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The present paper focuses on the prediction of effective plastic yield surface of porous materials having a von Mises type solid matrix. Some typical explicit yield criteria obtained by different analytical homogenization methods are briefly reviewed and evaluated by using numerical results obtained from direct finite element simulations with different values of porosity. Each criterion has its own advantage and weakness. In order to get a better prediction, the Artificial Neuron Network (ANN) algorithm is adopted specially for the prediction of macroscopic yield stress of porous materials, seen as a regression problem with two input parameters and one output value. For the training purpose which is a key step in the ANN approach, new numerical results are presented in the present work with a wide range of porosity and of macroscopic stress triaxiality. Based on these data, the ANN approach is trained and it converges quickly. Then the ANN predictions are compared with numerical test data, a good agreement is found for all loading cases. Comparing with the existing yield criteria, the prediction given by the ANN approach is much more accuracy and easy to apply.

Introduction

In recent decades, the investigation of pore influence on the material strength is one of the most popular research topics. Even with low porosity, the material mechanical behavior can be affected importantly and the resistance will reduce quickly. It is thus crucial to take into account the pore effect on the safety and durability analysis of structure. For this purpose, many researches have developed: analytical approaches, numerical simulations or experimental measurements. In the analytical study, different methods have been proposed by researchers to study the influence of pore on the macroscopic mechanical behavior of porous materials. Among these, the pioneer's work has been realized by [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: part1-yield criteria and flow rules for porous ductile media[END_REF]. In the framework of limit analysis with a kinematical velocity field, an analytical macroscopic strength criterion has been obtained by considering a hollow sphere or cylinder with a von Mises type incompressible solid matrix. In order to better fit experimental evidences and numerical results, a number of extensions of this criterion have been proposed. For example, by introducing some heuristic modifications of the Gurson's criterion [START_REF] Tvergaard | Influence of voids on shear bands instabilities under plane strain conditions[END_REF][START_REF] Tvergaard | Material failure by void coalescence in localized shear bands[END_REF], the so-called GTN (Gurson-Tvergaard-Needelman) model has been established and widely used in various applications. Based on the non-linear variational homogenization techniques, [START_REF] Castaneda | The effective mechanical properties of nonlinear isotropic composites[END_REF] proposed an elliptic macroscopic yield criterion. Comparing with the Gurson's criterion, it appears more accuracy for the deviatoric loading and less accuracy for the hydrostatic loading. This feature was improved by [START_REF] Michel | The constitutive law of nonlinear viscous and porous materials[END_REF] and other researchers. By adopting the Eshelby-like velocity fields, an improvement based on micromechanics has been achieved in [START_REF] Monchiet | A micromechanics-based modification of the Gurson criterion by using eshelby-like velocity fields[END_REF] and the deviatoric prediction is ameliorated. Recently, a stress variational method has been proposed in [START_REF] Cheng | A stress-based variational model for ductile porous materials[END_REF] for the derivation of macroscopic yield criterion for the porous material with a von Mises matrix.

It is improved in [START_REF] Shen | Macroscopic criterion for ductile porous materials based on a statically admissible microscopic stress field[END_REF] by construction of a totally statically admissible stress field. There are many other extensions, such as for accounting for the pore shape [START_REF] Gologanu | Approximate models for ductile metals containing nonspherical voids-cas of axisymmetric prolate ellipsoidal cavities[END_REF][START_REF] Gologanu | Approximate models for ductile metals containing nonspherical voids-cas of axisymmetric oblate ellipsoidal cavities[END_REF][START_REF] Keralavarma | A constitutive model for plastically anisotropic solids with non-spherical voids[END_REF][START_REF] Monchiet | Macroscopic yield criteria for ductile materials containing spheroidal voids: An eshelby-like velocity fields approach[END_REF][START_REF] Shen | Macroscopic yield criterion for ductile materials containing randomly oriented spheroidal cavities[END_REF][START_REF] Shen | Approximate macroscopic yield criteria for druckerprager type solids with spheroidal voids[END_REF], for pressuresensitive materials [START_REF] Shen | Approximate macroscopic yield criteria for druckerprager type solids with spheroidal voids[END_REF][START_REF] Jeong | A macroscopic constitutive law for porous solids with pressure-sensitive matrices and its implications to plastic flow localization[END_REF][START_REF] Shen | Improved criteria for ductile porous materials having a green type matrix by using eshelby-like velocity fields[END_REF][START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF][START_REF] Barthélémy | Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire[END_REF][START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF][START_REF] Shen | Evaluation and improvement of macroscopic yield criteria of porous media having a drucker-prager matrix[END_REF][START_REF] Shen | A new macroscopic criterion of porous materials with a mises-schleicher compressible matrix[END_REF][START_REF] Shen | An approximate strength criterion of porous materials with a pressure sensitive and tension-compression asymmetry matrix[END_REF], for two populations of pore at different scales [START_REF] Vincent | Ductile damage of porous materials with two populations of voids[END_REF][START_REF] Vincent | Porous materials with two populations of voids under internal pressure: I. instantaneous constitutive relations[END_REF][START_REF] Shen | Effective strength of saturated double porous media with a drucker-prager solid phase[END_REF][START_REF] Shen | An elastic-plastic model for porous rocks with two populations of voids[END_REF][START_REF] Shen | Homogenization of saturated double porous media with eshelby-like velocity field[END_REF][START_REF] Shen | An incremental micro-macro model for porous geomaterials with double porosity and inclusion[END_REF], and son on, just to mention a few.

In the derivation of effective yield criteria for porous materials, each approach has its own advantage and disadvantage. To construct a suitable yield criterion which fully takes into account the pore effect is really a hard task. Recently, the machine learning based approaches have been developed very quickly. For example, one can mention the artificial neuron network (ANN) inspired from the biological structure of neurons [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF]. Based on the training data, the ANN approach can "learn" itself the inherent rules of things which are cashed behind the training data. This method has been applied to many areas. In [START_REF] Ghaboussi | Knowledge-based modelling of material behaviour using neural networks[END_REF], the behaviour of concrete in the state of plane stress under monotonic biaxial loading and uniaxial compressive cyclic loading were studied by the neuron network; an implicit viscoplastic constitutive model based on neuron network was proposed in [START_REF] Furukawa | Implicit constitutive modelling for viscoplasticity using neural networks[END_REF] for the inelastic behavior of material; the non-linear mechanical behaviors of heterogeneous materials were investigated in [START_REF] Liu | A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials[END_REF][START_REF] Gajek | On the micromechanics of deep material networks[END_REF] by the deep material networks; the structure analysis was presented in [START_REF] Lee | Background information of deep learning for structural engineering[END_REF] by the deep learning method, just mention a few. Differently from the traditional methods for the derivation of yield criteria, the artificial neuron network method will be used in this work to study the macroscopic mechanical behavior of porous materials. The influence of porosity on the effective behavior will be fully investigated, and in particular the relations between the deviatoric and hydrostatic stresses.

There are three principal parts in this paper which is organised as follows: a brief recall of some typical macroscopic yield criteria for porous materials with a von Mises solid matrix obtained by different methods is first presented in section 2; section 3 introduces the numerical model for the porous material used for direct finite element simulations, which are used to evaluate the accuracy of the selected analytical yield criteria and also for the preparation of training data which will be used in the artificial neuron network approach; the ANN approach is used in section 4 for the studied porous material and its predictions are compared with the finite element reference results and the analytical solutions; a concluding remark is given in section 5.

Brief recall of some typical theoretical yield criteria of porous medium

In order to study analytically the influence of porosity on the macroscopic plastic yield behavior of porous materials, a hollow sphere with inner radius a and outer one b is often chosen as a representative volume element. At the microscopic scale, the volume of the pore is denoted as V p , the one of the matrix is V m . The corresponding porosity of the studied porous medium can be calculated as f =

V p V p +V m = a 3 b 3 .
The behavior of matrix is perfectly elasto-plastic and obeys to a von Mises local yield criterion:

φ(σ) = σ eq -σ 0 ≤ 0 ( 1 
)
where σ is the local stress in the matrix at the microscopic scale. σ is the deviatoric part.

σ eq = 3 2 σ : σ denotes the von Mises equivalent stress; σ 0 is the material strength in the case of purely shear loading.

For the studied porous material with a rigid elasto-plastic von Mises type matrix, many analytical macroscopic yield criteria which take into account the effect of porosity have been derived by different methods. Here we firstly do a brief recall of some typical ones.

• Gurson's criterion by limit analysis approach [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: part1-yield criteria and flow rules for porous ductile media[END_REF] For a class of porous materials represented by hollow sphere with a von Mises type incompressible solid matrix, a macroscopic yield criterion was firstly proposed by [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: part1-yield criteria and flow rules for porous ductile media[END_REF] in the framework of limit analysis with a kinematical velocity field. This criterion considers explicitly the effect of porosity f on the effective behavior.

Σ 2 eq σ 2 0 + 2 f cosh 3Σ m 2σ 0 -1 -f 2 = 0 (2)
in which Σ is the stress of porous medium at the macroscopic scale. Σ eq = 3 2 Σ : Σ is the macroscopic von Mises equivalent stress; Σ m denotes the macroscopic mean stress with Σ m = Σ 11 +Σ 22 +Σ 33 3 Then many extensions have been done based on this work. For example, comparing with the numerical results obtained from direct simulation, the criterion (2) was improved heuristically by [START_REF] Tvergaard | Influence of voids on shear bands instabilities under plane strain conditions[END_REF][START_REF] Tvergaard | Material failure by void coalescence in localized shear bands[END_REF] with three parameter q 1 , q 2 and q 3 .

• Criterion derived in [START_REF] Monchiet | A micromechanics-based modification of the Gurson criterion by using eshelby-like velocity fields[END_REF] with new velocity fields By considering the Eshelby-like velocity fields, a micromechanics-based modification of the Gurson criterion was derived in [START_REF] Monchiet | A micromechanics-based modification of the Gurson criterion by using eshelby-like velocity fields[END_REF]:

1 + 2 3 f Σ 2 eq σ 2 0 + 2 f cosh 3Σ m 2σ 0 -1 -f 2 = 0 (3) 
Comparing with the Gurson's criterion (2), a different deviatoric prediction is given by (3).

• Criterion derived by non-linear variational homogenization techniques [START_REF] Castaneda | The effective mechanical properties of nonlinear isotropic composites[END_REF] On other hand, a macroscopic elliptic yield criterion has been derived in [START_REF] Castaneda | The effective mechanical properties of nonlinear isotropic composites[END_REF] by adopting the non-linear variational homogenization techniques:

1 + 2 3 f Σ 2 eq σ 2 0 + 9 f 4 Σ 2 m σ 2 0 -(1 -f ) 2 = 0 ( 4 
)
This criterion is improved in [START_REF] Michel | The constitutive law of nonlinear viscous and porous materials[END_REF] by retrieving the exact solution in pure hydrostatic loading:

1 + 2 3 f Σ 2 eq σ 2 0 + 9 4 1 -f ln( f ) 2 Σ 2 m σ 2 0 -(1 -f ) 2 = 0 (5) 
• Criterion based on a stress variational method

In [START_REF] Cheng | A stress-based variational model for ductile porous materials[END_REF], a stress variational method is proposed for deriving the macroscopic criterion of the studied porous materials. This model was improved in [START_REF] Shen | Macroscopic criterion for ductile porous materials based on a statically admissible microscopic stress field[END_REF] with a totally statically admissible stress field:

P 0 ( f ) (1 -f + P 1 ) 2 Σ 2 e + 9 4 ln( f ) 2 Σ 2 m ξ (ζ) -σ 0 = 0 (6) 
where the parameters P 0 ( f ), P 1 and ξ are given in Appendix A.

Different criteria obtained by different method have their own advantages and disadvantages. For example, the exact solution of the pure hydrostatic loading can be retrieved by ( 2), but overestimated by [START_REF] Castaneda | The effective mechanical properties of nonlinear isotropic composites[END_REF]. These criteria will be compared in the following section with finite element solutions.

FEM numerical method for the studied porous materials

For the purpose of the evaluations of these criteria and better understand the mechanical behavior of studied porous medium, finite element method (FEM) are often carried out as reference results.

The representative volume element of porous material is here represented by a hollow sphere. Due to its axi-symmetric property, only a quarter of the hollow sphere is considered and it is meshed with 900 quadratic quadrilateral elements of type CAX8 and with 2821 nodes in Abaqus software, as illustrated in Figure 1(a) for the case f = 0.15. The solid matrix obeys the von Mises criterion [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: part1-yield criteria and flow rules for porous ductile media[END_REF]. With the assumption of small strains, the displacement velocity field is prescribed on the exterior boundary of the hollow sphere. A user subroutine MPC (Multi-Points Constraints) is used in this study for the loading condition with a constant macroscopic stress triaxiality T = Σ m /Σ eq , which is realized by calculating the constant stress ratio Σ ρ /Σ z as the one done in [START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF][START_REF] Cheng | Void interaction and coalescence in polymeric materials[END_REF].

In Figure 1(b), the FEM solutions (blue circles) is compared with the lower bounds (red squares) and upper ones (green rhombus) proposed in [START_REF] Trillat | Limit analysis and Gurson's model[END_REF][START_REF] Thoré | Hollow sphere models, conic programming and third stress invariant[END_REF] for porosities f = 0.01 and 0.1. The black triangle are exact solutions in the pure hydrostatic loading. The proposed FEM solutions retrieve well the exact results and locate well in the lower and upper bounds.

Especially for the case of f = 0.1, the upper bound coincides well with the lower bound, which means they approach to the exact solutions. The FEM method has a good precision. The macroscopic yield criteria presented in section 2 are evaluated and assessed by the FEM results with different porosities, for example, f = 0.05, 0.1, 0.2, 0.4. As illustrated in Figure 2, the black line is the yield surface predicted by the Gurson's criterion (2), the red line is the one given by criterion (3) and orange, green and blue lines are presented by criteria (4), ( 5), [START_REF] Monchiet | A micromechanics-based modification of the Gurson criterion by using eshelby-like velocity fields[END_REF], respectively. One can see that different criterion obtained by different approach has its own advantage and disadvantage. For low porosity, criteria (4), ( 3), ( 5) and ( 6) has a good prediction of Σ eq σ 0 for pure deviatoric loading, the one given by ( 2) is overestimated. But with the increase of the porosity, this value is underestimated by ( 4),

(3), [START_REF] Michel | The constitutive law of nonlinear viscous and porous materials[END_REF]. It seems that the criterion (6) has a good prediction of Σ eq σ 0 when Σ m σ 0 = 0 for all porosity f . For intermediate value of stress triaxiality T = Σ m /Σ eq , the yield surface given by ( 6) is under the FEM solution when f = 0.05, but it is over the FEM solution when f = 0.2 and 0.4. In the pure hydrostatic loading, all criteria can retrieve the exact solution except (4).

(a) f = 0.05 The main feature of the porosity effect on the macroscopic mechanical behavior is taken into account by these criteria, for example, the effective strength of porous materials decreases with the increase porosity f . But this influence has not been fully considered by these criteria for all range of porosity. To do this, a much richer velocity field is needed in the limit analysis method, or a more suitable stress field should be found for the stress variational approach. These are hard works and it is not so easy to realize.

(b) f = 0.1 (c) f = 0.2 (d) f = 0.4
To overcome these difficulties, a machine leaning approach will be used in this work to study the influence of porosity f on the macroscopic mechanical behavior of porous materials. The problem presented in the above section 2 for the determination of the plastic yield surface can be regarded to find the relation between Σ m σ 0 and Σ eq σ 0 with the influence of porosity f . In view of ANN method, it can be treated as a regression problem. The studied propblem can be simplified as follows: according to the two input parameters: Σ m σ 0 and porosity f , one need to find the corresponding yield value of Σ eq σ 0 for the studied porous materials.

Principal technique of ANN method

In the architecture of artificial neuron network, there are mainly three parts: an input layer, hidden layers and an output layer. Different numbers of hidden layer and of neurons in each layer can be constructed according to the complexity of the studied problem. The general architecture of ANN for the present problem can be illustrated as in Figure 3. At the first input layer, there are two input parameters:

x 1 = f , x 2 = Σ m σ 0 .
At the last output layer, there is one predictive yield value: Σ eq σ 0 . For the hidden layers, different structure can be constructed. The neuron i in the layer l is connected to the one j located in the previous layer l -1 by the weight w l i j . There is no communication between the neurons in the same layer. It will receive the inputs x l-1 j of all neurons in the previous layer. With the bias b l i of this neuron and the weights w l i j , the input of this neuron i at the layer l can be calculated as z l i = p j=1 w l i j x l-1 j + b l i , where p is the total neuron number in the layer l -1. An activation function a(z) is defined in each neuron to calculate the output of this neuron for the next layer l + 1 by using the inputs z l i getting from previous layer l -1. For example, the output of a sigmoid neuron is given as:

f b 1 1 b j 1 b u L-1 b p 1 b 1 L-1 . . . . . . W 11 1 W j1 1 W p1 1 W 12 1 W j2 1 W p2 1 b 1 2 b q 2 b i 2 . . . . . . . . . . . . W ij 2 W 1j 2 W qj 2
a l i = 1 1 + e -z l i = 1 1 + e -p j=1 w l i j x l-1 j -b l i ( 7 
)
In view of the next layer l + 1, a l i is an input which will be used to calculate its activation value with weights and biases. Following this procedure, we can get the final output value a at the last layer l = L with the initial inputs x at the first layer l = 0. In order to measure the ANN output accuracy, a loss function is necessary. For the studied regression problem, the mean squared error (MSE) loss function is adopted here:

C(w, b) = 1 2n n i=1 a(x) -y 2 (8)
in which n is the total number of training inputs; y is the true value with the input x and a(x) is the one approximated by ANN method.

The initial values of weights and biases in the connection of neuron network are assigned randomly. Based on the training data, the purpose of the ANN method is to optimise the values of w and b by training process which minimize the cost function. By adopting the backpropagation algorithm [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF], these values can be updated by the gradient descent:

w l i j = -η ∂C ∂w l i j , b l i = -η ∂C ∂b l i , (9) 
in which η is the learning rate. In order to speed up the learning procedure, the gradient of C over all the training inputs will be approximated by the one over a small number m (mini-batch) which are randomly chosen from training data. Many optimizations have been proposed for the gradient descent method and the learning rate [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF][START_REF] Zeiler | Adadelta: an adaptive learning rate method[END_REF][START_REF] Kingma | A method for stochastic optimization[END_REF], for example, Momentum-based gradient descent, Nesterov Accelerated Gradient (NAG), Adaptive subgradient method (AdaGrad), Adaptive Learning Rate Method (AdaDelta), Adaptive Moment Estimation (Adam) and so on. With the training procedure, the ANN method learns the law behind the training data and optimize the weights and biases in the architecture of the network.

The studied case can be treated as a regression problem of artificial neuron network. In order to evaluate the performance of the ANN performance, the coefficient of determination (R 2 ) between the true values and the predicted ones is chosen as the validation method:

R 2 = 1 - m i=1 (y i -a i ) 2 m i=1 (y i -ȳ) 2 (10) 
in which a i denotes the ANN prediction, y i is the true value, ȳ the mean value of y i and m the number of samples.

Training data

The training data used in artificial neuron network approach is a key point for the success.

Due to its accuracy, the finite element method presented in the section 3 will be adopted It is now interesting to study the deviatoric value of Σ eq σ 0 for the case of Σ m σ 0 = 0. As shown in the above section 2 for the analytical criteria, there are two main values predicted, as

Σ eq σ 0 = 1 -f and 1-f √ 1+2 f /3
obtained by different methods. As shown in Figure 7(a), circle points are FEM solutions, red solid line are ANN prediction, blue and green lines are two above values given by the analytical criteria respectively. The ANN prediction located between these two values and has a good agreement with numerical results for all range of porosity f . The Figure 7(b) is for the comparisons for the hydrostatic value Σ m σ 0 when Σ eq σ 0 = 0. For the studied porous material, one can calculated the exact analytical solution: -2 3 ln( f ). The ANN prediction (square points) has a good agreement with this exact solution (solid line). σ 0 and hydrostatic value Σ m σ 0 between the FEM results and the ANN predictions as a function of porosity f .

Conclusions

The artificial neuron network is adopted in this paper to predict the macroscopic plastic yield surface of porous materials with a von Mises type solid matrix. The typical analytical yield criteria are firstly recalled. The main features of porosity effect on the macroscopic yield stress are taken into account by these criteria, such as the strength decrease with the increase of porosity, but it is not sufficient. However, it is a hard work to derive an explicit expression of yield criterion for the studied porous medium. For the purpose to get a better prediction, the ANN approach is adopted in this work. The studied problem can be seen as a regression problem with two inputs f and Σ m σ 0 and one output value

Σ eq σ 0 .
The training procedure is a key step to optimise the weight and bias parameters. New numerical solutions for the studied porous material are presented with a wide range of porosity and macroscopic stress triaxiality, which are used as the training date and test one. The proposed ANN structure is well trained. There is a good agreement between the ANN predictions and FEM results. The prediction given by the ANN approach is much more accurate than the ones estimated by the existing yield criteria. The proposed ANN model is easy to use for practical applications. 
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 11 Figure 1: Validations of the FEM results (blue circles) by the upper (green rhombus) and lower (red squares) bounds proposed by[START_REF] Trillat | Limit analysis and Gurson's model[END_REF][START_REF] Thoré | Hollow sphere models, conic programming and third stress invariant[END_REF], the black triangle is the exact solution in the pure hydrostatic loading.
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 2 Figure 2: Comparisons between the FEM results (blue circle) and the predictions given by different criteria with different porosity f = 0.05, 0.1, 0.2, 0.4: black line -(2), red line -(3), orange line -(4), green line -(5), blue line -(6).
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 4 Plastic yield surface of porous material predicted by Artificial Neuron Network Inspired by the biological structure of neurons, the research of Artificial Neural Network (ANN) has been developed quickly since 1940s. According to the complexity of the studied problem, different architecture can be established in ANN with different neurons and different layers. Unlike the traditional method, there is few constraints in the modeling and it can find the mechanical behavior law behind the training data after the training procedure.
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 3 Figure 3: Architecture of artificial neuron network with L layer.

  to prepare the training and test data needed in ANN training procedure. A wide range of porosity f will be considered for the validation. The strategy of the data preparation are arranged as follows. There are two principal parts: the training data and the test data. The training data is used for the neuron network training process. For the purpose of validation, a sub set (10%) is chosen randomly from the training data used as the validation data to verify the accuracy of the training procedure. The porosities used in the training data are f = 0.005, 0.01, 0.02, 0.03, 0.04, 0.07, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95. A wide range of stress triaxiality T = Σ m /Σ eq are studied. After the training procedure, the weights and biases in the architecture of artificial neuron network are optimised based on the training data. Then, the prepared ANN can be used directly to predict the corresponding yield values of Σ eq σ 0 for a given porosity f and Σ m σ 0 . Concerning the test data, FEM solutions with different stress triaxiality and different porosities from the ones used in training data are carried out, as f = 0.05, 0.19, 0.23, 0.33, 0.42, 0.51, 0.63, 0.72, 0.83, 0.92.4.3. Predictions od plastic yield surfaces of porous medium by ANN approachBased on these FEM results, the proposed artificial neuron network can be trained. Two hidden layers are chosen here. The architecture of ANN used is (2 -50 -20 -1) with the sigmoid activation function 1 . The number of mini-batch is taken as m = 100. With the optimization of Adam, the learning rate is taken as η = 0.005. The variations of the loss and the accuracy of the training set and validation set in training data are illustrated in Figure 4 as a function of the number of epoch 2 . One can see that the proposed neuron network converges very quickly. At the beginning, there are some fluctuations and the ANN learns 1 The ANN model established in this study is based on the structure of open source code provided in https://github.com/microsoft/ai-edu 2 A training epoch is one total computation of all training data. from the training data. It adjusts itself and the loss drops quickly. At the same time, the accuracy increases rapidly. It is stable after about 10000 epoch. The final values of loss and accuracy are 0.6 × 10 -5 and 0.99989 for the training set and 1.97 × 10 -5 , 0.99964 for the validation set.

Figure 4 :

 4 Figure 4: The variations of loss and accuracy of training set and validation set as a function of the number of epoch.
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 5 Figure5shows the comparisons between the FEM results (circle points) and the ANN predictions (solid lines) in the range of training data with different porosity f . A very good agreement is found between these two results for all porosities and all domains of stress triaxiality T = Σ m /Σ eq . The deviatoric and hydrostatic values are well captured. The mechanics of porous material, especially the influence of porosity on the macroscopic mechanical behavior and the relations between Σ m and Σ eq , are well accounted by the proposed artificial neuron network.
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 56 Figure 5: Comparisons between the FEM results (circle points) and the ANN predictions (solid lines) with different porosities f and stress triaxialities for training data.
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 07 Figure 7: Comparisons of deviatoric value Σ eq
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Appendix A. Parameters used in criterion (6)