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Abstract 

This paper addresses the problems of data management and analytics for decision-aid by 

proposing a new vision of Digital Shadow (DS) which would be considered as the core 

component of a future Digital Twin. Knowledge generated by experts and artificial 

intelligence, is transformed into formal business rules and integrated into the DS to enable the 

characterization of the real behavior of the physical system throughout its operation stage. 

This behavior model is continuously enriched by direct or derived learning, in order to 

improve the digital twin. The proposed DS relies on data analytics (based on unsupervised 

learning) and on a knowledge inference engine. It enables the incidents to be detected and it is 

also able to decipher its operational context. An example of this application in the aeronautic 

machining industry is provided to stress both the feasibility of the proposition and its potential 

impact on shop floor performance. 

Keywords: digital shadow, digital twin, data and knowledge management, machining. 

 

1 Introduction 

The proliferation of Information and Communication Technologies (ICT) has led to the 

emergence of intelligent manufacturing paradigms. These emphasize the utilization of various 

methods, i.e. digital modeling, simulation, and experimental verification to control product 

design, resource allocation and production process at workshop level (Jain et al. 2017). The 

new era that combines virtual reality technology based on the Cyber-Physical System (CPS) 

and the internet of things is then reached (Brettel et al. 2014), (Wollschlaeger et al. 2016). 

Digital Twin technology is the core component of CPS that is able to sense and reflect 

accurately the behavior and real-time state of the production system (Uhlemann et al. 2017); 

so that processes can be analyzed, simulated, predicted and optimized (Lu et al. 2020).  

These technologies enable a large volume of data from various manufacturing activities to be 

collected and managed. In most cases, these data are spread out in different storage locations 

and are rarely shared between departments. So, the data collected in factories nowadays 

remain underexploited and generally used only by a few actors.  

Faced with this challenge, the Digital Twin relies on a core component, called the Digital 

Shadow that enables the management and analysis of near real-time data coming from the 

actual physical counterpart (Schuh et al. 2019). It also relies on various simulation and 

visualization components. Theoretically, the Digital Shadow aims to achieve a comprehensive 

structuring of heterogeneous kinds of data available on the manufacturing shop floor. The 

data is then connected to their respective semantics in order to facilitate retrieval, 

interpretation, and exploitation. The role of the Digital Shadow of a production system is to 

enhance the digital image of the machines and assembly stations in the factory which uses 

information technologies (Landherr et al. 2016).  
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However, several barriers are stopping the development of the Digital Twin and Shadow 

concepts in a real industrial environment. Firstly, the variety of business processes and the 

heterogeneity of data types lead to interoperability issues and lack of communication between 

all decision and operation centers. This results in problems for gathering the relevant 

information, at the right moment, for a given decision in relation to the variety of experts’ 

interests. Secondly, it is generally assumed that the digital and simulation models are pre-

defined and used in a static way in the Digital Twin. Nonetheless these models are difficult to 

update regularly in order to represent the dynamic and changing behavior of the machine 

throughout its life cycle. The operator and engineer have already developed at machine level 

their best practices and knowledge in order to cope with the real machine behavior.  

Consequently, the implementation of advanced technologies in the factory requires those in 

industry to be extremely involved. It is important, therefore, to use an efficient knowledge 

engineering approach throughout the digital transformation process so as to integrate the 

experts’ intention and viewpoint in data processing and interpretation. The originality of the 

proposed framework is to combine traditional data-driven approaches, generally based on data 

mining and statistical methods, with a knowledge-driven approach. The business experts’ 

rules are extracted and inferred to interpret and augment the results of data processing, 

enabling the computation of new key performance indicators for a variety of business 

perspectives.  

To do so, this paper proposes a knowledge-based Digital Shadow, as a core component and 

the backbone of future Digital Twin applications in manufacturing. Based on structured and 

modeled knowledge, an unsupervised machine-learning method is carried out in order to 

process the collected data and decipher the operational context. This is done so as to generate 

new knowledge regarding machining incidents. A knowledge-engineering method is used to 

capitalize (in the form of business rules) and reuse useful insights learned from past 

experiences and/or data analysis results. The problems of structuring, processing and 

exploiting the large volume of manifold data in production are solved and the integrated data-

knowledge loop is closed.  

This paper is structured as follows. In Section 2, applications of Digital Twin and Digital 

Shadow in the context of Smart Manufacturing are reviewed to clarify the positioning of each 

concept and to highlight the use of Digital Shadow for Digital Twin applications. In Section 3, 

the proposed framework of Digital Shadow is introduced. Firstly, data and knowledge models 

are explained. Secondly, the method developed for data analytics is described. In Section 4, a 

case study of machining aeronautic parts is carried out to demonstrate the feasibility of the 

approach. Finally, in Section 5, a brief conclusion and ideas for further development are 

presented. 

2 Literature review 

The in-depth integration between these smart devices in the physical world and their cyber 

environment is widely recognized as a key feature of smart manufacturing (Tao et al. 2018) 

(Uhlemann et al. 2017). Relating to the production context, Cyber-Physical Production 

Systems (CPPS) consist of “autonomous and cooperative elements and subsystems that are 

connected within and across all levels of production, from processes through machines up to 

production and logistics networks” (Monostori et al. 2016).  

The CPPS technologies wisely combine data acquisition and transmission in physical space 

with data analysis in cyberspace through the 3C technologies (computation, communication, 

and control) (Uhlemann et al. 2017). Thereby, the physical entity can provide data to update 

its virtual model to achieve high flexibility, while a digital mirror model in cyberspace can be 



used to monitor, control and send global feedback to the physical entity to achieve high 

efficiency (Lee 2002) (Baheti and Gill 2011). This smart process is managed at the top level 

by the concepts of digital twin and digital shadow. 

The Digital Twin is applied in smart cities, healthcare, agriculture, the automobile industry, 

aerospace, manufacturing, etc. (Qi 2019). In the following sections, the application of Digital 

Twin as well as Digital Shadow in manufacturing will be discussed. 

2.1 Digital Twin for Smart Manufacturing 

The commonly recognized definition of Digital Twin was given by Glaessgen and Stargel 

(2012) who defined Digital Twin as “an integrated multi-physics, multi-scale, probabilistic 

simulation of a vehicle or system that uses the best available physical models, sensor updates, 

fleet history, and so forth, to mirror the life of its flying twin.” 

It is worth noting that Digital Twins are more than just pure data, they also include models 

and algorithms, which ensure a maximum concordance between physical and virtual spaces, 

as well as retroactive actions (feedback) to the physical system. In fact, beyond system 

simulation at the early planning stage, a Digital Twin enables a relevant use of the simulation 

during the system run-time (Liu et al. 2020). Moreover, Digital Twin can be used for 

monitoring, control, diagnostics, and prognostics (Schleich et al. 2017). A Digital Twin 

reference model was proposed by Lu et al. (2020). It consists of three elements: (i) real 

(physical) space, (ii) virtual (digital) space and (iii) the two-way communication to reflect the 

dynamic mapping between them, i.e., data flow from real space to virtual space and 

information flow from virtual space to real space.  

From a manufacturing perspective, ISO/DIS 23247-1 defines Digital Twin as a living model 

of manufacturing elements such as personnel, products, assets, and process definitions that 

both updates and changes as the physical counterpart changes (ISO 2019). Thereby, three 

main Digital Twin types are highlighted: Digital Twins for products, Digital Twins for 

manufacturing assets and Digital Twins for manufacturing processes (Bao et al. 2019). In 

addition, Lu et al. (2020) mentioned Digital Twin for people. Digital Twin research has 

mainly focused on manufacturing assets: 85% of prior Digital Twin applications are 

developed for manufacturing assets as outlined by a recent review on Digital Twin 

applications in smart manufacturing (Lu et al. 2020). 

For instance, Digital Twins for products are constructed to simulate and monitor the behavior 

and state of the physical product during the production phase, as well as during the life cycle 

(Tao et al. 2018) (Huang et al. 2020). Digital Twin for manufacturing assets corresponds to 

the digitalization of physical execution units for a workshop, such as machine tools, cutting 

tools, and other resources. The properties of the manufacturing system (i.e. geometrical 

structure, material properties, process parameters, working status, operating and 

environmental conditions, etc.) are expressed using an integrated multi-dimensional model 

(Bao et al. 2019). Through physical asset digitalization, manufacturers can gain a clearer 

picture of real-world performance and operating conditions of a manufacturing asset, such as 

comprehensive and real-time monitoring of machine-tool status and visualizing the machining 

process (Liu et al. 2018) (Cai et al. 2017) (Choi et al. 2017) (Tong et al. 2019), fault diagnosis 

of rotating machinery (Wang et al. 2019) (Padovano et al. 2018), life prediction of machine-

tool (Qiao et al. 2019), smart process planning (Liu et al. 2019), scheduling optimization 

(Mourtzis et al. 2018), etc. Moreover, Digital Twin for assets can provide a tutoring service, 

augmented assistance (Padovano et al. 2018) and decision-making support for humans (Liu et 

al. 2018). 



A process Digital Twin is required to connect the product design and manufacturing processes 

(Bao et al. 2019) (Zhuang et al. 2020). The Digital Twin of a manufacturing process, also 

referred to as Digital Twin for factories (Lu et al. 2020), must function as one single, complex 

system composed of several synchronized sub-systems (Bao et al. 2019). It might include all 

Digital Twins involved in the respective process, i.e., product Digital Twin, physical 

resources Digital Twin, and human resources Digital Twin of the considered production line 

(Schützer et al. 2019). Real-time controlling instructions are fed back to the physical space to 

optimize the management of the process (Schützer et al. 2019), support decision-making in 

the system design and solution evaluation (Zhang et al. 2017), etc. 

The Digital Twin relies on the Digital Shadow, which digitizes real processes to create a 

duplication of reality as identical as possible using process modeling and simulation 

(Bauernhansl 2016). 

2.2 Digital Shadow for Smart Manufacturing 

According to the level of data integration between the physical and digital counterpart in 

Digital Twin applications, three subcategories are considered: Digital Model, Digital Shadow, 

and Digital Twin (Kritzinger et al. 2018). Digital Model refers to the digital representation 

ensuring the comprehensive description of the physical counterpart, e.g. simulation models, 

mathematical models, etc. Digital Models do not use any form of automatic data exchange 

with their physical objects. If an automated one-way data flow directed from the physical 

object to its digital object exists, it is a Digital Shadow. A change in the physical object state 

leads to a change of the digital object. Furthermore, the data flows are fully integrated for 

both directions, one may refer to Digital Twin where the digital objects generate feedback for 

the control of the physical object (Kritzinger et al. 2018). Hence, a Digital Twin contains all 

knowledge resulting from modeling activities in engineering (Digital Model) and from 

working data collected during real-world operations (Digital Shadow). With appropriate 

simulation algorithms, it is possible to obtain an “Experimentable Digital Twin” (Schluse et 

al. 2018) as shown in Figure 1. Thus, the physical system performance can be tested and 

evaluated under different boundary conditions and in various operational scenarios (Dahmen 

and Rossmann 2018). 

In the manufacturing context, every product or component produces a data profile (including 

operation and condition data, process data, etc.) that depicts a Digital Shadow. It is defined as 

an integrated database that generates a sufficiently precise digital representation of the 

production system in real-time (Bauernhansl 2016). The Digital Shadow is linked in real-time 

with the manufacturing system and generates a database for the optimization Uhlemann et al. 

2017). This database is created using algorithms that include the acquisition, analysis, 

evaluation, and consolidation of data. Data gathered from multiple sources are aggregated and 

stored in a shared platform built by the Digital Shadow enabling data to be linked to their 

appropriate context (Schuh et al. 2018). The Digital Shadow has one core function, namely 

the supply of the right information at the right time and in the right place (Bauernhansl 2016). 
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Figure 1. Digital Twin, Digital Shadow, Digital Model concepts (Schluse et al. 2018) 

Without a Digital Shadow, a missing link will appear between the digital factory and a 

holistic digital image of the production (Landherr et al. 2016). Hence, the Digital Shadow is 

recognized to be “a prerequisite for the application of methods and models of data analysis 

and evaluation in a manufacturing environment” (Schuh et al. 2019). A Digital Shadow also 

provides semantically adequate and context-aware data from production, development, and 

usage in real-time with an adequate level of granularity (Jarke et al. 2018). It contributes to 

the comprehensive structuring of different kinds of data collected from different data sources 

that can be stored in a shared repository and can be used for numerous applications (Schuh et 

al. 2018). A well-designed Digital Shadow forms a promising key for a comprehensive 

analysis of manufacturing systems. Furthermore, the Digital Shadow serves as a basis for 

further applications that use the aggregated data when it is no longer necessary to define 

interfaces between each application and its data sources because each application can refer to 

the structure of the Digital Shadow (Schuh et al. 2018).  

Schuh et al. (2018) proposed a Digital Shadow framework that enables data collection and 

integration of the entire maintenance, repair, and overhaul services, regardless of the source of 

the data. Schuh et al. (2019) developed a data structure model for the Digital Shadow which 

enables the efficient use of the knowledge management system to support companies of small 

batch production on the way toward Industry 4.0. In order to enable overarching explorative 

analytics in product life cycle management, Riesener et al. (2019) proposed a model that 

merges information based on heterogeneous data sources. Three steps were identified for 

acquiring the necessary information for a Digital Shadow and for choosing the best data 

source for generating this information. A data-information-fit-indicator was introduced to 

choose a suitable data source for the required information. An integration of Digital Shadow 

simulation model with the Manufacturing Execution System (MES) has been proposed by 

Negri et al. (2020) with the aim of creating a Digital Twin. The decision making in the MES-

integrated Digital Twin is optimized by using an intelligent layer that hosts the rules and the 

knowledge in order to choose from alternatives. 



As a conclusion, new concepts and architectures were recently proposed for Digital Twin and 

Shadow, but their maturity is currently very low (Lu et al. 2020). However, Digital Shadow 

plays a crucial role, particularly when there is complex data or big data. 

3 Proposed framework of knowledge-based Digital Shadow 

In this work, the focus is on the Digital Shadow: a unidirectional flow of data processing from 

the physical counterpart to the digital object is considered. 

The physical space of the proposed framework consists of the physical system: the machine-

tool and the smart sensing device. The properties of the machine-tool and process need to be 

obtained from diverse sources, ranging from the geometrical structure, work-piece material 

properties, process parameters, working status, to the operating status (cutting depth and 

speed, etc.) and environmental conditions (ambient temperature, etc.). Smart sensing 

techniques can be used to complete these attributes: accelerometers for vibration 

measurements, communication by field bus to the CNC, etc. 

To design an efficient Digital Shadow for manufacturing, we have developed leveraging data 

and knowledge models. This integrates an information model that abstracts the specifications 

of the machine tool, as well as a shared knowledge base acquired either from the analysis of 

data in the form of thresholds or from the interaction with experts in the form of capitalized 

business rules. The knowledge base is continuously enriched by direct or derived learning. 

Then, a data analytics module is proposed to merge manifold data, check its consistency, 

correct errors, and process it using a machine learning means in order to extract useful 

information about the machine tool behavior and machining state. Finally, based on 

performed data, aggregated data can be generated to monitor the machine and machining 

states. This visualization helps in making initial decisions. The scheme of the proposed 

framework is shown in Figure 2, where highlighted modules correspond to the present 

contribution; the remaining components are beyond the scope of this paper. 
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Figure 2. Digital Twin global scheme highlighting the proposed framework 



3.1 Data and knowledge models  

The functioning of a Digital Twin and shadow is primarily based on the simulation and the 

processing of real data collected from the physical system. This data can vary depending on 

the nature of the system to be monitored, and the analysis/decision making objectives of the 

Digital Twin. The different data processing and aggregation algorithms explained above 

generate and use several types of data that should be coupled and organized correctly to make 

the computing process automatic. Consequently, database structure and content could cover 

product-oriented and/or process-oriented perspectives. Additional knowledge has to be stored 

and processed in order to support the interpretation and exploitation of the above data within 

their contexts of creation and use. For instance, learning algorithms will result in different 

rules that clarify the detection of undesirable events or a particular behavior. 

Researchers are often interested in studying one or two categories of these data sources 

according to their development objectives. The work is, therefore, more complicated when 

considering a heterogeneous collection of knowledge that comes from very different sources 

with very different frequencies and formats. Consequently, it is essential to use a structuring 

and modeling method for data and knowledge in order to create links between them and 

facilitate their manipulation. An important step to distinguish all the data and knowledge to be 

managed in the Digital Shadow/Twin repository consists of the analysis of the AS-IS situation 

of the industrial system and all related environments. 

In the literature, research works that address the problems of Digital Twin and Digital Shadow 

implementation generally consider several types of models: data models, information models, 

business models, and service models that are supposed to cover the different categories of 

data (resources, processes, and outcomes) (Stecken et al. 2019). However, the existing models 

do not consider the different phases of the service. In particular, data related to performance 

monitoring and improvement, and those related to failure recognition, are often missing or 

lack details. Consequently, these models can endanger the implementation of a reliable 

Digital Shadow (Legnani et al. 2007). To overcome this limitation, a global knowledge 

management solution is developed in order to handle the entire heterogeneous knowledge 

available in the service. Thus, in the proposed framework, data and knowledge are structured 

using the inference model to develop an extensible Knowledge Base (KB), as shown in Figure 

3. The development consists of three stages; the first phase of industrial knowledge 

capitalization, which results in structuring the global knowledge base; for the second phase of 

reasoning that generates inferred knowledge and will be reintegrated into an ontology in a 

third phase to provide semantic-rich and interoperable models that allow reasoning and 

automatic inference, ontology-based models are used. 

Noy and McGuiness (2001) defined ontology as "A formal and explicit description of 

concepts in a discourse domain (classes or concepts), properties describing the attributes and 

characteristics of each concept (roles or properties) and restrictions". In the engineering field, 

ontology must represent not only product-related information, but also meta-information, 

which is a corollary to the product, the process, the organization, or even the resources and 

rules. The ontology is developed using "Protégé" software. It is open-source and free. It offers 

the possibility of integrating business rules to infer and also the possibility of communication 

with other reasoning software. Another advantage is the possibility of integrating developed 

ontologies into frameworks, through the availability of several APIs that enable 

communication with different development tools and programming languages. This is very 

useful for research projects. 



 

Figure 3. The generic knowledge management approach 

Figure 4 was extracted from the development of the proposed ontology using “Protégé”. It 

shows the different elements required to create the ontology. Let us take the example of two 

classes "Product" and "Process". It is possible to define relationships between them by 

defining an Object property "HasManufProcess" and associating attributes for each class 

using the Data property "ProcessId" and "ProductSerialNum". Then it can be instantiated by 

adding individuals. 

 

Figure 4. Basic elements of an ontology 

Ontologies can be classified into two main types: storage ontologies and inference ontologies 

(Fankam 2009). The specificity of the first category is their ability to capitalize a maximum of 

knowledge from a specific domain or sometimes from several domains (in the case of hybrid 

ontologies, for example). The interest of the inference ontologies is to be able to deduce 

instance affiliations to classes thanks to the axioms and restrictions of ontology (Krima et al. 

2009). 

Once the development of ontology has been achieved, a consistency check phase is required. 

For this stage, it is necessary to launch an instantiation stage which involves a data and 

knowledge capitalization process. 

3.1.1 Data and knowledge capitalization 

To develop a knowledge base, the first phase of capitalizing integrates a maximum of data 

and business knowledge. Two categories were considered: (1) norms and standards from the 

literature, as well as dictionaries about the different processes, products and resources used: 

namely machine-tools, cutting tools and their cutting conditions, etc. This first category 

enables the capitalization of the knowledge of the manufacturing domain. Norms and 

standards provide a generic aspect to the ontology which promotes its adaptability in other 

industrial applications and avoids differences of semantics between companies. (2) Context-



dependent data and knowledge which represent the specific knowledge of the use case and 

which group together the knowledge of the industrial companies.  

The second source relies on the analyses of the processes and industrial data of the user. This 

stage can be automated thanks to the implementation of a machining monitoring system. It 

follows several parameters and characteristics of the machine at the time of machining by 

using sensors that measure power, acceleration, temperature, etc. Given the variety of 

available sensors, the selection of the best according to application requirements and sensor 

specifications must be made wisely (Maleki et al. 2017). 

This monitoring operation generates a large volume of raw databases. Then, using data 

mining methods, machining data are analyzed and useful information is extracted (Godreau et 

al. 2017) (Lenz et al. 2018). Contextual classification and aggregation phases generate more 

meaningful data, called Smart Data, that can detect events that occur during machining (Ritou 

et al. 2019). Smart Data are then used to generate Key Performance Indicators (KPIs) that 

describe the machining process and its potential detrimental phenomena.  

This research work provides a link between knowledge management and data analysis 

domains (which will be detailed in the following section). The use of ontology is a key point 

that establishes this link. The ontology represents the support necessary for the deployment of 

the different decision-aid algorithms. The first axis of decision-aid is reporting, which enables 

the generation and feedback of reports combining several KPIs that describe the malicious 

incident being detected. All elements required for this reporting process are available in the 

ontology. Among these elements, the ontology integrates concepts for the detection of a 

detrimental incident, such as tool failure, collision or chatter.  

3.1.2 Business rules 

Business rules can be formalized from either explicit or implicit knowledge. Explicit 

knowledge can be capitalized directly through the analysis of literature, for example technical 

documentation and user manuals. Moreover, implicit knowledge is often linked to the specific 

know-how of experts (Linger et al. 2013). These rules allow, on the one, hand building and 

defining constraints on a specific process and, on the other hand, they enable a decision-

making and process control in the company, based on a set of well-defined criteria. The 

development of business rules is divided into three stages: during the first stage, as much of 

the potentially recoverable expertise as possible is questioned. The information is then 

qualified and processed to check consistency and remove redundancies in the second stage. 

The third phase translates these rules into a language that can be understood and used by 

inference engines. 

The global knowledge base also supports the reintegration of knowledge, given the nature of 

the developed ontology of "inference". The inferred knowledge is essentially generated using 

the business rules defined and validated in collaboration with the industrial experts. In 

addition to detection, the knowledge base can also be used for diagnostic purposes.  

3.2 Data analytics 

In the context of Industry 4.0, large volumes of manufacturing digital data are available on 

instrumented machine-tools. The challenge is to exploit them by mining to improve decisions.  

(Fayyad et al. 1996) formalized the general approach of Knowledge Discovery in Database 

(KDD), in which data mining is one of the steps to discover interesting hidden information 

(pattern) in data. KDD is generic and applicable to any kind of data, regardless of the context 

or of previous knowledge. In an industrial context, if the business expertise is not integrated, 



complex investigations could lead to discovering only trivial, explicit or previously known 

patterns. The CRISP-DM (Chapman et al. 2000) process is also generic and was developed to 

limit this risk and to support the implementation of the KDD approach in a company. It takes 

advantage not only of databases but also of the pre-existing business knowledge. Here, the six 

steps of CRISP-DM (Figure 5) are followed. In addition, we propose specific monitoring 

criteria, business rules and KPI, managed by ontology. 

3. Data
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4. Modeling

5. Evaluation

6. Deployment

Data

2. Data

understanding

1. Business
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Figure 5. The CRISP-DM life cycle (Wirth and Hipp 2000) 

 

3.2.1 Business understanding 

The first step aims to determine the business objectives, identify the needs and the available 

resources. The proposed Digital Shadow includes business knowledge in this resources list, 

taking advantage of the company's expertise. 

In our case, the business objective is the reduction of detrimental phenomena. The available 

business knowledge includes contextual information that enables us to: 

- Describe the machine-tool working conditions (e.g., the day, program name, tool 

number, machine-tool motion, spindle motion, material removal).  

- Collect the operational context when incidents (chatter, tool failure or collision) occur.  

- Realize a more relevant calculation of Key Performances Indicators (KPIs).  

In the contextual classification, it is interesting to know:  

- If the spindle is stopped (S) or rotating at constant speed (CS) or varying speed (VS); 

- If the machine-tool is stopped (S) or moving at constant (CS) or varying speed (VS); 

- If the tool is cutting materials or not (N), with a constant (CC) or varying tool 

engagement (CV). 

Seventeen potential states for the machine-tool can be proposed based on the combination of 

this contextual information. Table 1 presents these 17 states with their conditions. The 

objective is to determine the state of the machine-tool at each instant.  

 



Table 1. Classification of the different states of the machine-tool 

For example, in order to know if the tool is cutting materials or not, a classification according 

to the criteria Arms (root mean square-RMS of vibration acceleration value, in m/s²) and the 

spindle power P (kW) is proposed, when the machine is moving (feedrate Vf > 0). In 

machining, it is known that if the tool is cutting, its vibration (Arms) is greater than if the tool 

is not cutting. It is also known that the power (P) will exceed the spindle power corresponding 

to idle rotation (Pidle) when the tool is not cutting. The proposed business rules are: 

- If (P > Pidle or Arms > TArms) and Vf>0, then the tool is cutting material;  

- If P ≤ Pidle and Arms ≤ TArms, then the tool is not cutting material.  

3.2.2 Data understanding  

A sensing system collects the measured data during machining and stores it in a database. The 

data mining methods will then be used to recognize the noise data (e.g., abnormal values of 

accelerometers) and the missing data (e.g. loss of connection between CNC and the sensing 

system). The noise data will be eliminated or neutralized after the knowledge of its context. 

For example, the high value of accelerometers generated by lubrication could be neutralized 

because it is not the source of chatter. The missing data will be discarded.  

3.2.3 Data preparation  

Combing raw data and contextual information can help to detect, more precisely, the 

detrimental incidents (e.g., chatter during machining, tool wear, and collision). Finally, the 

data classified with the detected incidents are aggregated into simplified and more meaningful 

information by multi-level aggregation (Ritou et al. 2019). 

3.2.4. Modeling  
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This step aims to build a model, set its parameters, and assess its fit. In our case, unsupervised 

machine learning is performed on different descriptors (spindle speed N; feed rate Vf; spindle 

vibration Arms; spindle power P, etc.) to determine the classification thresholds (with which 

the different states of the machine-tool are determined). Each machine-tool has different 

characteristics, so it is necessary to perform initial training for each machine-tool. A data set 

corresponding to a period of one day of industrial production is used for this purpose. 

The objective is to find, in the modeling step, the thresholds for cutting vibrations TArms (m/s²) 

and for the idle spindle power Pidle that classify in the clusters 'tool cutting materials' or 'tool 

not cutting materials'. The learned values of thresholds for each descriptor are specific to a 

given machine-tool and should be capitalized in the knowledge base.  

The learned thresholds are verified on a small time-interval: manual data mining is applied to 

check point by point. In the absence of classification errors on tool cutting or not, thresholds 

are validated. 

3.2.5 Evaluation and Deployment 

The two last steps of the CRISP-DM method concentrate on supporting documentation of 

projects, capture experience for reuse, support knowledge transfer and training. In our case, 

once the model is validated, automated prevention of detrimental phenomena can be 

implemented into the machine-tool. The criteria (Nh, Ub, Vrms, Apeak) corresponding to 

different events are computed at each instant; if an incident occurs, the corresponding 

criterion should be higher than for normal conditions. 

 The actual impact of this modification has to be monitored and if proven successful the same 

approach can be applied to other machine-tools. Furthermore, the acquired assets have to be 

integrated into the knowledge base and shared between the different services (design, 

maintenance, etc.) 

4 Case study in the aeronautic machining industry 

The proposed framework of Digital Shadow has been implemented in an industrial company 

that produces structural aeronautic parts in aluminum alloy. The specificity of such parts 

results from their high added value, requiring high-speed machining. This is characterized by 

high material removal rate, and thin walls and floors subject to vibration issues. Hence, the 

manufacturing process should be very accurately planned and produce good parts from the 

first one. In such a complex context, a Digital Shadow is necessary to efficiently exploit the 

in-process collected data and available knowledge for the monitoring of the machine-tool 

state, the machining process progress and quality. 

4.1 Implementation  

An in-process data collection system EmmaTools was installed on a machine-tool of an 

aircraft manufacturer factory as shown in Figure 6. It collects data every tenth of a second. 

The data comes from two information sources: the Computer Numerical Control (CNC) and 

the added sensors. By field bus, the CNC provides machining context information such as the 

tool name, the current program, machine and spindle motions, etc. The sensors integrated into 

the machine-tool collect the instantaneous power of the spindle, the temperatures, as well as 

the vibrations from 4 accelerometers integrated into the spindle (radially at each bearing).  



In order to detect incidents dedicated monitoring criteria are used. They are based on 

mechanical phenomena for better reliability. They are computed from real-time signals and 

collected in the PostgreSQL database. They are listed below:  

- The spindle condition is evaluated through the monitoring of bearing fault-induced 

vibration BPFO (i.e. the amplitude of the vibration contribution at the Ball Pass 

Frequency of Outer ring, Castelbajac et al. 2014), which is computed from the daily 

vibratory signature. 

- Chatter (which is an unstable cutting phenomenon that results in unacceptable surfaces 

of the workpiece) is monitored by Nh (sum of the amplitudes of the five dominant 

non-harmonic contributions of the vibration spectrum), introduced by (Godreau et al. 

2017). 

- Since tool failure leads to an increased mechanical unbalance of the cutting tool, it is 

monitored by the criterion Ub, proposed by (Godreau et al. 2017), which evaluates the 

amplitude of the vibration at the spindle rotation frequency. 

- The collision between any parts of the machine, work-piece, or clamping is very 

dangerous. The collision is monitored by the criterion Apeak (maximum value of the 

raw acceleration signal over a given period) (Godreau et al. 2017). 

 

 

Figure 6. In-process data collection system 

4.2 Knowledge model 

The specificity of this research work is the implementation of a Knowledge Management 

(KM) approach at the service of data analysis tools in order to facilitate the management of 

industrial data and knowledge flows. It is gathered in a generic knowledge repository, 

structured by ontology. The development of a knowledge base with a generic ontology 

facilitates the implementation of a decision aid system. The approach is presented in Figure 7 

and explained below. 



 

Figure 7. The detailed knowledge management approach 

The proposed KM approach covers the whole process of analysis and detection of malicious 

incidents that may appear during the machining process. Firstly, business experts are 

interviewed in order to formalize their expertise into business rules, regarding, for example, 

the detection of malicious incidents. Then, using an initial data base, detection thresholds are 

obtained by unsupervised Machine Learning (as explained in Section 4.3). Thresholds and 

business rules are capitalized in the knowledge base.  

Thereafter, a reasoning system is set up to ensure communication between the data and 

knowledge bases. This system enables the detection of the occurrence of any problems during 

machining, once the dedicated business rule and detection threshold are retrieved from the 

knowledge base. The contextual information of the incident is also obtained by data mining 

and deciphered. In this way, beyond a simple time stamping of the incident, it is possible to 

know that the incident occurred, e.g. during a plunging operation of a given cutting tool, at a 

given feedrate in a specific workpiece program. This operational context and the detected 

incident are then instantiated in the ontology. It constitutes a first level of traceability. This 

approach facilitates communication between the sub-systems of the global framework and 

facilitates the management of available industrial data and knowledge, as well as decision 

support operations. 

Concerning the use-case developed in Section 4.4, the objective is to detect a tool failure. The 

first step is thus to learn the threshold TUb and to store it in the knowledge base. Afterwards, 

and after recovering the values of the monitoring parameter Ub and the detection threshold, a 

reasoning based on business rules is triggered. In the example, the following rule was used:  

If (Ub>TUb) & NotCutting then 'tool failure detection'=1 

The business rules are developed under the Semantic Web Rule Language (SWRL). Here, it is 

able to check the instances of the Ub parameter, the comparison with the detection threshold 

TUb, in relation to the machining state (Cutting or NotCutting), which is calculated using 

another business rule (defined in Section 3.2.1). Once detected by a monitoring criterion and 

its associated business rule, an incident and its operational context (tool reference, program, 

cutting conditions, machine state, etc.) is stored in the knowledge repository.  

The use of a KM approach is very beneficial compared to traditional monitoring and detection 

systems and has several advantages. Firstly, the dynamic aspect of offline learning of the 

detection thresholds ensures the adaptability and genericity of the proposed solution. It can be 

transferred to other systems without necessarily needing to develop a specific system tailored 



for each use. Furthermore, the approach is highly useful in the case of handling heterogeneous 

knowledge. And finally, a remarkable advantage of KM integration is the facilitation of the 

prospects of implementing decision-support scenarios.  

4.3 Learning the business rule thresholds 

The unsupervised machine learning by Gaussian Mixture Model (GMM) is used in this 

article. The Gaussian Mixture Model is a statistical model used to parametrically estimate the 

distribution of random variables by modeling them as a mixture of Gaussian distributions 

(Maugis et al. 2009). According to the contextual classification of business rules, the GMM is 

applied to the collected data in the context of ‘spindle rotation at constant speed’ (because in 

aeronautical manufacturing, the tool cuts materials only after the spindle rotates at constant 

speed) and of machine axes motion (Vf > 0). Three Gaussians can model the distribution of 

Arms in this class (N constant and Vf > 0) (interpreted as: ‘the tool is not cutting’ – Y1 green; 

‘the tool is cutting’ – Y3 blue; and ‘severe machining vibrations’ – Y2 red). Finally, the 

distribution of Y4 (in cyan) is the sum of these 3 Gaussians (Y4=Y1+Y2+Y3). The threshold 

TArms is defined as the intersection between the two Gaussians Y1 and Y3, in order to 

minimize classification errors (false positives and negatives) (Figure 8-a).  

 

(a) Distribution of Arms    (b) Distribution of P 

Figure 8. Distribution of Arms and P (when N constant and Vf>0) modeled by GMM 

Three Gaussians can model the distribution of P in the class (N constant and Vf > 0) (that can 

be interpreted as ‘the tool is not cutting’ – Y1 green; ‘tool is cutting with low material 

removal’– Y3 blue; and ‘the tool is cutting with high material removal’ – Y2 red). The 

distribution of Y4 (cyan) is the sum of these 3 Gaussians (Y4=Y1+Y2+Y3). The threshold 

Pidle is identified at the intersection between the two Gaussians Y1 and Y2 (Figure 8-b). 

Thus, for data where ‘spindle is rotating at constant speed’ and ‘axes are moving’ (Vf > 0), if 

Arms > TArms or P > Pidle, the data is assigned to the class ‘tool is cutting’. To check the 

classification by manual data mining, N (kRPM), Vf (m/min), Arms (m/s²) and P (kW) are 

plotted in Figure 9 (cyan for Vf, blue for N, pink for Arms). The results of the classifications 

concerning the tool engagement are plotted on the power P curve with different symbols and 

colors. The ‘tool not cutting’ class is represented by black "+" signs on the power P curve; the 

‘tool cutting’ class is presented by red and blue dots. The ‘tool cutting’ class can be classified 

into two sub-classes: ‘tool cutting with constant engagement’ (in red points) and ‘tool cutting 

with varying engagement’ (in blue points). When the spindle has reached its target speed 

(N=23720 rpm, blue lines), the tool is not cutting immediately.  

Business knowledge enables to identify the existence of a subclass called ‘spindle startup’. 

This class is represented by green "+". It is defined by the following rule: from the reach of 

the target speed N until the power exceeds the no-load power Pidle (which represents the 

beginning of machining). The aim is to eliminate noise in vibration signals related to a 



lubrication issue during spindle startup which would otherwise lead to classification errors. 

The subclass ‘spindle startup’ is also assigned to the cluster ‘tool not cutting’. This business 

rule facilitates the data analysis, by narrowing the clusters before data analysis. 

The proposed unsupervised learning method by GMM applied to the classification on ‘tool 

cutting’ or ‘tool not cutting’ was evaluated in (Wang et al. 2020) where a confusion matrix 

revealed an accuracy of 99.94%. The classifications of whether the tool is cutting materials or 

not are correct, which validates the proposed business rules and the threshold learning by 

GMM. The classification is based on the business rules and the GMM method . The validation 

of GMM can refer to Maugis et al. (2009). The learned values of thresholds for each 

descriptor are specific to a given machine-tool, and should be capitalized in the knowledge 

base. 

 

 

Figure 9. Classifications of material removal by the cutting tool. 

In order to detect a tool failure, the criterion Ub is computed. It is the vibration amplitude of 

the contribution at the spindle frequency when the spindle is rotating without cutting (to 

prevent false detection due to cutting forces). Figure 10 presents a histogram of Ub criteria for 

tool breakage, considering the whole spindle lifetime (215 days). The distribution of Ub was 

modeled using GMM with two components (normal population in green and tool failure 

population in red). The critical threshold TUb is then chosen as the abscise value where the 

two Gaussians cross (in order to minimize classification errors). A threshold TUb of 6.32 m/s² 

was learned, as shown in Figure 10. 

Therefore, the ontology classes “Ub” and “threshold TUb” are instantiated (see Figure 13). 

Using a specific business rule and the object property “has_threshold”, new knowledge about 

the “tool failure” is inferred. 

 



 

Figure 10. Modeling of Ub distribution by GMM (composed of a normal population in green 

and of a tool failure population in red) and learning of the detection threshold TUb for tool 

breakage. 

4.4 Detection of tool failure  

The tool failure detection is vital because the machine-tool could continue machining with a 

broken tool, damaging the work-piece and even the machine-tool. The criteria Ub is computed 

at each instant when the spindle is rotating without cutting. Data mining was performed in the 

database corresponding to one year of industrial production. Several detrimental incidents 

were found and one typical tool breakage will be illustrated. 

By basic data mining, it can be found that large vibrations (Arms, in red) occurred during the 

136
th

 day of production, at the 6
th

 hour in Figure 11. However, without contextual 

information, machine learning and knowledge management, it is not possible to determine if it 

is normal or dangerous, nor to understand what really happened that day. This is the reason 

why a Digital Shadow is required, in order to enable efficient management and processing of 

the collected data and knowledge.  

 

Figure 11. Raw data of vibration level Arms during the 136
th

 day of production 

Figure 12 presents the Ub criterion calculated between the 5
th

 and 8
th

 hours. The blue line 

plots Ub for tool breakage monitoring from the accelerometer signals. The dark line indicates 

the learned threshold TUb (from Figure 10). As explained in Section 4.2, the business rules are 

processed by the knowledge inference engine, which compares the monitoring criterion Ub to 

the detection threshold TUb (this was obtained by unsupervised machine learning, cf. Figure 



10) in the context of NotCutting state (in order to avoid false alarms due to the cutting forces). 

The execution of the rules generates a new direct knowledge: the instance of tool failure 

detection and its operational context which are stored in the knowledge repository. The 

instantiation of the incident is associated to the operational context, which means that 

additional elements managed by the ontology are instantiated: they are issued from the 

collected data (such as the tool reference 36 and its 5
th

 instance, the program number 116, the 

day number 136, the cutting conditions, etc.) or from data analysis through the contextual 

classifications of the state of the process and machine-tool (cf. Figure 9). In this way, the 

breakage of tool 36 is detected from the 31
st
 to the 70

th
 minute. The red line presents the 

Boolean for tool failure detection (1 – tool failure, 0 – tool in good condition). The green line 

shows the tool instance index. It can be observed that the machine-tool has changed the 

cutting tool (reference 36) at the 75
th

 minute.  

Contrary to the proposed Digital Shadow, the machine-tool had not detected this tool 

breakage before and has continued machining for 39 minutes with a broken tool, which is 

very dangerous. In this case, the Digital Shadow would have immediately detected the tool 

failure, enabling the machine-tool to stop thus avoiding further degradation of the part and 

possible deterioration of the machine. The example illustrates the relevancy of the proposed 

approach. 

 

 

Figure 12. Visualization of Ub criterion (in blue) for tool reference 36, the index of tool 

instance (in green) and the Boolean for tool failure detection (in red). 

As mentioned at the beginning of the article, the implementation of the ontology is performed 

in "Protégé" software. The top of Figure 13 shows the part of the ontology structure that 

supports the detection process by defining the set of classes, relationships and attributes 

necessary for knowledge structuring. The attributes enable a description of the operational 

context. The bottom of Figure 13 presents the instance of tool failure and its operational 

context that was detected in the use-case (Figure 12) and stored in the knowledge base.  



 

Figure 13. Structuring and instantiation of the knowledge base in “Protégé” software 

 

Beyond the detections, the traceability of the instances of tool failure detection and their 

operational context can be reused for diagnosis. They can be analyzed, by the inference 

engine based on another set of business rules, in order to identify the main faulty cutting tools 

and contexts, so as to determine the cause of the occurrence and to solve it. These causes are 

also considered as inferred knowledge.  

4.5 Use case findings 

This case study proves the feasibility of the proposed framework. From a research point of 

view, this work allows us to conclude that an efficient design of the Digital Shadow is crucial 

to improve the performance of manufacturing systems. This objective was achieved in this 

work by creating an integrated data-knowledge closed loop which combines a data-driven 

approach with a knowledge-driven approach, where expert rules are extracted and inferred in 

order to interpret and augment the results of data processing. 

The example of “tool failure detection” presented in the case study illustrates the relevancy of 

the proposed approach in enhancing the decision aid efficiency on the manufacturing shop 

floor. Direct knowledge (business rules from experts) and derived knowledge (new insights 

from data processing using the proposed data mining method) enables the immediate 

detection of tool failure with high accuracy. Consequently, the incident detection enables the 

machine-tool to stop and avoids further degradation of the part and possible deterioration of 

the machine. Then, diagnosis and improvement can be performed based on the capitalized 

instances of tool failure and their operational context. Hence, performance on the shop floor is 

enhanced. 



It is worth noting that, besides the tool failure detection, other incidents are also addressed 

(e.g. chatter, collision, faulty program, etc.) as described in Section 3.1.1. Furthermore, the 

proposed knowledge management engine enables the capitalization of positive feedback in the 

form of possible solutions proposed by the operators/engineers to solve abnormal phenomena. 

In this way, when similar phenomena are detected, these solutions are directly suggested and 

reused as best practices. 

5 Conclusion 

To enhance intelligent manufacturing, data applications based on the Digital Twin paradigm 

represent key technological solutions. In the presence of big or complex data, the Digital 

Shadow plays a crucial role in achieving the convergence between physical and virtual 

spaces. In this paper, a suitable design of Digital Shadow is proposed based on the 

combination of two principal modules: a knowledge management system and a data analytics 

system. An ontology-based knowledge model is used to structure the common repository 

which capitalizes on different types of insights, such as industrial data and knowledge, 

business rules provided by experts, and knowledge learned from data analytics. This 

knowledge management method enables the integration of inferred knowledge. The proposed 

data analytics method relies on unsupervised machine learning for the classification of 

machining contexts and for the detection of detrimental incidents. Reliable monitoring criteria 

and the deciphered operational context enable the interpretation and understanding of 

phenomena that occur during the machining process and thus enhance the production 

performance by supporting decision making. Tool failure detection was presented in the case 

study, showing the feasibility of the proposed approach. More applications (i.e. collision, 

chatter, etc.) are under development. Further work will focus on the identification the 

relationship of causes and effects in order to carry out diagnosis analysis. 
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