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Driving among Flatmobiles: Bird-Eye-View occupancy grids from a monocular
camera for holistic trajectory planning

Abdelhak Loukkal∗ † Yves Grandvalet† Tom Drummond‡ You Li∗

Abstract

Camera-based end-to-end driving neural networks bring
the promise of a low-cost system that maps camera images
to driving control commands. These networks are appeal-
ing because they replace laborious hand engineered build-
ing blocks but their black-box nature makes them difficult
to delve in case of failure. Recent works have shown the
importance of using an explicit intermediate representation
that has the benefits of increasing both the interpretabil-
ity and the accuracy of networks’ decisions. Nonetheless,
these camera-based networks reason in camera view where
scale is not homogeneous and hence not directly suitable
for motion forecasting. In this paper, we introduce a novel
monocular camera-only holistic end-to-end trajectory plan-
ning network with a Bird-Eye-View (BEV) intermediate rep-
resentation that comes in the form of binary Occupancy
Grid Maps (OGMs). To ease the prediction of OGMs in
BEV from camera images, we introduce a novel scheme
where the OGMs are first predicted as semantic masks in
camera view and then warped in BEV using the homogra-
phy between the two planes. The key element allowing this
transformation to be applied to 3D objects such as vehicles,
consists in predicting solely their footprint in camera-view,
hence respecting the flat world hypothesis implied by the
homography.

1. Introduction

Autonomous driving systems are usually composed of
carefully engineered modular building blocks. Each build-
ing block being developed separately, this makes the whole
system more interpretable but can also lead to an accumula-
tion of errors along the pipeline. End-to-end driving CNNs
[25, 3, 9, 29] consist in neural networks that take raw sensor
data as input, or other modalities such as the depth or the op-
tical flow, and output control commands, for example steer-
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Figure 1: Applying a planar homography to a full segmenta-
tion mask causes the pixels located above the ground plane
to be stretched in BEV. Our footprint segmentation respects
the flat world hypothesis implied by the homography hence
avoiding the deformation caused by above the ground pix-
els.

ing wheel angles. This kind of approach is promising but
lacks interpretability because it skips all the building blocks
of the autonomous driving pipeline [31]. Mid-to-mid driv-
ing [2] is a more recent approach to this problem that instead
of taking images as input takes intermediate representations
of the driving scene provided by the perception building
block. In the middle ground of these two approaches lie
mediated perception approaches [5, 28, 18, 22, 20] that take
raw sensor data as input, have an explicit intermediate rep-
resentation of the observed scene and then forecast motion
based on this representation. However, none of the existing
monocular camera based end-to-end approaches leverage a
Bird-Eye-View (BEV) intermediate representation when it
seems to be the best candidate for motion forecasting as the
scale in this plane is homogeneous and the size of the ob-
served objects is invariant to their distance to the sensor.

In this paper, we introduce a novel holistic end-to-end
trajectory planning network that takes a sequence of monoc-
ular images as input, leverages a BEV mediated perception
strategy and plans the trajectory of the ego vehicle knowing
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its destination position at a 3s horizon. The intermediate
representation of our network comes in the form of two bi-
nary Occupancy Grid Maps (OGMs) in BEV, one giving the
drivable area and the other one the occupancy of the vehi-
cles in the scene. As it is not straightforward to directly
obtain BEV outputs from a camera plane input while pre-
serving the receptive field, the first stage of our network
first outputs these OGMs in camera view then warps them
in BEV using the planar homography between the camera
plane and the BEV plane. However, a planar homogra-
phy relates a transformation between two planes, so we in-
troduce the Flatmobile representation to warp the vehicles
from camera view to BEV without the “stretching” effect
observed in Fig. 1. This simple yet very effective represen-
tation consists in segmenting the footprint of the vehicles,
i.e., the “ground” face of their 3D bounding boxes in cam-
era view, so that the flat world assumption is respected when
warping these masks in BEV. In an end-to-end fashion, an
encoder-decoder LSTM is fed with these OGMs, the past
trajectory and the destination position of the ego vehicle to
produce the future trajectory.

In summary, the contributions of this work are two-fold:

• The main contribution is to propose a novel learn-
ing protocol to learn BEV Occupancy Grids from a
monocular camera;

• The relevance of this protocol is shown by its inte-
gration into a holistic end-to-end trajectory planning
pipeline that takes advantage of these occupancy grid
maps as an intermediate representation.

The gain in performance on both tasks is demonstrated
on the nuScenes dataset [4].

2. Related work
Occupancy grid maps: Occupancy grid maps [11] repre-
sent the spatial environment of a robot and reflect its occu-
pancy as a fine-grained metric grid. These grid maps have
been widely used to model the environment of indoor and
outdoor mobile robots as well as automotive systems. Once
acquired, they can be used for various tasks such as path
planning. OGMs can be acquired with range sensors like
LiDAR or RADAR, but also from RGB-D cameras [16],
stereo cameras [19], or from the fusion of multiple sensors
[23]. For example, semantic OGMs are predicted from a Li-
DAR and a monocular camera thanks to deep learning and
Bayesian filtering in [12]. Taking only monocular camera
images as input, a Variational Encoder-Decoder (VED) can
predict semantic OGMs [21]. However, this approach lever-
ages poor ground-truth OGMs obtained by warping seman-
tic segmentation masks using the associated disparity maps.
The Orthographic Feature Transform (OFT) network [27],
whose original purpose is to output 3D bounding boxes,

consists in projecting the features extracted in camera view
to an orthographic space. To do so, voxel-based features
are generated by accumulating camera-view features; then
these features are collapsed along the vertical dimension
to obtain features in an orthographic plane. In addition to
bounding boxes coordinates and dimensions, this network
also outputs a confidence map in BEV which can be assim-
ilated to an occupancy grid map. To the best of our knowl-
edge, OFT and VED are the only comparable approaches to
take monocular camera images as input and output a dense
OGM-like grid.

Behavior cloning based ego-motion forecasting: Imi-
tation learning consists in reproducing a desired behavior
based on expert demonstrations. Behavior cloning consists
in learning a policy that reproduces the desired behavior
by learning a direct mapping from states to actions. Au-
tonomous Land Vehicle In a Neural Network (ALVINN)
[25] was a pioneering work on ego-motion forecasting that
used behavior cloning and a neural network to accomplish
lane following. More recently, [3] introduced an end-to-
end driving network that maps camera images to steering
commands. A similar approach was adopted in [9] with the
difference that the steering commands are conditioned with
high-level commands, e.g., turn left. Also adopting condi-
tional imitation learning, [29] uses multi-modal inputs and
explores different fusion schemes. In our holistic end-to-
end network, we condition our output with the destination
position which makes it a trajectory planning set-up.

Another body of work incorporates an intermediate rep-
resentation in the form of affordances [5, 28], attention
maps [18] or semantic segmentation masks [22, 20]. These
approaches address the main flaw of the end-to-end ap-
proach by making the results interpretable by a human ex-
aminator. Instead of learning an intermediate representation
and learning motion from this representation, [30] learned
to forecast motion from a sequence of input images and
learned the semantic segmentation of these input images as
a side task invoking privileged learning. However, all these
camera-based solutions reason in camera view whereas it
seems to be more suitable to forecast motion in BEV where
the size of objects does not depend on their position in the
image. The network developed in this paper takes only
monocular images as input but has a BEV intermediate rep-
resentation that is used for motion forecasting.

ChauffeurNet [2] adopts a mid-to-mid driving model that
uses the BEV output of a perception module as input to pre-
dict a trajectory. Using a mid-level representation as in-
put allows to augment the training data with synthetic worst
case scenarios hence improving the performance of the net-
work in a real-world scenario. Mid-to-mid driving is also
adopted by the privileged learner of [6]. Alleviating the
burden of manually designed planning cost functions[24],
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Figure 2: For each camera frame (a), a BEV map of size 100 × 55 (in meters) is extracted as a binary semantic mask. A
vehicle binary mask with the same scale and size is generated from the ground-truth 3D bounding boxes (c), where the red
dot indicates the ego vehicle. These two masks are projected in camera view (b) using the homography between the two
planes. Better viewed in color.

[31] introduces an end-to-end motion planner that takes a
3D point cloud and an HD map as input and has an interme-
diate interpretable representation in the form of 3D detec-
tions and their predicted trajectories.

3. End-to-end planning with BEV mediated
perception

Since our method requires certain annotations in the
nuScenes dataset [4], we start by describing them. They
will be used directly or indirectly as targets in the learning
process of our holistic end-to-end network.

3.1. Data

Experiments are conducted on the nuScenes dataset [4],
which records the measurements of a complete suite of sen-
sors: 6 cameras, 32-channels LIDAR, long-range radars.
The whole dataset comprises 40 000 annotated frames but
for intellectual property reasons we are currently limited to
the preview version, with 3 340 annotated frames from five
driving sequences in Boston and 81 sequences in Singapore.
Each driving sequence lasts around 20s and images are ac-
quired at a framerate of 2Hz. The two most important fea-
tures of nuScenes for this paper are the availability (i) of
3D bounding boxes, (ii) of layers of the drivable area are
also provided as binary semantic masks, where each pixel
corresponds to 0.1× 0.1 square meters.

Ground-truth OGMs: For each of the considered
frames, a map portion of size 1 000 × 550 (that is,
100m×55m) is extracted with the ego vehicle positioned
at (1000, 300) from the origin at the top left corner of the
map portion. This map portion is rotated according to the
ego vehicle heading angle such that it always faces forward.
Given the 3D position of each vehicle in the scene, it is pos-
sible to draw its ground-truth bounding boxes on a blank
canvas aligned with the map portion, with the correct size
and position. These two binary semantic masks, depicted in

the right-hand side of Fig. 2, can also be viewed as OGMs
with grid cells of size 0.1m × 0.1m.

Ground-truth trajectories: In addition to the seman-
tic masks, the past and future trajectories are also pre-
processed. The past and future positions are measured rel-
atively to the current position of the ego vehicle. The past
trajectory is defined as the 6 previous positions, with a 0.5s
time-step. The future trajectory is defined in the same way,
with the sixth point defined as the destination and the 5 in-
termediate points as ground truth for motion planning. After
removing the frames that do not have 6 previous and future
positions, the dataset is split in 1917 training samples and
415 testing samples from held-out sequences.

Homography estimation: A key input of our holistic
end-to-end network is the homography matrix between the
camera plane and the OGM plane. The homography be-
tween the two planes maps a point in the camera plane
(u, v, 1)T to a point in the BEV plane (x, y, 1)T such that:xy

1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

uv
1

 . (1)

Our framework relies on the availability of the homography
matrix at each frame. For doing so, we build a training set
with ground-truth homographies to predict homographies
from camera frames.

We take advantage of the annotated 3D bounding boxes
to get corresponding points in the BEV and the cam-
era planes. The pixel positions of the 3D bounding
boxes “ground” face corners in the camera image are
matched with their 3D position in the BEV plane (see
Fig. 2), and the homography matrix is obtained using the
getPerspectiveTransform() function of OpenCV
that applies the Direct Linear Transformation (DLT) algo-
rithm [13]. Not all training samples contain enough match-
ing points, so only a subset of the original training set is
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Figure 3: For training images with enough matching points,
the homography is computed with the matching method.
These samples become training data for a neural network
that learns to estimate the homography from RGB input
images. This trained network is then used to pre-compute
the homographies of all the samples in the dataset. Better
viewed in color.

available for fitting a network predicting homographies (see
Fig. 3). The homography network is composed of a ResNet-
18 encoder and 4 fully connected layers with the fourth
layer outputting 9 values corresponding to the elements of
the homography matrix. The homography matrix contains
4 rotational terms and 2 translation terms. The difference
in magnitude between these terms must be taken into ac-
count during training. The authors of [10] circumvent this
issue by predicting 4 matching points instead of the homog-
raphy matrix elements as there is a one-to-one correspon-
dence between the two representations; we simply rescale
the rotational and translation terms with a constant factor
such that all the elements of the homography have the same
magnitude. The L2 loss function is then used as the training
criterion.

For each frame in the dataset, the predicted homography
is used to warp the drivable area and vehicle OGMs in the
camera plane (cf. Fig. 2). These warped masks are used
as ground truths in the network described in Fig. 4. Each
sample has a sequence of 6 input camera images separated
by 0.5s, the camera view semantic masks for every image
in the sequence, the homography matrices for every mask
in the sequence, the past and future trajectories.

3.2. Footprint segmentation: OGMs from a monoc-
ular camera

Model formulation: The overall approach consists of
two stages, as depicted in Fig. 4. The first stage gener-
ates OGMs from the input sequence of monocular images.
These OGMs’ cells can take two states, occupied or free.
Two OGMs are considered: one that gives an information
about the drivable area, and the other one about the posi-
tion of the vehicles in the observed scene. The considered

OGMs being homologous to binary semantic masks, their
estimation is formulated as the semantic segmentation of
the drivable area and the vehicles in the scene. State of
the art semantic segmentation CNNs come in an encoder-
decoder configuration where the input and the output of the
network have the same aspect ratio and are in the same ge-
ometric plane. The ultimate goal of this stage is to output
BEV semantic masks for each image of the input sequence.
However, it is not straightforward to directly output BEV
masks from a camera plane input as the receptive field of
a pixel in the BEV output would not match the region of
the image that is responsible for its processing. Hence,
the semantic masks are first outputted in the camera plane.
ResNet-101 [15] is used as the encoder and Deeplab v3+
[7] as the decoder. Deeplab v3+ combines A trou Spatial
Pyramid Pooling (ASPP) [14] and a convolutional decoder
module to benefit from rich contextual information and bet-
ter object boundaries delineation. Two decoding heads out-
put the drivable area and vehicle semantic masks in cam-
era view. The encoder-decoder network is applied t times
where t is the number of images in the input sequence. The
final step of this stage of the network is to warp the output
masks in BEV using a perspective warping layer [26] with
the homography matrix between the camera plane and the
BEV plane. However, vehicles are 3D objects and project-
ing regular semantic masks in BEV leads to the “stretching”
effect observed in Fig. 1. To cope with this deformation, we
introduce the Flatmobile representation to warp the vehicles
from camera view to BEV. This simple yet very effective
representation consists in segmenting the footprint of the
vehicles, i.e., the “ground” face of their 3D bounding boxes
in camera view. By doing so, only pixels located on the
ground surface (assumed to be locally flat) are segmented
and warped in BEV which respects the planar world hy-
pothesis required by the homography. The homography for
each sample is obtained with a homography estimation net-
work trained separately from the end-to-end network but on
samples from the same training set, see Fig. 3. The output
size of the decoding heads is s times smaller than the origi-
nal camera image so the homography needs to be re-scaled
as following:

Hs = S ·H · S−1 , with S =

s 0 0
0 s 0
0 1 0

 , (2)

where Hs is the re-scaled homography, H the original ho-
mography and s is the (fixed) scaling factor accounting for
the ratio of image to decoder output size.

Cost function and learning: We initially tried to make
the most of ground-truth signals by computing two losses,
one in the camera plane and the other one in the bird-eye
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Figure 4: Two-stage network for end-to-end trajectory planning from a monocular camera with intermediate BEV OGM
outputs. Better viewed in color.

Figure 5: Encoder-decoder LSTM for trajectory planning.
Better viewed in color.

view plane. However, we eventually train from the camera
plane only, since the bird-eye view loss diverged. This is
due to the fact that errors in the camera plane are amplified
in the BEV plane. We chose to predict separately a binary
OGM for the vehicles and another one for the drivable area,
since our problem is best formalized as a multi-label classi-
fication problem rather than a multiclass classification prob-
lem. Indeed, each cell can belong to one of the four classes:
{vehicle, drivable, vehicle and drivable, none}. The over-
all loss of this stage of the network, denoted Lperception, is
defined as the sum of two binary cross-entropy losses: one
for the drivable area, and the other one for the vehicle occu-
pancy.

3.3. Encoder-decoder LSTM for trajectory plan-
ning

Model formulation: The second stage of the network
implements mid-to-end trajectory planning. The two se-
quences of drivable area and vehicle BEV masks are con-
catenated along the channel dimension at each time step and
flattened to obtain a sequence of feature vectors f−τ , ..., f0.
These feature vectors become input to an encoder-decoder
LSTM [8]. The encoder embeds the sequence of feature
vectors of length τ + 1 and processes it introducing the fol-
lowing recurrence:

et = φe(ft;We)

at = φa((xt, yt);Wa)

ht = LSTM(ht−1, concat(et, at);Wl) ,

(3)

where (xt, yt) is the position of the ego vehicle at time t,
φe and φa are the embedding functions, We and Wa are the
embedding weights, ht and Wl are respectively the hidden
state and the weights of the encoder LSTM.

The final cell state c0 and hidden state h0 of the encoder
that summarizes the input OGM sequence are fed to the de-
coder as its initial cell and hidden states. The decoder then
recursively outputs the sequence of future positions:

a′t = φ′a(st−1;W
′
a)

h′t = LSTM(h′t−1, a
′
t;W

′
l )

st = φs(concat(h
′
t, (r, α));Ws) ,

(4)

where φ′a and φs are the embedding functions, W ′a and Ws

are the embedding weights, (c′t, h
′
t) andW ′l are respectively

the cell/hidden states and the weights of the decoder LSTM,
st the estimated future position at time t and (r, α) the polar
coordinates of the destination point. The prediction of the
future positions s1:T is expressed in Cartesian coordinates,
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Table 1: OGMs evaluation by IoU (in %). Full refers to the whole OGMs, close focuses on a region of 50m ahead of the ego
vehicle and 10m on each side, far on the region farther than 50m ahead of the ego vehicle.

IoU drivable IoU vehicles
Camera Bird-Eye Camera Bird-Eye

Range Full Full Close Far Full Full Close Far
VED [21] NA 60.1 48.6 70.3 NA 48.9 47.1 50.0
OFT [27] NA 58.6 41.2 71.4 NA 60.0 54.6 55.9
Ours 94.5 61.1 92.4 40.5 79.3 65.4 80.0 49.7

BEV LiDAR NA 86.5 68.5 90.9 NA 69.7 69.9 49.8

whereas the destination point is expressed in polar coordi-
nates, for encouraging solutions that depart from a simple
direct interpolation, thereby enhancing the impact of differ-
ent design choices.

Cost function and learning: At each time-step during
decoding (i.e., planning) time, the LSTM predicts the distri-
bution of the future position of the ego vehicle as developed
in (4). Similar to [1], the output st of the encoder-decoder
LSTM module predicts the parameters of a bi-variate Gaus-
sian distribution characterized by its mean µt = (µxt , µ

y
t )

and its covariance matrix parameterized by the standard de-
viations σt = (σxt , σ

y
t ) and the correlation ρt.

The predicted position of the ego vehicle at time t is
given by (xt, yt) ∼ N (µt, σt, ρt). The parameters of the
encoder-decoder LSTM module are learned by minimizing
the negative log-likelihood of the Gaussian distribution:

Lmotion = −
T∑
t=1

log(P(xt, yt|µt, σt, ρt)) . (5)

For the holistic end-to-end network, the final loss function
is a linear combination of the perception loss and the motion
loss:

Ltotal = αLperception + Lmotion , (6)

where α is empirically set to 0.1.

4. Experimental evaluation
4.1. Evaluation metrics

The Average Displacement Error (ADE) corresponds
to the average Euclidean distance between the pre-
dicted trajectory and the ground-truth one: ADE =
1
N T

∑N
i=1

∑T
t=1

∥∥Ẑti − Zti
∥∥
2
, where N is the number of

samples, T is the number of prediction timesteps, Zti are
the ith ground-truth coordinates at time step t and Ẑti are
their predictions. As the OGM prediction amounts to se-
mantic segmentation, the classical Intersection over Union
(IoU ) metric is also adopted.

4.2. Occupancy grid maps

Evaluation baselines The performance of the first stage,
OGMs from a monocular camera, is evaluated against the
following baselines:

• VED [21]: Multi-task training led to poor results so
this model was trained to output the vehicles and driv-
able area OGMs separately.

• OFT [27]: this model was trained with a binary cross-
entropy loss to solely output the occupancy grid maps.

• BEV-LiDAR: The available LiDAR point clouds were
processed to obtain BEV 3-channels images that en-
code the distance to the LiDAR, the height and the in-
tensity. A Deeplab v3+ was then trained to take these
images as input and output the vehicles and drivable
area OGMs.

Training setup In this evaluation, the models are com-
pared on the whole preview dataset. The dataset is split into
77 training sequences (2982 frames) and 9 held-out testing
sequences (358 frames). All networks are trained over 100
epochs with Stochastic Gradient Descent (SGD) and a batch
size of 8, with learning rate of 10−7 for OFT and 10−3 for
our network and VED. The grid in OFT is set to 100 × 55
(in meters) with resolution of 1m per pixel.

Quantitative results Results presented in Table 1 show
that our network outperforms OFT net [27] by 5.4% on the
vehicle OGM and 2.5% on the drivable area OGM. The
gain in performance comes from the better accuracy in close
range with an increase of more than 50% on the drivable
OGM and more than 25% on the vehicle OGM. However,
OFT has a better performance in long range: since it pre-
dicts directly in BEV, it does not suffer from the increase in
error due to the imprecision in warping. Also, compared to
OFT, our training criterion gives a higher relative weight to
closer objects. Indeed, since our network learns in camera
view, where closer objects appear bigger, it has an incentive
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RGB image Drivable
area (ours)

Drivable area
(GT)

Vehicle (ours) Vehicle (GT)

Figure 6: Bird-eye-view qualitative results for the first stage of the network. The blue part of the predicted masks corresponds
to the limits of the camera’s field of view. GT stands for Ground Truth. Better viewed in color.

to being more accurate in close range. The same conclu-
sions can be drawn from the comparison with VED [21].
The BEV LiDAR baseline has a much better performance
on the full OGM and in long range due to the 3D nature of
the sensor but still falls behind our approach in close range.
A better performance in close range seems to be appropriate
when planning a short-term trajectory.

Qualitative results Qualitative results for the first stage
of the network are shown in Fig. 6. As our network operates
only on planar surfaces, warping the vehicle masks from
camera view to BEV does not cause the “stretching” that
is observed in Fig. 1 when warping regular semantic masks
without the knowledge of depth. Hence, our approach can
distinguish two vehicles in front of each other by simply
applying the connected components algorithm to the binary
masks. Again, we observe that results in BEV are better in
the lower part of the OGMs, which corresponds to the first
meters in front of the camera.

4.3. Trajectory planning

Evaluation baselines The performance of the holistic
two-stage end-to-end model with intermediate OGM out-
puts is compared against the following baseline models:

• LSTM E-D: Same architecture than the LSTM
encoder-decoder described in Fig. 5, except that it
takes only the past trajectory as input.

• End-to-end: This model takes a sequence of camera
images as input, encodes it with a ResNet-101, flat-
tens the feature maps and feeds the obtained sequence
of feature vectors to the same encoder-decoder LSTM
described in figure 5. This model is comparable to di-
rect perception approaches like [25, 3, 9] with the dif-
ference that it takes a sequence of images as input and
leverages a LSTM model to process this temporal in-
formation.

• Mid-to-end: Similar to the end-to-end model, ex-
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Table 2: Average displacement errors and L1 norm (in meters) for lateral and longitudinal displacements. NP (No Past) refers
to models that do not take the past trajectory as input; CV (Camera view) refers to a model where the predicted OGMs are
not warped in BEV. Best results are shown in bold.

ADE L1 longitudinal L1 lateral
0.5s 1.5s 2.5s 0.5s 1.5s 2.5s 0.5s 1.5s 2.5s

LSTM E-D 0.63 0.91 1.32 0.38 0.33 0.31 0.37 0.70 1.15
End-to-end 0.54 0.84 1.21 0.32 0.34 0.28 0.34 0.61 1.04
Mid-to-end 0.51 0.81 1.17 0.27 0.26 0.19 0.32 0.63 1.04
Holistic end-to-end CV 0.65 0.95 1.26 0.45 0.45 0.33 0.31 0.64 1.05
Holistic end-to-end (ours) 0.48 0.78 1.16 0.27 0.26 0.20 0.29 0.60 1.02

End-to-end NP 0.78 1.04 1.40 0.64 0.52 0.42 0.30 0.68 1.14
Mid-to-end NP 0.65 0.94 1.25 0.44 0.44 0.32 0.31 0.62 1.03
Holistic end-to-end NP 0.66 0.94 1.26 0.47 0.46 0.35 0.30 0.61 1.03

cept that it takes as input a sequence of concate-
nated ground-truth drivable area and vehicle semantic
masks. This model is comparable to mid-to-mid ap-
proaches like [2] or the privileged learner of [6].

Training setup All networks are trained using SGD with
a batch size of 10 for 200 epochs. All results were obtained
with a momentum of 0.9 and a learning rate of 10−3.

Quantitative results The results for motion planning are
presented in Table 2. The L1 norm of lateral and longitudi-
nal displacements are presented in addition to the Average
Displacement error (ADE) metric. The two-stage holistic
network shows improvements on the three metrics over its
regular end-to-end counterpart, mostly due to an improved
accuracy in the longitudinal direction. Overall, the regular
end-to-end network has the worst performance among the
image-based tested networks, which confirms the intuition
that the intermediate BEV representation is an asset for mo-
tion forecasting. The mid-to-end network is accurate in the
longitudinal direction but falls behind the holistic network
in the lateral direction. A possible explanation for this sur-
prising fact is that, our network learning the OGMs from
camera images in an end-to-end fashion, it may benefit from
pieces of information contained in the natural images which
help disambiguate some driving scenarios. In other frame-
works, accurate smooth estimates of discrete quantities have
already been shown to be more efficiently processed than
the ground truths themselves [17]. Our continuous masks,
which are quite accurate in close range and camera view,
may thus convey more information for fitting the second
stage of the network in critical areas. The importance of
having access to a scene context is highlighted by the infe-
rior results obtained by the LSTM E-D model.

Ablation study We show the importance of some com-
ponents of the approach introduced here with the degraded
results that are presented in Table 2. Removing the past
trajectory input is an important ablation to investigate the
usefulness of the BEV when there is no prior about the past
motion. An important gap in performance is observed be-
tween the holistic network that leverages BEV information
to forecast motion and the end-to-end network with up to
17cm difference in short term longitudinal forecast, 7cm
in long-term longitudinal forecast and 11 cm in long-term
lateral forecast. The importance of the BEV is also high-
lighted by removing the perspective warping layer from the
holistic network architecture and feeding the Camera-View
(CV) features as input to the second stage. The BEV version
of the holistic network achieves a much better longitudinal
performance than its CV counterpart with an average gain
of 18cm at a horizon of 0.5s and 13cm at a horizon of 2.5s.
However it is surprising to observe that the regular end-to-
end network achieves a better performance than the holistic
CV network. A possible explanation is that even if the RGB
camera images are not optimal for motion forecasting, they
still convey a better depth and perspective information than
the camera-view semantic masks.

5. Conclusion

In this paper, a novel method to output bird-eye-view oc-
cupancy grid maps from a monocular camera is introduced,
by leveraging 3D bounding boxes and a HD-map raster.
This method is used to build a new monocular camera-based
holistic end-to-end motion planning network. It takes as in-
put a sequence of camera images and leverages the afore-
mentioned bird-eye-view occupancy grid maps as an inter-
mediate output. Compared to its regular end-to-end coun-
terpart, our method is better at imitation driving and pro-
vides interpretable intermediate results. The benefit of em-
bedding computer vision tools for the transformation from
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the camera view to the bird-eye-view intermediate repre-
sentation is also highlighted in our ablation study. Though
end-to-end driving may not be reliable enough to be used as
a primary solution in autonomous vehicles, having such a
cheap camera based processing could be useful as an extra
component for redundancy into a more complex system.
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