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ABSTRACT

The equilibrium shape of nanoparticles is investigated to elucidate the various core–shell morphologies observed in a bimetallic system
associating two immiscible metals, iron and gold, that crystallize in the bcc and fcc lattices, respectively. Fe–Au core–shell nanoparticles
present a crystalline Fe core embedded in a polycrystalline Au shell, with core and shell morphologies both depending on the Au/Fe volume
ratio. A model is proposed to calculate the energy of these nanoparticles as a function of the Fe volume, Au/Fe volume ratio, and the core
and shell shape, using the density functional theory-computed energy densities of the metal surfaces and of the two possible Au/Fe inter-
faces. Three driving forces leading to equilibrium shapes were identified: the strong adhesion of Au on Fe, the minimization of the Au/Fe
interface energy that promotes one of the two possible interface types, and the Au surface energy minimization that promotes a 2D–3D
Stranski–Krastanov-like transition of the shell. For a low Au/Fe volume ratio, the wetting is the dominant driving force and leads to the
same polyhedral shape for the core and the shell, with an octagonal section. For a large Au/Fe ratio, the surface and interface energy mini-
mizations can act independently to form an almost cube-shaped Fe core surrounded by six Au pyramids. The experimental nanoparticle
shapes are well reproduced by the model, for both low and large Au/Fe volume ratios.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0014906

I. INTRODUCTION

Bimetallic nanoparticles (NPs) can be synthesized in different
shapes, sizes, and structures. For two immiscible metals, the chemi-
cal order can be core–shell, Janus, or multi-shell.1–3 These mor-
phologies combined to size effects are at the origin of new or
exalted properties compared to monometallic NPs. Bimetallic NPs
are thus widely investigated for a variety of applications including
catalysis, optics, magnetic recording, hyperthermia, magnetically
driven drug delivery, and bactericidal actions.1 In the Fe–Au
system, a core–shell order with iron at the core preserves the mag-
netic properties of the iron and protects it from oxidation thanks to
the gold shell. The latter also ensured the NP biocompatibility. The
preservation of the magnetic properties of the core requires con-
trolling its crystallinity, its size, and the thickness of the protecting
shell. As the adsorption of molecules depends of the crystalline ori-
entation of gold,4 biological applications based on molecule
binding also require managing the crystalline quality and orienta-
tion of the shell facets.

Predicting the NP shapes on a rational basis is thus desirable;
however, it is challenging. Although the usual concepts of the

crystal growth remain relevant, such as those related to epitaxy,
adhesion, or elasticity, new models are required to understand the
specific geometry of core–shell NPs, which cannot be directly
deduced from the structural properties of the two components in
their own phase or from the growth modes on a 2D substrate. The
case where both core and shell are fcc crystals was deeply investi-
gated.5,6 This contrasts with Fe–Au NPs, a study case where the Fe
core and the Au shell crystallize, respectively, in the body-centered
cubic (bcc) lattice and face-centered cubic (fcc) lattice, whereas
remaining in a core–shell geometry, both core and shell morpholo-
gies of Fe–Au NPs strongly evolve as a function of the respective
volumes of the two metals.7 In this article, we aim at uncovering the
mechanisms responsible for this important morphological evolution.
As for some other nanostructures,8 the continuous approach adopted
here provides a theoretical frame to explore the energy landscape as a
function of the core and shell morphologies for NPs of any size, par-
ticularly in the typical experimental range (from 1 to 50 nm7,9–11),
and as such is a complementary approach to atomistic simulations.

In previous studies,7,9 nanometric AuFe based NPs were formed
at high temperature (600 °C–800 °C) in an ultrahigh vacuum growth
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process by the sequential deposition of Fe and then Au. They exhibit
a regular core–shell shape where Fe forms a single crystal with a
polyhedral shape, entirely covered by a polycrystalline Au shell. Two
morphologies are observed (in the following, we will systematically
refer crystallographic notations to either Fe or Au nanocrystals).

In the NPs, such as those presented in the cross section in
Fig. 1(a), the Fe core is close to a perfect 〈001〉Fe oriented cube,
and the Au shell consists essentially in six single crystals located on
the {001}Fe faces of the cube. Each of these six crystals is {001}Au
oriented and is constituted by a thin wetting layer surmounted by a
truncated pyramid with four {111}Au sides. The dominant inter-
faces are {001}Au/{001}Fe (green dashed lines in the crystallographic
scheme).

In Fig. 1(b), the Fe core appears in the cross section as an
octagon. The core can thus be described as a polyhedron limited by
{001}Fe and {110}Fe faces. The shell has a homogeneous thickness
without pyramids. Two interfaces coexist: the same {001}Au/{001}

Fe interface as in Fig. 1(a), and the {111}Au/{110}Fe interface
(red dashed lines in the scheme). The shell is thus formed by 18
different crystallites, 12 〈111〉Au oriented on the {110}Fe faces, and
6 〈001〉Au oriented on the {001}Fe faces (respectively filled in red
and yellow in the scheme).

The {001}Au/{001}Fe interface7 presents a perfect epitaxial
relationship thanks to a 45° rotation of {001}Au with respect to
{001}Fe [Fig. 1(c)]. This orientation reduces the effective misfit to
0.6% (the lattice constant of bcc Fe and fcc Au being 0.286 65 nm
and 0. 407 84 nm, respectively12) leading to a pseudomorphic growth
of Au on Fe, without dislocations. For the {111}Au/{110}Fe interface,
both theoretical13 and experimental14 results agree with the so-called
Nishiyama–Wasserman relationship13 described in Fig. 1(c). This
interface presents a high misfit of 23% along the 〈112〉Au//〈110〉Fe
direction, while in the 〈110〉Au//〈001〉Fe direction, it is only 0.6%.

The shell facets are {001}Au and {111}Au (green and red lines
in Fig. 1, respectively), which are the most stable facets in fcc crys-
tals as Au.15,16

These two morphologies are highly reproducible and several
NPs of various nanometric sizes similar to the ones displayed in
Figs. 1(a) and 1(b) can be found in Ref. 7 (and its supplemental
material) and in Ref. 9. The two morphologies are not size distribu-
ted, but NPs with well-formed pyramids as in Fig. 1(a) are associ-
ated with a much larger Au amount compared to the Fe amount
than the NPs with an octagonal section as in Fig. 1(b). The Au/Fe
volume ratios are for instance estimated around 1.6 and 0.65,
respectively, for the NPs displayed in Figs. 1(a) and 1(b).

Core–shell NPs with the same crystallographic structure and
combining an almost cube-shaped core topped by pyramids as in
Fig. 1(a) were also reported in the literature. Thanks to in situ
heating, spherical Fe–Au NPs grown at room temperature trans-
formed into an almost cube-shaped core topped by Au pyramids
that are more truncated than in our experiments.10 A core with a
shape close to a FeCo cube topped by thin Au pyramids was also
observed in large FeCo–Au NPs.11 Note also that while the elastic
strain relaxation can be at the origin of a strong asymmetry of the
core position in the shell,5 this mechanism seems inoperant here
due to the small misfit.9

The deposition of pure Fe in our experimental setup leads to
roughly rounded single crystals.7 This shape is the Wulff equilib-
rium shape (ES) of bcc iron:17,18 {110} and {100} facets are domi-
nant and the ratio of their surface energy densities is close to 1, but
they are truncated by differently oriented small facets, leading to an
iron nanocrystal appearing rounded rather than faceted. We cannot
access the detailed scenario of the NPs formation, but we can
suppose that the Au shells grow on these nanocrystals.

To elucidate the Fe–Au NP morphology evolution, we investi-
gate the energy landscape of the NPs as a function of their shape
and of the Au/Fe volume ratio. For this purpose, in Sec. II, we
develop a model based on the observed morphologies and we
present density functional theory (DFT) calculations performed to
access the energy densities of all surfaces and interfaces involved in
the model. In particular, the energy of the complex {111}Au/{110}
Fe interface, which is not available in the literature to our knowl-
edge, is computed. The wetting in the Au/Fe system is predicted in
Sec. III in a theoretical frame, and we compare the predicted
growth mode of Au on a 2D infinite Fe substrate and on a 3D

FIG. 1. Typical NPs for large (a) and small (b) shell/core volume ratio. High res-
olution transmission electron microscopy images (left) and corresponding crys-
tallographic models (right). (c) In-plane epitaxial relationships for both interfaces.
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finite Fe nanosubstrate. In Sec. IV, the equilibrium shape (ES) at
constant NP volume is explored for a large Au/Fe volume ratio and
a small one, and the driving forces leading to the ES, or in some
cases to a metastable shape, are discussed. For this purpose, we
analyze the pathways allowed in our geometrical model by the core
and shell shape transformations. In Sec. V, the ES evolution with
Au/Fe volume ratio is discussed and compared to experimental
observations.

II. MODEL

A geometrical model describing the NP morphologies with
only four independent parameters is proposed. As exploring the
energy landscape of a NP requires the consideration of the energies
of all surfaces and interfaces, their areas are calculated and DFT
calculations of their energy densities are presented.

Note that the elastic energy due to the misfit and the grain
boundary energy are not included (this will be justified later on in
Sec. V E) and that the NPs are considered free of any external
stress. (In our experimental setup, the NPs are formed at the
surface of an amorphous Al2O3 substrate with which they interact,
leading to the Volmer–Weber growth mode of the NPs on the sub-
strate.7 As for Au on alumina,19 the adhesion of Fe–Au NPs on
alumina is weak. It thus can be neglected in the determination of
the NP equilibrium shape.)

A. Geometrical model of Fe–Au NPs

The geometrical model [displayed in 3D in Fig. 2(a) and in
the cross section in Fig. 2(b)] is designed to allow progressive tran-
sitions between the different observed shapes.

As only {110}Fe and {001}Fe faces are involved at interfaces,
we modeled the core by a polyhedron limited by 12 hexagonal
{110} and 6 square {001} faces (truncated rhombic dodecahedron,
in blue in Fig. 2). The respective extension of {110}Fe and {001}Fe
faces can be modulated, according to the cubic symmetry. The Fe
core can thus be fully described by two parameters: the Fe volume
VFe and the aspect ratio

RFe ¼ hFe110/h
Fe
001, (1)

where hFe110 and hFe001 are the distances from the core center to the
{110}Fe and {001}Fe faces, respectively [Fig. 2(b)].

The Au shell is geometrically decomposed in a part homothetic
to the core [limited in Fig. 2(b) by the interfaces on one side and by
the blue dashed–dotted line on the other side] and six square based
pyramids. The Au shell consists in 18 crystallites distributed on the
core according to the cubic symmetry: (i) 12 are 〈111〉Au oriented
platelets grown on the {110}Fe faces with thickness hAu111 [in red in
Fig. 2(b)]; (ii) 6 crystallites grown on the {001}Fe faces are 〈001〉Au
oriented [in yellow in Fig. 2(b)]; each of them consists in a platelet of
thickness hAu001 topped by one square based pyramid with four {111}
Au facets. The pyramid height is denoted as hAupyr .

The whole shell can be fully described by two parameters, the
Au volume VAu and one aspect ratio to express its distribution
between the homothetic shell and the pyramids. For convenience, we
chose the aspect ratio f that expresses the expansion from the Fe core
(in blue) to the homothetic part of the shell (blue dashed–dotted

FIG. 2. Generic model of a Fe–Au NP. (a) 3D view of the Fe core and Au shell
surfaces. (b) Cross section. The Fe core shape (in blue) is defined by RFe ¼
hFe110/h

Fe
001 [Eq. (1)]. The shell is decomposed into a part homothetic to the Fe

core (limited by the blue dashed–dotted line) and six pyramids. The shell aspect
ratio is defined by f ¼ 1þ (hAu111/h

Fe
110) ¼ 1þ (hAu001/h

Fe
001). The platelets filled in

red on the {110}Fe faces are Au〈111〉 oriented crystals. The Au 〈001〉 oriented
crystals are formed by the platelets on the {001}Fe surfaces (dark yellow)
topped by square based pyramids (light yellow). The NP is built at the scale for
RFe ¼ 1:2, VFe ¼ 176 nm3, f ¼ 1:16, VAu/VFe ¼ 1:40. The corresponding
sizes are hFe001 ¼ 2:92 nm, hFe110 ¼ 3:50 nm, hAu001 ¼ 0:58 nm, hAu111 ¼ 0:70 nm
and hAupyr ¼ 1:19 nm (or t = 0.66).
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line). f is defined by

f ¼ 1þ (hAu111/h
Fe
110) ¼ 1þ (hAu001/h

Fe
001): (2)

The Fe–Au NP can thus be fully described with only four
independent parameters: VFe and three dimensionless parameters
VAu/VFe, RFe, and f .

B. Useful geometrical quantities

Let us now display geometrical quantities derived from these
four parameters. These quantities will be useful to describe a NP
and to calculate all surface and interface energies involved in the
NP energy.

1. Core (face areas, volume)

The areas of one {001}Fe and one {110}Fe core faces (see
Appendix A) are, respectively,

SFe001 ¼ 4 (hFe001)
2 ffiffiffi

2
p

RFe � 1
� �2

and (3)

SFe110 ¼ 4 (hFe001)
2 ffiffiffi

2
p � RFe

� �
3

ffiffiffi
2

p
/4

� �
RFe � 1/2

h i
: (4)

The Fe volume is found by decomposition of the core in 18
pyramids converging at its center,

VFe ¼ (6 hFe001 S
Fe
001 þ 12 hFe110 S

Fe
110)/3: (5)

It becomes

hFe001 ¼ V1/3
Fe 8� 12

ffiffiffi
2

p
RFe

ffiffiffi
2

p
� RFe

� �2� ��1/3

: (6)

Equation (6) allows us to calculate SFe001 and SFe110 as a function
of VFe andRFe.

2. Part of the Au shell homothetic to the core
(areas and volume)

The areas of the top facet of a 〈001〉Au and of a 〈111〉Au ori-
ented platelet are, respectively,

SAu001 ¼ f 2 SFe001 and S
Au
111 ¼ f 2 SFe110: (7)

The volume of the homothetic part of the shell is

Vhomo
Au ¼ VFe ( f

3 � 1): (8)

3. Au pyramids (volume, facet areas, height, and
truncation rate)

To calculate the pyramid facet areas, we introduce for conve-
nience the dimensionless truncation rate t defined by

t ¼ 1� 2 hAupyr/(b
Au
001 tan β)¼ bAu001pyr/b

Au
001, (9)

where β = 54.7° is the angle between the {001}Au planes and the
pyramid facets {111} tan β ¼ ffiffiffi

2
p� �

, hAupyr is the pyramid height,
and bAu001 and b

Au
001pyr are the edges of the pyramid basis and of

the top facet, respectively [Fig. 2(b)]. Note that t varying from 0
(complete pyramid) to 1 (no pyramid) provides a direct description
of the pyramid shape. bAu001 is directly related to the basis area
SAu001 by

bAu001 ¼ SAu001
1/2 ¼ 2 f hFe001

ffiffiffi
2

p
RFe � 1

� �
: (10)

The volume of one pyramid V pyr
Au can be written as a function

of t as

V pyr
Au ¼ SAu001

3/2
(1� t3)/ 3

ffiffiffi
2

p� �
: (11)

t can, therefore, be written as

t ¼ 1� 6 V pyr
Au /

ffiffiffi
2

p
SAu001

3/2
� �h i1/3

: (12)

As V pyr
Au is easy to write as a function of VFe, VAu/VFe, and f ,

V pyr
Au ¼ (VAu � Vhomo

Au )/6 ¼ [(VAu/VFe)þ 1� f 3] VFe/6, (13)

it comes from Eqs. (3), (6), and (7) that t only depends
on RFe, VAu/VFe, and f . The areas of one lateral {111}Au facet
SAu111pyr and of the top {001}Au facet SAu001pyr are

SAu111pyr ¼ (1� t2) SAu001 /(4 cos β) and SAu001pyr ¼ t2 SAu001: (14)

It is important to keep in mind that once RFe, VAu/VFe, and f
are fixed, there exists a unique distribution of the gold in the homo-
thetic shell and the pyramids (there is a unique correspondence
between f and t). All the geometrical quantities defined here (dis-
tances, areas, and volumes) depend on VFe, VAu/VFe, RFe, and f .

C. Limits of the aspect ratios

As the core is a polyhedron limited by {001}Fe and {110}Fe
faces within the cubic symmetry, RFe varies from 1/

ffiffiffi
2

p
(perfect

rhombic dodecahedron built with 12 {110}Fe lozenges) to
ffiffiffi
2

p
(perfect cube built with 6 {001}Fe squares) [Fig. 3(a)].

The limits of f, fmin, and fmax, depend on VAu/VFe andRFe (see
Appendix B). We also calculate the limits tmin and tmax of the
pyramid truncation t, which is a monotonous and increasing func-
tion of f. When Au is entirely distributed in the homothetic part of
the shell, f and t reach their maxima fmax and tmax,

fmax ¼ [1þ (VAu/VFe)]
1/3 ; tmax ¼ 1: (15)

When the Au pyramids are as complete as possible, f and t
reach their minima fmin and tmin. As illustrated in Fig. 3(b) for a
particular RFe and three different volume ratios, these minima are

(i) 1 < fmin < fmax and tmin = 0 if the wetting layer still exists
when the pyramids are complete,
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(ii) fmin = 1 and tmin = 0 when the completion of the pyramids
coincides with an empty wetting layer, and

(iii) fmin = 1 and 0 < tmin < 1 if pyramids cannot be complete even
without wetting layer.

The exact calculation of fmin and tmin is given in Appendix B.

D. Experimental analysis with the geometrical model

Average values of RFe, hFe001, h
Au
111, and h

Au
pyr of a single NP can

be measured from high resolution transmission electron micros-
copy (HRTEM) images. VFe, f , andVAu/VFe are then deduced

through Eqs. (2), (6), and (13). The models represented in Fig. 1
are built with the measures from the experimental images and are
displayed at the same scale.

For Fig. 1(a), the measured values used to build the model are
RFe ¼ 1:35 + 0:04, hFe001 ¼ 2:2 + 0:1 nm, hAu111 ¼ 0:41 + 0:1 nm
and an average t = 0.66 (or hAupyr ¼ 1:1 nm). We thus estimate
VFe � 84 nm3 , f � 1:14, andVAu/VFe � 1:6 in this single NP.
Estimates of VAu/VFe in several other NPs from Refs. 7 and 9 (and
the supplemental material of Ref. 7) with the same morphology as
in Fig. 1(a) are in the range of 1.6–2.3. The {111}Au/{110}Fe inter-
faces barely even exist and the core corners are covered by two or
more Au MLs.

For Fig. 1(b), the measured values used to build the model are
RFe ¼ 0:98 + 0:02, hFe001 ¼ 3:26 + 0:1 nm, hAu111 ¼ 0:58 + 0:1 nm,
and hAupyr � 0, giving directly t≈ 0 and f≈ 1. The deduced Fe
volume is 168 ± 25 nm3 and the deduced volume ratio VAu/VFe in
this single NP is 0.65 ± 0.15.

These estimations indicate that the Au/Fe ratio in NPs with
well-formed pyramids is three to four times larger than in NPs as
in Fig. 1(b).

E. Surface and interface energy densities

To investigate the energy landscape of a NP with the geomet-
rical model, the surface and interface energies densities, defined as
excess energies compared to bulk phases, are necessary. They were
calculated with the density functional theory (DFT) with the meth-
odology described in Refs. 20 and 21 and are reported in Table I.

1. DFT calculations

Spin-polarized DFT calculations have been performed using
the VASP code, with projector augmented wave method (PAW)
pseudopotentials and the Perdew-Burke-Ernzerhof (PBE) func-
tional. The cutoff energy has been set to 600 eV for all calcula-
tions and a Methfessel–Paxton smearing with σ 0.05 eV was used.
A Monkhorst–Pack mesh of special k-points has been determined in
order to achieve the convergence of the energy up to 2meV/atom
for each investigated system. Periodic boundary conditions are used
in the x, y, and z directions, and the two slabs are separated
from their images by adding 1.5 nm of vacuum in the z-direction.

FIG. 3. (a) Cross section (top) and top-view (bottom) of the core for various
aspect ratios RFe from 1/

ffiffiffi
2

p
to

ffiffiffi
2

p
. (b) Geometrical limits of the shell, illus-

trated in the cross section with RFe ¼ 1:2 for various volume ratios VAu/VFe.
The scale is for VFe ¼ 175:6 nm3 (same order of magnitude as the average
experimental volumes in Ref. 7). TABLE I. Surface and interface energy densities obtained from DFT calculations

with the PBE functional and experimental data.

DFT–PBE Experimental

γAu001 0.873 J/m2

γAu111 0.734 J/m2 ≈1.5 J/m215

γAu111/γ
Au
001 0.84 0.84a

γFe001 2.478 J/m2

γFe110 2.428 J/m2 2.417 J/m223

γFe110/γ
Fe
001 0.98 ≈117

γ interf(001)Au/(001)Fe 0.378 J/m2

γ interf(111)Au/(110)Fe 0.700 J/m2

aFound by application of the Wulff theorem to the Au nano-island
of Ref. 22.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 055307 (2020); doi: 10.1063/5.0014906 128, 055307-5

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


The atomic positions were relaxed until the forces reach a value
lower than 10−2 eV Å−1.

As discussed in Ref. 20, the (001)Au and (111)Au surface
energies, γAu001 and γ

Au
111, respectively, are underestimated with respect

to the experimental values (around 1.5 J/m2).15 This is due to the
use of the PBE exchange and correlation functional that, although
giving excellent results in reproducing the properties of iron, is not
very performing for gold. However, the ratio γAu111/γ

Au
001 is in excel-

lent agreement with the experimental estimates; for instance, a
0.84 ratio is deduced applying the Wulff theorem to the Au nano-
island from Ref. 22. For (001)Fe and (110)Fe, the surface energies,
γFe001 and γ

Fe
110, respectively, are in very good agreement with the

experiments.18,23

For the energy density of the {001}Au/{001}Fe inter-
face, γ interf(001)Au/(001)Fe, we used the same model of coherent interface
as in Refs. 20 and 21. For the energy density of the {111}Au/{110}
Fe interface, γ interf(111)Au/(110)Fe, we developed a new model reproducing
the epitaxial Nishiyama–Wasserman relationship7,13 with periodic
boundary conditions. As a first approximation, we chose to model
this interface using a semi-coherent approach in the [101] direction
as proposed by Lu et al. for the (111)Ag/(110)Fe interface.24 The
coincidence between the two lattices along the [110] direction is
five Fe cells for four Au cells (5 × 4). After optimization, the system
exhibits an interface dislocation enabling to accommodate a large
part of the high lattice misfit in this direction. A more detailed
study will be reported elsewhere. For both interfaces, the energies
were converged within ±10 mJ/m2 for a slab with 12 Fe MLs and
more than 4 Au MLs.

2. Dependence with the Au thickness

The excess energy experienced by an iron surface covered by
Au is due to the Au surface energy and interface energy. However,
to explore the case of small Au/Fe volume ratios [Fig. 3(b)], it is
mandatory to consider the possibility for Fe surfaces to be bare (the
excess energy is then due to γFesurface) and to introduce a progressive
transition from the bare Fe surface to the full wetting by Au. For the
sake of simplicity, we chose to monitor the full wetting condition
with a single parameter, a critical Au thickness. In the following, for
Au thicknesses larger than this critical value, the surface and inter-
face energies are calculated with the densities γAusurface and γ interface
from Table I. Below the critical thicknesses, we impose a linear
increase in γAusurface and γ interface as the Au thickness decreases until
γAusurface þ γ interface becomes equal to γFesurface when the Au thickness is
null, as described in Fig. 4. We fixed the critical thicknesses at two
MLs (0.46 nm for {111}Au and 0.40 nm for {001}Au) corresponding
to the minimal Au coverage experimentally observed in our NPs.

III. GROWTH MODES OF GOLD ON INFINITE 2D AND
FINITE 3D IRON SUBSTRATES

The growth mode of the Au/Fe system can be predicted on
the basis of our DFT calculated surface and interface energies.
Beyond the classical case of the growth on a 2D infinite substrate,
our aim in this section is to discuss the growth mode when the sub-
strate is a 3D nanocrystal of finite size.

A. Growth mode of Au on an infinite 2D Fe substrate

The wetting factor ΦAu/Fe that expresses the balance of surface
and interface energies involved in the formation of a 2D Au layer
on a 2D Fe substrate is13

ΦAu/Fe ¼ γAusurface þ γ interface � γFesurface: (16)

The growth mode (in near-equilibrium conditions) is predicted
from the sign of ΦAu/Fe: 2D Frank van der Merwe (full wetting) if
negative or 3D Volmer–Weber (partial wetting) if positive. It is also
interesting to calculate the adhesion energy of the Au/Fe system,

Wad ¼ γAusurface � γ interface þ γFesurface: (17)

Thanks to the DFT calculated energies of both {111}Au/{110}
Fe and {001}Au/{001}Fe interfaces, we are able to predict and
compare quantitatively their growth modes. Table II reports the
adhesion energies and the wetting factors of Au on Fe calculated
with the surface and energies DFT computed data of Table I.

Both interfaces have a high adhesion energy. The largest
adhesion energy of {001}Au/{001}Fe compared to {111}Au/{110}Fe
is due for one-third to the difference in γAu111 and γ

Au
001 and for two-

thirds to the difference in γ interf(111)Au/(110)Fe and γ
interf
(111)Au/(110)Fe. The neg-

ative wetting factors in Table II induced that for the two considered
Fe orientations, the growth mode of Au on Fe system predicted by
DFT is 2D Frank van der Merwe, i.e., the 2D Au layer is formed
even for null sursaturation. In addition, the absolute values of the
wetting factors are comparable to the corresponding Au surface
energies, which indicate a strong tendency to Au on Fe wetting.

FIG. 4. γAusurfaceþγ interface as a function of the gold thickness. If the Au layer exceeds
a critical thickness, chosen here to be two MLs, γAusurface andγ interface are the DFT com-
puted data (Table I). Below the critical thickness, a linear increase is imposed to
γAusurface andγ interface so that for the bare iron, γAusurfaceþγ interface is equal to γFesurface
(DFT data from Table I). The illustrations are NPs with RFe ¼ 1:2. For VFe = 175.6
nm3 the Au/Fe volume ratios correspond from left to right to bare iron, Au thickness
around the critical thickness, and larger Au thickness, here around 1.3 nm (six MLs).
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Table II also reports the wetting factors of iron on gold. They
are much larger than for gold on iron, positive values even suggest-
ing a Volmer–Weber growth mode of iron on gold (i.e., partial
wetting). Combined to the low miscibility of the two metals, here
this fully preserves the initial iron NPs as cores for the further
growth of gold shell. More generally, this clearly favors a Fe(core)-
Au(shell) chemical order in this system.

B. Growth of Au on a finite 3D Fe nano-substrate: From
a 2D growth mode to a 3D Stranski–Krastanov
(SK)-like growth mode

Within our geometrical model, we can calculate precisely the
variation of free energy ΔF needed to form an Au shell on a Fe
nano-substrate of predefined shape and finite size. To condensate n

atoms from Au vapor as a shell with a homogeneous thickness, ΔF is

ΔF ¼ EAu
surface þ Einterface � EFe

surface � nΔμ, (18)

where EAu
surface and Einterface are the costs in Au surfaces and Au/Fe

interfaces to form an Au shell, (�EFe
surface) is the gain provided by the

full wetting of Fe by Au, and Δμ is the difference of chemical poten-
tial of gold between the vapor and the solid phase. To ensure the
constraint on the homogeneous shell thickness, we consider here
that the shell adopts the same shape as the core so that f is fixed to
fmax [defined by Eq. (15) in Sec. II C]. It becomes

EFe
surface ¼ 12 γFe110 S

Fe
110 þ 6 γFe001 S

Fe
001, (19)

EAu
surface ¼ 12 γAu111 S

Au
111 þ 6 γAu001 S

Au
001, (20)

Einterface ¼ 12 γ interf(111)Au/(110)Fe S
Fe
110 þ 6 γ interf(001)Au/(001)Fe S

Fe
001, (21)

ΔF ¼ 12 (γ interf(111)Au/(110)Fe þ f 2max γ
Au
111 � γFe110)S

Fe
110

þ 6 (γ interface(001)Au/(001)Fe þ f 2max γ
Au
001 � γFe001)S

Fe
001 � nΔμ: (22)

It is interesting to define ΦAu/(3D)Fe by dividing the surface and
interface contributions by the core area,

ΦAu/(3D)Fe ¼
EAu
surface þ Einterface � EFe

surface

12 SFe110 þ 6 SFe001

¼ (γ interf(111)Au/(110)Fe þ f 2max γ
Au
111 � γFe110)

ffiffiffi
2

p � RFe
� �

3
ffiffiffi
2

p
RFe � 2

� �þ 2(γ interf(001)Au/(001)Fe þ f 2max γ
Au
001 � γFe001)

ffiffiffi
2

p
RFe � 1

� �2
ffiffiffi
2

p � RFe
� �

3
ffiffiffi
2

p
RFe � 2

� �þ 2
ffiffiffi
2

p
RFe � 1

� �2 : (23)

Note that ΦAu/(3D)Fe is nothing else than the wetting factor adapted
to the 3D morphology of the nanosubstrate. In contrast with a 2D
infinite substrate, here the wetting factor depends on the Au depos-
ited volume. Indeed, fmax is related to VAu/VFe through Eq. (15).
ΦAu/(3D)Fe is displayed in Fig. 5 as a function of VAu/VFe for various
RFe from 1/

ffiffiffi
2

p
to

ffiffiffi
2

p
. For a small volume ratio, it comes from

Eq. (15) that fmax tends to 1, so that ΦAu/(3D)Fe reduces to the average
value of ΦAu/Fe weighted by the respective surface areas of the two
types of crystallites and is negative whatever the Fe nanocrystal
shape.29 The wetting factor ΦAu/(3D)Fe then increases linearly with
f 2max with a RFe dependency.

30 There exists a critical value fcritical and
a critical volume ratio for which ΦAu/(3D)Fe becomes null,

fcritical ¼ � ( γ interf(111)Au/(110)Fe � γFe110)
ffiffiffi
2

p � RFe
� �

3
ffiffiffi
2

p
RFe � 2

� �þ 2(γ interf(001)Au/(001)Fe � γFe100)
ffiffiffi
2

p
RFe � 1

� �2
γAu111

ffiffiffi
2

p � RFe
� �

3
ffiffiffi
2

p
RFe � 2

� �þ 2 γAu100
ffiffiffi
2

p
RFe � 1

� �2
" #1/2

, (24)

(VAu/V Fe)critical ¼ ( fcritical)
3 � 1: (25)

The critical volume ratio is between 2.6 and 2.7 depending on
RFe (Fig. 5). Below the critical ratio, the shell formation with a full

wetting provides a gain in energy as in the classical 2D Frank–van
der Merwe growth mode. This also means that, once formed, a
Fe(core)–Au(shell) NP should be very stable against partial dewet-
ting. [Note that the γAusurface being underestimated compared to

TABLE II. Adhesion energies Wad of the Au/Fe interfaces and wetting factors
ΦAu/Fe of Au on Fe, and ΦFe/Au of Fe on Au, calculated from the DFT computed
data of Table I.

Interface DFT–PBE (J/m2)

(111)Au/(110)Fe Wad 2.462
(001)Au/(001)Fe Wad 2.973
(111)Au on (110)Fe Φ(111)Au/(110)Fe −0.994
(001)Au on (001)Fe Φ(001)Au/(001)Fe −1.227
(110)Fe on (111)Au Φ(110)Fe/(111)Au 2.394
(001)Fe on (001)Au Φ(001)Fe/(001)Au 1.983
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experimental data (Table I), the wetting factor predicted could also
be underestimated. However, the full wetting is experimentally
attested in the NPs from Ref. 25 and from our work.]

Above, ΦAu/(3D)Fe is positive and the growth requires an
increasing positive sursaturation.

Here we can make an analogy with the 3D Stranski–Krastanov
(SK) growth mode, the third classical growth mode adopted by a
film grown on an infinite 2D substrate (in near-equilibrium condi-
tions).13 In the SK growth mode, the wetting is complete and the
layer first grows 2D; then after a so-called critical thickness, islands
take place on the wetting layer. It has been formally described by
considering that the wetting factor, negative at first at the onset of
the growth, increases with the deposited thickness so that it becomes
positive.13,26 In strained semiconducting heterostructures, where the
SK growth mode is often observed, this increase is due to the integra-
tion in the wetting factor of the elastic energy, a term proportional to
the deposited thickness.13,26 The driving force for a 3D morphology
is thus the relaxation of the elastic energy by the island faces.26,27

In our model, the increase of the wetting factor ΦAu/(3D)Fe with
the Au/Fe volume ratio and the change of its sign is due to the
shell surface increase. Note that this phenomenon is expected inde-
pendently of the core and shell crystallography. However, a 3D
SK-like growth mode will occur only if a modulation of the shell
thickness decreases this wetting factor. As investigated in Sec. IV,
this will be possible here thanks to the polycrystalline character of

the shell engendered by the accommodation of its crystallographic
lattice (fcc) to the core one (bcc).

IV. EQUILIBRIUM SHAPE OF THE FE–AU
NANOPARTICLES AT CONSTANT VOLUMES

In this section, we determine the equilibrium shape (ES) of a
NP of given Au and Fe volumes, and we identify the driving forces
at the origin of the shape transformations allowed in our geometri-
cal model. For this purpose, we analyze the pathways leading to the
ES. We consider as initial configurations the cases where the shell
adopts the same external shape as the core, i.e., when f = fmax as in
Sec. III. Then, we assume that a shape transformation can only
occur by progressive change of RFe and/or f.

A large Au/Fe volume ratio of 1.71 is first considered then a
small one of 0.57.

A. Excess energy of a nanoparticle

The excess energy of the NP compared to the same Au and Fe
volumes in their bulk phases is

ENP ¼ EAu
surface þ Einterface (26)

While Einterface is the same as in Sec. III B, here the surface
contribution includes the pyramid facets,

EAu
surface ¼ 12 γAu111 S

Au
111 þ 6 (γAu001S

Au
001pyr þ 4 γAu111 S

Au
111pyr), (27)

Einterface ¼ 12 γ interf(111)Au/(110)Fe S
Fe
110 þ 6 γ interf(001)Au/(001)Fe S

Fe
001: (28)

The solutions of the energy minimization as a function of the
two aspect ratios RFe and f are numerically determined for a Fe
volume VFe ¼ 175:6 nm3. The core edge when the shape is a cube
is 5.6 nm that corresponds to the average experimental value.7

The core aspect ratio RFe varies from 1/
ffiffiffi
2

p
(perfect rhombic dodec-

ahedron with 12 {110}Fe faces) to
ffiffiffi
2

p
(perfect {001}Fe oriented

cube). As discussed in Sec. II C, the upper limit of f is fmax from
Eq. (15) (the whole Au volume is distributed in the homothetic
shell); then, f can be lowered by the progressive building of the pyr-
amids up to fmin.

B. Equilibrium shape for a large Au/Fe volume ratio

We present in detail the case of VAu/VFe ¼ 1:71 with
VFe ¼ 175:6 nm3. Figure 6 displays the total excess energy ENP as a
function of the two aspect ratios RFe and f . The upper limit of f,
common to all RFe values, is fmax = 1.39 [from Eq. (15)]. For all
RFe, the Au/Fe volume ratio is large enough to build untruncated
pyramids (t = 0) without completely emptying the homothetic shell
(f remains strictly larger than 1).

As long as RFe is lower than 1, the minimum of energy is for
fmax (shape without pyramids). For a given core shape RFe larger
than 1, the minimum is for a lower f, demonstrating the possibility
of a 3D SK-like growth mode, where a part of the shell is trans-
ferred into pyramids at the detriment of the homothetic shell.

FIG. 5. Wetting factor ΦAu/(3D)Fe adapted to the 3D morphology of the nanosub-
strate, calculated as a function of the Au/Fe volume ratio for various Fe core
shapes. The energies densities used are those calculated by DFT–PBE
(Table I). The illustrations are for RFe ¼ 0:98 and 1.2 and the two volume ratios
0.47 and 2.5.
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Comparing the different core shapes, it is then seen that the
minimum of ENP is for RFe ¼

ffiffiffi
2

p
(cube-shaped core) and f = 1.073.

The homothetic shell thickness under the pyramids hAu001 and the
pyramid height hAupyr are then, respectively, 0.21 nm (about 1 {001}
Au ML) and 1.98 nm (about 10 {001}Au MLs) and the truncation
t = 0.535. This ES is displayed in the inset.

C. From initial shapes to optimal shapes for a large
Au/Fe volume ratio

To analyze the driving forces leading to this ES, we report in
Fig. 7 (blue curve) the excess energies of NPs with a homogeneous
shell thickness (f = fmax or t = 1). The four core shapes illustrated in
Fig. 7 are RFe ¼ 1/

ffiffiffi
2

p
, 1.015, 1.2, and

ffiffiffi
2

p
. The possible pathways

reducing ENP at constant volumes from these initial configurations
are then decomposed in two distinct shape transformations. The
excess energies are taken from Fig. 6.

(i) 2D–3D Stranski–Krastanov-like transition: This transforma-
tion consists in building 〈001〉Au oriented pyramids at the
detriment of 〈111〉Au oriented platelets, the core shape being

unchanged (golden arrows). The driving force to form pyra-
mids is the reduction of surface energy by increasing the part
of {111}Au surfaces compared to {001}Au (respectively the
lateral and top facets of the pyramids). We call this mecha-
nism a 2D–3D SK-like transition because it reduces the effec-
tive wetting factor by the modulation of the shell thickness.
This mechanism is active only for RFe larger than 1.

(ii) Core shape transformation: One possible driving force is the
reduction of the interface energy. The core shape minimizing
the interface energy Einterface is found by application of
the Wulff theorem and is RFe ¼ γ interf(111)Au/(110)Fe/γ

interf
(001)Au/(001)Fe.

As this ratio is larger than
ffiffiffi
2

p
here (from Table I), the {111}

Au/{110}Fe interfaces are unstable against {001}Au/{001}Fe
interfaces and should disappear at the benefit of the shape of
a cube. However, this would be true only without surface
effects. Indeed the cost due to larger {001}Au facets with the
shape of a cube could be uncompensated by the gain in inter-
face energy. As a consequence, it is seen in Fig. 7 that as long
as the shell thickness is homogeneous (t = 1 or f = fmax), the
minimum of energy for RFe is around 1. Actually, this
optimal core shape can be found analytically with the Wulff
theorem, by considering that each core face experiences the
interface energy plus the surface energy of the Au platelet
above, and is

Rhomo
Fe ¼ γ interf(111)Au/(110)Fe þ f 2max γ

Au
111

γ interf(001)Au/(001)Fe þ f 2max γ
Au
001

: (29)

Here, with VAu/VFe ¼ 1:71 it comes Rhomo
Fe = 1.025. The

blue arrows in Fig. 7 indicate the pathway from various
initial core shapes toward this minimum, the shell thickness
remaining homogeneous.

(iii) Finally, the two mechanisms of transformation can cooperate
and the minimum of energy can be reached by simultaneous
changes in RFe and f as illustrated by the green arrows. The ES
combines the cube-shaped core minimizing the interface
energy and the {001}Au pyramids optimizing the ratio
between the areas of the two gold facet types.

In our model, the bare iron is characterized applying the Wulff
theorem by an aspect ratio RWulff

Fe ¼ γFe110/γ
Fe
001. If, at the onset of

the shape transformation, the core is close to this value (0.98 from
Table I), it can easily evolve toward Rhomo

Fe (1.025), these two values
being by chance very close. As the pyramid formation also begins
around RFe ¼ 1, the two mechanisms cooperate leading to the ES.

D. Equilibrium shape for a small Au/Fe volume ratio

Figure 8 displays the NP excess energy for the small ratio
VAu/VFe ¼ 0:57. Here, fmax = 1.162. As for larger volume, for a
given core shape RFe larger than about 1, the minimum is not
obtained for the homogenous shell thickness. Allowing change in
RFe, there exist two minima (the corresponding shapes are shown
in the inset). The first minimum (M1) presents the same shape
(cube) for the iron core as for the large volume ratio. The

FIG. 7. Shape transformations reducing the NP energy at constant Au and Fe
volumes, for large volume ratios. The illustrations are at the scale for
VFe ¼ 175:6 nm3 andVAu/VFe ¼ 1:71.

FIG. 6. Excess energy of a single NP with VFe ¼ 175:6 nm3 and
VAu/VFe ¼ 1:71, displayed as a function of f and RFe. fmax = 1.39 corresponds
to a homothetic shell without pyramids. The ES ðRFe ¼

ffiffiffi
2

p
and f ¼ 1:073 or

t ¼ 0:535Þ is shown.
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homothetic shell, however, is empty (f = 1) and Au is entirely dis-
tributed in 0.62 nm thick pyramids (about three {001}Au MLs).
The truncation is t = 0.842.

The second minimum (M2) is for RFe ¼ 1:14 and f ¼ 1:135.
The homothetic shell thicknesses are hAu111 ¼ 0:46 nm and
hAu001 ¼ 0:4 nm, i.e., two MLs. The 〈001〉 oriented Au platelets are
covered by flat pyramids with height hAupyr ¼ 0:2 nm (about one
{001}Au MLs) and truncation t = 0.934. The existence of this
second minimum is related to the increase introduced in surface
and interface energies for low hAu111 to account for the transition
between full wetting and bare iron as described in Sec. II E 2
(Fig. 4). Indeed, while the NPs examined in Secs. IV B and IV C
always experience the full wetting for any explored shape (Au thick-
ness always larger than two MLs), here the reduction of VAu/VFe

dramatically reduces the ability to form a full Au wetting layer for
any explored shape. In other words, the Au layer is thinner than
two MLs for some sets of aspect ratios ( f , RFe).

E. From initial shapes to optimal shapes for a small
Au/Fe volume ratio

Figure 9 describes the possible pathway to ES from initial
shapes with homogeneous shells (ENP are taken from Fig. 8).
The blue curve displays ENP when the shell thickness is homoge-
neous (f = fmax). Its minimum is given by Eq. (29) and is Rhomo

Fe ¼
1:086 for VAu/VFe ¼ 0:57. As a reduction of ENP by pyramid for-
mation is possible from about RFe ¼ 1, the minimum M2 is
achieved by the cooperation of core transformation and pyramid
development (green arrow). M1 and M2, however, are separated
by a saddle point (SP) of the first order located at
RFe ¼ 1:35, f ¼ 1:09 (from Fig. 8). The barrier between M2 and SP
is so high (9 × 10−18 J or 58 eV) that it fully prevents the transition
from M2 to M1 through the geometrical transformations included
in our model. The minimum M1 could be achieved from the initial
shape of a cube by the pyramid formation (golden arrow).

V. DISCUSSION AND COMPARISON WITH
EXPERIMENTAL NANOPARTICLES

We then explore the ES as a function of the Au/Fe volume
ratio from 0.47 to 2.5. Figure 10 displays the evolution of RFe (a), t
(b), and Au thicknesses (c) for the two minima M1 and M2 as a
function of the volume ratio. Here, we chose to represent the shell
shape through t rather than f, because t provides a direct focus on
the pyramid shape. To predict the shape evolution, we describe
and discuss separately the evolution of the M1 and M2 minima
and then we discuss which minimum is likely to form at each
volume ratio.

A. Evolution of the optimal shape M1 toward an
optimal truncation

The M1 minimum (green curves in Fig. 10) exists for all
volume ratios. While the core shape is consistently a cube, there
exist two regimes for the shell shape.

(i) For volume ratio below 1.2: The homothetic layer below the
pyramids is empty [hAu001 ¼ 0 in Fig. 10(c), corresponding to
f = 1]. The Au volume increase entirely contributes to
develop the 〈001〉 oriented pyramids as shown by the pro-
gressive decrease of the truncation [Fig. 10(b)] and the corre-
sponding increase of hAupyr [Fig. 10(c)].

(ii) For volume ratio above 1.2: When VAu/VFe reaches 1.2, the
truncation reaches 0.534. Then, the shell morphology
changes with the apparition of the homothetic layer. As seen
in Fig. 10(c) (green curves), the increase in the volume ratio
above 1.2 indeed results in the concomitant thickens of the
layers under the pyramids (hAu001) and increase of the pyramid
height (hAupyr). It is important to note that the truncation does
no more evolve [Fig. 10(b)], meaning that the pyramid shape
(above the homothetic shell) is unchanged.

These different steps are illustrated at the same scale in Fig. 11 (green
squares) on which one can see that the homothetic layer is absent and
all the gold is within the truncated pyramids up to VAu/VFe ¼ 1:2.

FIG. 8. Excess energy of a single NP with VFe ¼ 175:6 nm3 and VAu/VFe ¼
0:57 displayed as a function of f and RFe. fmax = 1.162 corresponds to a homo-
thetic shell without pyramids. The shapes in inset correspond to the M1
minimum ðRFe ¼

ffiffiffi
2

p
and f ¼ 1Þ and M2 minimum (RFe ¼ 1:14 and

f ¼ 1:135). SP is the saddle point (RFe ¼ 1:35).

FIG. 9. Shape transformations reducing the NP energy at constant Au and Fe
volumes, for small volume ratios. The illustrations are at the scale for
VFe ¼ 175:6 nm3 and VAu/VFe ¼ 0:57.
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Beyond 1.2, we observe the appearance of the homothetic layer and
the stabilization of the truncation at topt = 0.534.

B. Evolution of the optimal shape M2

For VFe ¼ 175:6 nm3, the M2 minimum (red curves in
Fig. 10) exists from VAu/VFe ¼ 0:47, which is the minimal ratio
ensuring a full wetting with two MLs: the pyramids are indeed
empty (hAupyr ¼ 0 and t ¼ 1). Then, the core shape evolves mono-
tonically from RFe ¼ 1:11 for VAu/VFe ¼ 0:47 to RFe ¼ 1:39 for
VAu/VFe ¼ 1:7 [Fig. 10(a)]. At the same time, the thickness of the
〈111〉 oriented Au platelets [hAu111 in Fig. 10(c)] is stable at 0.46 nm
and the Au volume increase entirely contributes to develop the
〈001〉 pyramids. The stabilization at 0.46 nm (two MLs) of hAu111 is a

strong indication that hAu111 is driven by the wetting of Au on {110}
Fe. This is indeed the critical thickness chosen in Sec. II E 2
(Fig. 4). To verify this hypothesis, we modified this critical thick-
ness and we found that effectively this value directly monitors hAu111
of the M2 minima.

To summarize, the M2 minimum progressively evolves from a
shape purely driven by the wetting (for VAu/VFe ¼ 0:47) to an
intermediate shape driven by the combination of the wetting for
{111}Au on {110}Fe, the interface optimization, and the formation
of 〈001〉 oriented Au pyramids (the 3D SK-like growth mode), as
illustrated in Fig. 11 (red points). Around the volume ratio 1.7, the
M2 minimum disappears and the M1 minimum only subsists.

C. Shape evolution with the volume ratio and
comparison with experimental NPs

We now discuss which shape is the most likely to develop as a
function of the volume ratio, assuming that the growth conditions
allow us to reach one of the two optimal shapes (M1 or M2
minimum) at each step, as reported in Fig. 11. For VFe ¼
175:6 nm3, VAu/VFe ¼ 0:47 is the minimal ratio ensuring a full
wetting with two MLs. The M2 minimum can thus be given by
Eq. (29) for f = 1 and is Rhomo

Fe ¼ 1:11. As the latter value is by
chance close to RWulff

Fe ¼ 0:98 corresponding to the Wulff shape of
bare iron (yellow point in Fig. 11), M2 can be easily achieved.
Although M1 has a lower energy than M2, the barrier ΔEM2→ SP

from M2 to the saddle point SP is so high (10−17 J from Fig. 12, i.e.,
60 eV) that it prevents the M2 to M1 transition. (In addition, the
physical meaning of M1 is questionable for low volume ratios.
Indeed, our geometrical model does not correctly ensure the full
wetting at the core corners below VFe ¼ 1:2.)

The barrier ΔEM2→ SP decreases from 10−17 J (or 60 eV) for
VAu/VFe ¼ 0:47 to zero for VAu/VFe close to 1.7 (Fig. 12). When it
is sufficiently low, a shape transition from M2 to M1 will occur, at
the latest for VAu/VFe ¼ 1:7 (Fig. 11). Once the M1 shape is
reached, the NP shell will continue to grow with the optimal

FIG. 10. Evolution of RFe (a), t (b), and Au thicknesses (c) for the two minima
M1 and M2 as a function of the Au/Fe volume ratio (for VFe ¼ 175:6 nm3).

FIG. 11. Optimal shapes illustrated for VAu/VFe ¼ 0, 0:47, 1:2, 1:7, and 2:5
volume ratios. The shapes are at the scale for VFe ¼ 175:6 nm3.
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truncation topt = 0.534 that reflects an optimal distribution of the
areas of the {111}Au and {001}Au surfaces within our model.

Note that the M1 shapes are not sensitive to changes in the
interface energy densities, providing that their ratio is larger thanffiffiffi
2

p
. The details of the M2 shapes are sensitive to these parameters

and to the critical thicknesses chosen for Au wetting. The relative
hierarchy of M1 and M2 and the barrier between them (position of
the SP) also depend on these parameters. However, the scenarios
described in Figs. 8, 9, and 11 are unchanged.

These morphologies are in excellent agreement with those
experimentally observed.

In Ref. 7 (and in its supplemental material), one collection of
bare Fe NPs and two different collections of Fe–Au NPs were
achieved with the same size distribution of core and similar relative
size dispersions before and after gold deposit. As the Fe volume
explored in detail here was chosen to fit the mean experimental
core size, a direct comparison with the shapes predicted in Figs. 7,
9, and 11 is possible.

The NP in Fig. 1(b) and those from the same collection in
Ref. 7 present a polyhedral shape with an octagonal section and a
full coverage of about two or three Au MLs, which is completely
accounted for by the M2 minimum predicted for low volume ratio.

Regarding the NPs from the second collection reported in
Ref. 7 (and from Ref. 9), most of them present a core shape close to
a cube and well-formed pyramids, as displayed in Fig. 1(a), and an
experimental Au/Fe volume ratio estimated in the range of 1.6–2.3.
The {111}Au/{110}Fe interfaces barely even exist and the core
corners are covered by two or more Au MLs. Moreover, homoge-
neous thickness or octagonal sections are not observed when the
Au/Fe volume ratio is in this range. The observed NPs are thus
very well reproduced by the M2 minimum shortly before the M2 to
M1 shape transition. In addition, we compare in Fig. 13 the pre-
dicted optimal truncation and the experimental truncations mea-
sured in 20 pyramids from five NPs (TEM observations in 〈001〉Fe
zone axis allow us to explore four of the six pyramids of a NP).
Given the error bars, we estimate the below:

(i) About 30% of observed pyramids have reached the calculated
optimal truncation (t � topt).

(ii) About 60% are more truncated (t > topt).
(iii) Only 10% pyramids are slightly less truncated (t < topt).

So, the experimental observations are very consistent with our
model, where pyramids flatter than the optimal shape can exist due
to an insufficient amount of gold, but sharper pyramids cannot
form.

To conclude, the comparison of the experimental NPs with
the predictions of the model indicates that most of them are close
to their individual equilibrium shape, given the core size and the
available gold amount.

D. Impact of the iron volume VFe on the optimal shape

Let us briefly discuss the role of the core size.

(i) As long as the surface and interface energy densities do not
depend on Au thickness, i.e., as long as the Au thicknesses
are larger than the critical thicknesses defined in Sec. II E 2
(Fig. 4), the NP energy as displayed in Figs. 6 and 7 scales
with (VFe)

2/3. A universal function ENP/(VFe)
2/3 could be

used to describe the NP energy, reducing the number of geo-
metrical parameters to 3: f, RFe, and VAu/VFe. This quantity
is homogeneous to a surface energy density. A consequence
is that the M1 minimum shape is regardless of the core
volume.

(ii) The change due to the thinness of the Au shell below two
MLs depends also on (VFe)

1/3, so that the core size impacts the
M2 minimum. Figure 14 displays the core shape of the M2
minimum as a function of VAu/VFe for the reference volume
VFe ¼ 175:6 nm3, a volume 8 times smaller, and a volume 512
times larger (red, blue, and yellow curves, respectively). The
M2 minimum disappears more quickly with VAu/VFe for large

FIG. 12. Energy barrier ΔEM2→ SP separating the M2 minimum and the saddle
point SP (for VFe ¼ 175:6 nm3).

FIG. 13. (a) TEM images (the scale bars are 5 nm) and (b) experimental trun-
cations t in five different NPs with well-formed pyramids, measured from the
TEM images. The dashed line is the optimal truncation (0.534) predicted by the
model for large Au/Fe volume ratio.
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VFe than for small VFe. For a same VAu/VFe, RFe of the M2
minimum is closer to

ffiffiffi
2

p
for a large VFe than for small VFe.

The last remark could explain the observations of almost cube-
shaped Fe10 or FeCo11 cores for smaller volume ratios than
discussed above. In these two references, the core sizes were
significantly larger than in our particles.

E. Other driving forces (elastic energy and grain
boundary energy)

Finally, we briefly discuss the possible roles of elastic energy
and Au grain boundary energy, which are not included in our
model.

Elastic energy in 〈001〉Au grains is due to the moderate misfit
(0.6%) resulting from the rotation of the Au and Fe lattices at the
{001}Au/{001}Fe interfaces. In 〈111〉Au grains, this 0.6% misfit
exists in the 〈110〉Au//〈001〉Fe direction, and a residual misfit
could subsist in the 〈−112〉Au//〈110〉Fe direction after relaxation
through misfit dislocations. In a (001) 2D Au layer with a 0.6%
misfit, the elastic energy is 2.8 × 106 J/m3,9 and we estimated by the
finite element method that it can be reduced by more than 50%
thanks to the pyramidal shape.9,28 For the small Au volumes dis-
cussed in Figs. 8 and 9, the gain in elastic energy provided by the
pyramids is thus 2 orders of magnitude smaller than ΔEM2→ SP. So
the relaxation of elastic energy also favors pyramids and slightly
reduces the volume ratio for which the barrier separating M2 and
M1 is null or can be crossed, but it plays a very minor role com-
pared to surface and interface optimization.

Regarding the grain boundaries in Au, their areas and thus the
associated crystalline disorder are reduced in our model thanks to
the constraint on the shell to adopt the same shape as the core
(a shape divergence would increase the grain boundaries areas).

The formation of six pyramidal grains at the detriment of the
homothetic shell also reduces the boundary areas and thus their
energetic costs. So, this additional driving force should also con-
tribute to favor the formation of pyramids.

VI. CONCLUSION

Fe–Au NPs achieved through an ultrahigh vacuum growth
process present a crystalline Fe core embedded in a polycrystalline
Au shell, with core and shell morphologies both depending on the
Au/Fe volume ratio.

First, the growth mode of a shell on a nanocrystal was dis-
cussed. If, for given surface and interface energy densities, a layer
on a 2D infinite substrate follows the classical 2D Franck–van der
Merve growth mode (full wetting), another growth mode takes
place due to the finite size of the core. It presents some analogies
with the Stranski–Krastanov growth mode (increase of the wetting
factor with the deposited amount).

To elucidate the various morphologies of the observed NPs,
the excess energy of the NPs compared to the same Au and Fe
amounts in their bulk phases was calculated using a geometrical
model. The energy densities of the surfaces and of the two possible
Au/Fe interfaces were computed by DFT. The shapes that minimize
the excess energy were determined as a function of the Au/Fe
volume ratio from 0.47 to 2.5.

On the basis of the observed morphologies, our model pro-
vides two shape transformations that can modify the excess energy
at constant Au and Fe volumes: (i) the transformation of the core,
a regular polyhedron that can adopt any intermediate shape from a
{110}Fe rhombohedral dodecahedron to a perfect {001}Fe cube;
and (ii) the thickness modulation of the shell, through the forma-
tion of Au pyramids with a variable truncation rate.

Three different driving forces were identified: (i) the very
strong wetting of Au on Fe that tends to preserve a minimal Au
layer of about two MLs on each Fe core face. (ii) The interface
energy minimization that favors the cube-shaped core. This is due
to the ratio γ interf(111)Au/(110)Fe/γ

interf
(001)Au/(001)Fe larger than

ffiffiffi
2

p
(about 1.8

from our DFT calculations). (iii) The minimization of Au surface
energy, that can promote a 3D Stranski–Krastanov-like growth
mode of Au on a Fe nanosubstrate. They can compete or cooperate
depending on the Au/Fe volume ratio.

For large Au/Fe volume ratios, there is no competition
between the three driving forces, and the two shape transforma-
tions cooperate so that the equilibrium shape cumulates the full
wetting, the cube-shaped Fe core RFe ¼

ffiffiffi
2

p� �
that minimizes the

interface energy and the Au pyramids that minimize the surface
energy. From a volume ratio of 1.2, the pyramid truncation is stabi-
lized at 0.535. This optimal theoretical truncation is in excellent
agreement with the experimental observations.

For small Au/Fe volume ratio, another optimal shape with an
octagonal section and a quasi-homogeneous Au shell thickness is
favored. It is mainly driven by the full wetting of the iron core by
gold. When the Au/Fe volume ratio just allows the coverage of Fe
by two Au MLs, the shape is calculated by the Wulff theorem, con-
sidering on each core face the sum of the interface energy and Au
surface energy [Eq. (29)]. For the Fe volume of 175.6 nm3 (same
order of magnitude as the experimental volumes), this volume ratio

FIG. 14. Core shape RFe of the optimal shapes as a function of the Au/Fe
volume ratio for various iron volumes. The red curve is for the reference volume
VFe ¼ 175:6 nm3, the blue curve is for a volume 8 times smaller, and the
yellow curve is for a volume 512 times larger (the core edges when the shape
is a cube being 5.6 nm, 2.8 nm, and 44.8 nm, respectively). The onset of each
M2 curve is for the full wetting of the core by two Au MLs.
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is 0.47 and the core aspect ratio calculated is then RFe ¼ 1:11. This
calculated shape is very close to experimental NPs with an octago-
nal section as in Fig. 1(b) (observed RFe around 1 and a coverage of
about 2.5 MLs).

Between these two extreme shapes, the wetting can be fully
preserved, and the optimal shape progressively evolves with the
Au/Fe volume ratio by the concomitant development of the Au
pyramids and the transformation of the polyhedral core toward a
cube.

The comparison of experimental Fe–Au NPs with the predic-
tions of the model indicates that most of them are close to their
individual equilibrium shape, given the core size and the available
gold amount.

This analysis can be extended to other systems, including
those where the epitaxial accommodation of two different crystal-
line systems result in NPs with a crystalline core and a polycrystal-
line shell, where it can provide a rational tool for predicting the NP
equilibrium shapes and thus be helpful in mastering the shape
dependent physical properties.
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APPENDIX A: CORE GEOMETRY

Figure 15(a) displays the (001)Fe cross section of the core,
built by applying Eq. (1). A {001}Fe face is a square with the edge

bFe001 ¼ 2
ffiffiffi
2

p
hFe110 � hFe001

� �
¼ 2 hFe001

ffiffiffi
2

p
RFe � 1

� �
: (A1)

Figure 15(b) displays a {110}Fe face, an hexagon with
the width

bFe110 ¼
ffiffiffi
2

p
2 hFe001 �

ffiffiffi
2

p
hFe110

� �
¼ 2 hFe001

ffiffiffi
2

p � RFe

� �
: (A2)

The angle α between the 〈011〉 and 〈111〉 edges of a {110}Fe
face is 35.26° cos α ¼ ffiffiffi

2
p

/
ffiffiffi
3

p� �
.

APPENDIX B: GEOMETRICAL LIMITS OF THE SHELL
FOR A GIVEN CORE SHAPE RFe

The maximum values of f and t, fmax and tmax, depend only
on VAu/V Fe. They are reached when the pyramids are empty
(V pyr

Au ¼ 0 and VAu ¼ Vhomo
Au ). From Eq. (8), it becomes

fmax ¼ (1þ VAu/V Fe)
1/3; tmax ¼ 1, (B1)

hAupyr ¼ 0 and hAu111 max ¼ hFe110 ( fmax � 1): (B2)

The minimal values fmin and tmin result from the progressive
building of the pyramids from the above situation. For a given RFe,
there exists a threshold volume ratio (VAu/V Fe)th for which f = 1
and t = 0 arise simultaneously so that VAu ¼ 6 V pyr

Au . It comes from
Eqs. (6), (7), and (12),

VAu

V Fe

� �
th

¼
ffiffiffi
2

p
(SFe001)

3/2

VFe
¼ 2

ffiffiffi
2

p
RFe � 1

� �3ffiffiffi
2

p � 3 RFe
ffiffiffi
2

p � RFe
� �2 : (B3)

There are three possibilities:

(i) If (VAu/VFe) . (VAu/VFe)th: the homothetic shell subsists
when the pyramids are complete so that tmin = 0. From
Eqs. (7), (8), (12), and (B3), it becomes

fmin ¼ VAu þ VFe

VFe þ
ffiffiffi
2

p
SFe001

3/2

 !1/3

¼ 1þ (VAu/VFe)
1þ (VAu/VFe)th

	 
1/3
, (B4)

hAu111 min ¼ hFe110 ( fmin � 1): (B5)

(ii) If (VAu/V Fe) ¼ (VAu/V Fe)th: the homothetic shell is empty
and the pyramids are complete simultaneously so that fmin =
1 and tmin = 0.

(iii) If (VAu/VFe) , (VAu/VFe)th: then fmin = 1 because the homo-
thetic shell is empty before the pyramids can be complete.
In this situation, hAu111 min ¼ hAu100 min ¼ 0 and V pyr

Au ¼ VAu/6.
From Eqs. (12) and (B3) the minimal truncation is

tmin ¼ 1� VAuffiffiffi
2

p
SFe001

3/2

 !1/3

¼ 1� (VAu/VFe)
(VAu/VFe)th

	 
1/3
: (B6)
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