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Abstract 

We propose an innovative two-step Pricing-Based Location strategy for the rollout of new hydrogen 

fueling stations. A first model maximizes the profit of a new station with a price p* which corresponds 

to a design capacity supplying a given market share (n* customers). According to these findings and 

with the objective of deploying an extensive network, a second model searches for a suitable location 

as remote as possible from existing competitors, but as close as possible to just n* demand locations. 

This problem is solved by an agent-based model integrating the Particle Swarm Optimization 

metaheuristic and a Geographic Information System representing the geospatial distribution of 

customer demand. We apply this model to the city of Paris by locating additional stations across the 

city one by one to supply a growing captive fleet of taxis and other transport operators in the future. 
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1. Introduction 

 

The development of Fuel Cell Electric Vehicles (FCEVs), which contributes to green mobility, 

depends on there being a convenient hydrogen (H2) refuelling infrastructure (Ball & Weeda, 2015). 

But the number of new hydrogen refuelling stations (HRSs) to set up also depends on the expected 

demand for this type of vehicle. Schwoon (2007) shows that there must be at least some initial HRSs 

to overcome this chicken-and-egg problem while keeping upfront infrastructure investments as low as 

possible (see also Köhler et al., 2010). Stephens-Romero et al. (2010) and Brown et al. (2012) show 

how systematic planning can optimize early investments in hydrogen infrastructure. Their case study 

optimizes the number, location, and rollout of HRSs and it determines the environmental impact for 

the city of Irvine in California. Dagdougui (2012) reviews the current state of the available approaches 

for planning and modelling H2 infrastructure and notices that most papers develop cost minimization 

models while only a few of them focus on minimizing environmental impact.  Lin et al. (2008) 

observe in their optimal station roll-out model that early HRSs are mostly spread out over a network 

that grows quickly. Other papers tackle the problem of new HRS locations more globally by modelling 

the entire supply chain to be deployed (Stiller et al., 2010). 

 

Although these models are interesting at the theoretical level, the present barrier to the adoption of 

FCEVs is their relatively high purchase price which influences sales forecasts depending on consumer 

behavior and willingness-to-pay (Hardman et al., 2017). Some researchers integrate diffusion sub-

models in their FCEV location models to estimate the change in demand for H2 (Shafiei et al., 2013); 

Zhao & Ma, 2016). Nevertheless, facing the uncertainty about future demand for FCEVs and in order 

to improve the process of rolling out new HRSs, the strategy of most suppliers is to target first a 

captive fleet of vehicles with predictable driving and refueling patterns (Element Energy, 2018).  

 

In the case of gasoline station location problems, the distances or durations of trips made by motorists 

to reach the stations are often considered as the main criteria but few studies take into consideration 

the fuel price. In operations management, authors usually consider that location and pricing decisions 

are made separately, as locations are long-term decisions while prices can change overtime (Hanjoul et 

al., 1990). Moreover, the importance of location as a key decision factor is surprisingly absent from 

the retail pricing literature (Heppenstall et al., 2013). Aboolian et al. (2008) demonstrate that a joint 

location and pricing scheme is helpful in maximizing profit. Given the high level of infrastructure 

investment (Kurtz et al., 2019) and the expected evolution of FCEVs, we assume that each decision-

maker has to site a new HRS with a competitive price and to size its H2 capacity according to expected 

demand. Our case study consists in proposing new HRS locations within the city of Paris to supply a 

growing captive fleet of taxis which will be gradually supplemented after 2023 by FCEVs from other 

transport operators. 



 

Our research questions are: 

- What price will maximize the total profit of a new HRS faced with existing competitors? What is the 

expected market share and what H2 capacity is needed to meet the corresponding demand? 

- Where should the new station be sited given the location of existing stations and the spatial 

distribution of customer demand? 

 

We propose to solve this multi-objective optimization problem in two steps. First, to maximize profit 

and calculate the optimal H2 price for a new station, we consider a static oligopoly (only one decision 

is taken) made up of a new station in competition with existing stations offering the same product 

(hydrogen). We assume that: (i) customers care only about price, (ii) demand is known (i.e. to supply a 

given number of FCEVs with H2), (iii) capacity is flexible (H2 gas cylinders can be ordered according 

to demand) and, (iv) the relationship between demand and price is linear (i.e. the station’s 

attractiveness is inversely proportional to the H2 price). Second, we propose to base a location model 

on the results of the previous pricing model. In our case of setting up an extensive HRS network and 

trying to reduce customer travel costs to the stations, we choose to site the new HRS as far as possible 

from existing competitors but as close as possible to a chosen number of customers. In his multi-

objective model used for both dispersing services and having localizations close to demand areas, 

Daskin (1995, p. 313) proves that the more we try to minimize the distance to a facility, the lower the 

coverage of demand, and vice versa. In our case study, demand is defined by an optimal price and we 

consider that the customer takes into account the price difference between a new station and the 

average price of the existing stations in the different districts of Paris. To solve the location problem, 

we develop an Agent-Based Model (ABM) which integrates a Particle Swarm Optimization (PSO) 

metaheuristic. As proposed by Crooks et al. (2018), we also integrate a Geographic Information 

System (GIS) into the ABM. 

What makes this research original is, to the best of our knowledge, the lack of papers: 

- Combining a price optimization model and an operational model for solving fuel station 

location problems. While the two-step approach proposed by Chan et al. (2007) tackles the 

problem in a similar way, even so, the context where many stations are already established in 

this city is different as are the methods for solving the problem. 

- Comparing fuel price differences and travelling costs to allocate a station to a customer. 

- For taxis, addressing the problem of the risk of losing customers during the trip to a filling 

station. 

 

Section 2 presents a review of the literature on location and price competition. The models are 

developed in Section 3. Section 4 describes the case study, the experimental conditions, and the 

simulation results. We conclude this paper in Section 5. 



 

2. Literature review 

 

Most location models focus on cost minimization, return, or revenue maximization (Revelle et al., 

1970). For a situation where demand is known—which corresponds in our case study to the average 

H2 consumption of a given FCEV fleet—the point and flow demand approaches are the ones most 

often used by many researchers (e.g.Agnolucci & McDowall, 2013). The point demand approach 

assumes that demand is located at specific places and the flow demand approach that consumers will 

search for a station during the trip to their destination. 

 

The point demand location approach 

The p-median or minisum problem (Hakimi, 1964) and the covering problem (Farahani et al., 2012) 

are the commonest models in discrete location theory. The p-median problem consists in locating p 

stations so as to minimize the distance from consumer nodes to their nearest refuelling stations. Our 

specific problem consists in searching for a location for a new station which has to be as far as 

possible from the competitors and which covers a given number of customers representing demand. 

This location problem is similar to a discrete p-dispersion problem (Erkut, 1990) which aims to 

maximize the minimum distance between pairs of facility sites in some space with the aim of having 

as “dispersed” a set as possible. Moreover, Garcia & Marin (2015) and Murray (2016) solve a 

maximal covering problem for a given number of stations in order to maximize the demand covered. 

Some publications deal with the specific case of electric taxi charging stations to be located in a city 

(Jung et al., 2014; Islam et al., 2015; Tu et al., 2016; Asamer et al., 2016). Electric vehicles (EVs) and 

FCEVs are both in full development but the EV stations location problem focuses on maximizing 

availability in relation to battery recharging time, which is not transposable to the HRS location 

problem.  

The flow demand location approach 

In the case of refuelling cars during long journeys, Kuby et al. (2009) advise that it is more important 

to locate the initial set of HRSs along the routes people travel rather than near their homes. They 

justify this approach by the fact that the customers generally refuel their vehicles when they make their 

trips to work, shopping, or other activities and do not make a specific trip just to refuel.  

Metaheuristic methods 

Large-scale location problems are classified as NP-hard (Mladenovic et al., 2007). Such classes of 

problems are not solvable in realistic time by using a polynomial time algorithm. Metaheuristic 

methods can efficiently find good solutions but cannot guarantee global optimality. We choose 

particle swarm optimization PSO (Kennedy & Eberhart, 1995) among different heuristic or 

metaheuristic methods. PSO is a stochastic optimization technique inspired by the social behaviour of 



bird flocks or fish schools. It is based on the collaboration of individuals with each other and has some 

similarities to ant colony algorithms relying on the concept of self-organization. Predicated on simple 

displacement rules (in planar space), the particles (each candidate location solution) can gradually 

converge towards a local minimum (nearest distance from the customers). Sun et al. (2017) apply PSO 

to locate five HRSs in Shanghai with a multi-source H2 supply.  

 

Agent-based modelling and location optimization 

ABM is a class of computational models consisting in autonomous agents and an environment in 

which the agents act (Gilbert & Doran, 1993). Agents are situated in space and time and are placed in 

lattice-like neighbourhoods. In our case, the HRSs (the suppliers) can be considered as agents as can 

the cars (the customers), who are independent rule-based agents who can decide to choose an HRS 

according to their own criteria. Davidsson et al. (2007) and Ahmad et al. (2007) suggest integrating 

conventional optimization techniques into ABM as other researchers like Huang & Levinson (2011) or 

Bruno et al. (2010) have done to solve the p-median problem and the p-maximal covering-like 

problem in an ABM framework. The advantage of ABM is also that geographic data may be used for 

setting up the initial location of the agents and as a background layer (Crooks et al., 2018). In a recent 

literature review relating to the techniques for optimal placement of electric vehicle charging stations 

(Islam et al., 2015), Han et al. (2015) develop an ABM combined with a GIS using NetLogo software 

(Wilensky, 1999). Their model, applied to the municipality of Eindhoven, solves the location problem 

as a multi-objective partial covering problem where charging station availability and profitability are 

the objectives to maximize. 

 

Location and pricing optimization 

As part of the earliest research in location science, Hotelling (1929) shows the relationship between 

location and the pricing behaviour of firms. (Ottino-Loffler et al., 2017) propose an ABM to a case of 

more than two firms choosing both price and location to maximize profit. In the specific case of gas 

filling station location problems, only a few papers take into account the fuel price. According to Dan 

et al. (2018), many authors have addressed joint location and pricing problems in a hierarchical 

manner by specifying locations first, and then defining price competition. For instance, Chan et al. 

(2007) propose a two-step approach for solving a location-based gas station pricing problem in 

Singapore. First, they develop a retailer’s location model based on an econometric model of potential 

demand and the consumer’s decision rule for choosing a station. They solve the p-median problem by 

using the Lagrangian method. Second, they build a pricing model based on Bertrand’s competition 

model (1883) and on the previous optimal locations. As our context is different, we propose a reverse 

two-step approach which consists (i) in maximizing the profit of a new HRS based on a constant 

absolute price difference between existing stations and (ii), on searching for a profitable location 

depending on the price difference and on the distances from the customers under the condition of 



being placed as far as possible from the competing locations and as close as possible to an optimal 

number of potential customers. 

3. Presentation of the models 

 

In this section, we present a two-step Pricing-Based Location approach. In the first step, we assume 

that demand depends not on the location but only on the price considering constant price dispersion 

among the stations. An optimal price p* corresponds to a given market share and an expected number 

n* of customers to satisfy. In the second step, the location model assigns these n* customers to a new 

station according to its price attractiveness which satisfies the previous assumption and also according 

to a distance/price ratio (see assignment condition in §3.3). 
 

 

3.1. A two-step modelling approach 

To illustrate our method, we present the case of two competing stations, an existing one and a new 

one, both serving a certain number of FCEVs. Given that we consider that the H2 demands are 

positioned at fixed places, each station will draw customers according to its H2 price and location. Fig. 

1 illustrates the approach in two steps. 

 

Fig. 1. A two-step modelling approach 

Step 1: Regardless of the location of each car and depending on market size, the variable costs, the 

depreciation costs, the fixed costs, and the H2 selling price of the existing station, Model 1 finds the 

optimal price which maximizes the profit of a new HRS. From this model we deduce a market share 

and an H2 capacity that satisfies the corresponding demand. 



Step 2: Given that the customers will always choose the station based on distance and price, the 

objective of Model 2 is to attract an optimal number of vehicles to serve, while siting the new station 

as far as possible from the existing station (cf. objective of an extensive construction of an H2 

infrastructure for FCEVs). 
 

3.2. Pricing model (model 1) 

We assume that all car drivers have the same attitude toward price: the lower the price, the greater the 

quantity sold by each station. In Paris, we observe that the price differentials between gasoline and 

diesel stations in different districts remain stable which can be explained by the difference between the 

operating costs (Gautier & Le Saout, 2017). In fact, in a large city such as Paris, fuel prices are very 

high and some people choose to refuel their cars in the suburbs or during an external trip. People who 

live in Paris and do not look for a better price, will refuel at the nearest station to their home. In the 

case of taxis, price comparison is advisable although it is out of the question to waste time searching 

for a station far from the city with better prices because there is a high risk of customer’s loss and a 

kilometric excess that will not be offset by the expected savings on the price difference. Nevertheless, 

the driver will look for a station within the city close enough of his place but cheaper. However, it 

turns out that the price dispersion between traditional gasoline stations is stable simply because the 

consumer who has chosen to buy his gasoline in Paris, which is much more expensive than outside, is 

looking first and foremost for near his parking place. This is not the case for taxi drivers moving 

around the city who may choose to compare prices when they are trying to refuel their vehicles. There 

is currently no horizontal competition on the traditional gasoline market in Paris. For all these reasons, 

we do not treat the case of dynamic H2 pricing. Hereafter, we take the case of a static duopoly with 

two HRSs in which each customer chooses the HRS offering the lower price. To set up a new station, 

an optimal price is calculated according to the price of the competitor. At this stage, distance is 

ignored, demand is known, and capacity is not considered a constraint in the model. We assume that 

the new station’s market share depends linearly on price alone. To define this function, we consider 

two points corresponding to a market share of 0.5 if the price of the new station is equal to the 

competitor’s price and of 0 if the price is equal to or greater than a maximum price calculated 

according to the price elasticity of demand. According to this demand function, the model has to find 

the optimal H2 price for the new station which maximizes its profit and corresponds to a market share 

and to a daily H2 capacity that has to be set to meet expected demand. 

 

Model formulation 

Notation: 

j   index of a station, j =1 for an existing station and j=2 for the new station 

n    the total number of cars 

m   the total number of stations (in our following example, m = 2) 

c   the H2 unit cost in €/kg (c > 0), we assume that each HRS uses the same infrastructure 



p1   the initial selling price per kg of H2 at the station HRS 1 (p1 ≥ c) 

p2   the selling price per kg of H2 at the new HRS 2 j (p2 ≥ c) 

ε  the short-run demand elasticity (ε  < 0) 

D(pj)  the market share corresponding to a price pj  (0 ≤ D(pj) ≤ 1) 

pmax1 the price at station 1 corresponding to D(p1) = 0 

pmax2 the price at station 2 corresponding to D(p2) = 0 
 

Given the linear demand function, the market share D(p2) of the new station is: 

 D(p2) = (pmax1- p2) / 2(pmax1- p1) 

with 0 < D(p2) ≤ 1  → (2p1- pmax1) ≤ p2 < pmax1and p1 < pmax1 

The demand elasticity is: ε = -1/2(pmax1- p1) and pmax1 = (p1 - ε−1/2) 

→ D(p2) = ε (p2 - p1 + ε−1/2)                   (1) 

Under the conditions that D(p2) ≥ 0 → p2 ≥ p1 - ε−1/2 and D(p2) ≤ 1 →  p2 ≤ pmax1 

Given that D(p1) = 1 - D(p2), then: 

D(p1) = ε (p1 – p2 + ε−1/2) and D(p1) > 0                     (2) 

The daily average consumption of the n cars is: K = γn with γ the average H2 fueling volume in kg per 

day for each car. 

The daily H2 consumption in kg of the new station is: 

q2 = K D(p2)  = K ε (p2 - p1 + ε−1/2)  with q2 ≤ γ n           (3) 

The daily income of each station SALES2 is: 

SALES2 = p2 q2
 

As the H2 capacity z2 has to be greater than or equal to the total quantity sold by each station, we 

assume that each station has a flexible capacity equal to the volume sold: z2 = q2 ≤ 200 (we assume that 

a “city” HRS that uses H2 delivered as a gas, has a maximum capacity of 200 kg/day). 

The daily direct cost of the new station is: DCOST2 = cz2 = cq2
 

The fixed cost is defined by the depreciation cost of the investment DEP2 and the real estate cost FIX.  

As the amount INV of the initial investment is the same for all new HRSs, the depreciation cost 

depends on the amortization period of the equipment (approximately 20 years) based on a maximum 

capacity of 200 kg/day which has to be weighted by the annual consumption 365q2. 

Accordingly: DEP2 = 2INV/73q2 

The total profit of the new station is: 

M2  = (SALES2 – DCOST2 - DEP2 - FIX)  

= [q2 (p2 – c) - 2INV/73q2 - FIX]         

= [K ε (p2 - p1 + ε−1/2) (p2 – c) - 2INV/(73Kε (p2 - p1 + ε−1/2)) - FIX]                        (4) 

The objective function of the new station aims to maximize its daily profit M2 according to a given 

price p2 and a corresponding H2 capacity z2. 



→ Argmaxp2  M2 = (SALES2 – DCOST2 - DEP2 - FIX) 

 

The optimal price p*
2 is calculated by solving the following third-order equation: 

∂M2/∂p2 = 0 → ∂ (2 p2
3 + p2

2 (- 5p1
 
 – c   + 5ε−1/2) + p2  (ε−2 +   2 c p1 + 4p1

2
 - 4p1ε−1

 - c ε−1 )   - c p1
2 

 +   c 

p1ε−1 - cε−2/4 - p1
3 + p1

2ε−1 - 3p1ε−2/4  + ε−1p1
2/2  + ε−3/8 ) + 2INV /73K2ε2 ) /∂p2 = 0                           (5) 

From equation (1), we deduce the market share D*(p2) and from equation (3), the quantity q2
*, which is 

also the minimal H2 capacity z2
*
 to set up: 

z2
*
 = q2

*= K ε (p*
2 - p1 + ε−1/2)                         (6) 

Given n the total number of cars and according to equation (1), the expected number of customers to 

supply with H2 from the new station is:  

n2
*
 = n D*(p2) = n ε (p*

2 - p1 + ε−1/2)                  (7) 

 

Case of a new station faced with (m-1) existing competitors 

If there is more than one existing station (i.e. an oligopoly context), our pricing model addresses the 

problem as a price competition between a new station and the average price of the existing 

competitors. The optimal price of a new station m is calculated by solving equation (5) after replacing 

in equation (4) p1 by � = ∑ �
�

��(���)

��� / (m-1) (� is the average price of the existing stations). 

The objective function is: Argmaxpm  Mm = (SALESm – DCOSTm – DEPm - FIX) 

The corresponding market share is:  

D(p*
m) = 2ε (p*

m - � + ε−1/2)/m                    (8) 

The number of cars to attract to this new station is: 

nm
*
 = n D*( p*

m)                (9) 

 

3.3. Pricing-based location model (model 2) 

Based on the optimal price p*
2 provided by Model 1, the agent-based model (Model 2) searches for a 

good location by: (i) searching to be close to the customers to serve (i.e close to the fixed demand 

points corresponding to n*
2 car locations) and (ii) locating the new station as far as possible from the 

first ones (i.e. trying to design the most extensive HRS network). We present below the example of 

two stations, a station 1 which already exists and a new station 2 which is to be sited. 

Given: 

v the average speed of a car in the city  

φ the average H2 consumption of an FCEV in kg per 100 km 

dij the distance from a car H2 demand location i to a station j with 1 ≤  di1 ≤ dmax ; 1 ≤  di2 ≤ dmax and the 

hypotenuse of the rectangle corresponding to the grid space dmax > 2 

tij the time needed to travel from a car location i to a station j : tij = dij /v 

g the average number of customers per taxi per hour 



rid the distance ratio = di2/di1  

rp the price ratio = p1/p2 with p2 ≠ 0 and  p2 ≤ 2 p1 

 

In the case of a price p2 < p1, a car driver located at a place i needing to fill her tank, chooses the new 

station 2 if the following conditions are satisfied: 

• The cost of travel of the car to the new station has to be lower than the cost of reaching the 

first station. This condition corresponds to: φ di2 p2/100 < φ di1 p1/100 which is equivalent to 

the condition: rd < rp  

• In the specific case of taxis, the loss of revenue due to the risk of losing customers during the 

trip to reach the new station has to be lower than the loss involved in reaching the first station. 

The condition corresponds to: g ti2 p2 < g ti1 p1 which is also equivalent to: rd < rp 

In conclusion, the algorithm will assign a station j to the H2 demand of a car located in i, if rd  < rp is 

confirmed (i.e. distance ratio < price ratio )          (10) 

 

Local search heuristic 

Fig. 2 illustrates the principle of searching for a new location.  

 

Fig. 2. Local search heuristic based on concentric circles 

1. Initialization:  

i. The city of Paris is represented by a rectangular grid (space R) where each cell represents 

the possible placement of an agent. 

ii. n passive agents (car H2 demand locations) are positioned in R in the likely locations.  

iii. One passive agent (station 1) is placed according to its current location. 

iv. π active agents (PSO particles) are generated and randomly placed in R. 

v. Nit  is the maximum number of iterations. 

 

2. We define concentric circles C ⊂ R which delimit the locations of the new station 2. The location of 

the existing station 1 is included in a first circle C1 which has the largest possible radius δ1 within the 

city represented by R. Fig. 2a shows the possible locations of the new station outside this first circle 



C1. To guarantee this constraint, the algorithm checks whether the distance between the two stations 

d12 is always greater than δ1, the radius of the circle C1.  

3. Within this restricted area (the complement of C in R), the PSO algorithm (see appendix A) initiates 

the movement of the particles step by step according to three components: their current speed V, their 

best solution, and the best solution obtained in their neighbourhood. Each particle representing a 

possible location of the new station 2, will attract a car i only if the distance ratio di2/di1 is greater than 

the price ratio p1/ p*
2 cf. previous condition (10). 

4. As long as the number of cars is lower than n* (the optimal number of cars calculated in model 1), 

the PSO algorithm searches for a location outside the circles Ck. The model stops after a given number 

of iterations Ni or if the number of cars choosing the new station 2 is equal to n*. The best location for 

the new station is considered to be at the centre of gravity of the particle locations. If there are not 

enough customers for the new station n < n*, the algorithm returns to step (3) after reducing the radius 

δk by one cell length δk+1 → (δk – 1) (Fig. 2b shows the example of a smaller circle C2). If the new 

radius is less than the length of two cells, the algorithm will keep searching to attract n* customers 

without reducing this radius. If the algorithm does not manage to attract n* customers after Nit 

iterations, it will stop and the result will not be optimal in terms of profit. 
 

Remark: In the case of more than two stations, the model compares the distances and prices of each 

station using the same local search heuristic. 

 

 

4. Case study 

 

In this Section, we first describe the context. Second, we expose the assumptions that define the H2 

demand locations of the taxis within the city of Paris. Third, we present the input data used in the 

modelling applications and fourth, the experimental conditions. Fifth, we show and discuss the results 

of the pricing model and new HRS location proposals. 

 

4.1. Context 

Given that a captive fleet approach for the rollout strategy for H2 mobility facilitates the introduction 

of FCEVs, we assume two possible HRS development phases in the city of Paris. The first phase 

should consist in locating two new stations to supply a given captive fleet of taxis growing from 100 to 

600 taxis between 2020 and 2022. In 2023, we suppose a second phase which corresponds to a 

progressive expansion to other transport operators (taxis, chauffeur driven cars,…) in Paris1 with the 

introduction of new FCEV and the beginning of price competition among stations. 

 

                                                           
1 https://www.paris.fr/pages/ces-taxis-qui-roulent-a-l-hydrogene-7115 accessed 08/05/2020. 



4.1.1. Phase 1 during the period 2020–2022 

Fig. 3 shows six HRS locations already installed by the companies Air Liquide, ENGIE, and McPhy to 

serve captive fleets throughout the Paris Region but only one in the center of Paris (AFHYPAC, 

2019). 

 

Fig. 3. Map of the existing HRSs in the Paris Region (AFHYPAC, 2019; Google Map, 2020) 

Our study focuses on the possible development of new HRSs within the city of Paris. Currently, the 

only station is near the Alma Bridge and was launched thanks to the support of FCH JU (2018)2 and a 

partnership between Air Liquide and the Societe du Taxi Electrique Parisien. This single station 

supplies the Hype taxi fleet3 composed of Toyota Mirai and Hyundai Nexo cars. H2 gas is delivered by 

Air Liquide to this station in cylinders at a pressure of 200 bars and a maximum storage of 200 

kg/day4. Since there are currently 100 Hype taxis in service in 2019, we estimate an average need of 

160 kg H2 per day.5 This fleet will increase from 100 to 600 taxis at the end on 2020 (Toyota Europe 

Newsroom, 2019). Given that 51.6% of taxi trips took place within the city of Paris in 2018 (OMNIL 

2018), we consider that more than half of the fleet will fill its tanks in the city and the other half in the 

HRSs located in the suburbs. In the future, for the equivalent of 300 taxis (out of an expected fleet of 

                                                           
2 Fuel Cells and Hydrogen Joint Undertaking is a public-private partnership that supports research, technological 
development, and demonstration activities in the field of energy technologies, fuel cells, and hydrogen in Europe. The Hype 
network was launched on December 7, 2015 during the COP 21 by the Societe du Taxi Electrique Parisien. This fleet of taxis 
is a member of the ZEFER network 2017–2022 Zero Emission Fleet vehicles For European Roll-out. (FCH HU 2018). 
3 The Hype network was launched on December 7, 2015 during the COP 21 by the Societe du Taxi Electrique Parisien (Air 
Liquide, 2018). This fleet of taxis is a member of the ZEFER network 2017–2022 Zero Emission Fleet vehicles For 
European Roll-out (FCH JU, 2018). 
4 This typical station is composed of an H2 compressor and a cooler. Hydrogen is produced upstream in a Steam Methane 
Reforming unit and delivered to the fueling stations by trucks in H2 gas cylinders of 80 litres at 200 bars (California Fuel Cell 
Partnership, 2019). 
5 We assume the average taxi in Paris covers 200 km daily. Given that the average consumption of Mirai and Nexo cars is 
0.80 kg H2 per 100 km, then for 100 taxis, the daily consumption is 160 kg. 



600 taxis)6 refilling in the city of Paris, we suggest installing two additional HRSs within the city to 

supply a total average of 480 kg H2 per day. During this first phase, our study consists in proposing to 

locate these two new HRSs without price competition by taking into account fixed demand points 

corresponding to the taxi locations when the drivers decide to fill up. This location problem can be 

solved by using the model presented in §3.3 with the following simplifications: (i) we just take into 

account the distances without price considerations and (ii) we assume an equitable market share 

between the HRSs. 

 

4.1.2. Phase 2 in 2023 

Following the first rollout period based on a captive fleet of FCEVs, we assume a second phase 

starting in 2023 where the HRSs will compete on price and 100 new FCEVs (taxis and chauffeur 

driven cars) will complete the total fleet of 600 taxis. We apply our pricing-based model to locate a 

fourth HRS in Paris based on the H2 price differences between competitors and their proximity to the 

fixed demand points (i.e. the taxi demand locations). 

 

4.2. Assumptions about taxi H2 demand locations 

We consider that the taxi H2 refuelling demand is located at a fixed place and does not occur during a 

trip. We assume that a taxi driver decides to fill her tank when the gauge is almost at the level of ¼. 

We consider that these demand location points correspond to the customer’s drop-off locations on the 

condition that the taxis do not have another customer to pick up (according to the Institute of Planning 

and Development, a taxi is available 42% of its working time on average(Predali 2008). We also 

assume that during all trips from Paris to the suburbs and from the suburbs to Paris, taxi drivers refuel 

their car outside Paris which corresponds to 48.4% of the trips taking place outside the city of Paris 

according to OMNIL (2018). The H2 demand locations in Paris are thus places of taxi customer final 

destinations where the probability of picking up a new customer is low. We choose to distribute these 

demand points according to the existing major and district taxi bays in Paris. These stations were 

established in the city of Paris according to the customer potential for taxis. We also consider that the 

customers’ destinations are located within a radius of around 200 m around these bays. The 120 main 

stations (27 major bays and 93 district bays) cover 80% of the taxi activity in taxi ranks(Predali 2008).  

 

As shown in Fig. 4, we split the city of Paris into k zones zk in which we allocate nzk taxis to each zone 

k. The zones zk≠21 include major and district bays and z21 corresponds to the complement of these zones 

in the whole city, which includes the remaining bays. 

Considering that, on average, a major bay hosts three times more taxis than a district bay, we calculate 

the values of nz for the total fleet N of Hype taxis to supply in Paris. On this basis, we determine the 

                                                           
6 More precisely and for simplification reasons, we choose 300 taxis corresponding to a fleet of 582 taxis on the basis of 
51.6% of trips taking place within the city of Paris. 



relative frequencies of taxis present in these 21 zones and locate fzN taxis randomly in each zone. 

Then, referring to Han et al. (2015) who randomly distribute electric taxis in the city of Eindhoven, we 

use GIS software to extract the map of Paris and to locate the taxis. 

 

Fig 4. Location of taxi stands and H2 demand zones (map reference: OMNIL 2015) 

Remark: In the second development phase from 2023, we complete Fig. 4 by distributing the 100 new 

FCEVs in the same areas as the first 600 Hype taxis. 

4.4. Data 

• The unit cost of H2 including production, distribution, and operating costs is: c = €5.10 per kg 

excluding the rental costs for the space occupied in the city (see appendix B). 

• The real estate cost FIX of each station is €65.75 per day7
. 

• The investment of a station j is assumed to be €350,000 for a maximum capacity of 

200 kg/day (see appendix B) and the daily depreciation cost is: 9589qj depending on the H2 

quantity sold daily by each station j. 

• The price elasticity of demand is chosen at ε = -0.1 (Zeleke 2016). 

• Each car driver fills up her tank with an average daily quantity of γ = 1.6 kg/car8. 

• Referring to the H2 selling prices in different countries (see Appendix C), we choose average 

prices � 
 in 2023 of €9.50 and €8.50 per kg. Each station in Paris is located in what is termed 

an “influence zone” calculated according to the BD Topo provided by the Institut 

Geographique National (APUR, 2013). We observe an average price dispersion of SP E5 gas 

over a long period of time which seems to be constant between the stations of the different 
                                                           
7 The cost of renting and maintaining an industrial building in Paris is €10/m2/month on average. For a floor area of 200 m2 = 
€24 k/year or €65.75/day. 
8 We consider that the average H2 refilling volume is 4.36 kg when the H2 gauge is on 1/4 (mean value of three-quarters of a 
full tank of Mirai and Nexo cars). Given that the average consumption of these cars is 0.80 kg H2 per 100 km and the average 
distance a taxi in Paris covers is 200 km per day, the average time between refuelling stops is 2.725 days. 



districts. We assume that the H2 absolute price differences will be similar to the present 

gasoline price differences, which can be explained by the real-estate cost and the social 

environment of each district. Referring to recent gasoline prices collected on May 3, 2019 

(French Ministry of Economy and Finance, 2019), we deduce the possible H2 prices based the 

average � 
 (see Table 2).  

 

Table 2 

Gasoline prices in Paris and H2 price assumptions 

  Gas price (SP E5) 
     H2 price assumptions 

� 
 = €9.50/kg 

 H2 price assumptions                  
� 

 = €8.50/kg 
Paris district 1 €1.98 per l €9.85 per kg €8.81 per kg 
Paris district 7 €1.94 per l €9.65 per kg €8.63 per kg 
Paris district 8 €1.78 per l €8.85 per kg €7.92 per kg 
Paris district 10 €1.76 per l €8.75 per kg €7.83 per kg 
Paris district 11 €1.95 per l €9.70 per kg €8.68 per kg 
Paris district 13 €1.71 per l €8.52 per kg €7.62 per kg 
Paris district 14 €1.97 per l €9.80 per kg €8.77 per kg 
Paris district 15 €1.76 per l €8.74 per kg €7.82 per kg 
Paris district 16 €1.76 per l €8.74 per kg €7.82 per kg 
Paris district 18 €1.73 per l €8.58 per kg €7.68 per kg 

 

4.5. Experimental conditions  

Agent-based model design and GIS data 

We consider the city of Paris as a rectangle of length 11 km and height 9 km. We use NetLogo 6.0.4 

software and build a grid space of 55 x 45, corresponding to 2475 cells and possible locations of the 

different agents. Like Han et al. (2015), we use the Netlogo GIS extension to load vector GIS data 

(Geographic Information System) and raster GIS data (grids) corresponding to the geographic space of 

the city of Paris and the taxi bay locations. These geospatial data are created by using QGIS software9 

and transferred from the GIS data space to the NetLogo space (Crooks et al., 2018). 

Remark: To finalize the model given the particularities that can be encountered in a city, different 

spatial constraints can be introduced into the ABM such as impossible or forbidden locations such as 

risk areas, rivers, streets... 

Distance metrics 

Following the recommendations of Peeters & Thomas (1997) and Brimberg & Love (1992), we define 

a metric for estimating the distances between all the agents. According to Heran (2009), a Euclidian 

distance of 7 km within Paris corresponds to an actual distance travelled at the shortest of 8.5 km. We 

can deduce an order p = 1.31 of the lp Minkowski distance D(lp) = (|dx|p + |dy|p)1/p where dx 

represents the distance between two points along the first axis, and dy along the second axis (Midler 

1982)10. 

                                                           
9 https://qgis.org/en/site/about/index.html 
10 Midler (1982) illustrates different possible values of the order p: p < 1 for a straight-line distance justified in certain 
empirical cases, such as a vehicle avoiding traffic,  p = 1 for a Taxicab or Manhattan distance empirically validated in New 
York City, where the displacements are made in two perpendicular directions, p = 2 for Euclidean distance, which 



PSO model calibration 

The probability of obtaining a poor quality solution is low but like other metaheuristic, it has first to be 

calibrated to avoid a premature convergence toward sub-optimal solutions. Given that a PSO 

algorithm is also sensitive to its parametric evolution, we performed the following parameter 

sensitivity analysis. 

• We choose a number of particles π = 200. 

• Vmax is the maximum velocity and ω the inertia weight of the metaheuristic. Shi & Eberhart 

(1998) and Eberhart & Shi (2001) observe that when Vmax has a low value (≤ 2), an inertia 

weight ω of almost 1 is a good choice, while when Vmax is not low (≥ 3), an inertia weight ω 

= 0.8 is advised. In our simulation, we choose Vmax = 4 and ω = 0.8. 

We run the simulations several times by changing the random distribution of the demand locations in 

the 21 zones in order to observe any differences in the location found by Model 2. Since the final best 

locations are presented by 100 particles, we choose the best location of each new station in the centre 

of a circle of radius equivalent to 3 cells in the grid. According to the initial conditions and particularly 

to the p order of the lp Minkowski metrics, simulation results can propose different best locations 

which all corresponds to a maximal profit and to n* customers. 
 

4.6. Results of the pricing model 1 

The following results correspond to the second development phase of FCEVs with 400 FCEV taxis 

refuelling within the city of Paris. Given the uncertainty of the average price of the HRSs in 2023, we 

apply our pricing Model 1 for different initial values of � (see Table 3). The optimal price of the new 

station p*
new is calculated by solving the third-order equation (5) and by replacing p1 by �. We deduce 

the daily profit of the new station Mnew
*, the corresponding H2 capacity znew

*= qnew, the market share 

D(pnew) and the optimal number of customers n*
new to attract to the new station. 

 

Table 3 

Optimal results of Model 1 for different initial values of � in 2023 

Average price of 
the existing stations � 

€15/kg €14/kg €13/kg €12/kg €11/kg €10/kg €9/kg €8 /kg €7/kg €6/kg 

New station 

Optimal price p*
new (€ per kg)  €12.53   €12.00    €11.47    €11.02    €10.51    €10.00    €9.49    €9.00   €8.45   €7.94  

M*
new (€ per day)  €1 670  €1 437  €1 219   €1 017   €830   €658   €501   €359   €230   €114  

z*
new (kg/day)  239     224     209     191     176     160     144     128     114     98    

D*
new (% market share) 37% 35% 33% 30% 27% 25% 23% 20% 18% 15% 

n*
new (number cars)  149     140     131     120     110     100     90     80     71     61    

  Average values of the existing stations 

M (average € per day)  €1 186   €1 099  €1 003   €902   €785   €658   €521   €373   €213   €44  
z  (average kg/day)  134     139     144     150     155     160     165     171     175     181    

D (average % market share) 21% 22% 22% 23% 24% 25% 26% 27% 27% 28% 
n  (average number cars)  251     260     269     280     290     300     310     320     329     339    

price ratio = p1/p2  1.197     1.167     1.133     1.089     1.047     1.000     0.948     0.889     0.828     0.756    

                                                                                                                                                                                     

corresponds to the distance as the crow flies often used as an estimator of real distances over a very dense network, for p > 2, 
the lp distance is shorter than the Euclidean distance. It is empirically justifiable for some individual, subjective evaluations. 



Price difference -€2.47  -€2.00 -€1.53  -€0.98 -€0.49  €0.00 €0.49 €1.00 €1.45  €1.94   
 

For initial average prices � 
 between €6 and €15 per kg, the corresponding capacity to set up at the new 

station should be between 98 kg/day and 239 kg/day. Given that an H2 station has a maximum 

capacity of 200 kg/day, in case of z > 200, the station will only be able to supply 200 kg/day and the 

profit will be lower. This is the case if �  > €12 per kg in 2023. Fig. 5 shows the daily profit M*
new of 

the new station and the average profit �� of the existing stations for an optimal price range of p*
new 

between €7.94 and €12.53 per kg depending on the average price �. It can be seen that the new station 

will have a better profit than the average profit of its competitors if its optimal price is less than about 

€8 per kg or greater than about €10 per kg. The average profit of the existing stations will be higher 

than the expected profit of new station if their average initial price � is between €7 and €10 per kg. 

 

Fig. 5. Daily profit evolution M*
new and ��  vs optimal price p*

new = f(�) 
 

4.7. Results of Model 2 

4.7.1. Phase 1. Location of two new stations without price competition 

For the first FCEV development phase between 2020 and 2022, we apply Model 2 for a fleet of 200 

taxis which implies starting up a second station within the city. Then, we increase the fleet to 300 taxis 

with a third station to locate. We also assume an equitable market share among the stations. Figs 6a 

and 6b show possible locations for the second and the third HRSs to be set up in Paris. We find 

different possible locations but after changing the random distribution of the demand locations in the 

different zones several times, 64% of the simulations propose the same locations as presented in Fig. 

6. These locations correspond to the centre of a circle with a radius of 600 m (3 cells), which is near 

the centre of gravity of the particles. 



      
a. (200 taxis)    b. (300 taxis) 

Fig. 6. Possible locations of two new HRSs in Paris during the period 2020–2023 

 

4.7.2. Phase 2. Location of a fourth station with price competition 

Depending on the results provided by the previous Model 1, Model 2 searches for a location for a 

fourth station based on a fleet of 400 FCEVs in 2023 (300 Hype taxis and 100 other transport 

operators). Table 2 estimates the H2 price for each district with a likely average price of €9.50 per kg 

for the whole city. Given the proposed HRS locations shown in Fig. 6, we assume that the first three 

stations will choose a “district price” policy. This means that the H2 price is, respectively for each 

station, p1 = €8.85 per kg (district 8), p2 = €9.80 per kg (close to district 14) and p3 = €9.85 per kg 

(district 1). For �  = €9.50 per kg, the optimal price of the new station 4 should be p*
4 = €9.76 per kg. 

This price corresponds to a market share D*
4 = 24% and to a number of cars to attract to this new 

station n*
4 = 95, a profit M*

4 = €578 per day, and a necessary H2 capacity of z4
 *= q*

4 = 152 kg H2/day11 

(the expected Return On Investment (ROI) should be 60%). Fig 7a shows the likely location of the 

fourth HRS for �  = €9.50 per kg. 

     
a. (average price of 9.50€/kg))    b. (average price of 8.50€/kg) 

Fig. 7. Possible location of a fourth HRS in Paris in 2023 

                                                           
11 This value is compatible with the current maximum capacity of 200 kg/day for this type of station. 



If the initial average price in 2023 is lower than €9.50 per kg for instance, �  = €8.50, the location of 

the fourth HRS will be different (see Fig. 7b). For this option, we choose the same dispersion price as 

in Table 2 so that p1 = €7.85 per kg, p2 = €8.80 per kg, and p3 = €8.85 per kg. The optimal price p*
4 = 

€9.25 per kg corresponds to n*
4 = 85 customers to attract, a profit M*

4 = €428/day (ROI = 45%) and an 

average capacity znew
 *= 136 kg H2/day. In that case, the location of the fourth station will be different 

as for the case of  �  = €9.50 per kg (Fig. 7b). These two cases show the importance of �  on “optimal” 

station location. The higher the value of this initial average price �  and consequently, the optimal 

price p*
4 , the greater the number n*

4 of cars to attract (cf. Table 3) and the more the location of the 

fourth station tries to catch customers close to the other HRSs. Given the hypothesis of constant price 

dispersion between Paris districts and depending on the location of the fourth, Table 4 compares the 

market share and the profit between a price p4 depending on the district (cf. Table 2 and Fig. 7) and the 

optimal price p*
4 which is independent of the location (cf. Model 1 and Table 3). If a decider chooses 

to maximize the profit, prices will no longer comply with the usual price dispersion between the 

different districts. However, if she chooses to fix a price p4 instead of p*
4, the profit M4 is always lower 

than M*4 but the number of customers to attract n4 may be higher or lower than n*
4. In the case of n4 < 

n*
4, Model 2 looks for a new location further from other stations without leaving this district (new 

constraint to add to the model), seeking a more extensive HRS network. If n4 > n*
4, Model 2 will look 

to be closer to other stations to catch more customers.  
 

Table 4 

Comparison between a price p4 depending on the district and the optimal price p4 

Location Price p4 Number of 

customers  n4 

Profit M4 Average 

initial price �    

Optimal price 

p*
4   

Optimal number 

of customers n*
4     

Optimal 

profit M*4 

District 8 €8.85/kg 113 €559/day €9.50/kg €9.76/kg 95 €578/day 

District 11 €9.70/kg 76 €415/day €8.50/kg €9.25/kg 85 €428/day 
 

To summarize, price optimizing behaviour will lead to fuel station networks being re-organized as the 

development of FCEV taxis progresses. 

 

5. Uncertainties in the models 

 

In the present case study, the simulation results must be considered in light of some experimental 

uncertainties and assumptions made on travel distances, demand locations and pricing policies. We 

will discuss each of these points in this section. 

Distance uncertainties. We have chosen a Minkowski distance of order p = 1.31 but actual travel-

times heavily depend on the traffic congestion and unforeseeable events at different times of the day. 

Based on the depiction of journey time rather than distance, we propose to complete Facta Group’s 

spatial study of the taxi trips in Paris to improve our model (Facta Group, 2016). Moreover, in some 



cases, drivers go around the ring road to reach a given place within Paris. In this case, we should 

estimate the mathematical expected distances using the model proposed by Hale et al. (2013).  

Uncertainties about the location of the demand points. Our case study corresponds to the current 

context of a captive fleet of taxis and to its potential evolution over time. We assumed that the location 

of the demand points have been considered to be randomly distributed around the current taxi stands 

and that they depend on when each taxi driver decides to join a station. This simplification of reality 

led us to propose a prospect for future research following the advice of Miralinaghi et al. (2017) who 

recommend integrating demand uncertainty and driver route choice behaviour into the HRS location 

problem. Moreover, Tu et al. (2016) collected massive raw GPS data for the electric taxi service in the 

city of Shenzhen. We propose to adopt their method of recovering demand data by using a map-

matching algorithm. Another simplification of reality consists in assuming that drivers decide to refill 

their tank when their fuel gauge is on ¼. Model 2 can easily be adjusted according to a new set of 

demand points. 

Uncertainties about future H2 prices. It is not known whether future HRS will be managed by the 

same distributor or not, which could also change the price competition context. However, within the 

city of Paris, there is no major reason for the price dispersion to change in the future. The price 

differences across districts are well-known by individuals and taxi drivers whose primary objective is 

to fill their tank at the station closest to their home or demand point. Besides, it is currently difficult to 

predict the demand elasticity and the future changes in H2 prices but it is easy in Model 1 to modify 

the elasticity coefficient and to recalculate the optimal price for a new station by solving equations (5), 

(6) and (7). According to this price, Model 2 can propose another possible location for a new HRS. 

 

Finally, we would like to state that Models 1 and 2 are easily configurable according to changes in 

initial prices, price elasticity, statistical distributions of taxi demand points, spatial constraints in the 

city and changes in HRS characteristics in terms of capacity and cost depending on H2 production and 

distribution techniques. 

 

6. Conclusion 

 

The Fuel Cell Electric Vehicle is considered to be one of the key solutions of the energy transition. To 

guarantee this green evolution, there is currently the problem of locating Hydrogen Refuelling Stations 

in order to cover the countries. Moreover, given the significant infrastructure costs (Sprik et al., 2017), 

there is also the problem of the economic profitability related to location and price competition. 

Proximity and price differences become a major decision factor for car drivers although these are often 

neglected in current location research. The main contributions of this research are twofold. First, 

methodologically, this paper has addressed the HRS location problem by presenting a two-step 

modelling approach for optimal pricing and location. Second, at a more practical level, the results 



propose to roll out new HRSs in Paris in response to the expected FCEV development phases from 

2020 to 2023 starting with a captive fleet with known demand. In the first development phase, we 

suggest locating the new stations by minimizing the lp Minkowski distances between the HRSs and the 

different H2 demand locations. In the second development phase, price competition between the 

stations will emerge and consequently a dual problem of profitable locations for the future stations 

will arise. The literature shows that it is more usual to tackle this problem in two stages consisting, 

first in trying to optimize the location and then to optimize the price in the framework of dynamic 

competition. Given that the dispersion of prices for gasoline and diesel fuel in the different districts of 

Paris remains almost constant over time, we assume in the future similar absolute H2 price differences 

between districts. This justifies our approach consisting first in maximizing profit in an oligopoly 

framework with static pricing and then locating a new station according to an optimal market share to 

capture. Nevertheless, this approach also has its limitations. Hanjoul et al. (1990) demonstrate that 

separating location and price decisions leads to sub-optimality. Dan et al. (2018) advise a joint 

decision in some practical applications which can provide valuable insights into whether or not entry 

into a market is profitable (Dobson & Stavrulaki, 2007). 
 

Research outlooks 

In the specific context of rolling out new HRSs, we choose just price and proximity as the main 

customer decision-making factors. Several econometric models identify attractiveness factors of 

gasoline service stations other than price and proximity, such as brand name, opening hours, and other 

ancillary services that they might offer (e.g. Gagne et al., 2004). In a more mature phase of FCEV 

development integrating private cars and based on surveys to be conducted, we suggest developing a 

gravity model (Bucklin, 1971) integrating an HRS attractiveness function taking into account all 

explanatory factors and consistent with McFadden’s logit model (1973) in order to calculate the 

probability of each consumer i choosing an HRS j. 

What we claim as a contribution is that, provided that data is available, we have developed a 

simulation model that can be replicated to study other HRS location problems considering different 

capacity limitation and H2 production-distribution methods, other initial H2 price “at the pump” and 

more accurate statistical distributions of the taxi demand locations and the travel times. 
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Appendix A 

PSO pseudocode 

1. Each particle k has a current position Xk, a current velocity Vk and a remembered best location Pk. 

Finally, all particles know the index g of the particle that corresponds to the best location so that Pg is 

the best location that anyone has found. 

          Pk = Xk initial position of remembered best location 

          Pg = the position of one of particles (randomly chosen) 

2. For each particle do: 



2.1. Particles move according to the rule (update the velocity and position) 

Vk' = ω Vk + φ1 (Pk - Xk) + φ2 (Pg - Xk) 

Xk' = Xk + Vk' 

where ω is an inertia parameter 

and φ1 and φ2 are random numbers uniformly distributed in [0, 2]. 

2.2. Calculate for each particle at the position Xk', the values of Vk and Pg. 

3. For k := 1 to np (number of particles) 

           If  Xk’ > Pk then  Pk = Xk’ 

           If  Pk > Pg then  Pg = Pk 

4. The algorithm will stop after a fixed number of iterations. 

The best location Pk corresponds to the new station location. 

 

Appendix B 

José Solé, an expert in analytical costing for the PSA Peugeot Citroen Group, estimates the H2 unit 

cost of €5.1 per kg for a 200 kg/day H2 station composed by, (i) the unit cost of Steam Methane 

Reforming (SMR) with Carbon Capture and Storage (CCS), the transportation and compression costs, 

(ii) the investment of €350,000 for a 200 kg/day H2 station (AFHYPAC 2016), the energy cost for H2 

compression from 200 bars to 1100 bars to more efficiently fill the tanks of cars at 700 bars, the 

energy cost for cooling and the maintenance cost (€5.4 per kg including the rental costs for the space 

occupied in Paris). This assessment applied to the context of French H2 production and the city of 

Paris, is similar to calculations in other countries. For instance, Gigler & Weeda (2018) mention that 

in 2023 the price of H2 delivered to an HRS should be in the range of €4.50 to €7 per kg excluding the 

HRS operating and depreciation costs. Reddi et al. (2017) estimate an H2 cost between $6 and $8 per 

kg and observe that station capacity utilization strongly influences this cost (see also Melaina & 

Penev). Weinert et al. (2007) estimate a cost of $5.7 per kg for a 300kg/day HRS capacity and Creti et 

al. (2015) forecast a cost of €5.7 per kg in 2020 including logistic cost for HRSs with H2 produced by 

SMR CCS production technology. Moreover, by 2030, according to the CertifHy project report, the 

cost could reach between €5 and €7 per kg (Fraile et al., 2015). Today, there is a broad international 

consensus on the future need for clean hydrogen which still costs too much (IEA 2019). Researchers 

estimate that green H2 prices may not come down sufficiently until the 2030s. For their location 

decisions and ROI estimations, the investors have therefore to consider a likely price evolution 

scenario. The H2 price “at the pump” depends on these changes in cost, on value-added tax, and on 

possible excise duty on H2, which could also have a significant impact on the final price (Gigler & 

Weeda 2018). 

 

Appendix C 



The H2 price “at the pump” in Germany in 2019 is €9.50 gross per kg (Hydrogen Mobility 

Deutschland GmbH & Co KG, 2019). In California in 2015, the prices ranged from $12.85 to more 

than $16 per kg with a most common price of $13.99 per kg (California Fuel Cell Partnership, 2015). 

In France, Air Liquide announced a price of €15 per kg in April 2019 at the Orly fueling station but the 

goal in France is to reach €10 per kg (Mobilite Hydrogene France, 2017). 




