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33405 Talence cedex, France

Abstract

Pick n points Z0, ..., Zn−1 uniformly and independently at random in a compact convex set H with
non empty interior of the plane, and let Qn

H be the probability that the Zi’s are the vertices of a convex
polygon. Blaschke 1917 [1] proved that Q4

T ≤ Q4
H ≤ Q4

D, where D is a disk and T a triangle. In the present
paper we prove Q5

T ≤ Q5
H ≤ Q5

D. One of the main ingredients of our approach is a new formula for Qn
H of

independent interest.
We conjecture that the new formula we provide for Qn

H will lead in the future to the complete proof
that Qn

T ≤ Qn
T ≤ Qn

H , for any n: we provide some partial results in this direction.
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1 Introduction

Notations and convention. All the random variables (r.v.) in the paper are assumed to be defined on a
common probability space (Ω,A,P). The expectation is denoted by E. For any n ≥ 1, any generic variable
name z, z[n] stands for the n-tuple (z0, . . . , zn−1). The set of compact convex subsets of R2 with non empty
interior is denoted CCS. For any H ∈ CCS and any n ≥ 0, PnH is the notation for the law of Z[n], a sequence
of n i.i.d. points taken under the uniform distribution on H. Last, we denote by Ja, bK := [a, b] ∩ Z.

1.1 The new result

A n-tuple of points x[n] of the plane is said to be in a convex position if {x0, · · · , xn−1} is the vertex set
of a convex polygon. Denote by CPn the set of n-tuples x[n] in a convex position. Finally let

QnH := PnH(CPn) = P(Z[n] ∈ CPn),

where Z[n] is PnH distributed. The aim of this paper is to prove the following theorem:

Theorem 1. For any H ∈ CCS,

11/36 = Q5
T ≤ Q5

H ≤ Q5
D = 1− 305/(48π)2,

with equality, at the left, when H is a triangle only, at the right, only when H is an ellipse.

We think that more generally,

Conjecture 1. For any n ≥ 6, QnT ≤ QnH ≤ QnD.
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Elements supporting these conjecture are developed in Section 4.
The sequences (QnT , n ≥ 0) and (QnD, n ≥ 0) are known, see respectively Valtr [14] and Marckert [7].
Of course, when n ≤ 3, QnH does not depend on H so that the first non trivial results appear when n = 4:

Blaschke [1] proved in 1917 that for any H ∈ CCS,

2/3 = Q4
T ≤ Q4

H ≤ Q4
D = 1− 35/(12π)2,

with equality cases being also the triangle and the disk, respectively.
The method of Blaschke relies on two ingredients:

A. there is an “algebraic formula” for Q4
H :

Q4
H = 1− 4EH(Area(Z0, Z1, Z2)) = 1− 2EH(| det(Z1 − Z0, Z2 − Z0)|) (1)

where EH(Area(Z[3])) is the expectation of the area of the triangle Z[3] under P3
H (since 4 points are not in

a convex position, if one of them lies in the triangle formed by the 3 other ones).

B. Steiner symmetrization and shaking (see definitions below) have the following property:
a. If HSym (resp. HSha) are obtained from H by a Steiner symmetrization (resp. a shaking) with respect

to the x-axis, then

Q4
HSym ≥ Q4

H , Q4
HSha ≤ Q4

H , (2)

with equality only for some identified special cases;
b. For any H0 ∈ CCS, there exists a sequence of lines (∆i, i ≥ 1), so that for Hi+1 obtained from Hi by

Steiner symmetrization (resp. shaking) with respect to ∆i+1, the sequence (Hn) converges to a disk (resp.
to a triangle) for the Hausdorff distance (see Klartag [5] and Campi, Colesanti and Gronchi [3] for modern
and general treatments).

Remark 2. Formula (2) is only needed for Steiner symmetrization and shaking with respect to the x-axis,
since rotations preserve uniform distributions and convexity, and then can be performed in alternations with
symmetrization and shaking.

In the present paper we use the same methodology, which will lead to another proof of the n = 4 case
(Blaschke result), and a new proof in the n = 5 case : the main contribution is a new “algebraic formula” for
QHn . We will prove the following analogous of (2)

Theorem 3. For n ∈ {4, 5},

QnHSym ≥ QnH , QnHSha ≤ QnH .

Theorem 3 together with point B.b of the “Blaschke strategy” implies Theorem 1.

The quotation marks around “algebraic formula” are here to mark that the determinant is algebraic in
the coordinates of the Z ′js but (1) is somewhat more complex since it involves an absolute value, and an
expectation. In the case n = 4, this expectation is a triple integral over H that could be as unpleasant as
one could imagine.

One of the main advances in the paper is a new “algebraic” formula for QnH (including Q4
H) which avoids

absolute values, and which is given in terms of n+ 2 real integrals of a polynomial. We were able to compare
the polynomials appearing when computing QnH , Q

n
HSym and Qn

HSha only for n ∈ {4, 5}. We think that the
results holds in all generality but despite many attempts we were not able to get a complete proof of the
remaining cases.
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1.2 Related results

The problem of determining QnH goes back to a question (badly) posed by Sylvester [12]. Finally, the
adopted question was to the following: prove that the map H 7→ Q4

H takes its maximum on CCS when H
is a disk and its minimum when H is a triangle, Theorem finally proved by Blaschke [1] (see Pfeifer [10] for
historical notes). Recently some advances have been made on the exact computations of QnH : Valtr [13, 14]
showed that if S is a square (or a non flat parallelogram) and if T is a non flat triangle then, for n ≥ 1,

QnS =

((
2n−2
n−1

)

n!

)2

, QnT =
2n(3n− 3)!

(n− 1)!3(2n)!
.

Buchta [2] goes further and gives an expression for Qn,mS and Qn,mT , the probability that m points exactly
among the n random points are on the boundary of the convex hull. The first author of the present paper
gives a formula for QnD (and Qn,mD ) in the disk case [7].

The literature concerning the question of the number of points on the convex hull for i.i.d. random points
taken in a convex domain is huge. We won’t make a survey here but rather refer the reader to Reitzner [11]
and Hug [4] for an overview of the topic.

As far as we know, Blaschke result has not been extended in the direction we propose here, but rather,
in the multidimensional case, where Blaschke [1] proved that

Qd+2
K ≤ Qd+2

Bd
, for any K ∈ Kd, (3)

where Kd is the set of compact convex bodies in Rd with non empty interior, Bd is the unit ball in Rd. The
inequality Qd+2

∆d
≤ Qd+2

K for any K ∈ Kd, where ∆d is the simplex in Rd is still a conjecture. Milman & Pajor
[9, Prop. 5.6] established that if it holds, then the hyperplane conjecture (or slicing problem) holds true:
there exists a universal constant c > 0 such that for every d and for every convex body K of volume one in
Rd there exists an hyperplane H such that |K ∩H| ≥ c. This connection is another justification for our work
since a right understanding of the 2-D case can be a step in the right direction.

1.3 Content of the paper

Most of the paper is devoted to proving Theorem 3. In section 3, we recall what are Steiner symmetrization
and shaking with respect to the x-axis.

Take Z[n] under PnK for some K ∈ CCS, and for every j, let (Xj , Yj) be the coordinates of Zj in R2.
In Section 2, we give a new formula – that we call the bi-comb formula – for

P(Z[n] ∈ CPn | X[n] = x[n]), (4)

which is the conditional probability that the points of Z[n] are in a convex position, given the abscissa
x[n] = (x0, · · · , xn−1) of these points.

What is somehow remarkable, is that P(Z[n] ∈ CPn | X[n] = x[n]) is totally explicit and, more than that,
for any fixed x[n], it is a polynomial with degree n in the extreme ordinates (yH(xi), yH(xi)) of the vertical
slices of the convex set H at the abscissas xi.

Now, the optimisation of these formula can be done : a property of the Steiner symmetrization and
shaking with respect to the x-axis is that the distribution of the abscissas X[n] of random points Z[n] taken
uniformly, is the same for the convex sets H, HSym or HSha. It suffices then to compare the bi-comb formulas
for each of these convex sets (with again, X[n] = x[n] fixed) to conclude. This is the intent of Prop. 8 which
asserts that Theorem 3 holds when we condition on X[n] = x[n] for any sequence x[n] (Section 3).
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2 A general formula for QN+2
H

A well known property is that inversible affine maps of R2 conserve convexity and uniformity; hence:

Lemma 4. For any inversible affine map A of R2, for any H ∈ CCS, we have QnA(H) = QnH .

In the sequel, we will work with convex bodies with area 1 only.

2.1 Abscissas fibration

As represented on Fig. 1, for any H with area 1, denote by xH(min) = min{x : (x, y) ∈ H} and
xH(max) = max{x : (x, y) ∈ H} the minimum and maximum abscissas of H and let,

yH(x) := sup{y : (x, y) ∈ H}, for x ∈ [xH(min), xH(max)]

y
H

(x) := inf{y : (x, y) ∈ H}, for x ∈ [xH(min), xH(max)].

xH(min) xH(max)

HSha

HSym

yH(x)

y
H
(x)

H HH

x x
x

WH(x)

WH(x)

WH(x)

WH(x)/2

Figure 1: A convex body, and then, its shaking and Steiner symmetrization with respect to the x-axis.

The width function WH : R→ R is defined by

WH(x) =
(
yH(x)− y

H
(x)
)

1[xH(min),xH(max)](x).

The vertical segment intersecting H at abscissa x is denoted

VH(x) =
[
(x, y

H
(x)), (x, yH(x))

]
. (5)

The law of the abscissa X of a uniform point (X,Y ) taken in H has density WH .

Note 5. Instead of taking n points at random in H, in the sequel we will take N + 2 points at random! Of
course for n = N + 2 this is equivalent, but it will be useful in our decompositions/recurrences to have a point
with rank 0, and one with rank N + 1, to provide simpler recurrence, with respect to the involved indices.

Let Z[N + 2] be taken under PN+2
H and let (Xj , Yj) be the coordinates of Zj in the plane. Consider τ the

a.s. well defined permutation in the symmetric group S(J0, N + 1K) such that

Xτ(0) ≤ · · · ≤ Xτ(N+1).
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By symmetry, the permutation τ is uniform in S(J0, N + 1K) and independent from the set of values {Xj , 0 ≤
j ≤ N + 1}. The density of Xτ :=

(
Xτ(j), 0 ≤ j ≤ N + 1

)
on RN+2 is

fH(x[N + 2]) = (N + 2)!



N+1∏

j=0

WH(xj)


1NDN+2

(x[N + 2]) (6)

where, for any n ≥ 1, NDn = {x[n] : x0 < · · · < xn−1} is the set of non decreasing sequences with n elements.
Conditional on (Xτ(j), 0 ≤ j ≤ N + 1) = x[N + 2], the variables Zτ(0), · · · , Zτ(N+1) are independent, and
Zτ(j) is uniform on VH(xj). We introduce a crucial object of the paper:

Definition 6. Consider N+2 (vertical or not) segments S[N+2] = (S0, · · · , SN+1) of the plane and U [N+2]
a N + 2-tuple of independent r.v. where Uj is uniform on Sj. We denote by

〈
S[N + 2]

〉
:= P (U [N + 2] ∈ CPN+2),

the probability that the Uj’s are in a convex position.

To compute QN+2
H , one can condition on the value of Xτ and get

QN+2
H =

∫

NDN+2

〈
VH(x0), · · · , VH(xN+1)

〉
fH(x[N + 2]) dx0 · · · dxN+1. (7)

In the next subsection, we will see that there exists a close formula for
〈
VH(x0), · · · , VH(xN+1)

〉
, and we

will call this formula the bi-comb formula.
For the optimisation purpose, one may say that the only thing that really matters is to understand〈

VH(x0), · · · , VH(xN+1)
〉
. To see this, recall the following :

Definition 7. The convex bodies obtained from H by Steiner symmetrization and shaking with respect to the
x-axis are respectively (see Fig. 3) :

HSym = {(x, y) : xH(min) ≤ x ≤ xH(max), |y| ≤WH(x)/2} ,
HSha = {(x, y) : xH(min) ≤ x ≤ xH(max), 0 ≤ y ≤WH(x)} .

In other words, xH(min) = xHSha(min) = xHSym(min) and xH(max) = xHSha(max) = xHSym(max), and

yHSym(x) = −y
HSym(x) = WH(x)/2,

yHSha(x) = WH(x), y
HSha(x) = 0.

Since the width functions WH ,WHSha and WHSym coincide, by (6)

fH(x[N + 2]) = fHSha(x[N + 2]) = fHSym(x[N + 2]).

Hence, Theorem 1 appears to be a consequence of the following proposition:

Proposition 8. For H ∈ CCS, N ∈ {2, 3}, and x[N + 2] ∈ NDN+2 ∩ [xH(min), xH(max)]N+2,
〈
V Sha
H (x0), · · · , V Sha

H (xN+1)
〉
≤
〈
VH(x0), · · · , VH(xN+1)

〉
≤
〈
V Sym
H (x0), · · · , V Sym

H (xN+1)
〉
. (8)

It is important to stop here, and have a look to the three sequences of vertical lines appearing in (8).
Each of these sequences will be called “bi-comb” in the sequel. They are successions of vertical lines at the
same abscissas, and having the same lengths (see Fig. 2).

Remark 9. The exact position in the plane of these segments is not important : applying an inversible affine
map to a comb preserves convexity and the independence and uniform distribution of the random points picked
on the segments, so that it is possible to normalise the three combs appearing in the previous Proposition.
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A procedure to fix the same extremal segments (see Fig. 2)

Lemma 10 (Normalization Lemma). Consider a bi-comb C = (W (xi), 0 ≤ i ≤ N + 1). By an inversible
affine map which preserves abscissas it is possible to send C onto C ′ = (W ′(xi), 0 ≤ i ≤ N + 1) with
same abscissa, same successive lengths, but having now the middle of the two extreme segments W ′(x0) and
W ′(xN+1) on the x-axis.

Proof. Inversible affine map which preserves abscissas are maps (x, y) → (x, y − ax − b) for some constant
a, b.

Using the normalisation Lemma, each of the three bi-combs VSha := (V Sha
H (xi), 0 ≤ i ≤ N + 1), VH :=

(VH(xi), 0 ≤ i ≤ N + 1) and VSym := (V Sym
H (xi), 0 ≤ i ≤ N + 1) can be sent on V ′Sha, V

′
H , V

′
Sym where as

represented on Fig. 2, V ′Sym = VSym and the trapezoid with extreme segments V Sym
H (x0) and V Sym

H (xN+1) is
common to the three new bi-combs. The bottom-most position of the segments of V ′Sha lies on the bottom-line
of the trapezoid.
We can also suppose that x0 = 0 < x1 < · · · < xN+1 = 1 since the inversible affine map (x, y) 7→ ( x−x0

xN+1−x0 , y)

x0x0 x0 xm+1xm+1xm+1

HSha

HSym

H

x̄m+1 x̄m+1x̄m+1x̄0 x̄0x̄0

Figure 2: Shaking and Steiner symmetrization with respect to the x-axis of the vertical blue segments,
followed by the centering of the extreme segments, for H and HSha by a map preserving verticality.
For the three figures on the second line, the trapezoids with sides the two extreme vertical segments
coincide. In the shaking case, the segments raise at the bottom line of the trapezoid.

sends (x0, 0) and (xN+1, 0) to (0, 0) and (1, 0), and keeps the other properties of the segments.

By Remark 9, (8) is equivalent to the same statement in which we replace (VSha, VH , VSym) by (V ′Sha, V
′
H , V

′
Sym).

But then the three sequences V ′Sha, V ′, V Sym
H may be represented thanks to some “default of symmetries as

follows”.
� First, encode a generic trapezoid: set, for i = 0 to N + 1,

Li = A(1− xi) +Bxi (9)

so that L0 = A ≥ 0 and LN+1 = B ≥ 0 (hence A plays the role of W Sym
H (x0)/2 and B that of W Sym

H (xN+1)/2,
but the abstraction is here to make disappear the relation with a given convex set H). The points (xi, Li)
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are aligned and correspond to the above line of the trapezoid with vertical sides V Sym
H (0) and V Sym

H (1).
� For 0 = x0 < x1 < · · · < xN+1 = 1, denote by

CV+(x[N + 2]) = {(λ0 = 0, λ1, · · · , λn, λN+1 = 0) : λi ≥ 0, [(xi, λi), 0 ≤ i ≤ N + 1] ∈ CPN+2} (10)

in other words, this is the set of sequences λ[N + 2] such that {(xi, λi), i ∈ J0, N + 2K} is in a convex position,
bove the x-axis, and have their “two extreme points” at (0, 0) and (1, 0).
� Denote by Compa(λ[N + 2]) the set of sequences β[N + 2] of real numbers such that β0 = βN+1 = 0 and
such that |βi| ≤ λi, and such that the points ((xi, λi + βi), 0 ≤ i ≤ N + 1) are non negative and in a convex
position as well as the points ((xi, λi − βi), 0 ≤ i ≤ N + 1). Denote by

V β
L,λ(xi) = [ (xi, − (Li + λi − βi)), (xi, (Li + λi + βi)) ]

so that in the segment (V β(xi), 0 ≤ xi ≤ N + 1) the two extreme segments have their center on the x axis,
the set formed by the up-most points of each segment, and the set formed by the bottom-most points of each
segment are in a convex position.
– The case β ≡ 0 corresponds to the segment V Sym

H in which the segments are symmetric with respect to the
x-axis,
– The case β ≡ λ corresponds to the segment V ′Sha (obtained from shaking followed by a normalisation, so
that the bottom points of the segments lies on the bottom line of the trapezoid, see Fig. 2),
– and the general case is covered by all the β ∈ Compa(λ).

Instead of proving Proposition 8, we will prove the following proposition

Proposition 11. For any x[N + 2], λ[N + 2], L fixed as above, The map

Θ : Compa(λ[N + 2]) −→ R+

β 7−→ 〈V β
L,λ(x0), · · · , V β

L,λ(xN+1)〉 ,

reaches its maximum for β = (0, · · · , 0), and his minimum for β = λ.

β has to be understood as a symmetry defect, L describes the “centered” extreme segments, λ describes
the symmetric case, L+ λ+ β and −(L+ λ− β) describe the topmost and bottom-most polygons.

We now provide our new close formula for 〈V (x0), · · · , V (xN+1)〉, “the bi-comb formula”.

2.2 The comb and the bi-comb formula

Technically, a comb is a sequence of teeth plugged on a shaft: the bottom of the teeth extremities are
aligned, and the top extremities are in a convex position.

A geometrical comb, and the comb formula: Consider a pair of sequences [x[N + 2], `[N + 2]] each
being of size N + 2, where the sequence (xi) is increasing, and where:
• all the points (xi, `i) lies (in the weak sense) above the line passing by (x0, `0) and (xN+1, `N+1),
• the points {(xi, `i), 0 ≤ i ≤ N + 1} are in a convex position (as on Fig. 3).

The ordinate of the “bottom” line passing by (x0, `0) and (xN+1, `N+1) at abscissa xi is

bi := `0 +
xi − x0

xN+1 − x0
(`N+1 − `0).
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x0x0 x1x1 x2x2 xmxm xm+1xm+1

ℓ0

ℓ1 ℓ2

ℓm

ℓm+1

Figure 3: A comb Cb[x[m+ 2], `[m+ 2]]: the shaft is the red segment.

We call comb

Cb[x[N + 2], `[N + 2]] = S[N + 2]

the sequence of N + 2 segments (S0, · · · , SN+1) where Si is the segment

Si = [ (xi, bi) , (xi, `i) ]

so that its two extreme segments have zero length, and such that all the first extremities of the segments
belong to the “shaft-segment” [(x0, `0), (xN+1, `N+1)]. We will sometimes refer to the segments as the teeth
of the comb. We let again

〈Cb[x[N + 2], `[N + 2]〉
the probability that a set of N + 2 points taken uniformly and independently, one per vertical segments are
in a convex position.

Proposition 12. For any comb with N + 2 segments (for any N ≥ 0),

〈Cb (x[N + 2], `[N + 2])〉 =
K (x[N + 2], `[N + 2])

∏N
i=1 `i

, (11)

where K is a function of two lists of same number m of elements, for some m ≥ 2, defined recursively:

K ([x0, x1], [`0, `1]) = 1 (12)

and when N + 2 ≥ 3,

K [x[N + 2], `[N + 2]] =

N∑

j=1

q0,j,N+1(x[N + 2], `[N + 2]) K (xJ0, jK, `J0, jK) K (xJj,N + 1K, `Jj,N + 1K) (13)

for

qn1,n2,n3(x[n+ 2], `[n+ 2]) =
1

n3 − n1 − 1

[
`n2 −

(
`n1 +

xn2 − xn1

xn3 − xn1

(`n3 − `n1)

)]
. (14)

The proof will be given in Section 2.4.
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Remark 13. � The first message is that 〈Cb (x[N + 2], `[N + 2])〉 is explicit, and K is a polynomial in the
variables `i !
� Comb are not bi-comb but they are quite similar except that the extreme segment of combs are points, and
the shaft coincides with the bottom-most line.
� The factor q0,j,N+1(x[N + 2], `[N + 2]) appearing in the recursive description of K has a probabilistic and
geometric interpretation: we define more generally qn1,n2,n3 for integers n1 < n2 < n3 for the expanded
formula. The denominator n3−n1−1 is the number of integers lying in J1+n1, n3−1K, so that 1/(n3−n1−1)
can be thought as the probability a random element chosen in this interval is n2. Now, the bracket in (14) is
a length between a vertex and the point obtained by the vertical projection on the opposite side (see Fig. 4).

x0 x1 x2 xm xm+1

ℓ0

ℓn1 ℓn2 ℓn3

ℓm
ℓm+1

A

B

n1 = 1 n2 = 3 n3 = 5

Figure 4: Geometrical interpretation of `n2 −
(
`n1 +

xn2−xn1

xn3
−xn1

(`n3 − `n1)
)

in the case (n1, n2, n3) =

(1, 3, 5): it corresponds to the length AB.

Hence, (13) can be thought has follows (see Fig.5): choose equally likely a random a vertex with index
lying in J1, NK, split the domain below the convex hull of the comb in three parts : in the middle, a triangle
“whose height” and number of segments which crosses it allows to compute q0,j,N+1(x[N + 2], `[N + 2]). At
each side of the superior apex of this triangle, one can find one comb.

xm
xr xN

ℓ0

ℓm

ℓj

ℓN+1

ℓm −
(
ℓ0 +

xm − x0
xj − x0

(ℓj − ℓ0)

)
ℓr −

(
ℓj +

xr − xj
xN+1 − xj

(ℓN+1 − ℓj)

)

x0 xN+1xr

Figure 5: Illustration of a term in the decomposition of
〈
Cb
(
x[N + 1], `[N + 1]

)〉
.

Formula (13) implies that K
(
x[m + 2], `[m + 2]

)
possesses a binary structure, and then, can be expanded
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using the set of triangulations of the polygon [(xi, `i), 0 ≤ i ≤ m+ 2].
For m ≥ 1, call triangle of J0,m+ 1K three integers t = (j1, j2, j3) with 0 ≤ j1 < j2 < j3 ≤ m+ 1. We call

triangulation of J0,m+ 1K a set T of triangles satisfying the following conditions (see Fig . 6):
• #T = m (this is the number of different triangles in T ),
• the triangles are non crossing : if t = (j1, j2, j3) and t′ = (j′1, j

′
2, j
′
3) are two different triangles in T then

either:
– {j1, j2, j3} is included in one of the intervals J0, j′1K, Jj′1, j

′
2K, Jj′2, j

′
3K, Jj′3,m+ 1K

– or {j′1, j′2, j′3} is included in one of the intervals J0, j1K, Jj1, j2K, Jj2, j3K, Jj3,m+ 1K.

x1 x2 xmx4

v0

v1
v2

vm+1
ℓ1 ℓ2 ℓm

ℓ4

0 1

Figure 6: Illustration of a triangulation t.

Denote by Tri(m+ 2) the set of triangulations of J0,m+ 1K. Each triangulation T ∈ Tri(m+ 2) is a set of m
triangles {t1, · · · , tm} whose m central points are distinct and their set coincides with J1,mK.

The expansion of Formula (13) gives

Theorem 14. (i) For m = 0, K(x[m+ 2], `[m+ 2]) = 1 and for m ≥ 1,

K(x[m+ 2], `[m+ 2]) =
∑

T∈Tri(m+2)

∏

t∈T
qt(x[m+ 2], `[m+ 2]). (15)

(ii) In view of (14), K(x[m + 2], `[m + 2]) is an homogeneous polynomial of degree m in the variables
`0, · · · , `m+1, whose coefficients are rational fractions in the variables (x0, · · · , xm+1).

(iii) For any t, the maps ` 7→ qt(x[m + 2], `[m + 2]) is linear so that qt(x[m + 2], `[m + 2] + `′[m + 2]) =
qt(x[m+ 2], `[m+ 2]) + qt(x[m+ 2], `′[m+ 2]).

(iv) If L is affine (L(x) = Ax+B, for all x) then qt(x[m+ 2], [L(xi), 0 ≤ i ≤ m+ 1]) = 0, so that

K(x[m+ 2], `[m+ 2]) = K(x[m+ 2], `[m+ 2] + [L(xi), 0 ≤ i ≤ m+ 1])

The map K is invariant by translation: for any constant c, c′ ∈ R,

K(x[m+ 2], `[m+ 2]) = K([c+ xi, 0 ≤ i ≤ m+ 1], [c′ + `i, 0 ≤ i ≤ m+ 1])

These last properties are consequence of the geometrical interpretation of K, see e.g. Fig. 4.

10



The view of the first values of K may help the reader to build its intuition on these objects: we have

K(x[3], `[3]) = `1 − `0 −
(`2 − `0) (x1 − x0)

x2 − x0
,

K(x[4], `[4]) = 1/2

(
`2 − `1 −

(`3 − `1) (x2 − x1)

x3 − x1

)(
`1 − `0 −

(`3 − `0) (x1 − x0)

x3 − x0

)

+1/2

(
`1 − `0 −

(`2 − `0) (x1 − x0)

x2 − x0

)(
`2 − `0 −

(`3 − `0) (x2 − x0)

x3 − x0

)
.

Of course, K(x[n], `[n]) “complexity” grows fast as a function of n.

The bi-comb formula : We call bi-comb a sequence of vertical lines of the type [V0, · · · , VN+1] where

Vi = [(xi,−f−i ), (xi, f
+
i )]

where the two extreme segments are centered:

A = f+
0 = f−0 , B = f+

N+1 = f−N+1

Again, 0 = x0 < · · · < xN+1 = 1, the (xi, f
+
i ) are above the line between (x0, f

+
0 ) and (xN+1, f

+
N+1) and in

a convex position, and the same holds for (xi, f
−
i ) instead (here f−i is non negative), but the bottom-most

position of Vi is (xi,−f−i ).

Theorem 15. For any bi-comb [VH(x0), · · · , VH(xN+1)]

〈
V0, · · · , VN+1

〉
=

1
∏N+1
j=0 (f+

j + f−j )

∫ A

−A

∫ B

−B

∑

D⊂J1,NK

K
[
[x0, (xj , j ∈ D), xn+1], [a, (f+

j , j ∈ Dc), b]
]

(16)

×K
[
[x0, (xj , j ∈ Dc), xN+1], [−a, (f−j , j ∈ Dc),−b]

]
dadb, (17)

=
1

∏N+1
j=0 (f+

j + f−j )

∫ A

0

∫ B

0
grefi.
N (a, b, ε, ε′, f+, f−) da db (18)

(here refi. stands for the word “refined”), and where

gN [a, b, (f+
j ), (f−j )] =

∑

ε∈{−1,1}
ε′∈{−1,1}

grefi.
N [a, b, ε, ε′, (f+

j ), (f−j )] (19)

grefi.
N [a, b, ε, ε′, (f+

j ), (f−j )] =
∑

D⊂J1,NK

K
[
[x0, (xj , j ∈ D), xn+1], [εa, (f+

j , j ∈ Dc), ε′b]
]

(20)

×K
[
[x0, (xj , j ∈ Dc), xN+1], [−εa, (f−j , j ∈ Dc),−ε′b]

]
(21)

Remark 16. (i) By the properties given in Theorem 14, ignoring the pre-factor 1∏N+1
j=0 (f+j +f−j )

in (16), the

double integral is a polynomial of degree N + 2 in the variables f+
j and f−j with coefficients in the field

of rational fractions in the variables (xi, 0 ≤ i ≤ N + 1).

(ii) Notice that in the definition of gN , a and b are the ordinates of the random points at the boundary
segments, when (f+

j ) and (f−j ) are sequences indexed by the integer 1 to N , and then they encode the
“inner” segments, somehow.
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The next Corollary of this Theorem and of (7) allows to get the value of QN+2
H under an integral form

Corollary 17. For any H ∈ CCS and any n ≥ 0, for N + 2 = n,

QN+2
H =

∫

NDN+2

∫ yH(x0)

y
H

(x0)

∫ yH(xN+1)

y
H

(xN+1)
gN

[
a, b, (yH(xj)), (yH(xj))

]
da db dx0 · · · dxN+1 .

Hence, QN+2
H is represented here as N + 4 real integrals of a polynomial.

2.3 Proof of Theorem 15

Till the end of the proof of Theorem 15 we will assume that Proposition 12 holds true.
Take some independent random variables (Ui, 0 ≤ i ≤ N + 1), such that Ui is uniform on Vi . Hence

Ui = (xi, Yi), for Yi uniform on [−f−i , f+
i ].

Let us condition by (U0, UN+1) = ((0, a), (1, b)), the position of the two extremes points U0 and UN+1. The
line passing by U0 and UN+1 cuts each segment Vi in two parts (see Fig. 7). Let

uj := a+
xj − x0

xN+1 − x0
(b− a) = a (1− xj) + xj b, j ∈ J0, N + 1K (22)

the ordinate of the line (U0, UN+1) at abscissa xj (where it intersects Vj). Let

Abo := {j ∈ J1, NK : Yj ≥ uj},

the set of indices corresponding to the Uj ’s above the line (U0, UN+1). Since, the Ui are above (or below) the
line (U0, UN+1) independently, and with a probability proportional to the fraction of the segment that lies
above (or below) (U0, UN+1), we have that for any D ⊂ J1, NK (and for Dc := J1, NK \D),

P(Abo = D | Y0 = a, YN+1 = b) =
∏

j∈D

f+
j − uj
f+ + f−j

∏

j∈Dc

uj + f−j

f+
j + f−j

, (23)

The proof of the following lemma is immediate (see Fig. 7):

Lemma 18. Conditionally on (Y0, YN+1,Abo) = (a, b,D):

(a) The ordinates (Yi, 1 ≤ i ≤ N) are independent,

(b) if j ∈ D, then Uj is uniform in [uj , f
+
j ], and if j ∈ Dc, then Uj is uniform in [−f−j , uj ]

(c) the sequence U [N+2] is in convex position iff both sets {Ui, i ∈ {0, N+1}∪D} and {Ui, i ∈ {0, N+1}∪
Dc} are in convex position. This happens, conditionally on (Y0, YN+1,Abo) = (a, b,D), with probability

QD,a,b = 〈(x0, a), [ (xi, ui), (xi, f
+
i ) ]i∈D, (xN+1, b)〉 (24)

× 〈(x0,−a), [ (xi,−ui), (xi, f
−
i ) ]i∈Dc , (xN+1,−b)〉. (25)

In other words, in the last formula,
� the first comb has |D| + 2 segments: the two extreme ones being reduced to the single points (x0, a) and
(xN+1, b), and the other ones are [(xi, ui), (xi, f

+
i )] for i ∈ D,

� the second comb is obtained by making the symmetry of the “comb” below (U0, UN+1) composed by the
segments indexed by Dc with respect to the x-axis: it has |Dc| + 2 segments. The two extreme ones being
reduced to the single points (x0,−a) and (xN+1,−b), and the other ones are [(xi,−ui), (xi, f−i )] for i ∈ Dc.

12



Y0

Y0

Y0

YN+1

YN+1

YN+1

xN+1
x0

Figure 7: On the left picture: the two extreme points being fixed (Z0, ZN+1) = ((x0, a), (xN+1, b))
being fixed, the set of indices of the points above the line is Abo = {2, 4, 5}. Now, on the right one:
Conditional on Abo = {2, 4, 5}, there are some uniform points above the line in each of the part of
the segments 2, 4 and 5, and some uniform points under the line in the part of the segments 1 and
3. Appears, the two inclined combs above and below the line. The N + 2 = 7 points are in a convex
positions, if in the superior comb, the 5 points are in a convex positions, and below, the 4 points also.

Proof of 18. The second point only needs a small explanation: a random variable with a uniform distribution
on a segment [A,B] conditioned to be in [C,D] with [C,D] ⊂ [A,B] is uniform in [C,D].

We can now conclude the proof of Theorem 15: To compute 〈V0, · · · , VN+1〉, we first condition by
(U0, UN+1,Abo) = (a, b,D) and using (23) and (24), we then get

〈V0, · · · , VN+1〉 =

∫ f+0

−f+0

∫ f+N+1

−f+N+1

∑

D⊂J1,NK

P(Abo = D | Y0 = a, YN+1 = b)QD,a,b da db

by (11), we conclude.

2.4 Proof of Proposition 12

There are two parts in the Proposition: first (11) relates 〈Cb (x[N + 2], `[N + 2])〉 and K (x[N + 2], `[N + 2]),
and, there is the decomposition formula for K (x[N + 2], `[N + 2]).

The proof will be simpler to follow if the shaft is on the x-axis, and the teeth of the comb are orthogonal
to it. As already discussed if two combs C and C ′ such that C ′ is image of C by an inversible affine
transformation, then 〈C〉 = 〈C ′〉.

Consider the inversible affine transformation Ψ : (x, y)→ (x, y+αx+β) which preserves the abscissa (and
the up-down direction) where (α, β) is chosen such that Ψ(x0, `0) = (x0, 0) and Ψ(xN+1, `N+1) = (xN+1, 0).
The image of the comb (x[N + 1], `[N + 1]) by Ψ is a new comb (x[N + 1], `′[N + 1]) with same teeth length,
whose teeth directions are parallel to the y-axis, but with a shaft lying on the x-axis. Since, for any two
combs C and C ′ that can be sent on each other by inversible affine transformations, we have 〈C〉 = 〈C ′〉, then
〈x[N + 1], `[N + 1]〉 = 〈x[N + 1], `′[N + 1]〉. By Theorem 14, K(x[N + 1], `[N + 1]) = K(x[N + 1], `′[N + 1])
is preserved by this affine transformation. Hence, it suffices to prove (11) for this kinds of comb. We then
assume that `0 = `N+1 = 0.

In order to complete the proof of Proposition 12 it suffices to prove the next proposition which provides a
decomposition formula for 〈Cb[x[N + 2], `[N + 2]〉 (the function K(.) satisfies a simpler decomposition formula
than 〈Cb(.)〉 and this is why we introduced it).

13



Proposition 19. For any x0 < x1, `0, `1, we have 〈Cb[[x0, x1], [`0, `1]]〉 = 1, and for N ≥ 0

〈
Cb
[
x[N + 2], `[N + 2]

]〉
=

1

N

N∑

j=1


 ∏

1≤k<j

`k − (xk−x0)
(xj−x0) `j

`k




 ∏

j<k≤m

`k − xN+1−xk
xN+1−xj `j

`k


 (26)

×
〈

Cb

[
xJ0, jK,

[
`k −

(xk − x0)

(xj − x0)
`j , 0 ≤ k ≤ j

]]〉
(27)

×
〈

Cb

[
xJj,N + 1K,

[
`k −

xN+1 − xk
xN+1 − xj

`j , j ≤ k ≤ N + 1

]]〉
, (28)

these two last combs probability are those of the combs are the right and at the left of the initial comb deprived
of the triangle (x0, `0), (xj , `j), (xN+1, `N+1) (see Fig. 8).

xm
xj xN

ℓ0 = 0

ℓm

ℓj

ℓN+1 = 0

ℓm −
(
ℓ0 +

xm − x0
xj − x0

(ℓj − ℓ0)

)
ℓr −

(
ℓj +

xr − xj
xN+1 − xj

(ℓN+1 − ℓj)

)

x0 xN+1xr

Figure 8: Illustration of the decomposition of
〈
Cb
(
x[N + 1], `[N + 1]

)〉
on Proposition 19.

Proof. This is a proof by induction: the case N = 0 is trivial since in this case the comb is reduced to the
two extreme points, so that 〈Cb(x[N + 2], `[N + 2])〉 = 1 which is also the r.h.s. of (11) by definition (12).

Assume N > 0, denote by Ui the uniform random variable on the ith segment Si = [(xi, 0), (xi, `i)],
where the (Ui, 0 ≤ i ≤ N + 1) are independent, and U0 = (x0, 0), UN+1 = (xN+1, 0), and for any i ∈ J1, NK,
Ui = (xi, U

(i)×`i) for U (1), · · · , U (N) i.i.d. uniform random variables on [0, 1]. Denote by U? = max{U (i), 1 ≤
i ≤ N} and j? the almost surely unique index realizing the max : U (j?) = U?. Conditional on (j?, U?) = (j, u?),
all the other U (j) are uniform on [0, u?] (since a random variable uniform on [0, 1] conditioned to be smaller
than u? is uniform on [0, u?]). Conditionally on (j?, U?) = (j, u?), each of the random variables Ui are then
uniform on the “reduced tooth”

Si(u
?) = [(xi, 0), (xi, u

?`i)].

In other words, if we remove the topmost (1−u?) fraction of each segment, then the random point Uj? of the
segment j?, is at its top, and the other points are uniform in the remaining fraction. Now, remember that
the problem we are studying, is invariant by affine transformation: hence,

P (U [N + 2] ∈ CPN+2 | (j?, U?) = (j, u?)) = P (U [N + 2] ∈ CPN+2 | Uj = (xj , `j))

that is, this coincides with the case where the chosen point in the jth segment is at its top. Now, have a look
at picture 8. When the jth point Uj is at its top, taking into account that U0 = (x0, 0) and UN+1 = (xN+1, 0),
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the sequence of points (Ui, i ∈ J0, N + 1K) are in a convex position iff:
� the (Ui, 0 ≤ i ≤ j) are above the line going from (x0, 0) to (xj , `j) and are in a convex position,
� the (Ui, j ≤ i ≤ N + 1) are above the line going from (xj , `j) to (xN+1, `N+1) and are in a convex position.
It remains to interpret Formula (26). The first factor 1/N and the sum over j, stands for the distribution
of j?: its value is j with probability 1/N (since all U (k) are equally likely the maximum one), and the value
of j runs from 1 to N . Above, in the proof, at a moment, we conditioned by the value of U (j?), but then
observe that the reduction to the case where U (j?) = 1 was possible independently from u?: the distribution
of U? plays no role at the end. The factor at the r.h.s. of (26) is the probability that each the variables Ui
are above the lines described before. When the Ui are indeed above these lines, in the interval J0, jK, the
sequence of segments above the line is formed by j + 1 segments, the two extremes having length 0, and the
kth, the length `k− (xk−x0)

(xj−x0) `j as specified in (27). These segments form a comb. The last factor given in (28)

can be interpreted in the same way.

3 Proof of Theorem 1

There are several steps in the proof. We were unable to prove a full proof of Conjecture 1, but we will
see that many intermediate results we prove are valid for all n ≥ 4.

As explained in the Previous sections, it suffices to prove Proposition 11 to conclude.
Let us examine a bit the possible symmetry defects. For λ[N + 2] ∈ CV+(x[N + 2]), and β[N + 2] ∈

Compa(λ[N + 2]). Consider the slope differences, or second discrete derivatives,

rj(λ) :=
∆λj
∆xj

− ∆λj+1

∆xj+1
, j ∈ J1, NK (29)

sj(β) :=
∆βj
∆xj

− ∆βj+1

∆xj+1
, j ∈ J1, NK (30)

(where ∆yj := yj − yj−1). They always satisfy

rj(λ) ≥ 0, |sj(β)| ≤ rj(λ), for any j ∈ J1, NK. (31)

Notice that both r(λ) and s(β) and defined by the same formula using respectively λ and β, but the rj(λ)
are non negative, when the sj(β) can be negative. The set of symmetry defects compatible with λ[N + 2] is
exactly

Compa(λ[N + 2]) = {β[N + 2] : |sj(β)| ≤ rj(λ), β0 = βN+1 = 0, |βj | ≤ λj}. (32)

Since given some elements r = (rj , j ∈ J1, NK) ∈ [0,+∞), one can find λ[N + 2] ∈ CV+(x[N + 2]) so that
(ri, 1 ≤ i ≤ N) = (ri(λ), 1 ≤ i ≤ N). Take λ0 = λN+1 = 0, and for m ∈ J1, NK, take

λm =

∑N
j=m rj(xj − xN+1)(x0 − xm) +

∑m−1
j=1 rj(xm − xN+1)(x0 − xj)

xN+1 − x0
. (33)

This implies that

CV+(x[N + 2]) =
{
λ[N + 2] : λ0 = λN+1 = 0, (rj(λ), 1 ≤ j ≤ N) ∈ [0,+∞)N

}
.

The same formula as (33) holds for β in terms of s(β).
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Proof of Proposition 11 Recall that Li = A(1− xi) +B xi, for A ≥ 0, B ≥ 0. For 0 ≤ a ≤ A,0 ≤ b ≤ B,
λ[N + 2] ∈ CV+(x[N + 2]), β ∈ Compa(λ[N + 2]), set

{
ΓN [a, b, L, λ, β] = gN [a, b, L+ λ, L+ λ]− gN [a, b, L+ λ− β, L+ λ− β],
ΓN [a, b, L, λ, β] = gN [a, b, L+ λ+ β, L+ λ− β]− gN [a, b, L+ 2λ, L].

(34)

It suffices to prove the positivity of these two functions. We are able to do that when N = 2 and N = 3
(which corresponds to the case n = 4 and n = 5).

A part of the analysis needs explicit computations, and a part can be treated using what we know on
the functions K. Indeed, the map K can be expanded over triangulations as explained below Proposition
12. Each triangle in the triangulation corresponds to a factor q as expressed in (13) which is linear in the
variables into play L, λ, β, a or b. For N = 4, the analysis is immediate, and we recover Blaschke result.

3.1 Case n = 4 (that is N = 2)

[Already known, by Blaschke by a different method] The polynomial ΓN [a, b, L, λ, β] is even in β (for every
N), of total degree N in the variables A,B,λ, β,a, b, even in a and b. The difference stated in (34) provides
many simplifications. A complete computation gives:





Γ2[a, b, L, λ, β] = 4
1− x2

1− x1
β2

1 + 4
x1

x2
β2

2 ,

Γ2[a, b, L, λ, β] = 4
1− x2

1− x1
(λ2

1 − β2
1) + 4

x1

x2
(λ2

2 − β2
2)

(35)

which are non negative. That’s all!

The similitude of these two values can be explained (this will be done in Section 3.2.1 for the case N = 5
where the same property appear).
The simplicity of these formula may be understood without computations: recall (19): since
g2(a, b, f+, f−) =

∑
ε∈{−1,+1}
ε′∈{−1,+1}

grefi.
2 (a, b, ε, ε′, f+, f−) is a polynomial of degree 2 in the f+

1 , f
+
2 , f

−
1 , f

−
2 , sym-

metric in the sense g2(a, b, f+, f−) = g2(a, b, f−, f+) so that in (35) the l.h.s. is even and quadratic in β1 and
β2 since the other terms cancel out.

3.2 Case n = 5 (that is N = 3)

Observe that forN = 3, g3(a, b, L, λ, β) is a polynomial of degree 3 in the Li, λi, βi, a, b. Since Γ3[a, b, L, λ, β]
and Γ3[a, b, L, λ, β] are both even in β, and as polynoms in β have non constant term, they are quadratic in
the variables (β1, β2, β3). Hence, seen as polynomials in β their coefficients are linear in the λi and in the Li.
Something which can seem strange, is that

{
Γ3[a, b, L, λ, β] = Γ3[0, 0, L, λ, β],
Γ3[a, b, L, λ, β] = Γ3[0, 0, L, λ, β].

The reason again, is that since for any N , gN (a, b, L, λ, β) =
∑

ε∈{−1,1}
ε′∈{−1,1}

grefi.
N (a, b, ε, ε′, L, λ, β), it turns out

that gN (a, b, L, λ, β) is even in a and in b. The fact that it is even in β implies that for N = 2 or N = 3 all
contributions with degree ≥ 2 in a or b and ≥ 2 in the βi vanish. So the factor in front of the the quadratic
terms of a and b is the same in gN (a, b, L, λ, β) and in gN (a, b, L, λ, 0) which is 0. It is worth mentioning that
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this property holds only for N = 2 and N = 3, and this is one of the reasons our method does not apply
directly for N > 3.

In this section, often, we will write ri instead of ri(λ) and si instead of si(β).

Lemma 20. Γ3(a, b, L, λ, β) can be rewritten under the form

Γ3(a, b, L, λ, β) =
3∑

j=1

Rj × Pj [s1, s2, s3]

where Rj = rj(λ)+1j=1
A
x1

+1j=3
B

1−x3 , and where Pj is an homogeneous polynomial of degree 2 in the variables
(s1, s2, s3).

Proof. The sequence of second derivatives of the sequence (Li, 1 ≤ i ≤ N) is 1j=1
A
x1

+ 1j=3
B

1−x3 . Recall that
by (29), the second derivative ri(λ) are linear with respect to λ, and the si(β) linear in β, so that the degree
analysis exposed above is still valid: Γ3(a, b, L, λ, β) is quadratic in β (or in the si), and linear in the ri(λ)
and in the Li. In fact, because of the very similar role of r1(λ) and of 1j=1

A
x1

(resp. of r3(λ) and 1j=3
B

1−x3 ),
the representation given in Lemma 20 follows.

We have packed rj and A and B, to reduce the number of terms to be studied. What we will prove
now, is that the three polynomial P1, P2 and P3 are non negative, and for this, it is sufficient to prove
that they are definite positive quadratic forms. By symmetry of the problem with respect to the symmetry
(x, y) 7→ (1 − x, y), we can just prove this for P1 and P2 only. We make the following change of variables,
x0 = 0, and

xk = y1 + · · ·+ yk and for k ∈ J1, 4K,

which will help to prove the non negativity of some quantities below.

One then finds that for i from 1 to 2 one has Pi(s1, s2, s3) =
[
s1 s2 s3

]
M (i)



s1

s2

s3


 and

M (1) =
2y1y4

y1 + y2 + y3




(y3 + y4) (y2 + y3) y1
2 (1/2)W1y1 (y2 + y3) (y1 + y2) y1y4

(1/2)W1y1
W6

y2+y3+y4
W5y4

y2+y3+y4

(y2 + y3) (y1 + y2) y1y4
W5y4

y2+y3+y4

(y1+y2+y3)W4y4
(y2+y3+y4)(y3+y4)




M (2) =
y1y4

y2 + y3 + y4




y1(y2+y3+y4)W3

y1+y2+y3
2 (y3+y4)W2y1

y1+y2+y3
2 W2y1y4
y1+y2+y3

2 (y3+y4)W2y1
y1+y2+y3

W1W2
(y1+y2+y3)(y2+y3) 2 (y1+y2)W2y4

y1+y2+y3

2 W2y1y4
y1+y2+y3

2 (y1+y2)W2y4
y1+y2+y3

W3y4



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for

c1 = y1y2y4 + y1y3
2 + y1y3y4 + y2

2y4

c2 = y1y2y3 + y2
2y3 + y2y3

2 + y2y3y4

W1 = c2 + 2c1

W2 = c1 + 2c2

W3 = 2c1 + 3c2

W4 = y2c2 + (2y2 + y3 + y4)c1 + y2(y2 + y4)2(y2 + y3)

W5 = y1c1 + 2y2(y2 + y3)(y1 + y2)

W6 = y2c2 + (y1 + y2)c1(y2 + y3 + y4) + y2
2y4(y1 + y2)

The computation of the principal minors of these matrices give non negative coefficients: they are rational
fractions with positive coefficients in the yi’s. We print them here for the sake of completness: the following
computations are immediate using the representations of the matrices M (1) and M (2) given above (see if
needed [8]). The first minor of M (1) and of M (2) are clearly of this type . The second minors of these
matrices are respectively :

m
(1)
2 := (3 y1y2y3

2 + 8 y1y2y3y4 + 4 y1y2y4
2 + 3 y1y3

3 + 7 y1y3
2y4 + 4 y1y3y4

2 + 3 y2
2y3

2 + 8 y2
2y3y4 + 4 y2

2y4
2 +

6 y2y3
3 + 14 y2y3

2y4 + 8 y2y3y4
2 + 3 y3

4 + 6 y3
3y4 + 3 y3

2y4
2)y1

4y2
2y4

2/((y2 + y3 + y4) (y1 + y2 + y3)2) and

m
(2)
2 := m

(1)
2 ×

2 y1y2y3 + y1y2y4 + y1y3
2 + y1y3y4 + 2 y2

2y3 + y2
2y4 + 2 y2y3

2 + 2 y2y3y4

y1 (y2 + y3 + y4) (y2 + y3)

and for the third minors
m

(1)
3 = 2 y1

5y4
4y3

2y2
2(3 y1y2

2y3+2 y1y2
2y4+6 y1y2y3

2+9 y1y2y3y4+3 y1y2y4
2+3 y1y3

3+6 y1y3
2y4+3 y1y3y4

2+
3 y2

3y3 +2 y2
3y4 +6 y2

2y3
2 +8 y2

2y3y4 +2 y2
2y4

2 +3 y2y3
3 +6 y2y3

2y4 +3 y2y3y4
2)/((y3 +y4)(y2 +y3 +y4)(y1 +

y2 + y3)2) and

m
(2)
3 = 3 y4

4y3
2y2

2y1
4(2 y1y2y3 + y1y2y4 + y1y3

2 + y1y3y4 + 2 y2
2y3 + y2

2y4 + 2 y2y3
2 + 2 y2y3y4)(3 y1y2y3 +

2 y1y2y4 + 2 y1y3
2 + 2 y1y3y4 + 3 y2

2y3 + 2 y2
2y4 + 3 y2y3

2 + 3 y2y3y4)/((y2 + y3 + y4)2(y1 + y2 + y3)2(y2 + y3))
(these computations are direct from the matrices above, see if needed [8]).

Since finally,

Γ(a, b, L, λ, β) =

3∑

j=1

(
rj(λ) + 1j=1

A

x1
+ 1j=3

B

1− x3

)
× [s1, s2, s3]M (j)



s1

s2

s3


 (36)

we deduce that Γ(a, b, L, λ, β) ≥ 0 for all values of a, b, L, λ, β satisfying the hypothesis.
These computations can be done by hand, and be checked by a small program if needed (see [8]).

3.2.1 The minimum is reached for the maximum symmetry defect β = λ

We write

Γ3[a, b, L, λ, β] = gN [a, b, L+ λ+ β, L+ λ− β]− gN [a, b, L+ 2λ, L]

= Γ3[a, b, L, λ, λ]− Γ3[a, b, L, λ, β]
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For any square and symmetric matrix M and vector v and w with same size, tvMv−twMw = t(v+w)M(v−w)
By (36)

Γ3(β) =

3∑

j=1

(
rj(λ) + 1j=1

A

x1
+ 1j=3

B

1− x3

)[
r1 + s1, r2 + s2, r3 + s3

]
M (j)



r1 − s1

r2 − s2

r3 − s3




Since the matrices M (j) have positive coefficients, since for each i, ri+si ≥ 0 and ri−si ≥ 0, we can conclude
that Γ3[a, b, L, λ, β] ≥ 0.

4 Toward the general case, what remains to be done ?

We tried many things to prove that in all generality ΓN [a, b, L, λ, β] ≥ 0 and ΓN [a, b, L, λ, β] ≥ 0. Taking
into account that the K are polynomials, and β ∈ Compa(λ[N + 2]) (see (32)), and since Compa(λ[N + 2])
is a convex subset of RN+2 and also a semi-algebraic set, it is natural to try to prove the non-negativity
of ΓN and ΓN using convexity arguments or using polynomial theory : the so-called Positivstellensätze and
Nichtnegativstellensätze aims to prove positivity or non negativity of polynomials on semi-algebraic sets (see
e.g. Lasserre [6]). To use these powerful tools, “a polynomial certificate” has to be guessed, which despite
important effort, we were not able to do.

However, we assembled in a Proposition some results that allow to support the conjecture 1.

Theorem 21. Let N ≥ 2 (that is n ≥ 4)

(i) ΓN [0, 0, 0, λ, β] ≥ 0, which is equivalent to gN (0, 0, λ + η, 0) ≤ gN (0, 0, λ, η) holds for all every N > 0,
any λ, η ∈ CV+(x[N + 2]) and all β ∈ Compa(λ) (this is the case where the two extreme segments of the
bi-combs have length 0).

(ii) For any fixed a, b, L, λ, if for each i, ri(λ) > 0, the map β 7→ ΓN [a, b, L, λ, β] reaches its minimum for
β in the boundary of Compa(λ), and has no strict local minimum in the interior of Compa(λ).

In (ii), we say that β is in the interior of Compa(λ) if for any ν[N + 2] ∈ RN+2 with ν0 = νN+1 = 0,
for y small enough β + yν in Compa(λ). Since (ri(λ), 1 ≤ i ≤ N) ∈ (0,+∞), notice that for any fixed
β[N + 2] ∈ RN+2 with β0 = βN+1 = 0, if α is small enough then αβ ∈ Compa(λ).

Proof of Theorem 21 (i) This is the only bound by recurrence we were able to proved.
The first lemma provides a bound for K when an additional inner tooth is removed. For this Lemma we

adopt the following shorter notation for K which is more suitable for the insertion purpose. For any set of
indices I,

Kx(I)(λ) = K [(xi, i ∈ I), (λi, i ∈ I)] .

For any sequence y[N + 2], denote by y[N + 2](−j) = (y0, · · · , yj−1, yj+1, · · · , yN+1).

Lemma 22. Let N ≥ 1, x0 < · · · < xN+1 given and κ ∈ J1, NK an inner segment index. Consider λ[N +2] ∈
CV+(N + 2). We have

Kx[N+2](−κ)(λ) ≥ KxJ0,κK(λ)×KxJκ,N+1K(λ)
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Proof. Recall the definition of qn1,n2,n3 in (14) : at the pre-factor denominator lies n3 − n1 + 1 which is the
number of inner segments between n1 and n3.

This is a proof by induction. We will use the dissection formula (13) to expand the inner N segments
formula of K

[
x[N + 2](−κ), λ[N + 2](−κ)

]

Kx[N+2](−κ)(λ) =

κ−1∑

j=1

qx0,xj ,xN+1(x[N + 2](−κ), λ[N + 2](−κ))KxJ0,jK(λ)KxJj,N+2K(−κ)(λ)

+
N∑

j=κ+1

qx0,xj ,xN+1(x[N + 2](−κ), λ[N + 2](−κ))KxJ0,jK(−κ)(λ)KxJj,N+1K(λ).

By recurrence, in the first sum KxJj,N+2K(−κ) ≥ KxJj,κKKxJκ,N+2K and in the second sum KxJ0,jK(−κ) ≥
KxJ0,κKKxJκ,jK. Taking into account the pre-factors in q, just comparing the distance to the projection,
in the first sum we have

qx0,xj ,xN+1(x[N + 2](−κ), λ[N + 2](−κ)) ≥
κ− 1

N
qx0,xj ,xκ(xJ0, κK, λJ0, κK)

and in the second one

qx0,xj ,κ(x[N + 2](−κ), λ[N + 2](−κ)) ≥
N + 1− κ

N
qxκ,xj ,xN+2(xJκ,N + 1K, λJκ,N + 1K).

Hence,

Kx[N+2](−κ)(λ) ≥ κ− 1

N
KxJκ,N+1K(λ)

κ−1∑

j=1

qx0,xj ,xκ(xJ0, κK, λJ0, κK)KxJ0,jKKxJj,κK(λ)

+
N − κ+ 1

N
KxJ0,κK(λ)

N∑

j=κ+1

qxκ,xj ,xN+1(xJκ,N + 1K, λJκ,N + 1K)KxJκ,jKKxJj,N+1K(λ)

≥
(
κ− 1

N
+
N − κ+ 1

N

)
KxJ0,κK(λ)KxJκ,N+1K(λ) = KxJ0,κK(λ)KxJκ,N+1K(λ).

End of the poof of Theorem 21 (i) This is a proof by induction. The formula holds when N = 0.
Assume that the formula holds for n ≤ N for some N ≥ 0, and let us establish it for n = N + 1. Write

KxJ0,N+2K [λ+ η ] =
∑

1≤j≤N+1

KxJ0,jK(λ+ η) KxJj,N+2K(λ+ η) qx0,xj ,xN+2(xJ0, N + 2K, λ+ η).

Expanding qx0,xj ,xN+2(xJ0, N+2K, λ+η) = qx0,xj ,xN+2(xJ0, N+2K, λ)+qx0,xj ,xN+2(xJ0, N+2K, η), and applying
the recurrence hypothesis, we get for Ej = {x1, · · · , xj−1}, E′j = {xj+1, · · · , xN+1},

KxJ0,N+2K [λ+ η ] ≤
∑

1≤j≤N+1

∑

A⊂Ej
B⊂E′

j

Kx0Axj (λ)Kx0(Ej\A)xj (η)KxjBxN+2
(λ)Kxj(E′\B)xN+2

(η) (37)

× qx0,xj ,xN+2(xJ0, N + 2K, λ) (38)

+
∑

1≤j≤N+1

∑

A⊂Ej
B⊂E′

j

Kx0Axj (λ)Kx0(Ej\A)xj (η)KxjBxN+2
(λ)Kxj(E′\B)xN+2

(η) (39)

× qx0,xj ,xN+2(xJ0, N + 2K, η)) (40)
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to conclude: in the last sum, use by Lemma 22

Kx0(Ej\A)xj (η)Kxj(E′\B)xN+2
(η) ≤ Kx0,(Ej\A)∪(E′j\B),xn+2

(η)

and for any C,
∑

j∈C
Kx0C<jxj (λ)KxjC>jxN+2

(λ)qx0,xj ,xN+2(xJ0, N + 2K, λ)

=
∑

j∈C
Kx0C<jxj

(λ)KxjC>jxN+2
(λ)qx0,xj ,xN+2(x0, (xi, i ∈ C), xN+2, λ)

|C|
N + 1

= Kx0CxN+2
(λ)

C

N + 1

and then finally the two sums in the RHS of (37) are bounded by

∑

C

|C|+ (N + 1− |C|)
N + 1

Kx0CxN+2
(λ)Kx0xcCxN+2(η) ≤ gN+1(0, 0, λ, η).

Proof of Theorem 21 (ii) For any n > j, denote by ej the jth vector of the canonical basis of Rn,

starting from e0. A vector ν = (ν0, . . . , νN+1) is then identified with
∑N+1

j=0 νjej . In the following, adding
vectors with the mean of the ej is used to introduced some additional symmetry defects to the segments. The
main underlying idea of what follows is that we are not really able to compare directly gN (0, 0, f+, f−) with
gN (0, 0, f+ + xej , f

− − xej), but just with (
∑

ε∈{−1,1} gN (0, 0, f+ + xεej , f
− − xεej))/2.

Proposition 23. Let λ ∈ CV+(x[N + 2]) such that the ri(λ) > 0 for all i ∈ J1, NK, for L as usual (see (9)),
for any (βi, 0 ≤ i ≤ N + 1) ∈ {0}×RN ×{0} in the interior of Compa(λ), for any ν[N + 2] ∈ {0}×Rn×{0},
for y small enough

2−N
∑

(εi,1≤i≤N)∈{1,−1}N
gN

(
a, b, L+ λ+ β + y

N∑

j=1

εjνjej , L+ λ− β − y
N∑

j=1

εjνjej

)
(41)

≤ gN (a, b, L+ λ+ β, L+ λ− β) (42)

If its hypothesis is satisfied, this proposition implies Theorem 21 (ii) : at the l.h.s. observe that a
mean of 2N different perturbations of (λ + β, λ − β). Since the mean of these values is non larger than
gN (a, b, L+ λ+ β, L+ λ− β) then either all these values are equal to gN (a, b, L+ λ+ β, L+ λ− β), or one
of them at least is smaller than gN (a, b, L + λ + β, L + λ − β). In any case, since this holds for all y small
enough, this implies that β 7→ gN (a, b, L + λ + β, L + λ − β) does not possess a strict local minima in the
interior of Compa(λ).

We start by proving some properties satisfied by K.

Proposition 24. For any λ[N + 2] ∈ CV+(x[N + 2]), any 1 ≤ i ≤ N , any α ∈ R small enough,

(i)
∑

ε∈{−1,1}

K[x[N + 2], λ[N + 2] + ε αei] ≤ 2 K[x[N + 2], λ[N + 2]],

(ii) If λ ∈ Compa(λ) and α is small enough such that β ± αei ∈ Compa(λ[N + 2]),

∑

ε∈{−1,1}

gN (0, 0, λ+ β + εαei, λ− β − εαei) ≤ 2gN (0, 0, λ+ β, λ− β). (43)
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Proof. (i) The l.h.s. in (i) is even in α: take some α ≥ 0. Recall (15): K is up to the product of the teeth
lengths, the probability for a point on each tooth of a comb to be in a convex position. Rewrite (i) as

∑

ε∈{−1,1}

p(εα)

p(|α|)
K[x[N + 2], λ[N + 2] + εαei]

p(εα)
≤ 2

p(0)

p(|α|)
K [x[N + 2], λ[N + 2]]

p(0)
, (44)

for p(y) :=
∏n
j=1(λj + y1i=j). For a(α) :=

p(α)

p(|α|)
〈
Cb
[
x[N + 2], λ[N + 2] + αei

]〉
, by (15), (44) is equivalent

to

a(α)− a(0) ≤ a(0)− a(−α). (45)

Each of a(α), a(0) and a(−α) are probabilities of some events. Indeed, consider Cb[xJN+2K, λ[N+2]+ |α|ei],
where the ith tooth is |α| longer. And now, take independently some points (Yi, 1 ≤ i ≤ N), where Yj is
uniform on the jth tooth [(xj , 0), (xj , λj+|α|1i=j)], and as usual, the two boundary points are (x0, Y0) = (0, 0)
and (xN+1, YN+1) = (1, 0). Denote by

E = {Y [N + 2] ∈ CPN+2, Yi ≤ λi − |α|},
E′ = {Y [N + 2] ∈ CPN+2, Yi ≤ λi},
E′′ = {Y [N + 2] ∈ CPN+2, Yi ≤ λi + |α|},

in words, these events encode the fact that the points (Yj) are in a convex position taking into account the
position of the ith point with respect to the “deformation” αei of the ith tooth.
It is immediately checked that a(α) = P(E′′), a(−α) = P(E) and a(0) = P(E′), so that (45) is equivalent to

P(Y [N + 2] ∈ CPN+2, λi ≤ Yi ≤ λi + α) ≤ P(Y [N + 2] ∈ CPN+2, λi − α ≤ Yi ≤ λi). (46)

We claim that this property holds for α small enough, and that it can be seen on a simple figure as Fig. 9:
the two events A := {λi ≤ Yi ≤ λi + α} and B := {λi − α ≤ Yi ≤ λi} are equally likely, and since Yi is
uniform on [0, λi + α], Conditional on A (resp. on B), Yi is uniform on [λ, λi + α] (resp. [λi − α, λi]). We
can then just compare the situation where Yi has the form λi − α + u with that when it is λi + u for some
u ∈ [0, α]. Conditional on these respecting values λi − α+ u (resp. λi + u), Y [N + 2] ∈ CPN+2 if the rest of
the points avoid a region “above λi − α+ u” (resp. λi + u), and those at the left of xi and those at the right
are in a convex position. In the case where a deformation of the i line (above and below λi) gives a comb
in a convex position, for α small enough, the regions above do not contains any points of the other teeth: it
appears now clearly that for α small, the other points at the left and at the right of xi (including (Xi, Yi)
for both case), must be in a convex position, and avoid the the forbidden region as represented in Fig. 9:
excluding the regions above, the forbidden region is smaller when λi − α + u compared to the case where it
is λi + u.
(ii) For a set A ⊂ J1, NK, set KA(ν) = K[(x0, (xi, i ∈ A), xN+1), (0, (νj , j ∈ A), 0)].
Notice that if i 6∈ A, KA(ν + αei) = KA(ν) since the expansion (15) does not use the ith tooth. Now, write

∑

ε∈{−1,1}

gN (0, 0, λ+ β + εαei, λ− β − εαei) =
∑

ε∈{−1,1}

∑

A⊂J1,nK:i∈A

KA(λ+ β + εαei)KAc(λ− β) (47)

+
∑

ε∈{−1,1}

∑

A⊂J1,nK:i∈Ac
KA(λ+ β)KAc(λ− β − αei) (48)

22



λi − xei

λi

λi + xei

λi − xei + u

λi + u

Figure 9: Comparison of the two quantities appearing in (46). On the second picture, respective forbidden
region for the other points when Yi = λi − α+ u, on the third one, when Yi = λi + u.

By exchanging the sums over ε and over A, by (i), this is smaller than

2
( ∑

A⊂J1,nK:i∈A

KA(λ+ β)KAc(λ− β) +
∑

A⊂J1,nK:i∈Ac
KA(λ+ β)KAc(λ− β)

)

which is exactly 2gN (0, 0, λ+ β, λ− β).

Proof of Proposition 23. For two points u, v, consider the line from (x0, u) to (xN+1, v) denote by Ti(u, v) :=
v(1− xi) + uxi the ordinate of this line at position xi. Since the line T (εa, ε′b) serves as a basis (the shafts)
for the two combs, one has :

gN (a, b, L+ λ, β) =
∑

ε∈{−1,1}
ε′∈{−1,1}

grefi.
N (a, b, ε, ε′, L+ λ+ β, L+ λ− β)

=
∑

ε∈{−1,1}
ε′∈{−1,1}

grefi.
N (0, 0, 0, 0, L+ λ+ β − T (εa, ε′b), L+ λ+ β + T (εa, ε′b))

From this property, the l.h.s. of (41) rewrites

2−|J |
∑

(εi,i∈J)∈{1,−1}J
ε∈{−1,1}
ε′∈{−1,1}

grefi.
N

(
0, 0, 0, 0, L+ λ+ β + y

∑

j∈J
εjνjej − T (εa, ε′b), L+ λ− β − y

∑

j∈J
εjνjej + T (εa, ε′b)

)

which is by applying Prop. 24 repeatedly (by adding one by one the terms εjyjej for εj ∈ {−1,+1}, as a
fifth and sixth entry of gN ), this is not larger than

2−|J |
∑

(εi,i∈J)∈{1,−1}J

∑

ε∈{−1,1}
ε′∈{−1,1}

grefi.
N

(
0, 0, L+ λ+ β − T (εa, ε′b), L+ λ− β + T (εa, ε′b)

)
(49)

the pre-factor and the first sum produces “an extra factor 1”, and then this last quantity reduces to the r.h.s.
of (41).
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