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Abstract: In this paper we consider the Boussinesq system with homogeneous Dirichlet boun-

dary conditions and defined in a regular domain Ω ⊂ RN for N = 2 and N = 3. The incompressi-

bility condition of the fluid is replaced by its approximation by penalization with a small parameter

ε > 0. We prove that our system is locally null controllable using a control with a restricted number

of components, defined in an open set ω contained in Ω and whose cost is bounded uniformly when

ε→ 0. The proof is based on a linearization argument and the null-controllability of the linearized

system is obtained by proving a new Carleman estimate for the adjoint system. This observability

inequality is obtained thanks to the coercivity of some second order differential operator involving

crossed derivatives.
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1 Introduction

1.1 Presentation of the system

For a given time T > 0, Ω a sufficiently smooth bounded open set of RN (N = 2, 3) and ω a

nonempty open set contained in Ω, we consider the controlled penalized Boussinesq system, which

is given by: 

yt −∆y + (y · ∇)y + 1
2 (∇ · y) y +∇p = θeN + ṽ1ω in Q,

θt −∆θ + y · ∇θ + 1
2 (∇ · y) θ = vN+11ω in Q,

∇ · y = −εp in Q,

y = 0, θ = 0 on Σ,

y(0) = y0, θ(0) = θ0 in Ω,

(1.1)

where eN stands for the N -th vector of the canonical basis of RN , Q := (0, T )×Ω, Σ := (0, T )×∂Ω.

In the controlled system (1.1), y = y(t, x) represents the velocity of the particles of the fluid,

θ = θ(t, x) their temperature and v = (ṽ, vN+1) = (v1, . . . , vN , vN+1)(t, x) stands for the control

which acts on ω.

System (1.1) approximates the classical Boussinesq system, which is the same as (1.1) with ε = 0

(which implies that 1
2 (∇ · y) y = 0 and 1

2 (∇ · y) θ = 0). The classical Boussinesq system has been

introduced by Joseph Boussinesq in 1877 and it models an incompressible fluid subjected to small

variations of temperature. In addition, this way of approximating the incompressibility condition

is called the penalty method and was introduced in [Tem68] in the Navier-Stokes case. As ex-

plained for instance in the survey [She97] and in the papers [Ber78] and [OJ84], this approximation

procedure is widely used for numerical purpose.

We are going to focus on the small-time null-controllability of the system (1.1) with a reduced

number of controls. In particular, we seek controls v that satisfy:

ṽ = 0, if N = 2, v1 = v3 = 0, if N = 3. (1.2)

This choice matches with what is known about the controllability of the classical Boussinesq system

when the control satisfies (1.2) (see [Car12]). From a modelling point of view in the two-dimensional

case, we want to control both the velocity and the temperature of the fluid by acting only in the

temperature equation. Similarly, in the three-dimensional case we want to control the velocity

by acting on both the temperature and the velocity, but with a scalar force acting on the second

component of the velocity. One of the main interest in studying the controllability of (1.1) is that

the controls of (1.1) converge to the controls of the Boussinesq system as ε goes to 0. Thus, in order
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to compute numerically the controls of the Boussinesq system, it suffices to compute the controls

of (1.1) for ε > 0 small enough.

1.2 Main result

In this part, we precise mathematically the main result of the paper. For this purpose, we introduce

three different geometrical assumptions on Ω and ω.

Hypothesis 1.1. For Ω ⊂ R2, let σ1, . . . , σk be the arc-length parametrizations of the different

connected components of ∂Ω. We assume that for any i ∈ {1, . . . , k} and for any s ∈ [0, 1] such

that (σi1)′(s) = 0 or (σi2)′(s) = 0, we have that κi(s) 6= 0 where κi(s) is the curvature of ∂Ω at the

point σi(s).

Hypothesis 1.2. For Ω ⊂ R3, we assume that there are Ω0 ⊂ R2 satisfying Hypothesis 1.1, δ > 0

and H−, H+ ∈ C(Ω0; [δ,+∞)) such that:

Ω = {x = (x1, x2, x3) ∈ R3 : (x1, x2) ∈ Ω0 and −H−(x1, x2) < x3 < H+(x1, x2)}.

Hypothesis 1.3. For Ω ⊂ R3, we assume that there are an interval I ⊂ R and a curve C ⊂ R2 such

that Γ := I × C is a relative non-trivial open set of ∂Ω. In addition, we consider a control domain

ω ⊂ Ω such that Γ ∩ ∂ω contains a relatively non-trivial open set.

Example 1.1. We recall that, as proved in [BP20a], Hypothesis 1.1 is satisfied by Ω any strictly

convex smooth domain and, if we allow rotations, by any regular domain. Moreover, we can easily

construct regular domains Ω satisfying Hypothesis 1.2, by considering a cylinder and some cupolas.

Finally, Hypothesis 1.3 is satisfied by any smooth domain Ω containing a cylindrical part on its

boundary.

We now present the main result of the paper:

Theorem 1.2. Let Ω, ω such that Hypothesis 1.1, 1.2 or 1.3 holds. Then, there exists ε0 > 0

such that for every time T > 0 there exist δT > 0 and CT > 0 such that for every ε ∈ (0, ε0)

and every initial data (y0, θ0) ∈ L2(Ω)N+1 satisfying ‖(y0, θ0)‖L2(Ω) ≤ δT , there exist a control

v ∈ L2(Qω)N+1 satisfying (1.2),

‖v‖L2(Qω) ≤ CT , (1.3)

and a weak solution (y, θ) of (1.1) verifying

(y, θ)(T ) = 0.

Here and in the whole paper we shorten the notation and denote ‖ · ‖V the norm ‖ · ‖V k for V any

Banach space and k ∈ N∗. Indeed, the value of k is always easily deducible from the context.
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In order to prove Theorem 1.2 we use the classical approach of proving first the controllability of

the linearized system and then using a fixed-point theorem. In addition, we prove the controllability

of the linearized system by proving a Carleman inequality for the homogeneous adjoint system and

then using the approach of [LTT13]. The most difficult and original part is to prove the Carleman

inequality and in particular to prove the coercivity of some 2nd order differential operator involving

crossed derivatives. Before continuing, we make some comments on Theorem 1.2, its proof and

related bibliography:

• For the definition of a weak solution of (1.1), one can adapt [Tem68, Section I.1.]. Remark

that the existence of a weak solution is guaranteed by an adaptation of [Tem68, Théorème

I.2.] but the uniqueness is only valid in the 2D case.

• Theorem 1.2 is a null-controllability result, uniform with respect to the parameter ε > 0

because of the estimate (1.3). So, by letting ε → 0 in (1.1), we recover the results from

[Car12] for less regular initial data but for more restrictive assumptions on Ω, ω.

• We use the geometric hypothesis for proving the coercivity of a 2nd order differential operator

involving the crossed derivatives. For Ω ⊂ R2, the assumption we make on the geometry of

Ω, i.e. Hypothesis 1.1, has already been introduced in the recent paper [BP20a], dealing with

the null-controllability of the linear penalized 2-D Stokes system. This is crucial for proving

the null-controllability of such a system through one scalar control. Indeed, as shown in

[Zua96, Theorem 1.2] and [BP20a, Section 2.1] some geometric hypothesis is needed because

in the rhombus the linearised system around 0 cannot be controlled due to the fact that some

eigenfunctions of the elliptic operator are not observable.

• At the heuristic level, it seems natural to obtain the controllability of the whole Boussinesq

system (1.1) by acting only with N − 1 scalar controls. Indeed, vN+1 directly controls the

component θ by the last equation of (1.1), then θ acts as an indirect control to control yN in

the N -th equation of (1.1)1. In addition, if N = 2 the penalized divergence condition implies

that for ε small enough y2 acts as an indirect control to control y1. Similarly, if N = 3,

y1 is directly controlled by v1 and y2 is indirectly controlled by y1 and y3 by the penalized

divergence condition for ε small enough.

• To prove the Carleman inequality, with the objective of highlighting the main ideas, we

prioritize giving a clear proof, even at the expense of not getting the most optimal results.

With that spirit, some recurrent operations are stated as lemmas (see Lemmas 2.5 and 2.7

below). These technical results can be useful for proving other Carleman inequalities in a

different context.
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• The results presented in Theorem 1.2 are original. Indeed, control problems with an approx-

imation by penalization have first been studied in [IPY09, Section 4], where the penalized

Stokes system was studied but without restriction on the control v. Next, the null controlla-

bility of the penalized Navier-Stokes system has been studied in [Bad11], but again without

restriction on the control ṽ. Finally, the null-controllability of the penalized Stokes system

in the 2D-case with a scalar control has been established in [BP20a]. So, Theorem 1.2 is the

first null-controllability result for a penalized system with a reduced number of controls in

the nonlinear setting, see Section 4 for a similar result in the Navier-Stokes case. Moreover,

both the linear and nonlinear results in the 3D-case in this paper are new.

• Considering other systems, the study of controllability problems in which the control has a

reduced number of components has been an active topic of research recently. In particular, for

the Stokes and Navier-Stokes systems we can consult for instance the following documents:

[LZ96, FCGIP06, Gue07, CG09, CnG13, CL14, CnGG15, GM18, BP20b]. For more results

on the controllability of linear parabolic systems with a reduced number of controls, see the

survey [AKBGBdT11] and the references therein.

The rest of the paper is organized as follows: in Section 2 we prove the null controllability of the

linearized system, Section 3 is devoted to the proof of the local null controllability of (1.1) i.e. we

prove Theorem 1.2, in Section 4 we make some remarks and present some open problems.

2 Null-controllability of the linearized system

In this section we prove the null controllability of the linearized system of (1.1). We divide the

proof as follows.

• In Section 2.1 we linearize the system (1.1) around 0, and we recall the equivalence between

the null-controllability of the linearized system and the observability of the corresponding

adjoint system.

• In Section 2.2 we recall some previous results about parabolic systems, elliptic systems and

Carleman inequalities.

• In Sections 2.3 and 2.4 we obtain some Carleman inequalities for the adjoint system, for the

2D case and the 3D case respectively.

• In Section 2.5 we use the source term method to get the null-controllability of the linearized

system and a source term, exponentially decreasing at t = T . This method has recently
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been used for many other control systems (see, for instance, [DL19, MT18, FCLdM16, BM20,

Tak17, LB18, HSLB19, GZ19]).

We also introduce the notations Qω := (0, T )×ω, δij is a constant that is 1 if i = j and 0 otherwise,

f = (f̃ , fN+1) = (f1, . . . , fN , fN+1) denotes the source term, Hk1,k2(Q) := Hk1(0, T ;L2(Ω)) ∩
L2(0, T ;Hk2(Ω)) and Hk1,k2(Σ) := Hk1(0, T ;L2(∂Ω)) ∩ L2(0, T ;Hk2(∂Ω)) (for k1, k2 ∈ R+).

2.1 Linearization around 0, null-controllability results and observability esti-

mates

When we linearize (1.1) around 0, we obtain:

yt −∆y +∇p = f̃ + θeN + ṽ1ω in Q,

θt −∆θ = fN+1 + vN+11ω in Q,

∇ · y = −εp in Q,

y = 0, θ = 0 on Σ,

y(0) = y0, θ(0) = θ0 in Ω,

(2.1)

for f ∈ L2(Q)N+1 decaying sufficiently fast (to be determined later on) at t = T . The goal is to

obtain the following result:

Proposition 2.1. Let Ω, ω such that Hypothesis 1.1, 1.2 or 1.3 holds. Then, there exist ε0 > 0,

m ≥ 1 and C > 0 such that for every T > 0, ε ∈ (0, ε0) and (y0, θ0) ∈ L2(Ω)N+1, there exists a

control v ∈ L2(Qω)N+1 satisfying (1.2), such that

‖v‖L2(Qω) ≤ K(T )‖(y0, θ0)‖L2(Ω),

and

(y, θ)(T ) = 0,

for

K(T ) := C exp

(
C

Tm

)
(2.2)

and for (y, θ) the solution of (2.1) with f = 0.

In order to prove Proposition 2.1, by the Hilbert Uniqueness Method (see, for instance, [Rus78],
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[Lio88] and [Cor07]), it is equivalent to establish an observability estimate for the adjoint system:

−ϕt −∆ϕ+∇π = 0 in Q,

−ψt −∆ψ = ϕN in Q,

∇ · ϕ = −επ in Q,

ϕ = 0, ψ = 0 on Σ,

ϕ(T ) = ϕT , ψ(T ) = ψT in Ω,

(2.3)

for (ϕT , ψT ) ∈ L2(Ω)N+1.

Proposition 2.2. Let Ω, ω such that Hypothesis 1.1, 1.2 or 1.3 holds. Then, there exist ε0 > 0,

m ≥ 1 and C > 0 such that for every T > 0, ε ∈ (0, ε0) and (ϕT , ψT ) ∈ L2(Ω)N+1 the solution

(ϕ,ψ) of (2.3) satisfies:

‖ϕ(0, ·)‖2L2(Ω) + ‖ψ(0, ·)‖2L2(Ω) ≤ K(T )

∫∫
Qω

δ3,N |ϕ1(t, x)|2 + |ψ(t, x)|2dtdx, (2.4)

with K(T ) as in (2.2).

To obtain the observability estimate (2.4), we will use Carleman estimates. More precisely,

Proposition 2.2 will be a direct consequence of the Propositions 2.8, 2.10, 2.12, see below, and a

classical dissipation argument.

2.2 Toolbox of elliptic, parabolic estimates and Carleman estimates

In this part, we recall elliptic and parabolic regularity estimates. We also present the Carleman

estimates that will be useful in the sequel.

2.2.1 A parabolic and a elliptic result

Let us recall the regularity results of the Cauchy problem of the penalized Stokes system, which

is given by the equations: 

ut −∆u+∇q = f̃ in Q,

εq +∇ · u = 0 in Q,

u = 0 on Σ,

u(0) = u0 in Ω.

(2.5)

We have the following regularity estimate:
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Lemma 2.3. Let k ∈ N∗ and Ω ⊂ RN . Then, there are ε0 > 0 and C > 0 such that if

T > 0, ε ∈ (0, ε0), u0 ∈ H2k−1(Ω)N and f̃ ∈ Hk−1,2k−2(Q)N such that (u0, f̃) satisfy all the

compatibility conditions that make sense, we have that the solution (u, q) of (2.5) belongs to

Hk,2k(Q)N ×Hk−1,2k−1(Q) with the estimate:

‖u‖Hk,2k(Q) + ‖q‖Hk−1,2k−1(Q) ≤ C
(
‖f̃‖Hk−1,2k−2(Q) + ‖u0‖H2k−1(Ω)

)
. (2.6)

As explained in [BP20a, Lemma 2.5] (though it was done for the specific case u0 = 0), the proof of

Lemma 2.3 is mainly by induction. The initial case (i = 1) can be proved again by the Galerkin

method. As for the inductive case, we get the regularity in the time variable by considering that

ut is a solution of (2.5) with (f̃ , u0) replaced by (f̃t,∆u
0 + ε−1∇(∇ · u0) + f̃(0, ·)) and using again

the Galerkin method. Moreover, we get the regularity in space by using the estimate for the steady

Stokes problem given in [Tem77, Proposition I.2.2].

As for elliptic results, we recall the following result that is proved in [BP20a, Theorem 1.8]

(considering the symmetry between the first and second variable):

Proposition 2.4. Let Ω be a domain such that Hypothesis 1.1 holds. Then, for a0 > 0 small

enough, there is C > 0 such that for any function w ∈ H4(Ω) ∩H1
0 (Ω) and for any a ∈ [0, a0] we

have that:

‖∂x2w‖C0(Ω) ≤ C(‖∂x1x2w‖H2(Ω) + ‖Law‖H1(∂Ω)), (2.7)

with:

Law = −∂x1x1w − a∂x2x2w. (2.8)

Roughly, Proposition 2.4 states that the crossed derivative with some information on the second

derivative on the boundary is coercive in H4(Ω) ∩H1
0 (Ω).

2.2.2 Classical Carleman estimates

We consider the following weights defined in Q:

α(t, x) :=
e2λ‖η‖∞ − eλη(x)

tm(T − t)m
, ξ(t, x) :=

eλη(x)

tm(T − t)m
,

α∗(t) := sup
x∈(0,L)

α(t, x), ξ∗(t) := inf
x∈(0,L)

ξ(t, x),
(2.9)

for m ∈ R+, λ > 0 to be fixed later and for η a C2 function satisfying:

η = 0 on ∂Ω, η > 0 in Ω, inf
Ω\ω0

|∇η| > 0 (2.10)
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for some ω0 ⊂⊂ ω. The existence of such a function η is proved in [FI96]. In fact, the weights (2.9)

are also taken from [FI96]. We recall that from (2.9) and (2.10) we obtain on Σ that:

α(t, x) = α∗(t), ξ(t, x) = ξ∗(t). (2.11)

We also recall that for all m > 0 and δ > 0 there is C > 0 such that for all s ≥ 0:

s(ξ + ξ∗ + α+ α∗) ≤ Cesδα. (2.12)

In addition, for all δ > 0 there is C > 0 such that if λ ≥ C we have that:

α∗ ≤ (1 + δ)α. (2.13)

The weights (2.9) allow to prove very nice results when working with parabolic equations. For

instance, they allow to estimate a function in a quantitative way with its derivatives and with

a local term. From [CG09, Lemma 1], we can obtain the following result by an easy induction,

recalling that we can deal with the local terms by integrating by parts and leaving just the lower

and higher order terms:

Lemma 2.5. Let k ∈ N, m ≥ 1 and r ∈ R. Then, there are C > 0 and λ0 ≥ 1 such that if T > 0,

λ ≥ λ0, s ≥ CT 2m and u ∈ L2
(
0, T ;Hk+1(Ω)

)
, we have:

k∑
i=0

s2+r−2iλ3+r−2i

∫∫
Q
e−2sαξ2+r−2i|∇iu|2 ≤ C

(
sr−2kλ1+r−2k

∫∫
Q
e−2sαξr−2k|∇k+1u|2

+ s2+rλ3+r

∫∫
Qω0

e−2sαξ2+r|u|2 + s2+r−2kλ3+r−2k

∫∫
Qω0

e−2sαξ2+r−2k|∇ku|2
)

. (2.14)

To continue with, we recall the following Carleman estimate for the heat equation with nonho-

mogeneous boundary conditions.

Lemma 2.6. There is C > 0 such that for all u ∈ C2(Q), a ∈ (0, 1], m ≥ 1, r ∈ R, λ ≥ C and

s ≥ CeCλ(Tm + T 2m) we have the inequality:

s3+rλ4+r

∫∫
Q
e−2sαξ3+r|u|2 + s1+rλ2+r

∫∫
Q
e−2sαξ1+r|∇u|2

≤ Csrλr
(∫∫

Q
e−2sαξr|g|2 + s3+rλ4+r

∫∫
Qω0

ξ3+r|u|2 + s1+rλ1+r

∫∫
Σ
e−2sαξ1+r|∂nu|2

)
, (2.15)

for g := aut −∆u. In addition, if u ≡ 0 on Σ, one can drop the trace term in the right-hand side

of (2.15).
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Lemma 2.6 is well-known. We get the case i = 1, m ≥ 1 and r ∈ R by repeating all the steps in

[FCGBGP06, Theorem 1], where the authors prove the case (a, r,m) = (1, 0, 1). In addition, we

can get the uniformity in a following the steps of, for instance, [FI96] or [Bad11, Lemma 4.1]. As

for the case with Dirichlet boundary condition, this is the classical Carleman estimate for the heat

equation, which is proved in [FI96].

To finish with, we consider the following technical result:

Lemma 2.7. Let k ∈ N, m > 0, r ∈ R and let us consider the weights given in (2.9). Then, there

is C > 0 such that for all λ ≥ 1 and s ≥ C(λ)(Tm + T 2m) we have the estimate:

‖sre−sα∗(ξ∗)rϕ‖Hk,2k(Q) + ‖sre−sα∗(ξ∗)rπ‖Hk−1,2k−1(Q) ≤ ‖sr+k+k/me−sα
∗
(ξ∗)r+k+k/mϕ‖L2(Q),

(2.16)

for ϕ the solution of: 

−ϕt −∆ϕ+∇π = 0 in Q,

επ +∇ · ϕ = 0 in Q,

ϕ = 0 on Σ,

ϕ(T ) = ϕT in Ω.

(2.17)

As far as we know, very similar versions of Lemma 2.7 have been used to deal with the trace

terms since [Ima01] and it is widely known by the control community of Navier-Stokes like system.

However, this result has mainly been used for k = 1 or k = 2, and as far as we know, the proof of

the general case is not written. Thus, for completeness, we give the proof in Appendix A.

2.3 Proof of the observability estimate in 2-D

In this section we prove the following Carleman inequality for the solution of the homogeneous 2-D

Boussinesq system (2.3):

Proposition 2.8. Let Ω be such that Hypothesis 1.1 holds, ω ⊂ Ω be a nonempty open set and

m ≥ 8. Then, there are ε0 > 0, C > 0 and λ0 ≥ 1 such that if T > 0, ε ∈ (0, ε0), (ϕT , ψT ) ∈ L2(Ω)3,

λ ≥ λ0, and s ≥ eCλ(Tm + T 2m), we have:

s12λ13

∫∫
Q
e−5sα∗(ξ∗)15|ϕ|2 + s3λ4

∫∫
Q
e−6sαξ3|ψ|2 ≤ C

∫∫
Qω

e−4sα|ψ|2. (2.18)

for the weights defined in (2.9) and (ϕ,ψ) the solution of (2.3).
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First, we recall from [BP20a, Theorem 1.7] (considering that there is a symmetry between the

variable φ1 and φ2 and replacing s by 5
2s) the following Carleman estimate for the penalized Stokes

system with an observation only with the second component.

Proposition 2.9. Let Ω, ω,m as in Proposition 2.8, ω0 ⊂⊂ ω be an open set such that infω\ω0
|∇η| >

0 and let m ≥ 8. Then, there are ε0 > 0, C > 0 and λ0 ≥ 1 such that if T > 0, ε ∈ (0, ε0),

ϕT ∈ L2(Ω)2, λ ≥ λ0, and s ≥ eCλ(Tm + T 2m), we have:

s15λ16

∫∫
Q
e−5sα∗(ξ∗)15|ϕ|2 ≤ Cs34λ35

∫∫
Qω0

e−5sαξ34|ϕ2|2,

for the weights defined in (2.9) and ϕ the solution of (2.17)-

Proof of Proposition 2.8. Considering Proposition 2.9 and Lemma 2.7 for k = 1, r = 6 and replac-

ing s by 5s/2, we obtain the estimate:

s12λ13

∫ T

0
e−5sα∗(ξ∗)12‖ϕ‖2H2(Ω) + s12λ13

∫∫
Q
e−5sα∗(ξ∗)12|ϕt|2

≤ Cs15λ16

∫∫
Q
e−5sα∗(ξ∗)15|ϕ|2 ≤ Cs34λ35

∫∫
Qω0

e−5sαξ34|ϕ2|2. (2.19)

Using the classical Carleman inequality of the heat equation on the ψ variable with homogeneous

Dirichlet boundary conditions, (by Lemma 2.6 with 3s instead of s) we find for λ ≥ λ0 and

s ≥ eCλ(Tm + T 2m) that:

s3λ4

∫∫
Q
e−6sαξ3|ψ|2 ≤ C

(∫∫
Q
e−6sα|ϕ2|2 + s3λ4

∫∫
Qω

e−6sαξ3|ψ|2
)
. (2.20)

We deal with the local term in the right hand side of (2.19) as in [Car12]. We consider a positive

function χ supported in ω such that χ = 1 in ω0. We have for all δ > 0 by integrating by parts,

using Lemma A.2, (2.12), (2.13) and Young’s inequality the following estimate:

s34λ35

∫∫
Qω0

e−5sαξ34|ϕ2|2 ≤ s34λ35

∫∫
Qω

e−5sαχξ34|ϕ2|2

= −s34λ35

∫∫
Qω

e−5sαχξ34(ψt + ∆ψ)ϕ2 = s34λ35

∫∫
Qω

ψ(∂t −∆)(e−5sαχξ34ϕ2)

≤ Cδ
∫∫

Qω

e−4sα|ψ|2 + δs12λ13

(∫ T

0
e−5sα∗(ξ∗)12‖ϕ‖2H2(Ω) +

∫∫
Q
e−5sα∗(ξ∗)12|ϕt|2

)
. (2.21)

Thus, if we combine (2.19)-(2.21), by choosing δ small enough we obtain (2.18).

2.4 Proof of the observability estimate in 3-D

In this section we prove the following Carleman inequality, for the solution of the homogeneous 3-D

Boussinesq system assuming Hypothesis 1.2 or 1.3.
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2.4.1 A Carleman inequality assuming Hypothesis 1.2

In this section we prove the following result:

Proposition 2.10. Let Ω be such that Hypothesis 1.2 holds, ω ⊂ Ω be a nonempty open set and let

m ≥ 2. Then, there are ε0 > 0, C > 0 and λ0 ≥ 1 such that if T > 0, ε ∈ (0, ε0), (ϕT , ψT ) ∈ L2(Ω)4,

λ ≥ λ0, and s ≥ eCλ(Tm + T 2m), we have:

s51λ52

∫∫
Q
e−2sα∗(ξ∗)51|ϕ|2 + s3λ4

∫∫
Q
e−3sαξ3|ψ|2 ≤ C

∫∫
Qω

e−sα(|ψ|2 + |ϕ2|2), (2.22)

for the weights defined in (2.9) and (ϕ,ψ) the solution of (2.3).

A geometrical result. First of all we prove the following geometrical result:

Proposition 2.11. Let Ω be such that Hypothesis 1.2 holds. Then, for a0 > 0 small enough, there

is C > 0 such that for any function w ∈ H4(Ω) ∩H1
0 (Ω) and for any a ∈ [0, a0] we have that:

‖∂x1w‖L2(Ω) ≤ C
(
‖∂x1x2w‖H2(Ω) + ‖∂x1x3w‖H2(Ω) + ‖Law‖H1(∂Ω)

)
, (2.23)

with

Law = −∂x1x1w − a∂x2x2w − a∂x3x3w. (2.24)

Proof. We recall that by Hypothesis 1.2 there are a domain Ω0 ⊂ R2 and H−, H+ ∈ C0(Ω0, [δ,+∞))

such that Ω = {x : −H−(x1, x2) < x3 < H+(x1, x2)}. Using Proposition 2.4 we obtain that there

is C > 0 and a0 > 0 such that for all a ∈ [0, a0) and s ∈ (−δ, δ) we have that:

‖∂x1w‖C0(Ω0×{s}) ≤ C
(
‖∂x1x2w‖H2(Ω0×{s}) + ‖ − ∂x1x1w − a∂x2x2w‖H1(∂Ω0×{s})

)
. (2.25)

Considering that ∂x3x3w = 0 on ∂Ω0 × (−δ, δ) (because of Dirichlet boundary conditions) we have

that:

Law = −∂x1x1w − a∂x2x2w on Ω0 × (−δ, δ). (2.26)

Thus, if we integrate (2.25) squared on (−δ, δ) and consider (2.26), we obtain that:

‖∂x1w‖2L2(Ω0×(−δ,δ)) ≤ C
(
‖∂x1x2w‖2H2(Ω0×(−δ,δ)) + ‖Law‖2H1(∂Ω0×(−δ,δ))

)
. (2.27)

Finally, considering that for all x = (x1, x2, x3) ∈ Ω and s ∈ (−δ, δ) we have that:

∂x1w(x1, x2, x3) = ∂x1w(x1, x2, s) +

∫ x3

s
∂x1x3w(x1, x2, s

′)ds′. (2.28)

By integrating (2.28), using (2.27) and remarking that Ω0×(−δ, δ) ⊂ Ω, we easily obtain (2.23).

Proof of Proposition 2.10. Because the proof is quite technical, we divide it into twelve steps.
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• Step 1: We first use the coercivity estimate given in Proposition 2.11 for ϕ1.

• Step 2: We add terms involving ϕ2 and ϕ3 in both sides of the previous estimate.

• Step 3: We get rid of the terms involving ϕ1 in the right-hand side of the previous estimate

thanks to the equations satisfied by ϕ2 and ϕ3.

• Step 4: We choose from this step forward to treat only one term in the right-hand side of

the estimate to simplify. It will be ∂x2x3ϕ2, all the other terms can be treated in a similar

way. In this step we use Lemma 2.5.

• Step 5: We begin with a Carleman estimate for the derivatives of ∂x2x3ϕ2, this Carleman

estimate comes from Lemma 2.6.

• Step 6: The previous inequality leads to a global term involving the pressure. This is why

we use also a Carleman estimate for the derivatives of ∂x2x3x2π.

• Step 7: We then get rid of the trace terms of ∂x2x3ϕ2 and ∂x2x3x2π by using the regularity

result stated in Lemma 2.7.

• Step 8: We eliminate the local term in pressure i.e. ∂x2x3x2π by the second equation of the

system.

• Step 9: We gather Steps 4, 5, 6, 7 and 8.

• Step 10: We first estimate the local term in the derivatives of ∂x2x3ϕ2 by a local term in

∂x2x3ϕ2 by using standard integration by parts. We then estimate the local term of ∂x2x3ϕ2

in function of a local term in ϕ2.

• Step 11: We apply the standard Carleman estimate in the equation satisfied by the tempe-

rature.

• Step 12: We estimate the local term in ϕ3 by the equation satisfied by the temperature.

First, let us fix three nonempty open sets ω1, ω2, ω3 such that ω0 ⊂⊂ ω1 ⊂⊂ ω2 ⊂⊂ ω3 ⊂⊂ ω.

Step 1: The equation on the boundary of ϕ1 is given by

∂x1x1ϕ1 −
ε

1 + ε
∂x2x2ϕ1 −

ε

1 + ε
∂x3x3ϕ1 =

1

1 + ε
(∂x1x2ϕ2 + ∂x1x3ϕ3) . (2.29)

Thus, using Proposition 2.11 and Poincaré inequality we have for every t ∈ [0, T ):

‖ϕ1(t, ·)‖L2(Ω) ≤ C
(
‖∂x1x2ϕ1(t, ·)‖H2(Ω) + ‖∂x1x3ϕ1(t, ·)‖H2(Ω)

+ ‖∂x1x2ϕ2(t, ·)‖H2(Ω) + ‖∂x1x3ϕ3(t, ·)‖H2(Ω)

)
. (2.30)
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Thus, we have that:

s51λ52

∫∫
Q
e−2sα∗(ξ∗)51|ϕ1|2 ≤ C

(
s51λ52

2∑
i=0

∫∫
Q
e−2sα∗(ξ∗)51(|∇i∂x1x2ϕ1|2 + |∇i∂x1x3ϕ1|2)

+ s51λ52
2∑
i=0

∫∫
Q
e−2sα∗(ξ∗)51(|∇i∂x1x2ϕ2|2 + |∇i∂x1x3ϕ3|2

)
, (2.31)

for α∗ and ξ∗ defined in (2.9).

Step 2: We deduce from (2.31) the following estimate

s51λ52

∫∫
Q
e−2sα∗(ξ∗)51|ϕ|2 ≤ C

(
s51λ52

2∑
i=0

∫∫
Q
e−2sα∗(ξ∗)51(|∇i∂x1x2ϕ1|2 + |∇i∂x1x3ϕ1|2)

+ s51λ52
2∑
i=0

∫∫
Q
e−2sα∗(ξ∗)51(|∇i∂x1x2ϕ2|2 + |∇i∂x1x3ϕ3|2 + |ϕ2|2 + |ϕ3|2

)
. (2.32)

Step 3: We consider the equations satisfied by ϕ2 and ϕ3, which are ε
1+ε∂tϕ2 − ε

1+ε∂x1x1ϕ2 − ∂x2x2ϕ2 − ε
1+ε∂x3x3ϕ2 − 1

1+ε (∂x1x2ϕ1 + ∂x2x3ϕ3) = 0,

ε
1+ε∂tϕ3 − ε

1+ε∂x1x1ϕ3 − ε
1+ε∂x2x2ϕ3 − ∂x3x3ϕ3 − 1

1+ε (∂x1x3ϕ1 + ∂x2x3ϕ2) = 0.
(2.33)

So we easily deduce that

s51λ52
2∑
i=0

∫∫
Q
e−2sα∗(ξ∗)51(|∇i∂x1x2ϕ1|2 + |∇i∂x1x3ϕ1|2)

≤ Cs51λ52
2∑
i=0

∫∫
Q
e−2sα∗(ξ∗)51

(
|∇i∂x2x3ϕ3|2+|∇i∂tϕ2|2+|∇i∂x1x1ϕ2|2+|∇i∂x2x2ϕ2|2+|∇i∂x3x3ϕ2|2

+ |∇i∂x2x3ϕ2|2 + |∇i∂tϕ3|2 + |∇i∂x1x1ϕ3|2 + |∇i∂x2x2ϕ3|2 + |∇i∂x3x3ϕ3|2
)
. (2.34)

Now we remember that ϕ2, ϕ3 satisfy two heat equations with a source term involving the pressure

∀i ∈ {2, 3}, ∂tϕi −∆ϕi = −∂xiπ in Q, ϕi = 0 on Σ. (2.35)

Therefore, we can actually replace the partial derivative in time of ϕ2 and ϕ3 by ∂x2π and ∂x3π in

(2.34). That is to say, we obtain

s51λ52
2∑
i=0

∫∫
Q
e−2sα∗(ξ∗)51(|∇i∂x1x2ϕ1|2 + |∇i∂x1x3ϕ1|2)

≤ Cs51λ52
2∑
i=0

∫∫
Q
e−2sα∗(ξ∗)51

(
|∇i∂x2x3ϕ3|2+|∇i∂x2π|2+|∇i∂x1x1ϕ2|2+|∇i∂x2x2ϕ2|2+|∇i∂x3x3ϕ2|2

+ |∇i∂x2x3ϕ2|2 + |∇i∂x3π|2 + |∇i∂x1x1ϕ3|2 + |∇i∂x2x2ϕ3|2 + |∇i∂x3x3ϕ3|2
)
. (2.36)
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We now gather (2.36) with (2.31) to deduce that

s51λ52

∫∫
Q
e−2sα∗(ξ∗)51|ϕ|2 ≤ C

(
s51λ52

∫∫
Q
e−2sα∗(ξ∗)51

(
|ϕ2|2 + |ϕ3|2 + |∇i∂x2π|2 + |∇i∂x3π|2

+
2∑
i=0

∑
j=2,3

|∇i∂x1x2ϕj |2 + |∇i∂x2x3ϕj |2 + |∇i∂x1x1ϕj |2 + |∇i∂x2x2ϕj |2 + |∇i∂x3x3ϕj |2
))

. (2.37)

Step 4: As we have said before, we focus on the estimation of ∂x2x3ϕ2. We apply Lemma 2.5

to ∂x2x3ϕ2, this leads to

s55λ56

∫∫
Q
e−2sαξ55|∂x2x3ϕ2|2+s53λ54

∫∫
Q
e−2sαξ53|∇∂x2x3ϕ2|2+s51λ52

∫∫
Q
e−2sαξ51|∇2∂x2x3ϕ2|2

+ · · ·+ s7λ8

∫∫
Q
e−2sαξ7|∇24∂x2x3ϕ2|2

≤ C
(
s5λ6

∫∫
Q
e−2sαξ5|∇25∂x2x3ϕ2|2 + s55λ56

∫∫
Qω0

e−2sαξ55|∂x2x3ϕ2|2

+ s7λ8

∫∫
Qω0

e−2sαξ7|∇24∂x2x3ϕ2|2
)
. (2.38)

Step 5: We now apply the Carleman estimate given by Lemma 2.6 to the equation satisfied

by ∇25∂x2x3 , we obtain the following inequality

s5λ6

∫∫
Q
e−2sαξ5|∇25∂x2x3ϕ2|2 + s3λ4

∫∫
Q
e−2sαξ3|∇25∂x2x3ϕ2|2

≤ C
(
s2λ2

∫∫
Q
e−2sα|∇25∂x2x3∂x2π|2 + s5λ6

∫∫
Qω0

e−2sαξ5|∇25∂x2x3ϕ2|2

+ s3λ3

∫∫
Σ
e−2sαξ3|∂n∇25∂x2x3ϕ2|2

)
. (2.39)

Step 6: In order to estimate the global term involving the pressure in the right-hand side of

(2.39), we also employ a Carleman estimate for the pressure. Indeed, by taking the divergence in

(2.3)1 we can easily see that:

ε∂tπ − (1− ε)∆π = 0,

so in particular

∀i ∈ {2, 3}, ε

1− ε
∂t(∂xiπ)−∆(∂xiπ) = 0.

Consequently, from Lemma 2.6 we obtain that:

s2λ3

∫∫
Q
e−2sαξ2|∇25∂x2x3∂x2π|2 + λ

∫∫
Q
e−2sα|∇26∂x2x3∂x2π|2

≤ C
(
s2λ3

∫∫
Qω0

e−2sαξ2|∇25∂x2x3∂x2π|2 + s−1λ−1

∫∫
Σ
e−2sαξ−1|∂n∇25∂x2x3∂x2π|2

)
. (2.40)
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Step 7: We now gather the estimates (2.39) and (2.40) and take λ, s sufficiently large to get

s5λ6

∫∫
Q
e−2sαξ5|∇25∂x2x3ϕ2|2 + s3λ4

∫∫
Q
e−2sαξ3|∇26∂x2x3ϕ2|2

s2λ3

∫∫
Q
e−2sαξ2|∇25∂x2x3∂x2π|2 + λ

∫∫
Q
e−2sα|∇26∂x2x3∂x2π|2

≤ C
(
s5λ6

∫∫
Qω0

e−2sαξ5|∇25∂x2x3ϕ2|2 + s3λ3

∫∫
Σ
e−2sαξ3|∂n∇26∂x2x3ϕ2|2

+ s2λ3

∫∫
Qω0

e−2sαξ2|∇25∂x2x3∂x2π|2 + s−1λ−1

∫∫
Σ
e−2sαξ−1|∂n∇25∂x2x3∂x2π|2

)
. (2.41)

From (2.11) and the regularity result stated in Lemma 2.7, we deduce that for m ≥ 2,

‖s3/2e−sα
∗
(ξ∗)3/2ϕ‖H16,32(Q) + ‖s3/2e−sα

∗
(ξ∗)3/2π‖H15,31(Q)

≤ ‖s3/2+16+16/me−sα
∗
(ξ∗)3/2+16+16/mϕ‖L2(Q) ≤ ‖s51/2e−sα

∗
(ξ∗)51/2ϕ‖L2(Q). (2.42)

Then, we obtain that

s3λ3

∫∫
Σ
e−2sαξ3|∂n∇26∂x2x3ϕ2|2 + s−1λ−1

∫∫
Σ
e−2sαξ−1|∂n∇25∂x2x3∂x2π|2

≤ λ3s51

∫∫
Q
e−2sα∗(ξ∗)51|ϕ|2. (2.43)

So by taking λ sufficiently large, the trace terms of the right hand side of (2.41) can be absorbed

by the left-hand side of (2.32).

Step 8: From (2.35) and (2.42), by integration by parts and cut-off arguments, we have that

there exist r, r′ > 0 such that

s2λ3

∫∫
Qω0

e−2sαξ2|∇25∂x2x3∂x2π|2 = −s2λ3

∫∫
Qω0

e−2sα[∇25∂x2x3∂x2π][(∂t −∆)∇25∂x2x3ϕ2]

≤ ‖s1/2e−sα
∗
(ξ∗)1/2π‖2H15,31(Q) + srλr

′
∫∫

Qω1

e−4sα+2sα∗ξr|∇25∂x2x3ϕ2|2

≤ s51

∫∫
Q
e−2sα∗(ξ∗)51|ϕ|2 + Csrλr

′
∫∫

Qω1

e−4sα+2sα∗ξr|∇25∂x2x3ϕ2|2. (2.44)

This proves that for λ sufficiently large, the local term of the pressure in the right hand side of

(2.41) can be absorbed by the left-hand side of (2.32).
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Step 9: By using (2.38), (2.41), (2.43) and (2.44), we have

s55λ56

∫∫
Q
e−2sαξ55|∂x2x3ϕ2|2+s53λ54

∫∫
Q
e−2sαξ53|∇∂x2x3ϕ2|2+s51λ52

∫∫
Q
e−2sαξ51|∇2∂x2x3ϕ2|2

+ · · ·+ s5λ6

∫∫
Q
e−2sαξ5|∇25∂x2x3ϕ2|2 + s3λ4

∫∫
Q
e−2sαξ3|∇26∂x2x3ϕ2|2

≤ C
(
λ3s51

∫∫
Q
e−2sα∗(ξ∗)51|ϕ|2 + srλr

′
∫∫

Qω1

e−4sα+2sα∗ξr|∇25∂x2x3ϕ2|2

+ s55λ56

∫∫
Qω0

e−2sαξ55|∂x2x3ϕ2|2 + s7λ8

∫∫
Qω0

e−2sαξ7|∇24∂x2x3ϕ2|2

+ s5λ6

∫∫
Qω0

e−2sαξ5|∇25∂x2x3ϕ2|2
)
. (2.45)

Step 10: We now estimate the local term in ϕ2, we proceed by standard integrations by parts,

as in [BP20a, Section 5, Step 3], to obtain

srλr
′
∫∫

Qω1

e−4sα+2sα∗ξr|∇25∂x2x3ϕ2|2 + s7λ8

∫∫
Qω0

e−2sαξ7|∇24∂x2x3ϕ2|2

+ s5λ6

∫∫
Qω0

e−2sαξ3|∇25∂x2x3ϕ2|2

≤ δ
(
s55λ56

∫∫
Q
e−2sαξ55|∂x2x3ϕ2|2+s53λ54

∫∫
Q
e−2sαξ53|∇∂x2x3ϕ2|2+s51λ52

∫∫
Q
e−2sαξ51|∇2∂x2x3ϕ2|2

+ · · ·+ s3λ4

∫∫
Q
e−2sαξ3|∇26∂x2x3ϕ2|2

)
+ Cδs

rλr
′
∫∫

Qω2

e−4sα+2sα∗ξr|∂x2x3ϕ2|2, (2.46)

for some other parameters r, r′ > 0. By taking δ sufficiently small in (2.46), we deduce from (2.45)

the following estimate

s55λ56

∫∫
Q
e−2sαξ55|∂x2x3ϕ2|2+s53λ54

∫∫
Q
e−2sαξ53|∇∂x2x3ϕ2|2+s51λ52

∫∫
Q
e−2sαξ51|∇2∂x2x3ϕ2|2

+ · · ·+ s5λ6

∫∫
Q
e−2sαξ5|∇25∂x2x3ϕ2|2 + s3λ4

∫∫
Q
e−2sαξ3|∇26∂x2x3ϕ2|2

≤ Cλ3s51

∫∫
Q
e−2sα∗(ξ∗)51|ϕ|2 + Csrλr

′
∫∫

Qω2

e−4sα+2sα∗ξr|∂x2x3ϕ2|2. (2.47)

By doing integration by parts in the same spirit as before, we have

s55λ56

∫∫
Q
e−2sαξ55|∂x2x3ϕ2|2+s53λ54

∫∫
Q
e−2sαξ53|∇∂x2x3ϕ2|2+s51λ52

∫∫
Q
e−2sαξ51|∇2∂x2x3ϕ2|2

+ · · ·+ s5λ6

∫∫
Q
e−2sαξ5|∇25∂x2x3ϕ2|2 + s3λ4

∫∫
Q
e−2sαξ3|∇26∂x2x3ϕ2|2

≤ Cλ3s51

∫∫
Q
e−2sα∗(ξ∗)51|ϕ|2 + Csrλr

′
∫∫

Qω3

e−4sα+2sα∗ξr|ϕ2|2, (2.48)
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for other parameters r, r′ > 0.

By using (2.37), (2.42), (2.48) and performing the same strategy from Step 5 to Step 10 for all

the terms appearing in the right-hand side of (2.37), we obtain that there exist r, r′ > 0 such that

s51λ52

∫∫
Q
e−2sα∗(ξ∗)51|ϕ|2 ≤ Csrλr′

∫∫
Qω3

e−4sα+2sα∗ξr(|ϕ2|2 + |ϕ3|2). (2.49)

Step 11: Now, we apply the classical Carleman estimate for the heat equation with homogenous

Dirichlet boundary condition satisfied by ψ, i.e. we use Lemma 2.6,

s3λ4

∫∫
Q
e−3sαξ3|ψ|2 + sλ2

∫∫
Q
e−3sαξ|∇ψ|2

≤ C
(∫∫

Q
e−3sα|ϕ3|2 + s3λ4

∫∫
Qω0

e−3sαξ3|ψ|2
)
. (2.50)

By using (2.13), we sum (2.49) and (2.50) to get

s51λ52

∫∫
Q
e−2sα∗(ξ∗)51|ϕ|2 + s3λ4

∫∫
Q
e−3sαξ3|ψ|2 + sλ2

∫∫
Q
e−3sαξ|∇ψ|2

≤ C

(
srλr

′
∫∫

Qω3

e−4sα+2sα∗ξr(|ϕ2|2 + |ϕ3|2) + s3λ4

∫∫
Qω0

e−3sαξ3|ψ|2
)
. (2.51)

Step 12: To eliminate the local term in ϕ3 in the right-hand side of (2.51), we proceed

exactly as in the proof of Proposition 2.8 in Section 2.3. Therefore, we obtain the desired estimate

(2.22).

2.4.2 A Carleman inequality assuming Hypothesis 1.3

The goal of this part is to prove the following result:

Proposition 2.12. Let Ω, ω be such that Hypothesis 1.3 holds and let m ≥ 12. Then, there

are ε0 > 0, C > 0 and λ0 ≥ 1 such that if T > 0, ε ∈ (0, ε0), ϕT ∈ (L2(Ω))3, λ ≥ λ0, and

s ≥ eCλ(Tm + T 2m), we have:

s16λ17

∫∫
Q
e−2sα∗(ξ∗)15|ϕ|2 + s3λ4

∫∫
Q
e−

201
100

sαξ3|ψ|2 ≤ C
∫∫

Qω

e−sα
∗
(|ψ|2 + |ϕ2|2), (2.52)

for the weights defined in (2.9) and for (ϕ,ψ) the solution of (2.3).

To prove Proposition 2.12, we follow the strategy of [FCGIP06], which consists in getting a

Carleman estimate with some local terms and then using that the observation domain touches the

boundary. The fact that the coupling of the system is of order 2 is an additional difficulty with

respect to the systems treated in [FCGIP06].
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Proof of Proposition 2.12. First of all, we consider that, by taking a smaller control domain if

necessary, we can suppose that there are γ ∈ 〈e2, e3〉 and Γ̃ ⊂ Γ a relatively open set such that

ω = {x+ λγ : x ∈ Γ̃, λ ∈ (0, 1)}. In addition, we consider

ω1 := {x+ λγ : x ∈ Γ̂, λ ∈ (0, 1/2)}, (2.53)

for Γ̂ a relatively open set contained in Γ̃. Finally, we consider ω0 a non-empty open set compactly

contained in ω1.

In order to prove the Carleman inequality (2.52), we first remark that ∂x1ϕ1 satisfies the equation:(
ε

1 + ε
∂t −∆

)
∂x1ϕ1 =

1

1 + ε
(∂x1x1x2ϕ2 + ∂x1x1x3ϕ3 + ∂x1x2x2ϕ1 + ∂x1x3x3ϕ1) . (2.54)

To continue with, using Poincaré’s inequality for ϕ1 and Lemma 2.5 for ∂x1ϕ1 with k = 1, we

obtain that:

s16λ17

∫∫
Q
e−2sα∗(ξ∗)16|ϕ1|2 + s16λ17

∫∫
Q
e−2sαξ16|∂x1ϕ1|2 + s14λ15

∫∫
Q
e−2sαξ14|∇∂x1ϕ1|2

≤ C
(
s12λ13

∫∫
Q
e−2sαξ12|∇2∂x1ϕ1|2 + s16λ17

∫∫
Qω0

ξ16|∂x1ϕ1|2

+ s14λ15

∫∫
Qω0

ξ14|∇∂x1ϕ1|2
)
. (2.55)

In particular, by using (2.54) and the Carleman estimate coming from Lemma 2.6 for the terms of

∇2∂x1ϕ1 we obtain that:

s12λ13

∫∫
Q
e−2sαξ12|∇2∂x1ϕ1|2 ≤ C

(
s9λ9

∫∫
Q
e−2sαξ9|∇2g|2 + s12λ13

∫∫
Qω0

ξ12|∇2∂x1ϕ1|2

+ s10λ10

∫∫
Σ
e−2sαξ10|∂n∇2∂x1ϕ1|2

)
, (2.56)

for g := ∂x1x1x2ϕ2 + ∂x1x1x3ϕ3 + ∂x1x2x2ϕ1 + ∂x1x3x3ϕ1.

To continue with, we find from Poincaré’s inequality and Lemma 2.5 with k = 0 that:

s17λ18

∫∫
Q
e−2sα∗(ξ∗)17(|ϕ2|2 + |ϕ3|2) + s17λ18

∫∫
Q
e−2sαξ17(|∂x1ϕ2|2 + |∂x1ϕ3|2)

≤ C
(
s15λ16

∫∫
Q
e−2sαξ15(|∇∂x1ϕ2|2 + |∇∂x1ϕ3|2)

+ s17λ18

∫∫
Qω0

e−2sαξ17(|∂x1ϕ2|2 + |∂x1ϕ3|2)

)
. (2.57)
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Next, we remark that we can follow the steps 3-11 of Section 2.4.1 and by using the estimates

on the weights (2.12), (2.13), Lemmas 2.6 and 2.7 and (2.55), (2.56), (2.57), we deduce that:

s16λ17

∫∫
Q
e−2sα∗(ξ∗)15|ϕ|2 + s3λ4

∫∫
Q
e−

201
100

sαξ3|ψ|2 ≤ C
(∫∫

Qω1

e−
31
16
sα(|ψ|2 + |ϕ2|2)∫∫

Qω1

e−
31
16
sα∗ |∂x1ϕ1|2 + s10λ10

∫∫
Σ
e−2sαξ10|∂n∇2∂x1ϕ1|2

)
. (2.58)

Remark 2.13. It helps us to have only derivatives of ∂x1ϕ2 and ∂x1ϕ2 in the right-hand side of

(2.57) because we eventually do a Carleman inequality for ∇i∂x1ϕ as in [BP20a, Section 5], so the

local term that we get is of the form ∇i∂x1ϕ. If instead of having ∂x1ϕ2 and ∂x1ϕ2 we had ∇ϕ2 and

∇ϕ3, after applying the Carleman estimate to ∇iϕ we would get a local term which have ∂ix2ϕ1

and ∂ix3ϕ1 terms from which we do not know how to get a Carleman inequality with a local term

that only depends on ϕ2 and ψ.

Let us now treat the boundary term of ϕ1 as in Section 2.4.1. By interpolation and Lemma 2.7

we have:

s10λ10

∫∫
Σ
e−2sαξ10|∂n∇2∂x1ϕ1|2

≤ C‖s23/4λ23/4e−sα
∗
(ξ∗)23/4ϕ‖1/2

L2(0,T ;H4(Ω))
‖s19/4λ19/4e−sα

∗
(ξ∗)19/4ϕ‖3/2

L2(0,T ;H6(Ω))

≤ C‖s31/4+2/mλ23/4e−sα
∗
(ξ∗)23/4ϕ‖1/2

L2(Q)
‖s31/4+3/mλ19/4e−sα

∗
(ξ∗)31/4+3/mϕ‖3/2

L2(Q)
.

So, if m ≥ 12, we have that the trace term in the right-hand side of (2.58) can be absorbed by the

left-hand side of (2.58), then we obtain:

s16λ17

∫∫
Q
e−2sα∗(ξ∗)15|ϕ|2 + s3λ4

∫∫
Q
e−

201
100

sαξ3|ψ|2 ≤ C
(∫∫

Qω1

e−
31
16
sα(|ψ|2 + |ϕ2|2)

+

∫∫
Qω1

e−
31
16
sα∗ |∂x1ϕ1|2

)
. (2.59)

Let us now estimate the third right-hand side term of (2.59). From (2.53), recalling that e1

is tangent to every point of Γ̃ by Hypothesis 1.3, ∂x1ϕ1 ≡ 0 in ∂ω1 ∩ ∂Ω, and from Poincaré’s

inequality we obtain that:∫∫
Qω1

e−
31
16
sα∗ |∂x1ϕ1|2 ≤ C

∫∫
Qω1

e−
31
16
sα∗(|∂x2x1ϕ1|2 + |∂x3x1ϕ1|2). (2.60)

Consequently, by using the equations (2.33), we can estimate the local terms in the right-hand side

of (2.60) in function of local terms of ϕ2 and ϕ3. By putting this in (2.59), we bound the local

term in ∂x1ϕ1 by local terms in ϕ2 and ϕ3. In addition, we can deal with the local term of ϕ3 by

using the equation satisfied by ψ as before. Hence, by straightforward computations, we obtain the

expected estimate (2.52).
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2.5 Source term method

In this section we adapt the source term method of [LTT13] to our case. More precisely, from

Proposition 2.1 we have an estimate for the control cost in L2 of system (2.1). We now fix M > 0

such that K(T ) ≤MeM/Tm
, with K(T ) defined as in (2.2). In addition, we fix the values:

q ∈ (1,
2m
√

2), p > q2m/(2− q2m), (2.61)

and the weights:

ρ0(t) := M−p exp

(
− Mp

(q − 1)m(T − t)m

)
, (2.62)

ρF (t) := M−1−p exp

(
− (1 + p)q2mM

(q − 1)m(T − t)m

)
. (2.63)

In addition, we define associated spaces for the source term, the state and the control:

F :=

{
f ∈ L2(Q)N+1 :

f

ρF
∈ L2(Q)N+1

}
, (2.64)

Y :=

{
(y, θ) ∈ (L2(Q))N+1 :

(y, θ)

ρ0
∈ L2(Q)N+1

}
, (2.65)

V :=

{
v ∈ L2(Qω)N+1 :

v

ρ0
∈ L2(Qω)N+1 and v satisfies (1.2)

}
. (2.66)

From the proof of [LTT13, Proposition 2.3], we deduce the null controllability of (2.1):

Proposition 2.14. Let Ω, ω be such that Hypothesis 1.1, 1.2 or 1.3 holds. Then, there exist ε0 > 0,

m ≥ 1 and C > 0 such that for every T > 0, ε ∈ (0, ε0), f ∈ F , (y0, θ0) ∈ L2(Ω)N+1, there exists a

control v ∈ V such that the solution (y, θ) of (2.1) belongs to Y and we have the following estimate:

‖(y, θ)/ρ0‖C([0,T ];L2(Ω)) + ‖v/ρ0‖L2(Qω) ≤ C
(
‖(y0, θ0)‖L2(Ω) + ‖f/ρF‖L2(Q)

)
. (2.67)

In particular, (y, θ)(T ) = 0.

The next proposition gives more information on the regularity of the controlled trajectory

obtained in Proposition 2.14. We consider the weight:

ρ(t) = exp

(
− Mβ

(q − 1)m(T − t)m

)
, with

(1 + p)q2m

2
< β < p.

We remark that ρ(T ) = 0 and that ρ satisfies the inequalities:

ρ0 ≤ Cρ, ρF ≤ Cρ, |ρ′|ρ0 ≤ Cρ2, ρ2 ≤ CρF . (2.68)
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Proposition 2.15. Let Ω, ω be such that Hypothesis 1.1, 1.2 or 1.3 holds. Then, there exist ε0 > 0,

m ≥ 1 and C > 0 such that for every T > 0, ε ∈ (0, ε0), f ∈ F , (y0, θ0) ∈ H1
0 (Ω)N+1, there exists

a control v ∈ V such that the solution (y, θ) of (2.1) satisfies:

‖(y, θ)/ρ‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) + ‖v/ρ0‖L2(Qω) ≤ C
(
‖(y0, θ0)‖H1

0 (Ω) + ‖f/ρF‖L2(Q)

)
. (2.69)

In particular, (y, θ)(T ) = 0.

The proof of Proposition 2.15 is a straightforward adaptation of the proof of [LTT13, Proposition

2.8] by using a regularity estimate of the penalized Stokes system (see Lemma 2.3) and of the heat

equation.

Remark 2.16. For each f ∈ F and (y0, θ0) ∈ H1
0 (Ω)N+1, by classical arguments (see [LTT13,

Proposition 2.9]), we can fix a control v ∈ V such that (y, θ) and v satisfy (2.69) by choosing

among those the unique minimizer of the functional v 7→ ‖(y, θ)/ρ‖2L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) +

‖v/ρ0‖2L2(Qω).

3 Local null-controllability of the nonlinear Boussinesq system

In this section we conclude the proof of Theorem 1.2. In particular, it is organised as follows:

• In Section 3.1 we use a fixed-point argument to get the local null-controllability of the non-

linear system (1.1) for initial data in H1
0 (Ω)N+1.

• In Section 3.2 we use a regularization argument to deduce the local null-controllability of

(1.1) for initial data in L2(Ω)N+1.

3.1 Fixed-point argument

In this section, we give the proof of Theorem 1.2 for initial data in H1
0 (Ω)N+1. In this part, C

denotes a positive constant that depends on Ω, ω and T but independent of ε and varying from

line to line. In addition, we denote:

Fr := {f ∈ F : ‖f/ρF‖L2(Q) ≤ r}, (3.1)

for r > 0 a small enough parameter independent of ε that will be determined later.

We now fix (y0, θ0) ∈ H1
0 (Ω)N+1 such that:

‖(y0, θ0)‖H1
0 (Ω) ≤ r. (3.2)
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It follows that we can define an operator N acting on Fr by:

N (f) :=

(
−(y · ∇)y − 1

2
(∇ · y)y,−y · ∇θ − 1

2
(∇ · y)θ

)
, (3.3)

where (y, θ) is the corresponding trajectory of (2.1) associated to the initial values (y0, θ0), the

force f and the control v given by Proposition 2.15 and Remark 2.16.

To conclude the proof of Theorem 1.2 for regular initial data it suffices to check that, for r > 0

small enough not depending on ε, N is a contractive mapping from Fr into itself and then apply

the Banach fixed-point theorem.

Step 1: Fr is invariant for N provided that r is small enough. By using (2.68)3 and the

Sobolev embeddings H1(Ω) ↪→ L4(Ω) and H2(Ω) ↪→ W 1,4(Ω) because N ≤ 3, we have for almost

every t ∈ (0, T ):∥∥∥∥N (f)

ρF
(t)

∥∥∥∥
L2(Ω)

≤ C
∣∣∣∣ ρ2

ρF
(t)

∣∣∣∣ ( ∥∥∥∥(y · ∇)y

ρ2
(t)

∥∥∥∥
L2(Ω)

+

∥∥∥∥(∇ · y)y

ρ2
(t)

∥∥∥∥
L2(Ω)

+

∥∥∥∥y · ∇θρ2
(t)

∥∥∥∥
L2(Ω)

+

∥∥∥∥(∇ · y)θ

ρ2
(t)

∥∥∥∥
L2(Ω)

)
≤ C

(∥∥∥∥yρ(t)

∥∥∥∥
L4(Ω)

∥∥∥∥∇yρ (t)

∥∥∥∥
L4(Ω)

+

∥∥∥∥yρ(t)

∥∥∥∥
L4(Ω)

∥∥∥∥∇θρ (t)

∥∥∥∥
L4(Ω)

+

∥∥∥∥∇yρ (t)

∥∥∥∥
L4(Ω)

∥∥∥∥θρ(t)

∥∥∥∥
L4(Ω)

)
≤ C

(∥∥∥∥yρ(t)

∥∥∥∥
H1(Ω)

∥∥∥∥yρ(t)

∥∥∥∥
H2(Ω)

+

∥∥∥∥yρ(t)

∥∥∥∥
H1(Ω)

∥∥∥∥θρ(t)

∥∥∥∥
H2(Ω)

+

∥∥∥∥yρ(t)

∥∥∥∥
H2(Ω)

∥∥∥∥θρ(t)

∥∥∥∥
H1(Ω)

)
.

Then, by integrating in the interval time t ∈ (0, T ) and by using (2.69), (3.2) and (3.1), we have:∥∥∥∥N (F )

ρF

∥∥∥∥
L2(Q)

≤ C

(∥∥∥∥yρ
∥∥∥∥
C([0,T ];H1

0 (Ω))

(∥∥∥∥yρ
∥∥∥∥
L2(0,T ;H2(Ω))

+

∥∥∥∥θρ
∥∥∥∥
L2(0,T ;H2(Ω))

))

+ C

∥∥∥∥θρ
∥∥∥∥
C([0,T ];H1

0 (Ω))

∥∥∥∥yρ
∥∥∥∥
L2(0,T ;H2(Ω))

≤ C
(
‖(y0, θ0)‖2H1

0 (Ω) + ‖F/ρF‖2L2(Q)

)
≤ Cr2.

So, for r > 0 small enough, N stabilises Fr.
Step 2: N is contracting provided that r is small enough. Using the same kind of

arguments, it is not difficult to obtain that:∥∥∥∥N (f1)−N (f2)

ρF

∥∥∥∥
L2(Q)

≤ Cr
∥∥∥∥f1 − f2

ρF

∥∥∥∥
L2(Q)

.
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Consequently, by taking r sufficiently small, N is a contracting mapping on the closed ball Fr.
Therefore, by the Banach fixed point theorem, N has a unique fixed-point f . By denoting (y, θ, v)

the associated trajectory to f , we find that (y, θ, v) satisfies the system (1.1) and (y, θ)(T ) = 0.

Remark that r does not depend on ε, so the control is bounded uniformly when ε goes to 0. This

concludes the proof.

3.2 Smoothing effect of the nonlinear Boussinesq system

In this section, we give the proof of Theorem 1.2 for data in L2(Ω)N+1. This type of arguments

have already been used in [CMS20] and [CSFCB+20]. The key remark is the following regularity

lemma.

Lemma 3.1. Let T > 0. There exists a positive constant CT > 0 such that for every ε > 0, any

(y0, θ0) ∈ L2(Ω)N+1 and any weak solution of (1.1) with control v ≡ 0,

∃t0 ∈ [0, T ], ‖(y, θ)(t0, ·)‖H1(Ω) ≤ CT ‖(y0, θ0)‖L2(Ω) .

Proof. We multiply (1.1)1 by y and (1.1)2 by θ, then integrate in Ω, we find(
d

dt

∫
Ω
y(t, ·)2

)
+

∫
Ω
|∇y(t, ·)|2 +

1

ε

∫
Ω

(∇ · y(t, ·))2 =

∫
Ω
θ(t, ·)yN (t, ·),

(
d

dt

∫
Ω
θ(t, ·)2

)
+

∫
Ω
|∇θ(t, ·)|2 = 0.

We sum, use Young’s inequality and Gronwall’s lemma to obtain that there exists C > 0 such that

for all t ∈ [0, T ]:

‖(y, θ)(t, ·)‖2L2(Ω) +

∫ t

0
‖(y, θ)(s, ·)‖2H1(Ω) ds ≤ C ‖(y0, θ0)‖2L2(Ω) .

In particular, this gives us the existence of a time t0 ∈ [0, T ] such that

‖(y, θ)(t0, ·)‖H1(Ω) ≤
√
C

T
‖(y0, θ0)‖L2(Ω) .

This concludes the proof with CT =
√
C/T .

We now have all the tools to end the proof of Theorem 1.2.

Proof of Theorem 1.2. We can control the initial data with the following three steps:

Step 1: regularization of the data. By setting v ≡ 0 and by using Lemma 3.1, we deduce

that there exists t0 ∈ (0, T/2) such that ‖(y, θ)(t0, ·)‖H1(Ω) ≤ CT/2 ‖(y0, θ0)‖L2(Ω).
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Step 2: local null-controllability result in time T/2. By taking (y0, θ0) ∈ L2(Ω)N+1

such that CT/2 ‖(y0, θ0)‖L2(Ω) ≤ δT/2, where δT/2 is the radius of local null-controllability of (1.1)

for initial data in H1
0 (Ω)N+1, we obtain that there exists a control v ∈ L2((t0, t0 + T/2) × ω)N+1

satisfying (1.2) such that (y, θ)(t0 + T/2, ·) = 0.

Step 3: do nothing at the end of the interval time. We set v ≡ 0 in (t0 + T/2, T ) × ω,

so (y, θ)(T, ·) = 0.

4 Remarks and open problems

In this section, we make some remarks and formulate some open problems concerning the null-

controllability of the penalized Boussinesq system (1.1).

• If N = 3 by symmetry and by adapting Hypotheses 1.2 or 1.3, we can construct controls

which satisfy:

λ1v1 + λ2v2 = v3 = 0

for any λ1, λ2 ∈ R. Indeed, all the proofs in this paper can be adapted to these situations by

a simple change of coordinates.

• We can prove analogue controllability results assuming Hypothesis 1.1, 1.2 or 1.3 for the

penalized Navier-Stokes system, which we recall is given by:

yt −∆y + (y · ∇)y + 1
2 (∇ · y) y +∇p = v1ω in Q,

∇ · y = −εp in Q,

y = 0, on Σ,

y(0) = y0, in Ω.

(4.1)

Indeed, by following the strategy of this paper and by omitting the steps related with the

heat equation satisfied by θ, we can prove that (4.1) is locally null-controllable uniformly

on ε with a control v with one null component. Obtaining the local null-controllability of

(4.1) with a control with two null-components in 3-D is an interesting open problem. A good

strategy seems to employ the return method in the spirit of [CL14].

• The exponents of s, λ and ξ and the constant m stated in Propositions 2.8, 2.10 and 2.12 are

a bit arbitrary. In particular, by combining Lemmas 2.5 and 2.7 a sufficient number of times

we can get an analogous result for any m > 1 by choosing the exponent of s, λ and ξ large

enough. This implies that the cost of the null controllability of the linearised system without

a source term is less than CeCT
−m

for all m > 1.
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• Removing the geometrical hypothesis on Ω is an interesting open problem.

• There are still plenty of systems with penalizations which approximate the incompressibility

condition (see [She97]) whose null controllability properties have not been studied yet.

A Proof of Lemma 2.7

Let us prove Lemma 2.7. The proof consists in two steps: first we use parabolic regularity

estimates and then we estimate the weights.

As a first step, we prove the following result:

Lemma A.1. Let k ∈ N and h ∈ Hk
0 (0, T ). Then, there is C > 0 such that for all ϕT ∈ L2(Ω):

‖hϕ‖Hk,2k(Q) + ‖hπ‖Hk−1,2k−1(Q)1k≥1 ≤ C‖hk)ϕ‖L2(Q), (A.1)

for (ϕ, π) the solution of (2.17).

Proof of Lemma A.1. The proof of Lemma A.1 is done by induction. The base case, k = 0, is trivial.

Let us now prove the inductive case. By hypothesis we have (A.1) for any function h ∈ Hk
0 (0, T )

and we have to prove the estimate:

‖hϕ‖Hk+1,2(k+1)(Q) + ‖hπ‖Hk,2k+1(Q) ≤ C‖hk+1)ϕ‖L2(Q), (A.2)

for any function h ∈ Hk+1
0 (0, T ). We have that (hϕ, hπ) satisfies:

−(hϕ)t −∆(hϕ) +∇(hπ) = h′ϕ in Q,

εhπ +∇ · (hϕ) = 0 in Q,

hϕ = 0 on Σ,

(hϕ)(T, ·) = 0 in Ω.

Thus, since h and its derivatives get null on t = T , Lemma 2.3 implies that:

‖hϕ‖Hk+1,2(k+1)(Q) + ‖hπ‖Hk,2k+1(Q) ≤ C‖h′ϕ‖Hk,2k(Q). (A.3)

As h′ ∈ Hk
0 (0, T ) we can now use the inductive hypothesis (A.1) and obtain (A.2) from (A.3).

Using Lemma A.1 with h = sre−sα
∗
(ξ∗)r we find that:

‖sre−sα∗(ξ∗)rϕ‖Hk,2k(Q) + ‖sre−sα∗(ξ∗)rπ‖Hk−1,2k−1(Q) ≤ ‖∂kt (sre−sα
∗
(ξ∗)r)ϕ‖L2(Q). (A.4)
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To conclude, we have to estimate the time derivative of the weights. We first recall the following

result, which is classical, whose proof is sketched for completeness:

Lemma A.2. Let k ∈ N∗. Then, for all s ≥ C(λ)Tm we have the following estimate:

|∂kt ξ∗|+ |∂kt α∗| ≤ sk/m(ξ∗)1+k/m. (A.5)

Sketch of the proof of Lemma A.2 . It is easy to prove by induction that:

∂kt ξ
∗ =

q(t, T )

(t(T − t))m+k
, ∂kt α

∗ =
q(t, T )(e2λ‖η‖∞ − 1)

(t(T − t))m+k
. (A.6)

for q a homogeneous polynomial of degree k. Thus, considering that t ≤ T ≤ (C(λ))−1s1/m as

s ≥ C(λ)Tm, we easily obtain (A.5) from (A.6).

Finally, (A.5) and sξ∗ ≥ 1 imply the estimate:

∂kt (sre−sα
∗
(ξ∗)r) ≤ Csr

∑
i1+···+ik+1=k

 ∏
j=1,...,k:ij 6=0

s∂
ij
t α
∗

 e−sα
∗
∂
ik+1

t [(ξ∗)r]

≤ sr+k+k/m(ξ∗)r+k+k/me−sα
∗
. (A.7)

Indeed, we get the maximum exponent for s and ξ∗ in (A.7) by picking j1, . . . , jk = 1 and jk+1 = 0.

Consequently, we obtain the desired estimate (2.16) from (A.4) and (A.7).
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