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We present a data structure that allows to maintain in logarithmic time all partial sums of elements of a linear array during incremental changes of element's values.

As an application, think of the x k as integer numbers indicating the probabilities of certain events; by chosing a uniformly distributed random number r in the range 0 r < N -1 i=0 x i and selecting the unique k ∈ {0, . . . , N } with N -1 i=k x i r < N -1 i=k-1 x i , event k is selected with probability

x k N -1 i=0 x i .
If the probability distribution of events changes frequently, the partial sums need to be recomputed every time, which takes time O(N ) using the naive algorithm.

2 Data structure and access algorithms

Our solution is to store a mix of individual values x i and partial sums in the array, thus realizing a binary tree where each node represents the sum of all leafs below it. Figure 1 sketches an example for N = 16, the partial sums corresponding to the nodes indicated by solid circles are stored as s i .

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 s i 99 8 9 3 17 1 8 3 51 7 7 4 17 2 9 5

x i 14 8 6 3 8 1 5 3 20 7 3 4 6 2 4 5 
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Data structure

In some respect, this idea is similar to that of heap sort [AHU74, Sect. 3.4], which also uses a mix of representations (sorted along a path and unsorted within a level) to combine the advantages of both. Our data structure combines the advantages of storing single values (easily updatable) and sums (no need to recompute them).

Formally, let N be a power of 2; let an array x 0 , . . . , x N -1 of size N be given. Instead of this original array, we maintain the array s 0 , . . . , s N -1 , where

s k := gcd(N,k)-1 i=0 x k+i (1) 
Here, gcd(N, k) is the greatest common divisor of N and k, i.e., the largest power of 2 dividing k. It corresponds to the least 1 bit in the 2-complement representation of k, which can be computed as bitwise and of N +k and N -k.

The following algorithms, given in C code in Fig. 2, maintain our data structure.

• int sumN(int k) returns N -1 i=k x i ; • int sum(int j,k) returns k i=j x i ; • int get(int k) retrieves x k ; • void inc(int k,x) adds x to x k ; • void set(int k,x) assigns x to x k ; and • int find(int x) returns some k such that N -1 i=k+1 x i x < N -1 i=k x i , provided 0 x < N -1 i=0 x i ; k is unique if no x i is negative.
Figure 3 shows some sample runs on the data in Fig. 1.

In order to deal with arrays whose size is not a power of 2, assume s k = 0 for all k M , where N/2 < M N . At two places it is neccessary to test the index boundary explicitely, using the function int S(int i).

The algorithms can immediately be generalized to deal with arbitrary (non- 

int s[M]; #define S(i) (i<M ? s[i] : 0) #define gcdN(k) ((N+k) & (N-k)) int sumN(int k) { int i, sm = 0; for (i=k; i<M; i+=gcdN(i)) sm += s[i]; return sm; } #define sum(j,k) (sumN(j) -sumN(k+1)) int get(int k) { int i, x = s[k]; for (i=1; i<gcdN(k) && k+i<M; i*=2) x -= s[k+i]; return x; } void inc(int k,x) { int i; for (i=k; i>=0; i-=gcdN(i)) s[i] += x; } #define set(k,x) inc(k,x-get(k)) int find(int x) { int i, k = 0, pv = s[N/2]; for (i=N/2; i>0; i/=2) if (x < pv) { pv += S(k+i*3/2) -

Complexity

All algorithms take O(log N ) time due to the implicit tree structure. For sumN and inc, note that the value of gcd(N, i) grows in every loop cycle, since

gcd(N, i ± gcd(N, i)) 2 • gcd(N, i) . (2) 
In the following sections 4 to 7, we give correctness proofs of the main algorithms in the Hoare calculus [START_REF] Hoare | An axiomatic basis for computer programming[END_REF].

Correctness of get

To see the correctness of get, show

2 a -1 i=1 f (i) = a-1 i=0 2 i -1 j=0 f (2 i + j) (3) 
by induction on a; note that commutativity of + is not required for the proof.

If gcd(N, k) = 2 a , we have gcd(N, k + 2 i ) = 2 i for 0 i < a, and therefor We can now apply the Hoare calculus to the code of int get(int k):

s k (1) = x k + 2 a -1 i=1 x k+i (3) = x k + a-1 i=0 2 i -1 j=0 x k+2 i +j (1) = x k + a-1 i=0 s k+2 i . ( 4 
1. int get(int k) { 2. int i, x; 3. x = s[k]; 4. i = 1; 5. x = x k + Σ k,i ∧ i gcd(N, k) 6. while (i < gcdN(k) && k+i < M) { 7. x = x k + Σ k,i ∧ i < gcd(N, k) 8. x = x -s[k+i]; 9. x = x k + Σ k,2•i ∧ i < gcd(N, k) 10. i = i * 2; 11. x = x k + Σ k,i ∧ i gcd(N, k) 12. } 13. x = x k + Σ k,i ∧ (i = gcd(N, k) ∨ k + i M ) 14.
return x; 15. } 5 Correctness of inc Next, we show that inc makes sufficiently many updates. By (1), s i depends on x k , iff i k < i + gcd(N, i). Hence, if s i depends on x k , then so does s i-gcd(N,i) , since i -gcd(N, i) i k and, by (2),

(i -gcd(N, i)) + gcd(N, i -gcd(N, i)) i + gcd(N, i) > k . But no s i for i -gcd(N, i) < i < i depends on x k : Let i = 2 a • b and i = 2 a • b for odd numbers b, b . Then a < a since i -gcd(N, i) = 2 a • (b -1). And 2 a • b = i < i = 2 a-a • 2 a • b implies b + 1 2 a-a • b. Hence, i + gcd(N, i ) = 2 a • (b + 1) 2 a • 2 a-a • b = i k .

Correctness of sumN

The loop in sumN satisfies the invariant sm = i-1 j=k x j , since

sm + s i (1) =   i-1 j=k x j   +   gcd(N,i)-1 j=0 x i+j   = i+gcd(N,i)-1 j=k x j .
This justifies the step in lines 7.-9. For lines 13.-14. note that x j = 0 for j M .

1. int sumN(int k) { 2. int i, sm; 3. sm = 0; 4. i = k; 5. sm = i-1 j=k x j 6.

while (i < M) { 7.

sm = i-1 j=k x j 8. sm = sm + s[i]; 9. sm = i+gcd(N,i)-1 j=k x j 10. i = i + gcdN(i); 11. sm = i-1 j=k x j 12. } 13. sm = i-1 j=k x j ∧ i M 14.
return sm; 15. }

Correctness of find

The loop in find satisfies the invariant

N -1 j=k+2•i x j x < N -1 j=k x j and i 2 ⇒ pv = N -1 j=k+i x j and gcd(N, k) gcd(N, i) = i .
(5)

To show this, note that for i 2, we have

s k+i (1) = gcd(N,k+i)-1 j=0 x k+i+j (5) = i-1 j=0 x k+i+j = k+2•i-1 j=k+i x j ,
and similarly

s k+i/2 = k+i-1 j=k+i/2 x j and s k+i•3/2 = k+2•i-1 j=k+i•3/2 x j , hence, we get pv + s k+i•3/2 -s k+i = N -1 j=k+i•3/2 x j and pv + s k+i/2 = N -1 j=k+i/2
x j , (6) in case of x < pv and x pv, respectively.

We transform the program to make the Hoare verification rules applicable and unfold the last loop cycle (i = 1) to avoid confusing case distinctions. We omit the computation of the pivot element pv in the last cycle, since its value isn't used any more.

We define the abbreviations Σ a := N -1 j=a x j and p(a, b) } else {

:⇔ gcd(N, a) gcd(N, b) = b Observe that i 2 ∧ p(k, i) implies both p(k + i, i) and p(k, i/2);

)

  We define the abbreviation Σk,b := s k+b + s k+2•b + s k+4•b + . . . + s k+gcd(N,k)/2 .By equation (4), we obtain s k = x k + Σ k,1 , justifying the step in lines 4.-5.We have Σ k,b = 0 if b gcd(N, k) or k + b M ; this justifies lines 13.-14.

  this is used in lines 13.-15. and 21.-23., respectively.< Σ k ∧ pv = Σ k+i ∧ p(k, i) ∧ i 1 10. while (i >= 2) { 11. Σ k+2•i x < Σ k ∧ pv = Σ k+i ∧ p(k, i) ∧ i 2 12. if (x < pv) { 13. Σ k+2•i x < Σ k+i ∧ pv = Σ k+i ∧ p(k, i) ∧ i 2 14. pv = pv + S(k+i*3/2) -s[k+i]; 15. Σ k+2•i x < Σ k+i ∧ pv = Σ k+3•i/2 ∧ p(k + i, i) ∧ i 2 16. k = k + i; 17. Σ k+i x < Σ k ∧ pv = Σ k+i/2 ∧ p(k, i) ∧ i 2 18.

	Equations (6) justify the steps in lines 13.-15. and 19.-21.; equation (1) jus-
	tifies step 7.-9.
	1. 0 x < Σ 0
	2. int find(int x) {
	3.	int i, k, pv;
	4.	Σ N x < Σ 0
	5.	k = 0;
	6.	i = N/2;
	7.	Σ k+2•i x < Σ k ∧ p(k, i) ∧ i 1
	8.	pv = s[N/2];
	9.	Σ k+2•i x

19.

return k; 37. } This completes the verification proofs of the algorithms given in Fig. 2. A short version of this paper (without proofs) was published in [START_REF] Burghardt | Maintaining partial sums in logarithmic time[END_REF].