive model.
+e auscultation data approach consists in extracting ma-
terial properties or other information from destructive or
(preferably) nondestructive tests that can be used as more or
less direct input parameters of the predictive model. Both
approaches present several complexity levels depending on
the number of steps to operate for supplying a particular
input parameter. Each input parameter of a predictive model
can be therefore associated with a certain complexity level
(Table 13) and consequently to a certain cost which can be
different according to the adopted approach. Table 14 re-
ported the values of the cost (C), accuracy level (A), and the

Table 10: Results of sensitivity analysis for two models of chlorination (Collepardi (Col.) and Luping) at 2.5 cm [17].

Indicator Model
Concrete C45 C35 C25

Age (years) 10 25 50 10 25 50 10 25 50

Elasticity

Col. Env. Cs 1 1 1 1 1 1 1 1 1
Mat. Da 3.1 1.31 0.74 0.52 0.27 0.17 0.31 0.17 0.11

Luping
Env. Cs 1 1 1 1 1 1 1 1 1

Mat. Dar 1.6 1.24 1.04 0.47 0.3 0.21 0.28 0.18 0.13
n −1.32 −1.82 −2.04 −0.51 −0.42 −0.36 −0.31 −0.26 −0.23

Pearson’s coef.

Col. Env. Cs 0.35 0.63 0.81 0.98 0.99 0.99 0.71 0.87 0.94
Mat. Da 0.93 0.78 0.59 0.16 0.08 0.05 0.69 0.46 0.32

Luping
Env. Cs 0.5 0.53 0.55 0.38 0.47 0.55 0.58 0.67 0.74

Mat. Dar 0.74 0.62 0.54 0.58 0.47 0.4 0.49 0.38 0.3
n −0.41 −0.55 −0.61 −0.72 −0.74 −0.73 −0.62 −0.61 −0.58

Bias factor

Col. Env. Cs 0.43 1.48 2.06 −0.31 −0.32 −0.34 0.22 0.48 0.63
Mat. Da 15.59 −18.17 −47.09 −0.94 −0.94 −0.94 −84.68 −63.28 −47.25

Luping
Env. Cs 45.95 45.91 40.6 −4.41 −7.53 −10.39 −96.74 −100.66 −99.12

Mat. Dar 54.18 69.64 75.25 −82.08 −85.2 −87.9 −15.11 −34.59 −44.97
n −7.6 −22.41 −32.6 −4.23 −7.32 −10.15 −81.25 −65.77 −54.07

Output’s std.

Col. Env. Cs 0.01 0.08 0.17 0.09 0.14 0.16 0.16 0.2 0.22
Mat. Da 0.03 0.1 0.12 0.01 0.01 0 0.15 0.1 0.07

Luping
Env. Cs 0.05 0.08 0.11 0.1 0.13 0.15 0.16 0.19 0.21

Mat. Dar 0.08 0.1 0.11 0.16 0.13 0.11 0.14 0.11 0.09
n 0.05 0.09 0.12 0.2 0.21 0.2 0.18 0.18 0.17

Env., environmental parameter; Mat., material parameter.
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level of robustness loss risk (RLR) for each complexity level
(CL). It is important to notice that the costs mentioned in
this study are not real financial costs but rather represent an

intellectual cost of operational investment. +is encom-
passes the time spent to obtain and analyze a result and the
required expertise. It could be seen as scale of increase in the

Table 12: Building archives of the 2 considered structures A and B.

Data Complete building archive (A) Slight building archive (B)
Structure
Date of construction Given Given
Architectural plan Available Available
Reinforcement plan Available Available
Design calculations and report Available Missing
Concrete
Concrete type (regular concrete, high performance, etc.) Given Given
Aggregate contents Given Missing
Cement content Given Missing
w/c Given Missing
Cure duration (kc) Given Missing
Rc Given within compliance test report Given
Cement
Type Given Missing
Composition Detailed (technical datasheet) Missing

Table 11: Summary of the results of sensitivity analysis for all concrete carbonation models at 50 years [17].

Concrete C45 C35 C25
Models Parameter E P M Std. E P M Std. E P M Std.

DuraCrete

Rcarb −0.46 −0.1 1229.2 3.28 −0.46 −0.08 8541.26 3.04 −0.46 −0.04 1170.37 2.3
RH −1.93 −0.13 1229.99 4.33 −1.93 0.03 8525.41 1.04 −1.93 −0.1 1172.11 4.6
kc 0.48 0.37 1250 11.42 0.48 0.24 8644.25 8.92 0.48 0.23 1184.31 12.2
kt 0.48 0.05 1227.9 1 0.48 0.02 8523.79 0.78 0.48 0.01 1169.65 1.05
n −1.44 −0.89 1404.14 27.66 −1.48 −0.95 11376.55 36.61 −1.48 −0.95 1557.57 50.4

CEB

Rcarb −0.46 −0.04 0.47 2.08 −0.46 −0.67 216.64 5.79 −0.46 −0.04 0.49 0.23
RH −1.93 −0.08 −1.58 4.14 −1.93 −0.06 −1.25 0.35 −1.93 −0.09 −1.57 0.46
kc 0.48 0.24 −4.01 10.9 0.48 0.14 −4.51 0.92 0.48 0.24 −5.07 1.23
n −2.28 −0.95 65.32 44.81 −2.28 −0.55 61.84 3.78 −2.28 −0.95 73.51 5.07

Oxand RH −1.3 0.06 −5.34 7.56 −1.76 −0.92 10204.19 21.03 −1.76 −0.96 −618.89 31.6
Rc −13.38 −0.99 41.08 123.47 −3.24 −0.36 9779.7 8.2 −2.31 −0.2 9.41 6.59

Ying-Yu

RH −2.92 −0.68 0.08 0.35 −2.92 −0.64 9 0.35 −2.92 −0.69 0.11 0.48
αhyd −0.53 −0.15 −0.01 0.08 −0.53 −0.13 −2 0.08 −0.23 −0.09 0.01 0.5
Sr 1.09 0.71 0.29 0.36 1.09 0.66 0.03 0.37 1.09 0.71 0.04 0.5
ϕ 0.89 −0.16 −0.96 0.18 0.89 −0.38 −0.003 0.06 0.6 −0.17 −1.58 0.26
c −0.77 −0.09 0.01 0.05 −0.75 −0.08 0.02 0.05 −0.41 −0.06 0.0002 0.05
ρ −0.91 −0.16 0.36 0.27 −0.91 −0.38 0.85 0.28 −0.91 −0.17 0.45 0.37

Miragliotta

RH −2.91 −0.53 0.03 3.58 −2.91 −0.66 0.07 3.7 −2.91 −0.47 0.16 6.8
αhyd −0.11 0.001 0.0003 0.17 −0.13 −0.04 0.004 0.2 0.24 0.05 0.12 0.6
Sr −0.97 −0.57 −0.98 5.4 −0.97 −0.68 −1.02 4.01 −0.97 −0.49 −1.83 12.5
ϕ 2.05 0.59 0.3 3.94 2.05 0.24 0.04 1.3 1.75 0.71 1.39 10.3
c −1.19 −0.11 0.05 0.72 −1.17 −0.14 0.04 0.7 −0.85 −0.08 0.1 1.3

Papadakis

RH −2.91 −0.78 0.41 16.68 −2.91 −0.95 0.21 16.5 −2.91 −0.67 0.43 24.8
αhyd −0.11 −0.04 −0.01 0.87 −0.14 −0.07 0.01 0.9 0.21 0.04 0.37 1.9

c −1.16 −0.13 0.16 3.3 −1.17 −0.18 0.2 3.2 −0.94 −0.1 0.23 4.7
ϕ 1.38 0.6 −0.31 12.88 1.41 0.23 −0.05 4.1 1.19 0.71 −1.21 26.3

Hyvert

RH −4.29 −0.69 2.44 31.59 −4.29 −0.72 0.06 0.07 −4.29 −0.63 3.8 4.69
T −0.46 −0.1 0.01 0.59 −0.46 −0.04 0.0003 0.001 −0.46 −0.003 0.0028 0.012
kc 0.48 0.65 −11.15 29.52 0.48 0.67 −0.27 0.07 0.48 0.65 15.01 4.18
ϕ 0.67 0.16 −1.26 8.03 0.002 −0.01 −10− 5 6 × 10− 5 0.49 0.22 −3.5 1.5
c −1.29 −0.1 0.32 4.59 −0.65 −0.04 0.003 0.005 −1.13 −0.13 −0.7 0.71

αhyd −1.19 −0.21 1.63 9.48 −0.55 0.004 −7 × 10− 7 2 × 10− 5 −1.05 −0.15 −2.5 1.25

E� elasticity coefficient; P�Pearson’s coefficient; M� bias on the output’s mean (×10− 6 m); Std.� output’s standard deviation (×10− 4 m).
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cost when complexity increases. In Table 14, we found that
when themethod used is two times more complex, the cost is
two times higher. +us, defining scale of intellectual cost is
quite difficult. +is study is an attempt for such an approach.
+e concept of value of information (VoI) by Kuhn [12]
could be cited as a similar approach; however, no definition
of parameter cost is proposed within that theory. Besides, it
is assumed that costs are higher in the auscultation data
approach than in the expert advice approach, for a same
complexity level. Indeed, auscultations may involve complex
equipment which requires additional skills and time.
Complex experimental procedures also require high level of
expertise. On the contrary, it is necessary to characterize not
only the accuracy level but also the robustness of the method
used for the supplying.+e robustness of a given system is its
capacity to remain unaffected by small variations in the
system itself and its environment [33–35]. Since uncer-
tainties are taken into account in the proposedmethodology,
it is necessary to estimate the RLR, especially when CL
increases because experimental or computation inaccuracies
are expected to accumulate as function of CL. +e value of
RLR is the same for expert advice or auscultation.

On the contrary, as mentioned in Section 2, in some
practical cases, degradation models are directly used to
identify inputs from measured outputs. When identifica-
tions are carried out, some compensation could appear
between the identified parameters, especially when the
model used has too many parameters. +ese cases corre-
spond to level of complexities 3 and 4 from expert advice in
Table 13. When we identify parameters within realistic
imposed ranges of values, the compensation is limited

although still existing. Such identification process is not
involved in the current study. In the proposed methodology,
we suppose that the residual compensation, if it exists, could
be included into the RLR.

Accuracy (A) reflects the magnitude of the uncertainties
on estimation. First, A increases for larger complexity levels
(CL). Second, when a given parameter is supplied using an
expert advice method, even the most complex one (CL� 4),
the accuracy (A) of this subjective evaluation is always lower
than when it is obtained from auscultation (even for the
simplest auscultation method (CL� 1)). +is illustrates the
fact that it is always suitable to get direct on site information
rather than information provided by a complex expert
advice requiring possible additional assumptions. +is ap-
proach allows us to efficiently rank the models appearing
equivalent from a prediction point of view.

Let us now focus on the evolution of the values in Ta-
ble 14 for various complexity levels. Note that a geometrical
series is selected for C, whereas arithmetical series are se-
lected for A and RLR. Indeed, economically, cost increases
geometrically when demand increases arithmetically [36].
We observe A cost of 1 is attributed when data are directly
available from archive. For the other complexity level (CL),
C increases due to the cost of more complex on-site in-
vestigation. For example, this increase in costs can be ob-
served when analyzing some technical auscultation
guidelines, such as those by +auvin and Rouxel [37].

5.1.1. Case of Chloride Ingress Models. Table 15 reports
complexity levels (CL), corresponding costs (C), accuracy

Table 13: Level of complexity with respect to the situation of supplying model’s parameters.

Complexity
level

Supplied from
Expert advice Auscultation data

1 Available in the building archive Available data (e.g., meteorological data)

2
Not directly available in the building archive, may be

assessed by empirical relationships using data of level 1, or
with an average level of expert knowledge

Destructive or NDT (may require extraction process with
limited experimental testing and direct assessment with

NDT)

3
Not available in the building archive, requires literature
investigation, could be assessed with intermediate models
using data from level 2, requires good expert knowledge

Destructive or NDT (may require extraction process with
specific experimental testing and requires indirect

assessment from NDT data analysis)

4
Could only be computed with advanced intermediate
models, could be assessed with a high level of expert

knowledge

Only destructive testing, with particular experimental
procedure, or may require combination of several

experimental tests

Table 14: Correspondence between complexity level (CL), cost (C), accuracy level (A), and level of robustness loss risk (RLR) for input
parameters.

Complexity level (CL)
Supplied from

Expert advice Auscultation data
C A RLR C A RLR

1 1 1 1 2 4 1
2 2 2 2 4 6 2
3 4 3 3 8 8 3
4 8 4 4 16 10 4
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levels (A), and levels of robustness loss risk (RLR), with
respect to structures A and B, for the input parameters of
chloride ingress models (see the nomenclature).

+e water to cement ratio w/c is available in a complete
building archive (structure A), and then, its supplying
corresponds to the lowest complexity level (equal to 1). +e
corresponding cost, accuracy level, and level of robustness
loss risk are all equal to 1 when supplied through expert
advice. Regarding structure B (slight building archive), this
parameter cannot be supplied through expert advice. +e
auscultation of this parameter in a hardened concrete and
hence in a real structure is quite difficult. An experimental
method is proposed in [31]. +erefore, the complexity level
for supplying this parameter through auscultation is equal to
4.

Some parameters cited in Table 2 are not directly
available in building archive (Cs, Drcm, kc, ke, kt, n, and α).
However, when binder and concrete types are available (case
of complete building archive), the corresponding values of
these parameters can be supplied using the DuraCrete report
[23] and EuroLight report [22] for α. +is corresponds to a
complexity level equal to 2 for expert advice. When slight
building archive is available (structure B), these parameters
cannot be supplied through expert advice. Regarding aus-
cultation, Cs can be measured simultaneously with Da by
fitting chloride profiles. It is a destructive testing method
following a particular procedure. It hence corresponds to a
complexity level equal to 4. 16, 10, and 4 are, respectively, the
values of cost, accuracy level, and robustness loss risk. Drcm
can also be measured through auscultation by semi-
destructive testing [38].

Wgel is the gel content of the cement paste, especially
CSH content when Ordinary Portland Cement (OPC) is
used. It can be computed using cement composition and
concrete composition through empirical formulas or solving
chemical equations. Details are available in [29] and [21].
+is requires a good expert knowledge. With a complete
building archive (structure A), supplying this parameter

corresponds hence to a complexity level equal to 3.When the
cement and concrete compositions are not available in the
building archive (structure B), this parameter cannot be
supplied through expert advice. Regarding auscultation, this
parameter can be measured only through semidestructive
testing, following particular experimental procedures such
as thermogravimetry [39]. Complexity level is also equal to 4.

T is supplied by climatic chronicles, as well as relative
humidity which is used to compute the water content w

through sorption/desorption isotherms. When building
archive is complete (structure A), sorption/adsorption curve
can be found in literature review for a similar concrete (e.g.,
review by Hansen [40] and Harifidy [41]). A good expert
knowledge is required which corresponds to a complexity
level equal to 3. With respect to the structure B (slight
building archive), this parameter cannot be supplied
through expert advice. Regarding auscultation, w can be
measured using nondestructive testing, which corresponds
to a complexity level equal to 2.

ccl is a safety factor which takes into account the scatter
in chloride concentration. +is parameter cannot be sup-
plied through auscultation but only through expert advice.
+is needs a good expert knowledge and corresponds hence
to a complexity level equal to 3.

5.1.2. Case of Concrete CarbonationModels. Table 16 reports
complexity levels (CL) according to the method used for
supplying each model input parameters value, corre-
sponding costs (C), accuracy levels (A), and levels of ro-
bustness loss risk (RLR), with respect to structures A and B,
for the input parameters of concrete carbonation models.

Regarding concrete carbonation, parameters which are
available in complete building archive are cement content c,
concrete composition, and all binder characteristics such as
compressive strength Rc verified by the compliance test.
When these documents are available (structure A), sup-
plying these parameters is quite easy and thus corresponds to

Table 15: Complexity level (CL), cost (C), accuracy level (A), and the level of robustness loss risk (RLR) with respect to structures A and B
and for the input parameters of chloride ingress models.

Structure A Structure B
Expert advice Auscultation data Expert advice Auscultation data

CL C A RLR CL C A RLR CL C A RLR CL C A RLR
w/c 1 1 1 1 4 16 10 4 — — — — 4 16 10 4
Drcm 2 2 2 2 4 16 10 4 — — — — 4 16 10 4
ke 2 2 2 2 — — — — — — — — — — — —
kc 2 2 2 2 — — — — — — — — — — — —
kt 2 2 2 2 — — — — — — — — — — — —
n 2 2 2 2 — — — — — — — — — — — —
α 2 2 2 2 — — — — — — — — — — — —
Cs 2 2 2 2 4 16 10 4 — — — — 4 16 10 4
Da or Dar 3 4 3 3 4 16 10 4 — — — — 4 16 10 4
Wgel 3 4 3 3 4 16 10 4 — — — — 4 16 10 4
T 1 1 1 1 1 2 4 1 1 1 1 1 1 2 4 1
w 3 4 3 3 2 4 6 2 — — — — 2 4 6 2
ccl 3 4 3 3 — — — — 3 4 3 3 — — — —
−, cannot be supplied.
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the lowest complexity level, i.e., equal to 1. +e corre-
sponding cost (C), accuracy level (A), and level of robustness
loss risk (RLR) are all equal to 1 for expert advice. So is it for
meteorological data (RH and T), which can be obtained
through climatic chronicles. Regarding the structure B
(slight building archive), a theoretical Rc is also given. Values
of c can be estimated from the knowledge of concrete type
and Rc. Supplying this parameter corresponds hence to
complexity level equal to 2, for structure B.

Some other parameters are deduced from the previous
ones, such as Rcarb or n which values are given in the
DuraCrete report [23] according to the type of binder, which
is mentioned in a complete building archive (structure A).
+e complexity for supplying these parameters is hence one
level higher than the previous one when assessed from expert
advice. +is is also the case of kc which can be assessed
knowing curing duration. +ese parameters cannot be
supplied through auscultation; therefore, when they are not
available in building archive (structure B), the models re-
quiring these parameters cannot be used.

Porosity ϕ, saturation degree Sr, density ρ, and hy-
dration degree αhyd can be estimated from expert advice.
When the building archive is complete (structure A), these
parameters are computed using cement and concrete
compositions. However, computations require interme-
diate models and, for some of them, further additional tools
such as adsorption-desorption isotherm curves. When the
type of the considered concrete and the type of binder are
known through building archive (structure A), curves
corresponding to a similar concrete exposed to similar
conditions can be used. Regarding structure B, only the
concrete type is given, and then, assessments through
expert advice are more complicated.+us, it corresponds to
a higher complexity level and a higher cost. However, a
higher accuracy is given because more important intel-
lectual investment is required. Regarding auscultation, ϕ,
Sr, and ρ can be assessed through nondestructive tech-
niques (NDTs). +e corresponding complexity level is 2.
+e hydration degree α can be obtained only through

destructive testing, following a particular procedure [32]. It
corresponds to a complexity level equal to 4.

5.2. Models Costs. +e cost of a model, given its input pa-
rameters cost, can be assessed as follows:

Cmodel �  Ci, (4)

where Ci is the cost of the parameter i. When elaborating
maintenance strategy, the manager may face several alter-
natives regarding the investment he can afford to predict
chloride ingress or concrete carbonation. In order to
highlight this cost issue and for the sake of comparison
between predictive models, various hypotheses are proposed
in Table 17. For each hypothesis, some parameters are
obtained using measurements, while others are estimated
through expert advice. Under the hypothesis Hk, mea-
surements are made by destructive or nondestructive tests
for all input parameters whose obtaining method has a
complexity level equal or less to (k −1); this can be supplied
through auscultation, whereas the other input parameters
are estimated through expert advice.

+e cost of each model according to each hypothesis is
presented in Figure 3 for chloride ingress and concrete
carbonation models. Not surprisingly, it can be observed
that an increase in the number of parameters supplied
through auscultation leads to a higher cost. When no var-
iation occurs in the cost from hypothesis Hk to hypothesis
Hk+1, it means that the maximum number of measurable
parameters is already inspected under the hypothesis Hk.
+e cost of a given model is influenced by (i) the number of
its input parameters and (ii) the cost of these latter under a
given hypothesis.

5.2.1. Structure A. Concerning chloride ingress models
under the hypothesis H1 (all parameters supplied through
expert advice), the most costly models are Leo and
DuraCrete models because they have the highest number

Table 16: Complexity level (CL), cost, accuracy level (A), and the level of robustness loss risk (RLR) with respect to structures A and B and
for the input parameters of concrete carbonation models.

Structure A Structure B
Expert advice Auscultation data Expert advice Auscultation data

CL C A RLR CL C A RLR CL C A RLR CL C A RLR
c 1 1 1 1 4 16 10 4 4 8 4 4 4 16 10 4
Rc 1 1 1 1 2 4 6 2 1 1 1 1 2 4 6 2
RH 1 1 1 1 1 2 4 1 1 1 1 1 1 2 4 1
T 1 1 1 1 1 2 4 1 1 1 1 1 1 2 4 1
w/c 1 1 1 1 4 16 10 4 — — — — 4 16 10 4
Rcarb 2 2 2 2 — — — — — — — — — — — —
n 2 2 2 2 — — — — — — — — — — — —
kc 2 2 2 2 — — — — 4 8 4 4 — — — —
ϕ 2 2 2 2 3 8 8 3 3 4 3 3 3 8 8 3
Sr 3 4 3 3 3 8 8 3 4 8 4 4 3 8 8 3
ρ 2 2 2 2 3 8 8 3 4 8 4 4 3 8 8 3
αhyd 2 2 2 2 4 16 10 4 4 8 4 4 4 16 10 4
ke 2 2 2 2 2 4 6 2 2 2 2 2 2 4 6 2
kt 2 2 2 2 2 4 6 2 — — — — 2 4 6 2
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of input parameters. +e Leo model cost is slightly higher
due to the fact that it contains more costly parameters
such as w and Wgel. When passing to hypothesis H2, JSCE
model becomes the most costly. Indeed, under this hy-
pothesis, w/c which is one of its input parameters is to be

supplied through auscultation. +is leads to increasing its
cost. Under the hypothesis H3, Cs and Drcm are to be
supplied through auscultation, in addition to those
measured under H2. +e DuraCrete model is the only
model that requires Drcm; therefore, it becomes the most

Table 17: Hypothesis on supplying methods.

Complexity level (Table 14)
Hypothesis 1 2 3 4
H1 Expert Expert Expert Expert
H2 Auscultation Expert Expert Expert
H3 Auscultation Auscultation Expert Expert
H4 Auscultation Auscultation Auscultation Expert
H5 Auscultation Auscultation Auscultation Auscultation
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Figure 3: Cost of each model according to each hypothesis for structure A and structure B.
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costly. From H4 to H5, the Leo model increases in cost
because w and Wgel are inspected.

Concerning carbonation models, one observes lower
values of cost for DuraCrete and CEB models. +is is due to
the fact that these models involve few parameters that can be
obtained through auscultations (RH through the parameter
ke). Models of Ying-Yu and Miragliotta are the most costly
ones since they contain the highest number of input pa-
rameters that can be supplied through auscultations.

5.2.2. Structure B. Regarding structure B, some parameters,
such as n, α, and kc for chloride ingress and Rcarb and kc for
concrete carbonation models, cannot be supplied neither
through expert advice (slight building archive) nor through
auscultation. +erefore, the models which require these
parameters cannot be used. +ese are EuroLightCon,
DuraCrete, and Luping for chloride ingress and DuraCrete
and Oxand for concrete carbonation. Concerning chloride
ingress models, all the other parameters except the tem-
perature T can only be supplied through auscultation and,
therefore, under hypothesis H5. +e Leo model is the most
costly model because it has the highest number of param-
eters. Regarding concrete carbonation models, the Oxand
model has the lowest cost because it involves the fewer
number of input parameters. +e next section will thus
analyze the balance between the cost of a model and its
benefit.

6. Assessment of Benefit

Obtaining a given input model parameter value is a gain for
the prediction process and therefore for the maintenance
strategy. +e higher the complexity level of the method used
for supplying, the higher the accuracy level of the obtained
value. Indeed, complex methods are generally advanced
methods. However, a higher complexity level implies higher
risk with respect to the method robustness. +e gain of a
given input parameter accounts hence for accuracy level and
level of robustness loss risk. An assessment of this gain is
proposed in the current section. +e global gain of a given
model, so named benefit in this work, is the sum of the gain
of its input parameters. +us, the benefit of a given model
depends on the relative importance of each input parameter.
It could be deduced erroneously that the model which
provides the highest benefit is the most interesting one.
Indeed, model costs should also be accounted for and could
moderate its interest.

6.1. Methodology

6.1.1. Weighting of the Sensitivity Indicators. As above
mentioned, the sensitivity indicators do not play the same
role with respect to model parameters. It is therefore nec-
essary to moderate these sensitivity indicators in order to use
them in a combined way. For this sake, we weight each
indicator with respect to the information that they could
provide. Within this study, we do the weighting process

qualitatively. Consequently, we assume some arbitrariness in
the definition of the weighting factors. +ey are reported in
Table 18.

We affect the highest factor for the output’s standard
deviation. Indeed, it provides a quantification of the vari-
ation in output when a given input randomly varies. It is
hence an assessment of the uncertainty on the output of the
model when we take into account the uncertainty of the
studied input. In other words, it is a quantification of the
uncertainty transfer from a given input to the model output.
Elasticity coefficient and bias on the mean are almost
equivalent; however, a higher weight is given to the elasticity
coefficient because it accounts for a more direct assessment.
Pearson’s coefficient is less meaningful for degradation
processes because it supposes the linearity of the model with
respect to its input parameters.

In order to better differentiate the importance of the
parameters with respect to their impact on themodel output,
we introduce for each parameter an importance factor
depending on the weighted sensitivity indicators and the
normalized mark of the parameter among others for a given
sensitivity indicator. We propose the following procedure
for weighting the sensitivity results:

(i) +e mark NX,i of the parameter i according to the
indicator X (X � |E|, |P|, |M|, Std.) is computed as a
normalized mark:

NX,i �
Xi


nj

j�1 Xj

, (5)

where i indicates the ith parameter and nj is the
number of input parameters of the considered
model.

(ii) +en, the normalized importance factor (iFi � 1)
for each parameter is given as follows:

Fi � 
X

NX,iwX, (6)

where wX is the weighting of the indicator X re-
ported in Table 18.

6.1.2. Ranking. Independently from the approach applied to
assess or supply a model parameter, its knowledge consti-
tutes a gain in the maintenance strategy at the prediction
stage. +e gain brought by a parameter in the use of a given
model depends obviously on the level of accuracy of its
evaluation (A). Nevertheless, this gain can be also weakened
because the overall procedure employed to evaluate the
parameter is elaborate and uncertain and leads to a possible
risk of lack of robustness.+erefore, the gain of a parameter i
can be expressed as

Gi �
Ai

RLRi

. (7)

Once the input parameters have been supplied, using a
given model can be characterized by a brought benefit stated
as
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Benmodel �  FiGi, (8)

where Fi is the importance factor of the parameter i given by
equation (6).

+e benefit of a given model, under a given hypothesis, is
firstly influenced by the gain provided by the knowledge of
each of its input parameters, as defined in equation (7), and
then by the relative importance of these input parameters. As
shown through sensitivity analysis, the prominent param-
eters change with time and are different for each considered
material.

6.2. Benefit of Chloride Ingress Models. In order to illustrate
the methodology with chloride ingress models, benefits of
eachmodel according each hypothesis are plotted in Figure 4
for concretes C45, C35, and C25 at 2.5 cm depth and after 50
years of exposure.

6.2.1. Benefit of Models for Structure A. With respect to
structure A, it is highlighted that an increase in auscultation
data provides more benefit to the model response. A first
model ranking can be observed. Under hypothesis H1, the
JSCE model appears to provide the highest benefit for all
considered concretes. Indeed, at 50 years, the prominent
parameters are those which take into account environmental
conditions such as Cs, ccl, and T. +e JSCE model is the only
model which uses ccl. Moreover, the complexity level of the
method used for supplying this parameter is equal to 3
(Table 15). +is increases the gain provided by the knowl-
edge of this parameter and hence the benefit of the model.
Under hypothesis H2, differences can be observed for each
concrete. With respect to C45, the LEO model provides the
highest benefit, while it is still the JSCE model for C35 and
C25. Under H2, w/c (a material parameter of JSCE) and T

(an environmental parameter of LEO) are measured through
auscultation. However, the JSCE model is more sensitive to
environmental parameters at 50 years. Moreover, among
models of the first group, the LEOmodel is more sensitive to
material parameters when material has good mechanical
performance (C45). Consequently, the LEO model has a
higher benefit when applied to concrete C45.With respect to
hypothesis H3, Cs is measured through auscultation. +e
JSCE model provides the highest benefit because this model
has two environmental parameters (Cs and ccl) which are
prominent at 50 years and involve complex methods for
supplying. Regarding H4 and H5, the LEO model provides
the highest benefit since this model has the highest number
of parameters which can be supplied through auscultation.
Indeed, according to this approach, the accuracy level of a
given parameter value and, hence, the benefit of the

corresponding model is higher when it is measured through
auscultation.

6.2.2. Benefit of Models for Structure B. With respect to
structure B, as explained previously, EuroLightCon, Dura-
Crete, and Luping models cannot be used because some of
their input parameters cannot be supplied, and the other
models can be run only under hypothesis H5. +e LEO
model provides the highest benefit for each considered
concrete because it has the highest number of parameters
which can be supplied through auscultation. With respect to
the JSCE model, a slightly lower benefit can be observed for
concretes C35 and C25. Under H5, all measurable param-
eters are supplied through auscultation. Supplying w/c
through this method is more complex than supplying ccl

(Table 15). However, the model is less sensitive with respect
tow/cwhen applied to C35 and C25.Moreover, sensitivity of
the model to environmental parameters Cs is more pro-
nounced for these materials and at advanced age (25 and 50
years). +erefore, the gain provided by the knowledge of this
parameter and hence the benefit of the model is less
important.

6.3. Benefit of Concrete Carbonation Models. As well as for
chloride ingress, in order to illustrate the methodology, an
example is presented for concrete carbonation models when
applied to concrete C45 in Figure 5 after 50 years of
exposure.

As expected, it can be seen that a rise of benefit is ex-
perienced as long as auscultation data are provided. How-
ever, from H2 to H5, no significant difference can be
observed. Indeed, the increase in accuracy is compensated by
the increase in robustness loss risk. Due to the important
lack of information in the building archive of structure B, the
benefit granted when auscultations are performed (especially
from hypothesis H1 to H2) is larger for this structure than for
structure A. It is to be noted that, for structure B, the use of
DuraCrete model or CEB model to predict carbonation is
not possible because some input parameters of these models
cannot be supplied through auscultation.

7. Models Efficiency

Similarly to a cost-benefit approach it is now possible to rank
the models on the basis of the so-called model efficiency,
computed as the ratio of the variation in benefit ΔBenmodel
over the variation in cost ΔCmodel when passing from hy-
pothesis H1 (no auscultation) to H5 (full auscultation):

Eff �
ΔBenmodel

ΔCmodel
. (9)

7.1. Efficiency of Chloride Ingress Models. Concerning
chloride ingress models, the efficiency for all models in the
case of structures A and B and with respect to concretes C45,
C35, and C25 after 10, 25, and 50 years of exposure is
presented in Figure 6. +e model which provides the

Table 18: Weighting factors.

Sensitivity indicators (X) Weighting (wX)

Elasticity coefficient 0.3
Pearson’s coefficient 0.1
Bias on the output’s mean 0.2
Output’s standard deviation 0.4
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Figure 4: Benefit of each chloride ingress model according to each hypothesis for structure A and structure B.
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maximum efficiency can be deemed as the best model
according to the proposed procedure.

7.1.1. Efficiency for Structure A. Regarding structure A, with
respect to models ordering, slight differences can be ob-
served between material with good performance (C45) and
other ones (C35 and C25). +is is due to the fact that
prominent parameters are different for materials with good
or ordinary quality. With respect to the first category (C45),
models are more sensitive to material parameters. +is is
more underlined at early age (10 years). At advanced age,
environmental parameters become more prominent.
+erefore, models which involve a high number of material
input parameters with a high relative importance provide a
higher efficiency. On the contrary, regarding C35 and C25,
models are more sensitive to environmental parameters.
+is is even more pronounced at advanced ages.

As a result, Leo model appears to be the best model at 10
years for concrete C45. However, at 25 and 50 years, it
becomes the second one behind the Collepardi model. Due
to the same trends, JSCE is the fourth model regarding
models ordering at 10 and 25 years and becomes the fifth one
at 50 years behind EuroLightCon model. For all considered
materials, the efficiency of JSCE and Leo models decreases
over time because these models have material input pa-
rameters which provide a higher gain when inspected. In-
deed, the accuracy level of w/c value (JSCE input parameter)
is equal to 16 when it is inspected, while it drops to 1 through
expert advice (Table 15). Accuracy level of the Wgel value
raises from 3 to 10 when it is inspected (Table 15). However,
these parameters become less important at advanced age.
+is leads to reduce the benefit and hence the model effi-
ciency. +e efficiency of the Collepardi model does not
change over time due to the fact that it has only two pa-
rameters, and environmental conditions are taken into ac-
count only through one of them (Cs). Indeed, in the case of
two parameters, a decrease in relative importance of one

parameter implies an increase in the second one’s.+erefore,
no significant differences of the model benefit, and hence,
efficiency can be observed.

Regarding the models of the second group (models with
time-dependent parameters: EuroLightCon, DuraCrete, and
Luping), models efficiency increases over time and when
material is of poor quality. +e main material parameters
that can be supplied through auscultation are Dar and Drcm.
+e accuracy level of their values passes from 3 to 10 and 2 to
10, respectively, when inspected (Table 15). +e accuracy
level of the main environmental parameter value Cs passes
from 2 to 10 when inspected (Table 15). +erefore, the gain
provided by Cs is at least equal to those provided by Dar and
Drcm. +en, when environmental parameters are prominent
(less quality and advanced age), the efficiency is higher
except for EuroLightCon model. Regarding this latter, the
parameter α has a larger variation interval width (Table 8)
with respect to C25, when compared to the two other
materials. Consequently, it has a higher relative importance.
+is explains the observed trend. +e DuraCrete model
provides the lowest efficiency because it has the lowest
measurable parameters through auscultation.

7.1.2. Efficiency for Structure B. Regarding structure B, a
higher efficiency can be observed for models whose material
input parameters bring a higher gain when supplied through
auscultation, in the case of the concrete C45 and at early age.
JSCE model appears to be the best at 10 years, and it comes
down to second place at 25 and 50 years. w/c (JSCE input
parameter) provides the highest gain when supplied through
auscultation. Indeed, its accuracy level passes from 1 to 10
(Table 15). +erefore, at early age (10 years), when models
are more sensitive to material parameters, the JSCE model
provides the highest efficiency. At advanced age, the sen-
sitivity to material parameters decreases. +is low efficiency
is even more significant for the JSCE model when applied to
C35 and C25 because of low relative importance of material
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Figure 5: Benefit of each concrete carbonation model according to each hypothesis for structure A (a) and structure B (b).
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Figure 6: Efficiency of each chloride ingress model according to each hypothesis for structure A and structure B.
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parameters. +e Collepardi model appears to be better than
LEO model. +is latter involves the highest number of
measurable input parameters that can increase its benefit,
and the Collepardi model the lowest. However, supplying
many parameters through auscultation can increase the
model cost and then decrease its efficiency.

7.2. Efficiency of Concrete Carbonation Models.
Concerning concrete carbonation, the models efficiency in
the case of structures A and B, with respect to concretes C45,
C35, and C25, is presented in Figure 7.

7.2.1. Efficiency for Structure A. Concerning structure A,
DuraCrete and CEB models provide the maximum effi-
ciency, and they could be deemed as the more suitable ones
in the maintenance strategy for this structure. Indeed, most
of input parameters of these models are supplied using
building archive which is quite complete for this structure.
+e ordering of models is the same for each considered
concrete. However, value of efficiency is different for each
concrete due to the difference of relative importance of each
parameter for each concrete, given by sensitivity analysis.

7.2.2. Efficiency for Structure B. Regarding to structure B,
the Oxand model appears as the most suitable model in the
maintenance strategy. For the DuraCrete and CEB models,
no efficiency factor could be computed because some input
parameters (Rcarb and n) cannot be assessed without com-
plete building archive. +e values of models efficiency with
respect to this structure are higher than the ones estimated
for structure A. For some models and some concretes, the
difference is significant, e.g., Oxand and Hyvert models with
respect to C45 concrete. For this structure, due to a lack of

information, obtaining parameters through expert advice
requires more complex and hence more costly methods.
+erefore, under hypothesis H1 (all parameters are esti-
mated through expert advice), the cost of each model is
already higher. Consequently, concerning this structure B,
the value of ΔCmodel (difference between the model cost
under hypothesis H5 and H1) is lower for each model. +us,
the value of efficiency (equation (9)) is higher. As for
structure A, the ordering of the models with respect to
efficiency for structure B is the same for the 3 considered
concretes.

+e results for the two considered structures highlight
that models ranking could be completely different from a
structure to another one, depending on the available data
and prerequisite information. When complete building
archive is available, depending on the manager objectives,
several strategies can be adopted for supplying input pa-
rameters. When this document is not complete, ausculta-
tions are of utter importance. When considering several
materials, differences can be observed in the values of ef-
ficiency. However, the models ordering is not modified.

8. Conclusions

Predicting the evolution of carbonation depth or chloride
ingress into concrete structures by using deterioration
models is an essential task for formulating a comprehensive
maintenance strategy. +e determination of input param-
eters of the models for such a purpose may be therefore a
major concern. Two approaches can be followed: (i) the
expert advice, where the available information is used
without producing any new data, including experimental
and (ii) auscultation (nondestructive or semidestructive
testing) within which an experimental investigation provides
new data for determining the input parameters.
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Figure 7: Efficiency of each concrete carbonation model when applied to concretes C45, C35, and C25 for structure A (a) and for structure
B (b).
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+e cost of a given model can be defined as the sum of
the costs of its input parameters. +e cost of each input
parameter depends on the method used for obtaining it. In
this paper, we assume that the value of a given parameter has
better quality when it has been obtained by auscultation
(destructive or nondestructive tests) than when it is assessed
by expert advice. On the contrary, we also assume that
carrying out an experimental investigation has a higher cost
than assessing through expert advice. Given that each model
does not involve the same input parameters and that some
parameters cannot be supplied through auscultation, each
model does not have the same sensitivity to the auscultation
method. According to the available data, requiring to aus-
cultation is more or less significant. +e methodology
proposed in this work aims at displaying the most suitable
chloride ingress and concrete carbonation model for (i) a
given structure characterized by the amount of available data
and (ii) resource allocated to auscultation.

+e approach developed in this study relies on the
combination of the abovementioned items (ranking of pa-
rameters, data availability, and allocated resources) for
calculating the efficiency of the models. Depending on the
available data, the most efficient model is different. Similarly,
it appears that the concrete type can influence the efficiency
of the models because of their sensitivity to variable material
parameters. +e proposed methodology could be an helpful
tool for building and infrastructure managers in the choice
of the appropriate model to their structure. Finally, it can be
extrapolated to other degradation models involved in an
auscultation maintenance strategy analysis.

+is study is a first attempt for selecting models
according to a cost/benefit analysis combining physical and
pseudoeconomical aspects throughout weighting factors.
However, as for all types of approach where qualitative
weighting factors are employed, a selection is based on a
minimum arbitrariness. Further research should focus on a
more robust way to define these weighting factors under
particular financial context.

Nomenclature

x: Distance from the concrete surface
C(x, t): Chloride content at distance x from the

concrete surface and at time t

ξ: Concrete diffusivity
X: Vector of input parameters that are specific to

each model
k(ξ(X, t), x): Chloride ingress model factor
Cini: Initial chloride content of the concrete
kexe: Factor which introduces execution conditions
kexp: Factor which introduces exposure conditions
kP: Factor which introduces phenomenon that

could influence the diffusion coefficient of the
carbon dioxide into concrete porosity

kP,M: Part of kP associated with material properties
kP,E: Part of kP associated with environmental

properties
DCO2

: Diffusion coefficient of carbon dioxide
C0: Carbon dioxide content

Patm: Atmospheric pressure
a: Quantity of carbonatable material into the

concrete
a′: Required quantity of CO2 for a complete

carbonation of the material
Cabs: Quantity of absorbed carbon dioxide
t0: Reference time
tc: Cure duration
Rcarb: Ability of the considered concrete, in resisting

carbonation
kc: Input parameter which assesses the cure

condition effects
ρ: Density
Cs: Chloride content on the exposed surface of

the concrete
Da: Apparent diffusion coefficient of chloride
Dar: Apparent diffusion coefficient of chloride at

reference time tr

tr: Reference time
ccl: Safety factor in the JSCE model
n: Aging parameter
α: Aging parameter for the model of

EuroLightCon
kt: Test method parameter
ke: Parameter which assesses environmental

condition effects
Drcm: Migration coefficient of chloride
ai: Lower bound of the variation interval
bi: Upper bound of the variation interval
Ci: Parameter cost
Cmodel: Model cost
NX,i: Note of the parameter i according to the

indicator X

nj: Number of input parameters
Fi: Importance factor of the parameter i

Ai: +e level of accuracy of the evaluation of the
parameter i

Gi: Parameter gain
RLRi: Risk of loss of robustness of the method

chosen to evaluate the parameter i

Benmodel: Model benefit
Ben: Benefit
ΔBen: Variation in benefit
ΔCmodel: Variation in cost
Eff : Efficiency
Rc: Concrete compressive strength
Sr: Saturation degree
w: Water content
w/c: Water to cement ratio
Wgel: CSH content
wX: Weighting of sensitivity indicator X

RH: Relative humidity
DaJSCE

: Empirical formula to determine diffusion
coefficient in the model of JSCE for OPC [20]

PCO2
: Pressure of CO2

T: Temperature
ϕ: Porosity
Sr: Saturation degree
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CSH: CSH content
CH: Portlandite content
AFt: AFt content
AFm: AFm content
(C3S)C3: S content
(C2S)C2: S content
(C3A)C3: A content
(C4AF)C4: AF content
αhyd: Hydration degree
α1, n1: Adjusting parameters of the model of Hyvert.
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