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Abstract 

 

This study exploits previously demonstrated properties (i.e. sensitivity to spa-

tial extent and intensity of local image contrasts) of the quantization error in the 

output of a Self-Organizing Map (SOM-QE). Here, the SOM-QE is applied to 

double-color-staining based cell viability data in 96 image simulations. The results 

from this study show that, as expected, SOM-QE consistently and in only a few 

seconds detects fine regular spatial increase in relative amounts of RED or 

GREEN pixel staining across the test images, reflecting small, systematic increase 

or decrease in the percentage of theoretical cell viability below a critical threshold. 

While such small changes may carry clinical significance, they are almost impos-

sible to detect by human vision. Moreover, here we demonstrate an expected sen-

sitivity of the SOM-QE to differences in the relative physical luminance (Y) of the 

colors, which translates into a RED-GREEN color selectivity. Across differences 

in relative luminance, the SOM-QE exhibits consistently greater sensitivity to the 

smallest spatial increase in RED image pixels compared with smallest increases of 

the same spatial magnitude in GREEN image pixels. Further selective color con-

trast studies on simulations of biological imaging data will allow generating in-

creasingly larger benchmark datasets and, ultimately, unravel the full potential of 

fast, economic, and unprecedentedly precise predictive imaging data analysis 

based on SOM-QE.  
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Introduction 

 

The quantization error in a fixed-size Self-Organizing Map (SOM) with unsu-

pervised winner-take-all learning [1a,b] has previously been used successfully to 

detect meaningful changes across series of medical, satellite, and random dot im-

ages [2,3,4,5,6,7,8]. The computational properties of the quantization error in 

SOM are capable of reliably discriminating between the finest differences in local 

pixel color intensities in complex images including scanning electron micrographs 

of cell surfaces [9]. Moreover, the quantization error in the SOM (SOM-QE) re-

liably signals changes in contrast or color when contrast information is removed 

from, or added to, arbitrarily to images, not when the local spatial position of con-

trast elements in the pattern changes. While non-learning-based and fully super-

vised image analysis in terms of the RGB Mean reflects coarser changes in image 

color or contrast well enough by comparison, the SOM-QE was shown to outper-

form the RGB mean, or image mean, by a factor of ten in the detection of single-

pixel changes in images with up to five million pixels [7,8]. The sensitivity of the 

QE to the finest change in magnitude of contrast or color at the single pixel level 

is statistically significant, as shown in our previous work [7,8]. This reflects a 

finely tuned color sensitivity of a self-organizing computational system akin to 

functional characteristics of a specific class of retinal ganglion cells identified in 

biological visual systems of primates and cats [10]. Moreover, the QE’s computa-

tional sensitivity and single-pixel change detection performance surpasses the ca-

pacity limits of human visual detection, as also shown in our previous work [2-9].  

The above mentioned properties of the SOM-QE make it a promising tool for 

fast, automatic (unsupervised) classification of biological imaging data as a func-

tion of structural and/or ultra-structural changes that are not detectable by human 

vision. This was previously shown in our preliminary work [9] on the example of 

Scanning Electron Micrographs (SEM) of HIV-1 infected CD4 T-cells with vary-

ing extent of virion budding on the cell surface [11,12].  SEM image technology is 

used in virology to better resolve the small punctuated ultra-structural surface sig-

nals correlated with surface-localized single viral particles, so-called virions 

[11,12]. A defining property of a retrovirus such as the HIV-1 is its ability to as-

semble into particles that leave producer cells, and spread infection to susceptible 

cells and hosts, such as CD4 lymphocytes, also termed T cells or “helper cells”. 

This leads to the morphogenesis of the viral particles, or virions, in three stages: 

assembly, wherein the virion is created and essential components are packaged 

within the target cell; budding, wherein the virion crosses the plasma membrane 

(Figure 1), and finally maturation, wherein the virion changes structure and be-

comes infectious [11,12].  
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Figure1: Color coded SEM image of a CD4 T-cell with ultra-structural surface 

signals (left), in yellow here, correlated with surface-localized single HIV-1 viral 

particles (virions). Some of our previous work [7] had shown that SOM-QE per-

mits the fast automatic (unsupervised) classification of sets of SEM images as a 

function of ultra-structural signal changes that are invisible to the human eye 

(right). 

 

Another potential exploitation of SOM-QE in biological image analysis is cell 

viability imaging by RED, GREEN, or RED-GREEN color staining (Figure 2). 

The common techniques applied for determination of in vitro cell size, morpholo-

gy, growth, or cell viability involve human manual work, which is imprecise and 

frequently subject to variability caused by the analyst himself or herself [13]. In 

addition, considering the necessity for evaluation of a large amount of material 

and data, fast and reliable image analysis tools are desirable. The use of accessible 

precision software for the automatic (unsupervised) determination of cell viability 

on the basis of color staining images would allow accurate classification with ad-

ditional advantages relative to speed, objectivity, quantification, and reproducibil-

ity.  

In this study here, we used SOM-QE for the fast and fully automatic (unsuper-

vised) classification of biological imaging data in 126 simulation images. Exam-

ples of the original images used for the SOM-QE analyses here are available 

online at: 

 

https://www.researchgate.net/publication/340529157_CellSurvivalDeathTrend-

ColorStainingImageSimulations-2020 

 

The test images variable RED-GREEN color staining indicative of different 

degrees of cell viability. For this study here, we chose variations between 44% and 

56% of theoretical cell viability, i.e. variations below the threshold level that may 

carry clinical significance, but are not easily detected by human vision [13]. 

https://www.researchgate.net/publication/340529157_CellSurvivalDeathTrend-ColorStainingImageSimulations-2020
https://www.researchgate.net/publication/340529157_CellSurvivalDeathTrend-ColorStainingImageSimulations-2020
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Figure 2: Color coded cell viability image data produced by GREEN (top), 

RED (middle), and RED-GREEN (bottom) staining indicating 90% (left), 50% 

(middle), and 0% (right) cell viability. For this study here, we generated image da-

ta using relative variability of RED and GREEN pixel color reflecting >50% and 

<50% variability in cell viability, and submitted the images to automatic classifi-

cation by SOM-QE [2,7,8]. 

 

Materials and Methods 

 

96 cell viability images with variable RED-GREEN color staining indicative of 

different degrees of cell viability between 50% and 56 %, indicated by an increase 

in the relative number of GREEN image pixels, and 44% and 50%, indicated by 

an increase in the relative number of RED image pixels were computer generated. 

All 96 images were of identical size (831x594). After training the SOM on one 

image (any image from a set may be used for training), the others from the set 

were submitted to SOM analysis to determine the SOM-QE variability as a func-

tion of the selectively manipulated image color contents, indicative of variable 

theoretical cell viability, expressed in percent (%). 

 

Images 

 

A cell image indicating 50% cell viability (cf. Figure 2), considered as 

the theoretical ground truth image here, displays an equivalent number, or spatial 

extent, of RED and GREEN dots with a specific, fixed intensity range in terms of 

their RGB values (here R>100<256 and G>100<256). In half of the test images 



5 

from this study, the GREEN pixel contents were selectively augmented by a con-

stant number of 5 pixels per image, yielding 48 image simulations of colour stain-

ing data indicative of a theoretical increase in cell viability from 50% to about 

56%. In the other 48 images, the green pixel contents were selectively augmented 

by a constant number of 5 pixels per image, yielding image simulations of colour 

staining data indicative of a theoretical decrease in cell viability from 50% to 

about 44%.  For a visual comparison between images reflecting 50% and 90% cell 

viability, based on relative amounts of combined RED and GREEN staining, see 

Figure 2 (bottom). Image dimensions, RGB coordinates of the selective 5-pixel-

bunch RGB spatial color increments, and their relative luminance values (Y), are 

summarized here below in Table 1. 

 

Table 1: Color parameters of the test images 

 
 

 

SOM prototype and quantization error (QE) 

 

The Self-Organizing Map (a prototype is graphically represented here in Figure 

3, for illustration) may be described formally as a nonlinear, ordered, smooth 

mapping of high-dimensional input data onto the elements of a regular, low-

dimensional array [1]. Assume that the set of input variables is definable as a real 

vector x, of n-dimension. With each element in the SOM array, we associate a 

parametric real vector mi, of n-dimension. mi is called a model, hence the SOM ar-

ray is composed of models. Assuming a general distance measure between x and 

mi denoted by d(x,mi), the map of an input vector x on the SOM array is defined as 

the array element mc that matches best (smallest d(x,mi)) with x. During the learn-

ing process, the input vector x is compared with all the mi in order to identify its 

mc. The Euclidean distances ||x-mi|| define mc. Models that are topographically 

close in the map up to a certain geometric distance, denoted by hci, will activate 

each other to learn something from the same input x. This will result in a local re-

laxation or smoothing effect on the models in this neighborhood, which in contin-

ued learning leads to global ordering. SOM learning is represented by the equation 

 

                                      (1) 
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where           is an integer, the discrete-time coordinate, hci(t) is the neigh-

borhood function, a smoothing kernel defined over the map points which converg-

es towards zero with time,     is the learning rate, which also converges towards 

with time and affects the amount of learning in each model. At the end of the win-

ner-take-all learning process in the SOM, each image input vector x becomes as-

sociated to its best matching model on the map mc. The difference between x and 

mc, ||x-mc||, is a measure of how close the final SOM value is to the original input 

value and is reflected by the quantization error QE. The QE of x is given by 

 

              
  

         (2) 

 

where N is the number of input vectors x in the image. The final weights of the 

SOM are defined by a three dimensional output vector space representing each R, 

G, and B channel. The magnitude as well as the direction of change in any of these 

from one image to another is reliably reflected by changes in the QE.   

   

 

 
 

Figure 3: Representation of the SOM prototype with 16 models, indicated by 

the filled circles in the grey box. Each of these models is compared to the SOM 

input in the training (unsupervised winner-take-all learning) process. Here in this 

study, the input vector corresponds to the RGB image pixel space. The model in 

the map best matching the SOM input will be a winner, and the parameters of the 

winning model will change towards further approaching the input. Parameters of 

models within close neighborhood of the winning model will also change, but to a 

lesser extent compared with those of the winner. At the end of the training, each 

input space will be associated with a model within the map. The difference be-
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tween input vector and final winning model determines the quantization error 

(QE) in the SOM output.  

 

SOM training and data analysis 

 

The SOM training process consisted of 1 000 iterations. The SOM was a 

two-dimensional rectangular map of 4 by 4 nodes, hence capable of creating 16 

models of observation from the data. The spatial locations, or coordinates, of each 

of the 16 models or domains, placed at different locations on the map, exhibit 

characteristics that make each one different from all the others. When a new input 

signal is presented to the map, the models compete and the winner will be the 

model whose features most closely resemble those of the input signal. The input 

signal will thus be classified or grouped in one of models. Each model or domain 

acts like a separate decoder for the same input, i.e. independently interprets the in-

formation carried by a new input. The input is represented as a mathematical vec-

tor of the same format as that of the models in the map. Therefore, it is the pres-

ence or absence of an active response at a specific map location and not so much 

the exact input-output signal transformation or magnitude of the response that 

provides the interpretation of the input. To obtain the initial values for the map 

size, a trial-and-error process was implemented. It was found that map sizes larger 

than 4 by 4 produced observations where some models ended up empty, which 

meant that these models did not attract any input by the end of the training. It was 

therefore concluded that 16 models were sufficient to represent all the fine struc-

tures in the image data. The values of the neighborhood distance and the learning 

rate were set at 1.2 and 0.2 respectively. These values were obtained through the 

trial-and-error method after testing the quality of the first guess, which is directly 

determined by the value of the resulting quantization error ; the lower this value, 

the better the first guess. It is worthwhile pointing out that the models were initial-

ized by randomly picking vectors from the training image, called the "original im-

age" herein. This allows the SOM to work on the original data without any prior 

assumptions  about a level of organization within the data. This, however, requires 

to start with a wider neighborhood function and a bigger learning-rate factor than 

in procedures where initial values for model vectors are pre-selected [1 b]. The 

procedure described here is economical in terms of computation times, which con-

stitutes one of its major advantages for rapid change/no change detection on the 

basis of even larger sets of image data before further human intervention or deci-

sion making. The computation time of SOM analysis of each of the 98 test images 

to generate the QE distributions was about 12 seconds per image. 

 

Results 

 After SOM training on the reference image (unsupervised learning), the 

system computes SOM-QE for all the images of a given series in a few seconds, 

and writes the SOM-QE obtained for each image into a data file. Further steps 

generate output plots of SOM-QE, where each output value is associated with the 
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corresponding input image. The data are plotted in increasing/decreasing orders of 

SOM-QE magnitude as a function of their corresponding image variations. Results 

are shown here below for the two test image series (Figure 4). The SOM-QE is 

plotted as a function of increments in the relative number, by adding pixel bunches 

of constant size and relative luminance, of GREEN or RED image pixels. For the 

corresponding image parameters and variations, see Table 1. 

 

 
 

Figure 4: SOM-QE classification of the 96 test images, with the SOM-QE plot-

ted as function of increasing or decreasing theoretical cell viability indicated by a 

small and regular increase in the spatial extent of green or red pixels across the 

corresponding images. The data show the expected SOM-QE sensitivity to the rel-

ative luminance (Y) of a given color (top), and its color selectivity (bottom). For 

any relative luminance Y, the color RED, by comparison with the color GREEN, 

is signaled by QE distributions of greater magnitude. Future studies on a wider 

range of color-based imaging data will allow to further benchmark SOM-QE color 

selectivity. 

 

 

Conclusions 

 

In this work we exploit the RED-GREEN color selectivity of SOM-QE [7,8] to 

show that the metric can be used for a fast, unsupervised classification of cell im-

aging data where color is used to visualize the progression or remission of a dis-

ease or infection on the one hand, or variations in cell viability before and after 

treatment on the other. Similarly successful simulations were obtained previously 

on SEM images translating varying extents of HIV-1 virion budding on the host 

cell surface, coded by the color YELLOW, in contrast with healthy surface tissue, 

coded by the color BLUE [9]. Our current work, in progress, reveals hitherto un-
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suspected properties of self-organized [14] mapping, where the potential of the 

SOM_QE is revealed in terms of a computational tool for detecting the finest clin-

ically relevant local changes in large series [15] of imaging data. Future image 

simulations will allow further benchmarking of SOM-QE selectivity for increas-

ingly wider ranges of color variations in image simulations of biological data. This 

should, ultimately, result in providing a basis for the automatic analysis of biolog-

ical imaging data where information relative to contrast and/or color is exploited 

selectively to highlight disease-specific changes in organs, tissue structures, or 

cells. 
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