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Abstract. We consider the one-dimensional coagulation-diffusion problem on a

dynamical expanding linear lattice, in which the effect of the coagulation process

is balanced by the dilatation of the distance between the particles. Distances x(t)

follow the general law ẋ(t)/x(t) = α(1 + αt/β)−1 with growth rate α and exponent β,

describing both algebraic and exponential (β = ∞) growths. In the space continuous

limit, the particle dynamics is known to be subdiffusive, with the diffusive length

varying like t1/2−β for β < 1/2, logarithmic for β = 1/2, and reaching a finite value

for all β > 1/2. We interpret and characterize quantitatively this phenomena as a

second order phase transition between an absorbing state and a localized state where

particles are not reactive. We furthermore investigate the case when space is discrete

and use a generating function method to solve the time differential equation associated

with the survival probability. This model is then compared with models of growth on

geometrically constrained two-dimensional domains, and with the theory of fractional

diffusion in the subdiffusive case. We found in particular a duality relation between

the diffusive lengths in the inflating space and the fractional theory.

PACS numbers: 05.10.Gg,05.40.-a,05.40.Fb

1. Introduction

Cooperative effects in low-dimensional systems with strongly interacting particles

present a rich variety of critical properties in the regime out of equilibrium. Model

examples of such systems are provided by one dimensional reaction-diffusion processes [1,

2, 3], which are relevant to a number of non-equilibrium physical cases, such as excitons

in polymer chains TMMC=(CH3)4N(MnCl3) [4] or relaxation of photoexcitations in

carbon-nanotubes [5]. The low dimensionality induces strong fluctuations that dominate

the kinetics, and invalidates all descriptions based on mean-field theories below the upper

critical dimension dc = 2. Exact results are therefore of importance in describing the

dynamical behavior with precision by taking into account all the correlations.
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Here we consider one of these coagulation-diffusion processes on a one-dimensional

lattice with discrete sites of elementary size a. The Markov dynamics is defined by the

particle elementary moves at the same rate τ−1: A+∅ → ∅+A or ∅+A → A+∅ for the

diffusion process, and A+A → A+ ∅ or A+A → ∅+A for the irreversible coalescence

process with probability one. It is known that this out of equilibrium dynamics tends

to decrease the concentration of particles with time like t−1/2 [6, 1], instead of t−1 in the

mean field description, hence driving the system to an absorbing state consisting of one

particle.

External sources such as particle input [7, 8] leads on the contrary to an equilibrium

state, and the model can be solved using for example the eigenvalue formalism. The

opposite case of a source of particles would be insertion of empty spaces, which can be

modeled by expanding the space or the geometry uniformly and independently of the

presence of particles, modifying the Brownian dynamics and therefore the Fokker-Planck

equation [9, 10, 11]. This has many practical applications for example in the physics

of bubble coalescence in expanding foams [12, 13], or gravitational merging of galaxies

or masses as well as ray diffusion in an inflating universe [14]. Expanding media also

have a strong influence on the dynamics of cells induced by tissue growth in biology

[15, 16, 17]. In particular, geometrical constraints in two-dimensional competitive

environments with gene segregation for two different kinds of bacteria [18, 19], such

as Eschrichia coli, exert also an influence on the growth of the different colonies when

it is directed radially in presence of decimation at the boundaries between two different

colonies [18, 15]. In this radial configuration, the frontiers or domain boundaries between

two competitive colonies display superdiffusive spatial fluctuations with a wandering

exponent 0.65 > 1/2, greater than the exponent of the simple Brownian diffusion.

In this paper we investigate the effect of geometrical time expansion for Brownian

particles with coalescence. We review in section 2 the general results about the diffusion

properties of a single particle using a discrete analysis (discrete space and time), and in

the continuous limit identifying two different regimes corresponding to subdiffusion and

localization.

Section 3 is dedicated to describing analytically the dynamics of many particles

with coalescence through diffusion, using the results of the previous section obtained in

the literature and the empty interval method in the continuous case. We identify the two

regimes as a second order phase transition, using the number of particles as the order

parameter and the expansion exponent as the inverse of a temperature. In particular,

we can show the model presents slowing down characteristics at the transition.

In section 4, we develop an algorithm for the stochastic process in an expanding

medium, using a combination of continuous and discrete methods for the space

and particle dynamics respectively. The results confirm the analytical and scaling

expressions for the particle concentration of section 3 in the different regimes.

In section 5, we extend the solution in the case where space is discrete and time

continuous. We propose two methods to solve the corresponding diffusion equation for

the empty interval distribution relevant for various physical systems, and compare the
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solutions with the numerical results of section 4.

In section 6, we discuss the relevance and connection of the model with the

problem of particle diffusion in constrained two-dimensional geometries, including radial

constraints and generalized Brownian noise.

Finally, in section 7, we consider the model in the more general context of abnormal

diffusion described by the action of fractional operators. The aim is to examine the

correspondence and analogy between the problem of diffusion in expanding space and

the formalism of diffusion with adequate fractional operators, involving continuous time

random walk (CTRW) models. We shall conclude from this analysis of the differences

and relevance of the fractional formalism. We establish in particular a duality relation

between diffusive lengths which holds for all the regimes.

2. Effective diffusion length

To define more precisely the problem, we consider a lattice initially filled randomly with

particles at a given concentration c0, and we constraint the lengths between any two

spatial points of the lattice to increase with time at a certain rate (or by adding for

example empty sites on a discrete chain uniformly at random locations), with distances

growing with time like a power or exponential law. The space inflation tends to increase

distances between the particles, preventing them to coagulate by diffusive motion. It

is expected that the two opposite contributions (diffusive motion and space inflation)

will induce a transition between two regimes. To analyze in detail this phenomenon, let

assume that all distances x(t) increase according to the general law

x(t′)

x(t)
=

(
1 + αt′/β

1 + αt/β

)β

(1)

where β is a given exponent and α is the growth rate of the lattice, or the amount of

new empty spaces added uniformly to the lattice per unit of time. The dynamics of the

lattice modifies the diffusive length of particles. Indeed, we can evaluate the diffusive

length in this system by considering the stochastic motion of a single particle: If we

define the growth factor r(t) = (1 + αt/β)β, and xk the position of the particle at time

tk = kτ , where τ is the unit of time, we can write the discrete equation of motion as

xk =
rk
rk−1

(xk−1 + ξk) (2)

where x0 = 0, rk = r(tk), and ξk a Gaussian white noise satisfying 〈ξk〉 = 0 and

〈ξkξk′〉 = 2a2δk,k′ . Solving the previous equation leads directly to

xk =
rk
rk−1

ξk +
rk
rk−2

ξk−2 + · · ·+ rk
r0
ξ1 (3)

The typical mean squared displacement of the random walk 〈x2
k〉 is found to be equal to

〈x2
k〉 = 2a2r2k

[

1 +
1

r21
+ · · ·+ 1

r2k−1

]

= 2a2r2k

k−1∑

j=0

1

(1 + ατj/β)2β
(4)
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from which we can extract an effective or comoving diffusive length ℓ(tk) = 〈x2
k〉1/2/rk

whose long time behavior depends on the value of β. We first define the continuum

limit a → 0 and τ → 0, such that the diffusive constant D = a2/τ remains finite, which

gives [11]

ℓ2(t) = 2D
β

α(1− 2β)

[

(1 + αt/β)1−2β − 1
]

(5)

If 0 ≤ β < 1/2, we have ℓ(t) ∼ t1/2−β, the effective diffusive length increases but less

than the usual ℓ(t) =
√
2Dt1/2 Brownian motion length and the process is subdiffusive

[20, 21, 22]. If β = 1/2, the length diverges logarithmically ℓ2(t) ∼ (D/α) log(1 + 2αt),

and if β > 1/2, it reaches a finite value ℓ2(t) ≃ 2Dβ/α(2β − 1) ‡. In particular, in the

case of an exponential growth, β = ∞, ℓ2(t) = D(1 − e−2αt)/α ≃ D/α. When β = 0

and/or α = 0, we recover the usual Brownian law ℓ(t) ∼ t1/2. We therefore expect from

this analysis that the coagulation-reaction process will stop when β > 1/2 after a transit

time since effectively the motion of the particles will be frozen. This limit is similar to a

dynamical localization of the particle, as its motion is impeded by the space expansion.

3. Empty interval distribution method for the particle concentration

In order to find the time dependence of the particle concentration, we need to solve

the reaction-diffusion problem. It is convenient to use the empty interval method based

on the interparticle distribution function (IPDF) [23], with which the problem becomes

linear and solvable: We define the probability to have at least n consecutive empty

spaces ◦ by

E(n, t) = Prob(×◦ · · · ◦
︸ ︷︷ ︸

n

×) (6)

where × represents equivalently either a particle • or an empty space ◦. As before,

we assume that τ−1 is the rate of diffusion to the right or left at a given time step.

By considering the gains and losses of particles at the boundaries of an interval of size

n(t), one can express the rate of change for E(n(t), t) with respect with the expanding

interval n(t) by writing the total derivative

dE(n(t), t)

dt
=

∂E(n(t), t)

∂t
+ ṅ(t)

∂E(n(t), t)

∂n(t)

=
2

τ
∆E(n(t), t) (7)

with ṅ(t) = αn(t)(1 + αt/β)−1, and ∆ is the discrete Laplacian operator: ∆E(n) =

E(n+ 1) +E(n− 1)− 2E(n). The interval distribution E(n, t) is therefore determined

by the partial differential equation

∂E(n, t)

∂t
=

2

τ
∆E(n, t)− α

1 + αt/β
n
∂E(n, t)

∂n
(8)

‡ In reference [11], the corresponding parameters are the following: ℓ2(t) → 2Dτ(t), β → γ, β/α → t0
and α → H
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The operator n∂n is the usual dilatation operator and appears naturally in this equation.

To solve equation (8), we consider the continuum limit of the space variable as follows.

The discrete case will be investigated in section 5. In the limit a → 0, we introduce

continuous space coordinates x = na and diffusion coefficient D = a2/τ . The time

evolution of the IPDF then becomes

∂E(x, t)

∂t
= 2D

∂2E(x, t)

∂x2
− αx

1 + αt/β

∂E(x, t)

∂x
(9)

It is convenient to perform the transformations y = xr−1(t) as the new comoving space

variable, and u = u(t) as new time variable. This change of variables simplifies the

previous equation which becomes

∂E(y, u)
∂u

= 2D
∂2E(y, u)

∂2y
(10)

where E(y, u) = E(x, t), provided that u(t) satisfies

u̇(t) = r−2(t), u(0) = 0

u(t) =
β

α(1− 2β)

[

(1 + αt/β)1−2β − 1
]

=
ℓ2(t)

2D
(11)

We can therefore relate naturally the proper time u(t) to the effective diffusive length

defined in equation (5). Equation (10) is the usual diffusion equation. The Laplace

transform Ê(y, s) with respect to the time variable u verifies the differential equation

sÊ(y, s)− E(y, 0) = 2D
∂2Ê(y, s)

∂2y
(12)

where E(y, 0) = E(y, 0) is the initial condition for the interval distribution, with

y = x at t = 0. We will consider in the following an initial exponential distribution

E(y = x, 0) = e−c0x, for which the average particle density is c0. The solution of this

differential equation is simply given by two exponential functions, in addition to the

particular solution associated to E(y, 0)

Ê(y, s) = a(s) exp

(

−
√

s

2D
y

)

+ b(s) exp

(√
s

2D
y

)

+
1√
8Ds

[

exp

(

−
√

s

2D
y

)∫ y

0

dy′ exp

(√
s

2D
y′
)

E(y′, 0)

− exp

(√
s

2D
y

)∫ y

0

dy′ exp

(

−
√

s

2D
y′
)

E(y′, 0)

]

(13)

Coefficients a(s) and b(s) depend only on s. They are determined by the two conditions:

E(0, u) = 1, lim
y→∞

E(y, u) = 0 (14)

The first one implies Ê(0, s) = 1/s, and fixes the value of a(s)+b(s) = 1/s. Since Ê(y, s)
should remain finite when y → ∞, the second condition restricts b(s) to be equal to

b(s) =
1√
8Ds

∫ ∞

0

dy′ exp

(

−
√

s

2D
y′
)

E(y′, 0) (15)
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We then use the following inverse Laplace functions when x > 0 [24]

L−1

(
1

s
exp

(

−
√

s

2D
y

))

= erfc

(
y√
8Du

)

,

L−1

(
1√
s
exp

(

−
√

s

2D
y

))

=
1√
πu

exp

(

− y2

8Du

)

(16)

to obtain the general expression of E(y, u)

E(y, u) = erfc

(
y√
8Du

)

+
1√

8Dπu

∫ ∞

0

dy′
[

exp

(

−(y − y′)2

8Du

)

− exp

(

−(y + y′)2

8Du

)]

E(y′, 0) (17)

The particle concentration is determined by the relation c(t) = −∂xE(x, t)|x=0 =

−r−1(t)∂yE(y, u)|y=0, and the number of particles as function of time for a system

initially of size L0 is then equal to Np(t) = c(t)L0r(t) = −L0∂yE(y, u)|y=0. If the

initial number of particles is N0 = c0L0, then the ratio Np(t)/N0 is equal to, for an

initial exponential distribution of empty intervals, see also [11]

Np(t)

N0

= ec
2
02Du(t)erfc

(

c0
√

2Du(t)
)

= ec
2
0ℓ

2(t)erfc (c0ℓ(t)) (18)

where ℓ(t) is the effective diffusive length given by equation (11). When β < 1/2,

ℓ(t) ≃ t1/2−β and the number of particle decreases like a power law Np(t)/N0 ≃
(
√
πc0ℓ(t))

−1 ∼ t−ν , with exponent ν = 1/2 − β. When β = 1/2, the number of

particle decreases logarithmically like log(t)−1/2.

In the case β > 1/2, the number of particles, after a regime of coalescence where it

decreases, reaches a finite limit given by the dimensionless parameter λ defined in the

following

Np(∞)

N0

= eλ
2

erfc(λ), λ =

√

2βD

α(2β − 1)
c0

≃ 1√
πλ

(

1− 1

2λ2

)

, λ ≫ 1

≃ 1− 2λ√
π
, λ ≪ 1 (19)

For short times, αt ≪ 1, the coagulation process is not affected by the space expansion

since ℓ(t) ≃
√
2Dt. The result in equation (18) is similar to the concentration of the

purely diffusive-coalescence model (α = 0) as function of time [25]

c(t) = c0e
c20ℓ0

2(t)erfc(c0ℓ0(t)) ≃ (2πDt)−1/2 (20)

where ℓ0(t) =
√
2Dt replaces ℓ(t) instead. Identifying this expression with equation (18),

we can evidence the crossover regime of dissociation at which the coagulation process

due to the diffusive motion stops at a characteristic time defined by ℓ0(t)c0 = λ, and

which is equal to tc = β/[α(2β − 1)].
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It is interesting to make an analogy with phase transition phenomena. Indeed

we can consider Np/N0 as an order parameter and β as the inverse of a temperature,

with βc = 1/2 the critical point. In the steady state limit, the previous results can be

summarized as follows:

Np(∞)

N0

= 0, β < βc

Np(∞)

N0

≃
√

α

πDc20

√

1− βc/β, β & βc (21)

This corresponds, by identification, to a second order phase transition, between an

absorbing state (high temperature) and a localized state of particles (low temperature)

where Np is the number of localized particles. In terms of electronic localization,

the critical point may describe the transition between fully delocalized electrons and

partially localized electrons, β being a parameter similar to the strength of a random

potential on a one-dimensional lattice, or inverse temperature. The critical slowing

down phenomenon at β = βc is evidenced by the fact that the effective diffusive length

is diverging logarithmically. We can also notice that the remaining number of particles

in inversely proportional to the concentration since the coagulation reactions are more

effective when more particles are initially closer to each other, before the dissociation

time occurs.

4. Numerical simulations

The analytical result given by equation (18) is compared to numerical simulations,

first in the subdiffusive case β ≤ 1/2, see figures 1 and 2. N0 particles are randomly

distributed on a chain of size L0 with an intrinsic unit step size ∆x. At each time step

∆t, a site of width ∆x is randomly chosen. If it is occupied by a particle, this one

diffuses by one step ∆x on the right or left with equal probability. If the destination site

contains another particle within the distance ∆x, the two particles coalesce. After this

process, the size of the system, as well as the distances between the remaining particles,

are increased by a factor r(t+∆t)/r(t). The number of particles is then evaluated after

107 time steps by averaging over a set of random initial samples. The evolution of the

number of particles is displayed in figure 1 for an initial system size L0 = 1000 and

c0 = N0/L0 = 1. In the inset, the approximate power law exponent ν is evaluated and

compared to the exact expression ν = 1/2 − β. For comparison, in figure 2 is plotted

the function given by equation (18) for several values of β ≤ 1/2.

In the exponential case (β = ∞), we have plotted in figure 3 the numerical value

of the ratio of particles for a linear chain of L0 = 1000 sites and different values of

α, as function of the dimensionless time variable αt, and for an initial concentration

c0 = 1. In inset is displayed the final value of the remaining number of particles, as

function of λ = c0(D/α)1/2, with the diffusive constant we have estimated to be equal to

D ≃ (8N0)
−1/2 in dimensionless units. This gives a good agreement with the numerical

data. The analytical solution, equation (19), is represented in figure 4 for different values
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Figure 1. Numerical evaluation of the ratio of remaining number of particles Np/N0

for several values of β. Initial parameters are N0 = L0 = 1000 and α = 10−4. The

dashed line represents the asymptotic power law t−ν = t−1/2 when β = 0. Inset: Decay

exponent ν extracted from the asymptotic behavior as function of β. Red line is the

expected theoretical result: ν = 1/2− β.

of λ and α = 10−4. The red dashed curve represents the time evolution of the particle

number in absence of expansion, which shows approximately where the dissociation time

tc is located.

5. Discrete solution for the IPDF

In this section, we investigate the solutions of the linear partial differential equation

(8), when the time is continuous but space discrete, using generating functions.

Mathematically, similar discrete equations have been solved using Poisson-Jacobi

transform, see for example reference [26], but only in the case where the coefficients

are independent of time. We start by writing equation (8) in a symmetric form

τ
∂E(n, t)

∂t
= 2E(n+ 1, t)− 4E(n, t) + 2E(n− 1, t)

− ατ/2

1 + αt/β
n (E(n+ 1, t)− E(n− 1, t)) (22)

with constraint E(0, t) = 1. We first notice that extending the interval length n to

negative values is possible using the symmetry E(−n, t) = 2 − E(n, t), see reference

[25]. This relation can be found easily in the pure diffusive case when α = 0 but also
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Figure 2. Analytical evaluation of the remaining number of particles from equation

(18), for several values of β. Parameters are chosen such that D = 1/(8N0), c0 = 1 and

α = 10−4 in dimensionless units. Inset: Comparison between expression (18) (green

line) and the discrete solution (dashed line), see equation (44), for β = 0.2 and ατ = 1.

holds here for equation (22) and can be proved by recurrence. To solve the case α 6= 0,

we consider the generating function G(z, t) =
∑

n E(n, t)zn. The differential equation

satisfied by G(z, t) is therefore

τ
∂G(z, t)

∂t
=

[

(2 + γ(t))

(

z +
1

z

)

− 4

]

G(z, t)− γ(t)(1− z2)
∂G(z, t)

∂z
,

γ(t) =
ατ/2

1 + αt/β
=

τ

2

ṙ(t)

r(t)
(23)

It is important to note that this equation is invariant by transformation z → 1/z.

A convenient way to reduce the previous equation is to use the change of variable

y = r(t)(1− z)/(1 + z), for which the new function G̃(y, t) = G(z, t) satisfies

τ
∂G̃(y, t)

∂t
=

[

(2 + γ(t))

(
r(t)− y

r(t) + y
+

r(t) + y

r(t)− y

)

− 4

]

G̃(y, t) (24)

the solution of which is

G̃(y, t) = F (y) exp

(

−4t

τ
+

∫ t

0

dt′

τ
(2 + γ(t′))

(
r(t′)− y

r(t′) + y
+

r(t′) + y

r(t′)− y

))

(25)

Therefore, we obtain after some algebra and using the variable w = (1− z)/(1 + z)

G(z, t) = r(t)F (wr(t)) exp

(

4

∫ t

0

dt′

τ
(2 + γ(t′))

∞∑

k≥1

w2k r
2k(t)

r2k(t′)

)
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Figure 3. Numerical evaluation of the ratio Np/N0 in the exponential case, for

several expansion rates α. Initial parameters are N0 = L0 = 1000. Inset: Number of

remaining particles as function of λ. The red curve is the fit using equation (19) with

λ = (8N0α)
−1/2.

= F (wr(t))
(1− w2)r(t)

1− w2r2(t)
exp

(

8β

ατ

∞∑

k=1

w2k

2βk − 1

[

r2k(t)− 1− αt

β

])

(26)

The sum over k is related in the general case for β to Lerch transcendent function

∑

k≥1

zk

2βk − 1
=

z

2β
Φ

(

z, 1, 1− 1

2β

)

In the limit β = 0 or r(t) = 1, after approximating the factor r2k(t) ≃ 1 + 2kαt,

we recover the generating function for the diffusive case in terms of modified Bessel

functions

G(z, t) = F (w) exp

(

−4t

τ
+ 2

(

z +
1

z

)
t

τ

)

= G(z, 0) exp

(

−4t

τ

)
∑

n

In

(
4t

τ

)

zn (27)

since F (w) = G(z, 0) =
∑

m E(m, 0)zm. We obtain, by identification of the power zn

in equation (27) and using the symmetry relation E(−n, t) = 2−E(n, t), the following

expansion, generalizing previous results [27]

E(n, t) = e−4t/τ
∑

m

E(m, 0)In−m

(
4t

τ

)

(28)
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Figure 4. Evaluation of the analytical ratio of the remaining particles Np/N0 in the

exponential case, equation (19), for several parameters λ = c0
√

D/α, from λ = 2

(top curve) to λ = 10 (bottom curve), and α = 10−4. The dashed red curve is the

comparison with the diffusive case only, see equation (20). Inset: Number of remaining

particles as function of λ.

= e−4t/τ

[
∑

m≥1

E(m, 0)

(

In−m

(
4t

τ

)

− In+m

(
4t

τ

))

+ 2
∑

m≥1

In+m

(
4t

τ

)

+ In

(
4t

τ

)]

If we start with a lattice filled with one particle per site, E(m ≥ 1, 0) = 0, the previous

equation is simplified as only the last two terms remain. The particle concentration is

given by c(t) = 1− E(1, t) and therefore we obtain for the non-expanding lattice case

c(t) = e−4t/τ

[

I0

(
4t

τ

)

+ I1

(
4t

τ

)]

≃
√

τ

2πt
(29)

Another way to recover this result in the large time limit and for the same initial

conditions is to use the complex integral with a path around the unit circle to obtain

the value of E(n, t)

E(n, t) =

∮
dz

2iπzn+1
G(z, t) (30)

=

∮
dz

2iπzn+1

(

1 + 2
∑

m≥1

z−m

)

exp

(

−4t

τ
+ 2

(

z +
1

z

)
t

τ

)

If we set z = eiθ we obtain

E(n, t) =

∫ π

−π

dθ

2π

(

e−inθ + 2
∑

m≥1

e−i(m+n)θ

)

exp

(

−4t

τ
(1− cos θ)

)



Limited coagulation-diffusion dynamics in inflating spaces 12

For t large, we can develop the cosine term for θ small, and integrate over θ the resulting

Gaussian integral after extending the range of integration to infinity

E(n, t) ≃
√

τ

8πt

(

e−n2τ/8t + 2
∑

m≥1

e−(m+n)2τ/8t

)

(31)

It is useful to consider the Poisson-Jacobi inversion formula [28]

∞∑

m=−∞

e−πtm2−2πmta = t−1/2eπa
2t

(

1 + 2
∞∑

m=1

e−πm2/t cos (2πma)

)

(32)

to rewrite equation (31) as an asymptotic expansion

E(n, t) ≃ 1−
√

τ

8πt

(

1− e−n2τ/8t + 2
n∑

m=1

e−m2τ/8t

)

≃ 1− n

√
τ

2πt
(33)

From this long-time approximation it is easy to recover the same asymptotic behavior

of the concentration in equation (29).

Let us now apply this technique to the critical value β = 1/2 with the same initial

conditions. The generating function (26) is equal, after performing the summation over

k, to

G(z, t) = F (wr(t))
(1− w2)r(t)

1− w2r2(t)
exp

(
4

ατ
w2r2(t) log

[
(1− w2)r2(t)

1− w2r2(t)

])

(34)

The probability E(n, t) is then equal to the contour integral

E(n, t) =

∮
dz

2iπzn+1

(

1 + 2
∑

m≥1

(
1 + wr(t)

1− wr(t)

)m
)

(35)

× (1− w2)r(t)

1− w2r2(t)
exp

(
4

ατ
w2r2(t) log

[
(1− w2)r2(t)

1− w2r2(t)

])

As before, for large times, we can use the change of variable z = eiθ and expand the

previous integrand around θ = 0, assuming this is the main contribution to the integral.

In term of the variable w, we have the approximation w ≃ −iθ/2 and therefore

E(n, t) ≃
∫ ∞

−∞

dθ

2π

(

e−inθ + 2
∑

m≥1

e−i(mr(t)+n)θ

)

×(1 + θ2/4)r(t)

1 + θ2r2(t)/4
exp

(

−θ2r2(t)

ατ
log

[
(1 + θ2/4)r2(t)

1 + θ2r2(t)/4

])

(36)

In this expression we perform the variable change r(t)θ → θ

E(n, t) ≃
∫ ∞

−∞

dθ

2π

(

e−inθ/r(t) + 2
∑

m≥1

e−i(m+n/r(t))θ

)

× (1 + θ2/4r2(t))

1 + θ2/4
exp

(

− θ2

ατ
log

[
r2(t) + θ2/4

1 + θ2/4

])

(37)
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This integral can be further simplified if we keep the dominant contributions in 1/r(t)

and discard the terms in 1/r2(t):

E(n, t) ≃
∫ ∞

−∞

dθ

2π

(

e−inθ/r(t) + 2
∑

m≥1

e−i(m+n/r(t))θ

)

exp

(

−2θ2

ατ
log r(t)

)

(38)

≃
√

ατ

8π log r(t)

[

exp

(

− ατ

8 log r(t)

n2

r2(t)

)

+ 2
∑

m≥1

exp

(

− ατ

8 log r(t)
(m+ n/r(t))2

)]

≃
√

ατ

8π log r(t)
exp

(

− ατ

8 log r(t)

n2

r2(t)

)[

1 + 2
∑

m≥1

e−
ατ

8 log r(t)
m2

(

1− ατ

4 log r(t)

n

r(t)
m

)]

We can use in the previous the asymptotic result

∑

m≥1

me−πǫm2 ≃ ǫ−1

∫ ∞

0

dsse−πs2 ≃ (2πǫ)−1 (39)

when ǫ is small, to obtain the following expansion for the interval probability and

concentration

E(n, t) ≃ 1− n

r(t)

√
ατ

2π log r(t)
,

r(t)c(t) ≃
√

ατ

2π log r(t)
∝ log(t)−1/2 (40)

We recover in this case the asymptotic result in the continuous case given by equation

(18).

A more direct and simpler analysis of the discretized diffusion process is to start

with a modified form of the transformed equation (10)

τ
dE(n, u)

du
= 2∆E(n, u) (41)

the solution of which is given formally by equation (28), or

E(n, u) = e−4u/τ

[
∑

m≥1

E(m, 0)

(

In−m

(
4u

τ

)

− In+m

(
4u

τ

))

+2
∑

m≥1

In+m

(
4u

τ

)

+ In

(
4u

τ

)]

(42)

with E(m, 0) = E(m, 0). Then, after substituting the original time and space variables

u → u(t) and n → nr−1(t), we obtain

E(n, t) = e−4u(t)/τ

[
∑

m≥1

E(m, 0)

(

In/r(t)−m

(
4u(t)

τ

)

− In/r(t)+m

(
4u(t)

τ

))

+2
∑

m≥1

In/r(t)+m

(
4u(t)

τ

)

+ In/r(t)

(
4u(t)

τ

)]

(43)
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From this result, the concentration is given, with a lattice initially filled with particles

as initial condition, by the expression

c(t) = 1− e−4u(t)/τ

[

2
∑

m≥1

I1/r(t)+m

(
4u(t)

τ

)

+ I1/r(t)

(
4u(t)

τ

)]

(44)

The number of remaining particles is given by Np(t)/N0 = r(t)c(t), with N0 the number

of initial lattice sites which is equal to the initial number of particles. The comparison

with the continuous case, equation (18), is displayed in the inset of figure 2 for β = 0.2.

We have set
√

Dc0 =
√

a2/τN0/(N0a) =
√

1/τ and expressed the other parameters

with ατ = 1. As expected, the large time limit of both cases are equivalent.

6. Analogy with geometrical expanding structures

In this section we would like to discuss the applicability of the previous results to the

case of growth models on particular geometrical structures in two dimensions. We

can indeed interpret the time dilatation process as the increase of the available space

a random particle is allowed to move into at every time step, due only to geometrical

constraints. As an example, let us consider the properties of a directed growth structure

on a disk domain, see references [9, 29, 11], such as depicted in figure 5(a). We can see

that the trajectory tends to develop on a circle of growing radius and therefore in a

larger space as time increases. The equation of diffusion is therefore modified by the

expansion of the space. Following the same idea as in reference [9], we note ρk = ρ0+kdρ

the radius of the circle where the particle or arm is located at step k with increments

dρ. Originally the particle is located at radius ρ0, and we consider a Brownian motion

such as equation (2), but with variable yk ∈ [0, 2πρk] measuring the displacement length

of the particle on the corresponding circle

yk =
rk
rk−1

(yk−1 + ξk) (45)

The growth factor rk = (1 + β−1kdρ/ρ0)
β is needed to take into account the expansion

of the radius domain at every step. For a disk geometry [9], such as considered in figure

5(a), β is unity, but here we generalize this model to any geometry characterized by the

scaling exponent β, as in equation (1), characterizing the expansion rate.

The mapping onto a linear or strip domain of fixed width L0 = 2πρ0, see figure

5(b), is made possible by considering the transformed process xk = (ρ0/ρk)yk ∈ [0, L].

The new variables xk satisfy a modified Brownian motion

xk = xk−1 +
ξk
rk−1

, xk =
k∑

i=1

ξi
ri−1

+ x0 (46)

This equation is similar to a classical free Brownian trajectory except that the noise

is multiplied by a non-constant scaling factor which modifies the properties of the

dynamics. However it is possible to map the radius ρk into an effective height hk,

see figure 5(b), with the condition h0 = 0, by considering the variance of the xk, and

using the same noise definition as in equation (4): 〈ξiξj〉 = 2a2δi,j
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Figure 5. Brownian motion on a circle (a) and mapping onto a linear domain (b), see

references [9, 29] figure 1. ρk is the radius of the arm structure at time step k, and the

radius maps onto an effective height hk in the linear domain of fixed width L0 = 2πρ0.

hk = 〈(xk − x0)
2〉 = 2a2

k∑

i=1

1

r2i−1

(47)

In the continuous limit kdρ → ρ− ρ0 and a2/dρ → D we obtain

h(ρ) = 2D
βρ0

1− 2β

[(
1 + β−1(ρ− ρ0)/ρ0

)1−2β − 1
]

, β 6= 1

2

h(ρ) = Dρ0 log [(ρ+ ρ0)/2ρ0] , β =
1

2
(48)

which is equivalent to the effective or comoving diffusive length given by equation (5)

with α = 1/ρ0. The role played by the time variable is replaced by the radius difference

ρ − ρ0 of the growing structure and the mapping in figure 5 shows that the projected

height h(ρ) takes a finite value when β > 1/2, in the limit ρ → ∞. The corresponding

relation between the exponent γ in reference [29] and β = (2γ)−1 is only valid for the

growth structure on the disk, figure 5(a), and for a Brownian noise γ = 1/2 or β = 1.

In reference [29], the authors consider instead the growth of structures on a disk with

different kinds of noise (Levy flights, fractional Brownian motion, see also [30, 31]) with

γ related to the fluctuation scaling δyk ∼ (δρk)
γ of the arm structures of figure 5(a), and

therefore the previous scaling relation between β and γ is not applicable in the general

case. Instead, in the present study, β is a geometrical exponent related to the domain

curvature while the noise is purely Gaussian.
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For β = 1/2, equation (48) is the usual conformal mapping from the outside circle

ρ ≥ ρ0 to the strip of width L0 and h(ρ) ≥ 0. Also, for ρ close to ρ0 we have the local

linear relation h(ρ) ≃ 2D(ρ− ρ0) between the two domains at small times. Finally, it is

worth noticing that hk is the time change such that if Bk =
∑k

i=1 ξi is a Wiener process,

Bhk
=
∑k

i=1 ξi/ri−1 is also a Wiener process 〈Bhk
Bhl

〉 = min(hk, hl) with respect to the

new variable hk.

7. Modelization in term of fractional diffusion

We have seen that a space dilatation with algebraic or geometrical exponent β < 1/2

leads to the one-particle absorbing state with a power law decay proportional to tβ−1/2

representing a subdiffusive dynamics. We can try to modelize this abnormal diffusion

using the formalism of fractional dynamics [21, 29, 32]. This idea is to incorporate

phenomenologically the effect of the expansion or dilution into a single fractional

operator acting on the diffusion process itself, modifying the effective exponent of the

diffusion. We would like to see in details how the diffusion length is characterized and if

the fractional formalism describes accurately the previous results. The time evolution of

the empty intervals, equation (9), can instead be described by considering a fractional

diffusion equation for the IPDF [21]

∂E(x, t)

∂t
=0 D

1−2ν
t 2Kν

∂2E(x, t)

∂x2

=
2Kν

Γ(2ν)

∂

∂t

∫ t

0

dt′

(t− t′)1−2ν

∂2E(x, t′)

∂x2
(49)

where the Grünwald-Letnikov operator 0D
1−2ν
t (see [33] for the technical details) ensures

that the mean squared displacement of a particle, or fractional diffusive length, is

subdiffusive: ℓ2f (t) ≃ 2Kνt
2ν/Γ(1+2ν) with 0 < ν ≤ 1/2. We assume that equation (49)

describes correctly the physics of the model for the IPDF given by equation (9), and

that ℓf (t) is associated to ℓ(t), equation (5). Exponents ν and β are therefore related

by the identity ν = 1/2 − β, and constant Kν can be identified here with the diffusion

coefficient. We find in particular when t ≫ 1

Kν ≃ D(1− 2ν)

4αν

(
2α

1− 2ν

)2ν

Γ(1 + 2ν) (50)

It is known that the solution of equation (49) gives the concentration expression in term

of a Mittag-Leffler function[21] which has the following asymptotic expansion [34]

Np(t)

N0

= Eν

(

−c0
√

2Kνt
ν
)

≃ (2Kν)
−1/2

c0Γ(1− ν)
t−ν (51)

In our model, equation (18), we have instead asymptotically, in the regime β < 1/2

Np(t)

N0

≃ Γ(1 + 2ν)1/2

c0(2πKν)1/2
t−ν (52)

The two asymptotic behaviors give the same time dependence, but differ by the two

numerical coefficients Γ(1 − ν)−1 and [Γ(1 + 2ν)/π]1/2, depending on the equation
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considered to model the diffusion. These two coefficients coincide only for the normal

Brownian diffusion (ν = 1/2 or β = 0 where K1/2 = D). We should also notice that

the particular case E1/2(−x) = ex
2
erfc(x) corresponds to the IPDF found in equation

(18). However equations (49) and (51) do not describe the localized regime for which

β ≥ 1/2 (in this case ν would be negative). In the limit β = 1/2 or ν → 0, we can

however recover the logarithmic behavior of the effective length as Kν ≃ D/(4αν) and

ℓ2f (t) ≃ 2Kνe
2ν log(t) ≃ 4νKν log(t) ≃ (D/α) log(t).

Let us first discuss the subdiffusive regime which can be studied in the framework

of CTRW models [35, 20, 36, 37] related to fractional diffusion, where time and space

steps are distributed from a probability function. Let consider a random process where

time steps, or waiting times τi, are taken from the following distribution

ϕ(τi) =
τ 2νc

Γ(2ν)

e−τc/τi

τ 1+2ν
i

(53)

where τc is some short time cutoff that is necessary to normalize the distribution

and ν > 0 an arbitrary exponent not necessary equal to 1/2 − β. The distribution

has a finite mean τ = 〈τi〉, only if ν > 1/2: τ = τc/(2ν − 1). We should notice

that a different distribution such as ϕ(τi) = 2ντ 2νc /(τc + τi)
1+2ν would give similar

results. We also assume that space steps ai are taken from a Gaussian distribution

λ(ai) = e−a2i /4a
2
/
√
4πa2 [37]. Its Fourier transform is given by λ̃(k) = e−k2a2 ≃ 1−a2k2.

We consider in this context the Green function W (x, t), which is the probability to find

a particle at location x at time t. For small momenta, the Fourier-Laplace transform

W̄ (k, s) of W (x, t) satisfies a Montroll-Weiss equation [38, 39, 37]

sW̄ (k, s) = 1− ϕ̂(s) + sϕ̂(s)λ̃(k)W̄ (k, s) (54)

which can be rewritten in the present case as

sW̄ (k, s) = 1− a2k2 sϕ̂(s)

1− ϕ̂(s)
W̄ (k, s) (55)

where

ϕ̂(s) =
2(τcs)

ν

Γ(2ν)
K2ν (2

√
τcs) (56)

In the long time limit or for small s, we find the following expansion

ϕ̂(s) ≃ 1− Γ(1− 2ν)

2νΓ(2ν)
(τcs)

2ν , ν <
1

2
,

ϕ̂(s) ≃ 1− (τcs) log

(
e1−2γ

τcs

)

, ν = 1/2,

ϕ̂(s) ≃ 1− τcs

2ν − 1
, ν >

1

2
(57)

Using the first term of the previous equation when ν < 1/2, we have

sW̄ (k, s) ≃ 1− a2k2

τ 2νc

2νΓ(2ν)

Γ(1− 2ν)
s1−2νW̄ (k, s) (58)
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from which we can inverse the Laplace and Fourier transforms, and obtain the fractional

diffusion equation for the subdiffusive regime ν < 1/2

∂W (x, t)

∂t
≃ Kν

Γ(2ν)

∂

∂t

∫ t

0

dt′

(t− t′)1−2ν

∂2W (x, t′)

∂x2
,

Kν =
2νa2Γ(2ν)

τ 2νc Γ(1− 2ν)
(59)

We have identified a diffusive factor Kν , as in equation (49), but without the factor 2

which is normally found for the IPDF. For the marginal case ν = 1/2 we find

∂W (x, t)

∂t
≃ ∂

∂t

∫ t

0

dt′
∫ 1

0

Kνdu

Γ(1− u)

(
e1−2γ

t− t′

)u
∂2W (x, t′)

∂x2
,

Kν =
a2

τc
(60)

This expression comes from the identity when s is small

L−1

(
s− 1

log s

)

= ∂t

∫ 1

0

du
t−u

Γ(1− u)
≃ L−1

(

− 1

log s

)

(61)

which is correct in the long time limit. In the diffusive case ν > 1/2, we recover the

usual equation of diffusion

∂W (x, t)

∂t
= Kν

∂2W (x, t)

∂x2
,

Kν ≃ a2(2ν − 1)

τc
=

a2

τ
= D (62)

The fractional diffusive length ℓf (t) can be evaluated using the definition in term of the

Laplace transform

L
(
ℓ2f (t)

)
= − ∂2W̄ (k, s)

∂k2

∣
∣
∣
∣
k=0

=
2a2ϕ̂(s)

s(1− ϕ̂(s))
(63)

Using the three expansions of equation (57), we obtain the following results in the long

time limit after taking the inverse Laplace transforms

ℓ2f (t) ≃
2a2

τ 2νc Γ(1− 2ν)
t2ν , ν < 1/2,

ℓ2f (t) ≃
2a2

τc

t

log (e1−2γt/τc)
, ν = 1/2

ℓ2f (t) ≃
2a2(2ν − 1)

τc
t = 2Dt, ν > 1/2 (64)

In the marginal case, ν = 1/2, we have used the identities

L−1

(
1− s−2

log s

)

=

∫ 2

0

du
t1−u

Γ(2− u)
≃ L−1

(

− 1

s2 log s

)

,

∫ 2

0

du
t1−u

Γ(2− u)
≃ t

log(t)
, for t ≫ 1 (65)

The fractional diffusion dynamics characterized by equations (64) represents therefore a

subdiffusive process for which ℓ2f (t) cannot exceed t, as in equation (5). When ν > 1/2,
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the time distribution for the τi, equation (53), has a finite mean which implies that the

diffusive process is Brownian. In the opposite case, when ν < 0, we can argue that the

waiting times are infinite and therefore the particles appear to be localized.

From the point of view of Lévy process, we can also estimate the fractional diffusive

length using simple scaling relations. If Nt is the number of the particle steps, then

ℓ2f (t) ∼ a2Nt. The time duration for performing Nt independent steps scales like

t = τ1 + · · · + τNt ∼ N
1/2ν
t [40] according to the distribution properties of equation

(53) which has a divergent mean value when ν < 1/2, and proportional to Nt when

ν > 1/2. We therefore recover the fact that ℓ2f (t) ∼ t2ν and ℓ2f (t) ∼ t respectively.

The fractional case describing subdiffusive processes can be compared to the

effective diffusive length ℓ(t) of the expansion model obtained in equation (5).

Asymptotically we deduce that

ℓ2(t) ∼ t1−2β, β < 1/2,

ℓ2(t) ∼ log(t), β = 1/2,

ℓ2(t) ∼ 1, β > 1/2 (66)

Only the first case β < 1/2 could be identified to the fractional diffusion, equation (64),

when ν < 1/2 by substituting ν = 1/2−β. However, it is more interesting to consider the

case where ν = β in equation (64). Then the product ℓ2(t)ℓ2f (t) is always proportional to

t for any value of β, i.e. proportional to the squared of the classical Brownian diffusive

length. This reflects the duality between the diffusion on an expanding space and the

fractional model of waiting times distributed with an algebraic law.

If we consider instead the physical length ℓphys(t) = r(t)ℓ(t) rather than the

comoving length ℓ(t), we have the following long-time behavior

ℓ2phys(t) ∼ t, β < 1/2,

ℓ2phys(t) ∼ t log(t), β = 1/2,

ℓ2phys(t) ∼ t2β, β > 1/2 (67)

It is clear that equation (67) represents a superdiffusive process, in opposition to

equation (64), and with the physical length ℓphys(t) scaling like the expansion rate r(t)

when β > 1/2.

Instead of considering a distribution of waiting times, let assume that the time

steps are constant and equal to τ , and that the space increments ais are taken from the

distribution λ(ai) whose Fourier transform is equal to

λ(ai) =
(1 + ν) sin

(
π

2(1+ν)

)

πa

1

1 + |ai/a|2+2ν
(68)

where ν > 0 is the exponent of the algebraic decay and a a typical length. For ν ≤ 1/2

the distribution has an infinite variance. Its Fourier transform is given by

λ̃(k) =
2(1 + ν) sin

(
π

2(1+ν)

)

π

∫ ∞

0

du
cos(kau)

1 + u2+2ν
(69)
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The behavior of λ̃(k) for small momenta depends on the value of ν. We can rewrite the

previous expression in the case ν > 1/2 as

λ̃(k) =
2(1 + ν) sin

(
π

2(1+ν)

)

π

(∫ ∞

0

1

1 + u2+2ν
du+

∫ ∞

0

cos(kau)− 1

1 + u2+2ν
du

)

≃ 1−
(1 + ν) sin

(
π

2(1+ν)

)

π
(ka)2

∫ ∞

0

u2

1 + u2+2ν
du

≃ 1− (aνk)
2, ν > 1/2 (70)

with a2ν = (4 cos2[π/(2 + 2ν)] − 1)a2/2. The diffusion is Brownian with a length scale

proportional to t1/2. In the case ν < 1/2, the integral in the second line of equation (70)

is divergent. We can write instead

λ̃(k) ≃ 1 +
2(1 + ν) sin

(
π

2(1+ν)

)

π
|ka|−1

∫ ∞

0

(cos(u)− 1)du

1 + (u/|ka|)2+2ν

≃ 1−
2(1 + ν) sin

(
π

2(1+ν)

)

π
|ka|1+2ν

∫ ∞

0

(1− cos(u))du

u2+2ν

= 1− (aνk)
1+2ν , ν < 1/2 (71)

The last integral converges around 0 and at infinity when ν < 1/2. Using ϕ̂(s) = e−τs ≃
1− τs we can solve the Montroll-Weiss equation (54) and find

W̄ (k, s) ≃ 1

s+ τ−1|aνk|1+2ν
, ν < 1/2 (72)

The Laplace inverse gives simply

L−1(W̄ (k, s)) = exp(−τ−1|aνk|2ν+1t) (73)

and the Green function is expressed as

W (x, t) =
(τ

t

)1/(2ν+1)
∫

du

2πaν
e−iu(τ/t)1/(2ν+1)x/aν−|u|2ν+1

= a−1
ν

(τ

t

)1/(2ν+1)

Fν

((τ

t

)1/(2ν+1)

x/aν

)

(74)

The function Fν is a Levy distribution [39] with exponent 2ν + 1. When ν = 1/2 we

recover the Gaussian density F1/2(y) = e−y2/4/2
√
π and the fact that the diffusive length

scales like t1/2. For ν < 1/2 the variance of the function λ is infinite and the diffusive

length is not defined. However the scaling of the function (74) would formally gives a

length scale growing like t1/(2ν+1), with an exponent larger than 1/2 and less than unity.

This superdiffusive scaling can be achieved using a truncated Levy flight process

by discarding the large deviations beyond a cutoff length [41]. Although the Gaussian

behavior should be recovered in the large time limit, we expect to see a superdiffusive

regime for some time interval. The diffusive length squared should indeed scale like
∑Nt

i=1 a
2
i ∼ N

2/(2ν+1)
t ∼ t2/(2ν+1) for Nt time steps of duration τ .
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8. Conclusion

We have investigated in this paper the limiting effect of an inflating space on the reaction

process of coagulation-diffusion for Brownian particles, in particular we have obtained

exact solutions when the space is discrete for a general initial distribution of particles and

for a given expansion law characterized by the algebraic exponent β, using generating

functions. The results of the continuous model are recovered in the large time limit.

This model possesses two regimes which can be understood in the steady state limit

as a second order phase transition between an absorbing state Np = 0 and a localized

state Np 6= 0, with a slowing down phenomenon at the critical point β = 1/2, β being

identified with an inverse temperature.

An analogy is made with growth systems constrained by radial geometries and for

which the noise is Gaussian. We extended the problem to expanding geometries which

generalizes the radial case.

We finally compare these results with fractional models of waiting time

distributions, and found a duality relation between the effective diffusive lengths. More

precisely, for the same class of exponent, the product of the effective length ℓ(t) in

the model of space expansion with the diffusive length ℓf (t) given by the fractional

representation of the diffusion operator is always proportional to t1/2, which is the

effective length of the pure Brownian motion, even at criticality.
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