
HAL Id: hal-02913107
https://hal.science/hal-02913107

Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D right ventricular shape and strain in congenital heart
disease patients with right ventricular chronic volume

loading
Pamela Moceri, Nicolas Duchateau, Stephane Gillon, Lolita Jaunay, Delphine

Baudouy, Fabien Squara, Emile Ferrari, Maxime Sermesant

To cite this version:
Pamela Moceri, Nicolas Duchateau, Stephane Gillon, Lolita Jaunay, Delphine Baudouy, et al.. 3D
right ventricular shape and strain in congenital heart disease patients with right ventricular chronic
volume loading. European Heart Journal - Cardiovascular Imaging, inPress. �hal-02913107�

https://hal.science/hal-02913107
https://hal.archives-ouvertes.fr


1

Preprint version accepted to appear in European Heart Journal Cardiovascular Imaging.
Final version of this paper available at https://academic.oup.com/ehjcimaging

3D right ventricular shape and strain in congenital heart

disease patients with right ventricular chronic volume loading

Pamela Moceri * a,b,c; Nicolas Duchateau d; Stéphane Gillonb ; Lolita Jaunayb;

Delphine Baudouy b; Fabien Squara b; Emile Ferrari b; Maxime Sermesanta.

Short title: 3D RV shape and strain in CHD with chronic volume loading

Manuscript total word count: 5657

a Université Côte d’Azur, Inria Epione team, Sophia Antipolis, France.
b Centre Hospitalier Universitaire de Nice, Service de Cardiologie, Nice, 

France.
c UR2CA, Université Côte d’Azur, Nice, France.
d Creatis, CNRS UMR5220, INSERM U1206, Université Lyon 1, France.

* Corresponding author: Dr Pamela Moceri, CHU de Nice – Hôpital Pasteur

Avenue de la voie romaine, CS 51069 – 06001 Nice, France.

Tel: +33 492037733 / Fax: +33 492038516

Email: moceri.p@chu-nice.fr

mailto:moceri.p@chu-nice.fr


2

Preprint version accepted to appear in European Heart Journal Cardiovascular Imaging.
Final version of this paper available at https://academic.oup.com/ehjcimaging

ABSTRACT

Background: Right ventricular (RV) function assessment is crucial in

congenital  heart  disease  (CHD)  patients,  especially  in  atrial  septal

defect  (ASD)  and  repaired  Tetralogy  of  Fallot  (TOF)  patients  with

pulmonary regurgitation (PR).  In this study, we aimed to analyse both

3D RV shape and deformation to better characterize RV function in ASD

and TOF-PR.

Methods: We prospectively included 110 patients (≥16 years old) into

this case-control study: 27 ASD patients, 28 with TOF and 55 sex- and

age-matched healthy controls. Endocardial tracking was performed on

3D  transthoracic  RV  echocardiographic  sequences  and  output  RV

meshes  were  post-processed  to  extract  local  curvature  and

deformation.  Differences in shape and deformation patterns between

subgroups were quantified both globally and locally. 

Results: Curvature highlights differences in RV shape between controls

and patients while ASD and TOF-PR patients are similar.  Conversely,

strain  highlights  differences  between  controls  and  TOF-PR  patients

while  ASD  and  controls  are  similar  (global  area  strain:  -31.5±5.8%

[controls],  -34.1±7.9% [ASD],  -24.8±5.7% [TOF-PR],  p<0.001,  similar

significance for  longitudinal  and circumferential  strain).  The  regional

and local analysis highlighted differences in particular in the RV free

wall and the apical septum.

Conclusion: Chronic  RV volume  loading  results  in  similar  RV  shape

remodeling  in  both  ASD  and  TOF  patients  while  strain  analysis
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demonstrated that  RV strain is  only  reduced in the TOF group.  This

suggests  a  fundamentally  different  RV  remodeling  process  between

both conditions.

KEY-WORDS:  Congenital  heart  disease;  3D echocardiography;  Right

ventricular function; Right ventricular strain; Curvature.
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INTRODUCTION

Right  ventricular  (RV)  function  evaluation  is  of  utmost  importance  in

congenital heart diseases (CHD)1. RV chronic volume loading is frequently

observed in CHD and leads to right ventricular (RV) remodelling in terms

of  shape  and  function2,  which  affects  the  patients’  prognosis  and  in

particular CHD patients3. 

RV response to pre- and after-load changes is a crucial issue in CHD.

Atrial  septal  defect  (ASD)  with  left  to  right  shunting  is  generally  well

tolerated for years, while repaired tetralogy of Fallot (TOF) patients with

chronic pulmonary regurgitation are at risk for developing RV dilatation

and ultimately failure4, 5.

The  assessment  of  RV  differences  in  shape  and  deformation  is

challenging given the peculiar RV geometry, which requires 3D imaging

and  dedicated  analysis  tools.  The  echocardiographic  literature  only

focused  on  2D  regional  and  global  observations  on  these  populations.

Local  3D  descriptors  such  as  curvature  and  strain  have  been  recently

exploited in the context of specific diseases affecting the RV (pulmonary

hypertension, patients with left ventricular assist devices), but not in the

context of RV chronic volume loading. In addition, they have only been

examined separately, which may be limited when both shape and function

are altered.

In  this  study,  we  investigated  the  effects  of  RV  volume  chronic

volume loading on 3D descriptors of the RV anatomy and mechanics, both

in ASD and TOF patients compared to a control group.  We hypothesized
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that a finer analysis that integrates RV shape and deformation, in 3D and

both globally and locally up to each point of the RV endocardial surface,

could  provide  novel  insights  into  the  relationship  between  shape  and

function to better characterize these patients.

METHODS

Study design and patients

We performed a case control study on patients (adults and adolescents >

16 years  old)  with  ASD and  TOF  with  chronic  pulmonary  regurgitation

followed  up  at  the  Pasteur  University  Hospital,  Nice,  FR  between

September  2016  and  January  2019.  Stable  patients  (no  hospitalization

during  the  2  years  preceding  the  inclusion)  were  enrolled  into  a

standardized  echocardiographic  protocol  including  2D  and  3D

echocardiography. Our study protocol was approved by the local research

Ethics  committee.  Personal  patient  and  parental  or  guardian’s  consent

were  obtained  together  with  the  adolescent’s  assent  in  patients  <  18

years old.

Asymptomatic  healthy  volunteers  (with  no  prior  history  of

cardiovascular disease) were recruited from the community to serve as

controls  and  were  included  if  they  had  a  normal  transthoracic

echocardiography, and if they were in sinus rhythm. They were matched

1/1 to the study population regarding age and sex. 

ASD patients were included if they had no other defect and an open

and significant  left-to-right  shunt  at  the  atrial  level  with  hemodynamic
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consequence defined by a basal RV diameter > 41mm8. ASD patients were

excluded if they had pulmonary hypertension defined by mean pulmonary

artery pressure ≥ 25mmHg and pulmonary vascular resistance > 3 Wood

Units  (assessed  by  right  heart  catheterization  either  during  the  initial

assessment of a dilated right heart to eliminate pulmonary hypertension,

or before the ASD closure procedure).

Repaired TOF patients were included if  they had no other defect.

Patients  with  significant  residual  pulmonary  stenosis  were  excluded

(maximum  gradient  across  the  pulmonary  valve  >  40mmHg).  The

presence of significant pulmonary regurgitation (at least moderate) was

defined by a pulmonary regurgitation jet width on colour Doppler > 50% of

the  pulmonary  annulus,  a  pulmonary  regurgitation  index  <  0.77

(pulmonary regurgitation duration/diastolic duration ratio) and/or diastolic

flow Doppler reversal9-11.

Demographics  and  clinical  data  (age,  gender,  diagnosis,  baseline

WHO  class,  type  of  repair,  number  of  surgeries)  were  collected  at

inclusion.

2D-echocardiographic acquisitions and measurements

Echocardiographic  examinations  were  performed  using  an  EPIQ-7

ultrasound  system  and  an  X5-1  transducer  (Philips  Medical  system,

Andover,  MA,  USA).  Doppler  echocardiography  was  performed  per  the

recommendations of the American Society of Echocardiography and the

European Association for Cardiovascular Imaging12-14. A cardiologist, with
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advanced  training  in  echocardiography,  performed  the  cine-loop

acquisitions and interpreted the 2D datasets. The measured parameters

were  averaged  over  three  consecutive  cycles,  and  consisted  of:  left

ventricular  ejection  fraction,  right  atrial  area,  tricuspid  annular  peak

systolic velocity (s’), tricuspid annular plane systolic excursion (TAPSE), RV

basal diameter and RV wall thickness.

3D transthoracic echocardiography

At least four 3D cine-loops were acquired from an apical 4-chamber

view focused on the RV, using an IE-33 or EPIQ-7 ultrasound system and a

matrix-array X5-1 transducer (Philips Medical system, Andover, MA). Full-

volume acquisition over two heartbeats (for loop storage) was performed

using ECG-gating over four cardiac cycles,  during a quiet breath-hold if

possible.  Frame  rate  was  maximized  to  allow  quantification  from  RV-

dedicated software and follow the current quantification guidelines (frame

rate > 20 Hz)12. Care was taken to include the entire RV within the images.

Digital  3D  datasets  were  stored  and  analysed  using  RV-dedicated

commercial  software  (4D  RV  Function  2.0,  TomTec  Imaging  Systems

GmbH, DE). This software allowed semi-automatic delineation of the RV

endocardium,  which  was then automatically  tracked across  the cardiac

cycle, and resulted in a sequence of 3D triangulated meshes with point-to-

point  correspondences  (i.e.  each vertex  is  labelled  similarly  across  the

cycle and subjects). It also provided an estimation of the RV end-diastolic

and end-systolic volumes, ejection fraction, and wall-specific peak strain.
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An example  of  adequate RV tracking is  illustrated for  a patient  with a

primum atrial septal defect in Figure 1.

3D deformation analysis

The  commercial  software  also  allows  exporting  the  RV  surface

meshes tracked along the cardiac cycle for external post-processing. For

each subject, we computed deformation locally (at each point of the RV

endocardial  surface),  and  regionally/globally  (average  over  a  given

segment or the whole ventricle) using VTK (v7.10, Kitware, New York, US),

similar  to  our  previous  work15.  Our  results  focus  on  end-systolic  strain

values. Circumferential and longitudinal strain computations were based

on the  nominal  strain ---the relative change of length from end-diastole,

also  referred  to  as  engineering  strain  or Cauchy  strain---  along  these

directions, within a 5mm neighbourhood. Nonetheless, the computation of

the circumferential  and longitudinal  directions  may introduce additional

variability due to the lack of consensus in their 3D definition, in particular

for the RV. As a complement, we also provide area strain, computed as the

relative  change  of  area  from  end-diastole  for  each  triangle  of  the  RV

surface  mesh.  This  definition  does  not  involve  the  circumferential  and

longitudinal directions and therefore does not suffer the above-mentioned

limitation.  Besides,  under  the  hypothesis  of  an  incompressible

myocardium,  it  represents  a  relevant  surrogate  for  radial  deformation,

which  cannot  be  accessed  otherwise  as  only  endocardial  surfaces  are

available.
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3D shape analysis

We also estimated the curvature at each point of the RV, at end-

diastole. We used the "mean curvature" definition, which stands for the

average  of  principal  curvatures,  as  used  in  previous  studies6,7.

Positive/negative curvature means that the surface locally bends towards/

away from the centre of the RV. This 3D curvature analysis provides a

detailed quantitative evaluation of RV remodelling patterns over the whole

endocardial  surface,  which  is  not  accessible  with  conventional  2D

measurements and global values such as volumes. Computations used the

Computational Geometry Algorithms Library (CGAL 4.11, Inria, FR)16, which

relies on smooth differential geometry calculations and approximates the

local surface with a quadric,  over a circular neighbourhood of 10mm (2

rings  of  nearest  neighbours  around  the  point  of  interest). This

neighbourhood size was chosen a priori,  small  enough to prevent  over

smoothing of the data and reflect local changes, but not too small to be

robust to local noisy surface variations. 

Local/regional/global analysis

Spatial correspondences between the subjects' 3D deformation and

curvature data were obtained by using the labels attached to the mesh

vertices by the commercial  software,  which were consistent  across  the

cycle  and  subjects.  Temporal  correspondences  were  achieved  by

normalizing  these data  according  to  the  onset  and  end  of  the  cardiac
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cycle. These steps are compulsory to compare the local 3D deformation

and curvature data across subjects. 

In addition, the RV was labelled according to the regions defined in

Haddad et al.17, and regional/global values were obtained by averaging the

local  deformation and curvature values over these regions  /  the whole

ventricle. 

These  computations  were  carried  out  in  Matlab  (v.R2011a,

MathWorks, Natick, US, USA).

Statistical analysis

Data were summarized as mean ± standard deviation for continuous

variables with normal distribution; median [95% confidence interval]  for

other  continuous  variables  and  number  of  subjects  (%)  for  categorical

variables. Inter-group differences were assessed by the Student t-test for

normally distributed variables, or the Mann-Whitney U-test otherwise, and

categorical variables were compared using Fisher’s exact test. Bonferroni

correction  was  used  for  multiple  comparisons  (ANOVA).  Correlation

coefficients  were  calculated  between  the  regional  curvature  and

deformation values. These analyses were performed using MedCalc 19.1

(MedCalc Software, Mariakerke, BE). 

Inter-group differences in the local curvature and deformation data

were  assessed  by  the  Hotelling's  T-Square  test  statistic18 using  Matlab

(v.R2011a, MathWorks, Natick, US, USA), which returned a p-value at each

point of the RV, low p-value indicating high differences. These values were
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visualized on  the  average  shape  representative  of  each  subgroup,

obtained  by  standard  computational  anatomy  tools  (generalized

Procrustes  analysis),  and  displayed in  a  customized  logarithmic  colour-

scale to better visualize significantly different regions.

In all  analyses, statistical significance was defined as a p-value <

0.05.

RESULTS

General characteristics of the population

Our study included 110 patients: 28 patients after TOF repair,  27

ASD patients and 55 controls. Controls and patients were matched for sex

and  age.  General  characteristics  of  the  study  groups  are  presented  in

Table 1. 

Among TOF patients, 7 had initially a Blalock-Taussig shunt (25%)

and all underwent a complete repair during childhood (the latest repair

occurred  at  15  years  old  in  one patient).  TOF  repair  included  a  trans-

annular  patch  in  23  patients  (82.1%).  All  TOF  patients  had  significant

pulmonary  regurgitation,  3  of  them had  already  had  pulmonary  valve

replacement (but still suffered from significant pulmonary regurgitation).

Among ASD patients,  all  patients  had significant  defects  with  2D

echocardiographic evidence of RV chronic volume loading. Twenty-three

had secundum ASD (85.2%), 3 had a sinus venosus defect (11.1%) and 1

had a primum ASD (3.7%). Seven suffered from embolic ischemic stroke
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(25.9%)  and  5  (18.5%)  presented  paroxysmal  supra-ventricular

tachycardia, but all patients were in sinus rhythm at the time of the study.

Two-dimensional echocardiographic measurements are summarized

in Table 2. All patients had a dilated right ventricle. RV diameter was not

statistically different between ASD and TOF patients. 

Compared to ASD patients, TOF patients had a more hypertrophic

right  ventricle  (p<0.001)  but  reduced  longitudinal  contraction  at  the

tricuspid  annulus  (reduced  TAPSE  (p<0.001)  and  tricuspid  valve  s’

(p=0.006)).

 

3D strain analysis

Results from the analysis of 3D regional and global deformation are

presented in  Table 3.  ASD and TOF patients have larger volumes than

controls  (p<0.001),  while  TOF  patients  also  have  a  reduced  RV  EF

(p<0.001).

Strain tends to be higher in ASD patients compared to controls, but

these differences were not significant regarding RV area, longitudinal and

circumferential strains, at the global RV level and at the regional level. 

In contrast, many differences were observed between TOF patients

and  controls.  RV  area  and  circumferential  strains  were  lower  in  TOF

patients,  especially  in  the  RV  free  wall  and  in  the  trabecular  /  apical

septum  (Figures  2  and  3).  Longitudinal  strain  was  also  significantly

decreased in TOF patients, at slightly different locations (Figure 3).  The

inlet septum and superior part of the free wall were preserved compared
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to healthy controls. The ratio circumferential / longitudinal strain in TOF

patients did not significantly differ from controls, which confirms that the

extent of strain decrease was similar for longitudinal and circumferential

strain.

TOF and ASD patients significantly differed regarding all variables, in

almost all segments. Area strain mainly differed in the RV free wall, but

the  inlet  and  posterior  septum  looked  preserved  (Figure  2  and  3).

Longitudinal and circumferential strain mostly differed in the RV free wall

and the apical septum.

3D curvature analysis

Figure 4 summarizes curvature differences between ASD and TOF

patients and controls. ASD patients and controls significantly differed in

the extreme borders  of  the RV,  the apex,  and the septum. Differences

were also marked between TOF and controls, mainly at the septal level,

and the lateral and inferior walls. They were less visible between TOF and

ASD patients, except in the operated RV outflow tract. No correlation was

found between the regional curvature and strain values.

DISCUSSION

RV chronic volume loading results in different adaptations depending

on  the  underlying  congenital  heart  disease.  Our  analysis  examined

differences in the 3D patterns of RV shape and deformation, and therefore
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provides  finer  insights  into  the  differences  in  ASD  and  TOF  patients

compared to controls.

3D RV shape differences

Assessing  RV  shape  differences  locally  and  in  3D  is  challenging.

Indeed, there is no standard to appreciate RV shape, especially using 3D

echocardiography.  RV  shape  has  been  previously  described  using

curvature from 3D-echocardiography in  healthy volunteers19,  pulmonary

arterial hypertension6 and LVAD patients7. 

We had previously hypothesized that RV shape would be affected

differently  depending  on  the  underlying  pathology  and  thus,  that  a

detailed assessment of RV shape would reveal differences between TOF

and  ASD patients.  It  was  not  the  case.  Despite  coming  from different

sources  (the  right  atrium or  the  pulmonary  valve),  the  chronic  volume

loading  affects  the  RV  shape  similarly  in  both  subgroups.  Even  when

quantifying an advanced descriptor such as curvature, locally and in 3D,

no significant differences between ASD and TOF patients were observed. 

However, patients with chronic volume loading were very different

from controls and had lower curvature and more dilated shapes. In TOF

patients, the infundibulum is significantly less curved than in ASD patients

(Figure  4),  which  was  expected  given  the  history  of  ventricular  septal

defect and trans-annular patch in more than 80% of TOF patients during

surgical correction. The detrimental role of the RV outflow tract akinesia

has  already  been  demonstered20 regarding  the  decreased  RV  systolic
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function  but  also  the  onset  of  ventricular  arrythmias21.  Due  to  limited

magnetic resonance data, we could not relate infundibular curvature data

to the extent of the akinetic RV outflow tract area.

Other studies tried to assess RV shape in TOF patients: Zhong et al.22

used  cardiac  magnetic  resonance  data  but  failed  to  demonstrate  any

difference at the RV outflow tract level between TOF patients and controls.

In contrast, a recent 3D magnetic resonance study pointed out curvature

differences at the RV outflow tract level between TOF and control patients

but no difference in this area between TOF patients with or without trans-

annular patch23. Our study goes further by jointly assessing RV shape and

strain in TOF patients, and in 3D and locally, using 3D echocardiography.

However,  our  cohort  of  patients was too limited to distinguish patterns

depending on the  type of  repair,  with  more  than 80% patients  having

history of trans-annular patch.

Previous authors implied that mechanical wall stress was inversely

proportional to the local RV curvature2. The characterization of RV shape

with local 3D curvature indirectly reflects the effects of chronic volume

loading and allows better understanding of RV remodelling. While marked

differences  in  strain  data  were  observed  in  the  trabecular  septum,  no

significant difference in curvature was observed between TOF and ASD

patients,  indicating  that  RV  shape  may carry  independent  information.

Therefore, for the assessment of TOF patients, RV shape and deformation

could provide complementary insights into disease, and their potential for

prognosis should be confirmed on larger cohort. 
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3D RV strain differences

RV  deformation  differed  between  ASD  and  TOF  patients.  This

difference has already been suggested in children but only focusing on 2D

analysis  and  longitudinal  strain2.  While  ASD  patients  and  controls  had

similar circumferential and longitudinal strain, TOF patients had markedly

reduced area, longitudinal and circumferential strains. These observations

agree with other echocardiographic data: 3D ejection fraction, TAPSE and

tricuspid valve s’ are all reduced in TOF patients under the influence of the

reduced global RV deformation. 

In contrast, chronic volume loading in ASD seems to slightly increase

RV deformation, as previously reported24, 25. Our study demonstrates that

both  longitudinal  and  circumferential  strains  are  preserved  in  ASD

(physiological  response  probably  related  to  the  increased  wall  shear

stress26),  contrary to what  is  observed for  TOF patients.  However,  only

little  is  known  about  RV  remodelling  after  ASD closure.  Some  authors

suggested  that  RV  function  after  ASD  closure  (either  surgical  or

interventional  closure)  declines  compared  to  the  pre-intervention

assessment25,27. Regional differences in patients with open ASD have also

been  described28 using  2D  echocardiography,  with  increased  apical

longitudinal strain that also correlates with volume load severity. However,

in  our  study,  no significant  difference was  observed between ASD and

controls,  only  a  trend  toward  both  higher  area,  longitudinal  and

circumferential strain.
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RV characteristics in TOF patients 

ASD  patients  showed  a  better  RV  remodelling  pattern  than  TOF

patients.  TOF patients had a more hypertrophic RV (significantly higher

wall thickness) but reduced systolic function and strain despite very good

clinical  adaptation  (no difference in  NYHA class  between TOF and ASD

patients). The reduced RV strain in TOF patients might be explained by

several factors: an abnormal development, the prior pre-op RV pressure

overload  and  RV  hypertrophy  (observed  in  our  cohort),  a  large

ventriculotomy,  the influence of myocardial damage related to prolonged

cyanosis and surgery and the advanced age of our TOF cohort. 

RV dyssynchrony may also affect the strain pattern across the cycle

and  therefore  the  end-systolic  values,  as  reported  on  2D

echocardiographic data29. In our population, TOF patients had significantly

longer QRS duration, which has been shown to impact RV function more

than PR30.

Regarding the impact of surgery at the regional level, differences in

RV strain between TOF patients and the other subgroups was not  only

observed within the infundibular area, but also and predominantly in the

RV free wall, suggesting a global remodelling.

Differential regional effects of RV chronic volume loading have been

observed  in  TOF.  During  the  last  decade,  authors  emphasized  the

importance of regional differences within the RV of TOF patients31, as also

suggested  by  our  study,  with  a  variable  adaptive  response to  isolated
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chronic  volume  loading  as  opposed  to  combined  pressure/volume

overload. The role of the apex has been previously underlined, with a loss

of function in TOF patients2. In our study, the use of 3D echocardiography

allows analysing more precisely differences in TOF patients (regionally and

locally).

Limitations

Curvature  assessment  was  performed on  end-diastolic  shapes,  to

avoid  mixing  the  effect  of  systolic  contraction  on  RV  shape.  However,

analysing the RV shape throughout the whole cardiac cycle might provide

complementary insights, especially in TOF patients, knowing the role of

dyssynchrony in those32.

Apart  from  the  detailed  area  strain  patterns,  we  also  reported

regional  and  global  area  strain  values,  meaning  that  area  strain  was

averaged  over  a  given  region  or  the  whole  RV.  We  did  not  consider

changes in the area of the RV regions or the whole RV for the sake of

clarity, although this slightly different computation should lead to similar

conclusions.

3D RV study was feasible in all of our patients, however this method

is hardly applicable to patients with poor acoustic windows. Our study was

monocentric and suffers from a lack of power given the relatively small

cohort  of  patients.  Current  guidelines33 do  not  recommend  routine

assessment  of  3D  RV  volumes  and  deformation  given  the  paucity  of

normal data in congenital heart disease patients. Thus, future work should
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aim at increasing the cohorts of both healthy controls and CHD patients

from  multicentre  acquisitions,  further  analysed  using  the  same

methodology. Larger amount of cases in each subgroup would also allow

examining  the  complex  relationship  between  RV  size  or  shape  and

deformation  descriptors.  Investigating  the  relationship  between  RV

pressure and strain would require  a different cohort  of  patients,  as we

carefully excluded patients with residual pulmonary stenosis.

Finally, the current version of the commercial software only allowed

us to analyse a single layer across the RV wall. Processing different layers

may  help  investigate  complementary  shape  and  deformation

characteristics across the wall.

CONCLUSION

With 3D assessment up to each point of the RV endocardial surface,

our study demonstrates differences in RV function between ASD patients

(preserved deformation) and TOF patients (reduced deformation), despite

comparable shape remodelling.  Left-to-right  atrial  shunt and pulmonary

regurgitation  are  responsible  for  different  types  of  RV  remodelling,

probably related to the underlying myocardial substrate in TOF patients.

ACKNOWLEDGMENTS

The authors would like to thank Shuman Jia  and Come Le Breton

(Inria) for their help with the CGAL software.



20

Preprint version accepted to appear in European Heart Journal Cardiovascular Imaging.
Final version of this paper available at https://academic.oup.com/ehjcimaging

Funding  sources: This  study  was  partly  funded  by  a  grant  from  the

University  hospital  of  Nice,  France  (AO2I-2013).  The  authors  also

acknowledge the partial support from the European Union 7th Framework

Program (VP2HF FP7-2013-611823).



21

Preprint version accepted to appear in European Heart Journal Cardiovascular Imaging.
Final version of this paper available at https://academic.oup.com/ehjcimaging

REFERENCES

1. Mertens LL, Friedberg MK. Imaging the right ventricle--current state

of the art. Nat Rev Cardiol 2010; 7:551-63.

2. Dragulescu  A,  Grosse-Wortmann  L,  Redington  A,  Friedberg  MK,

Mertens L. Differential effect of right ventricular dilatation on myocardial

deformation  in  patients  with  atrial  septal  defects  and  patients  after

tetralogy of Fallot repair. Int J Cardiol 2013; 168:803-10.

3. Reddy  S,  Bernstein  D.  Molecular  Mechanisms of  Right  Ventricular

Failure. Circulation 2015; 132:1734-42.

4. Bouzas  B,  Kilner  PJ,  Gatzoulis  MA.  Pulmonary  regurgitation:  not  a

benign lesion. Eur Heart J 2005; 26:433-9.

5. Rashid I, Mahmood A, Ismail TF, O'Meagher S, Kutty S, Celermajer D,

et al.  Right  ventricular systolic  dysfunction but not dilatation correlates

with prognostically significant reductions in exercise capacity in repaired

Tetralogy of  Fallot.  Eur Heart J  Cardiovasc Imaging 2019.  In Press. doi:

10.1093/ehjci/jez245

6. Addetia K, Maffessanti F, Yamat M, Weinert L, Narang A, Freed BH, et

al. Three-dimensional echocardiography-based analysis of right ventricular

shape in pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging

2016; 17:564-75.

7. Addetia K, Uriel N, Maffessanti F, Sayer G, Adatya S, Kim GH, et al.

3D Morphological Changes in LV and RV During LVAD Ramp Studies. JACC

Cardiovasc Imaging 2018; 11:159-169.

8. Silvestry FE, Cohen MS, Armsby LB, Burkule NJ, Fleishman CE, Hijazi

ZM, et al. Guidelines for the Echocardiographic Assessment of Atrial Septal

Defect  and  Patent  Foramen  Ovale:  From  the  American  Society  of

Echocardiography and Society for Cardiac Angiography and Interventions. J

Am Soc Echocardiogr 2015; 28:910-58.

9. Li W, Davlouros PA, Kilner PJ, Pennell DJ, Gibson D, Henein MY, et al.

Doppler-echocardiographic  assessment  of  pulmonary  regurgitation  in



22

Preprint version accepted to appear in European Heart Journal Cardiovascular Imaging.
Final version of this paper available at https://academic.oup.com/ehjcimaging

adults  with repaired tetralogy of  Fallot:  comparison with  cardiovascular

magnetic resonance imaging. Am Heart J 2004; 147:165-72.

10. Renella P, Aboulhosn J, Lohan DG, Jonnala P, Finn JP, Satou GM, et al.

Two-dimensional  and  Doppler  echocardiography  reliably  predict  severe

pulmonary regurgitation as quantified by cardiac magnetic resonance. J

Am Soc Echocardiogr 2010; 23:880-6.

11. Valente AM, Cook S, Festa P, Ko HH, Krishnamurthy R, Taylor AM, et

al. Multimodality imaging guidelines for patients with repaired tetralogy of

fallot: a report from the American Society of Echocardiography: developed

in collaboration with the Society for Cardiovascular Magnetic Resonance

and  the  Society  for  Pediatric  Radiology.  J  Am Soc  Echocardiogr  2014;

27:111-41.

12. Rudski  LG,  Lai  WW,  Afilalo  J,  Hua  L,  Handschumacher  MD,

Chandrasekaran K, et al. Guidelines for the Echocardiographic Assessment

of  the  Right  Heart  in  Adults:  A  Report  from  the  American  Society  of

Echocardiography. J Am Soc Echocardiogr 2010; 23:685-713.

13. Douglas PS, DeCara JM, Devereux RB, Duckworth S, Gardin JM, Jaber

WA, et al. Echocardiographic Imaging in Clinical Trials: American Society of

Echocardiography Standards for Echocardiography Core Laboratories. J Am

Soc Echocardiogr 2009; 22:755-765.

14. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et

al.  Recommendations  for  cardiac  chamber  quantification  by

echocardiography  in  adults:  an  update  from  the  American  Society  of

Echocardiography  and  the  European  Association  of  Cardiovascular

Imaging. Eur Heart J Cardiovasc Imaging 2015; 16:233-70.

15. Moceri P, Duchateau N, Baudouy D, Schouver ED, Leroy S, Squara F,

et  al.  Three-dimensional  right-ventricular  regional  deformation  and

survival in pulmonary hypertension. Eur Heart J Cardiovasc Imaging 2018;

19:450-458.

14. Addetia K, Maffessanti F, Yamat M, Weinert L, Narang A, Freed BH, et

al. Three-dimensional echocardiography-based analysis of right ventricular



23

Preprint version accepted to appear in European Heart Journal Cardiovascular Imaging.
Final version of this paper available at https://academic.oup.com/ehjcimaging

shape in pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging

2016; 17:564-75.

15. Addetia K, Uriel N, Maffessanti F, Sayer G, Adatya S, Kim GH, et al.

3D Morphological Changes in LV and RV During LVAD Ramp Studies. JACC

Cardiovasc Imaging 2018; 11:159-169.

16. Board CE. CGAL 4.11, Computational Geometry Algorithms Library,

http://www.cgal.org/. 2017.

17. Haddad  F,  Hunt  SA,  Rosenthal  DN,  Murphy  DJ.  Right  ventricular

function in cardiovascular disease, part I: Anatomy, physiology, aging, and

functional assessment of the right ventricle. Circulation 2008; 117:1436-

48.

18. Hotelling  H.  The  generalization  of  Student's  ratio.  Annals  of

Mathematical Statistics 1931; 2:360-378.

19. Addetia K, Maffessanti F, Muraru D, Singh A, Surkova E, Mor-Avi V, et

al.  Morphologic  Analysis  of  the  Normal  Right  Ventricle  Using  Three-

Dimensional  Echocardiography-Derived  Curvature  Indices.  J  Am  Soc

Echocardiogr 2018; 31:614-623.

20. Davlouros PA, Kilner PJ, Hornung TS, Li W, Francis JM, Moon JC, et al.

Right  ventricular  function  in  adults  with  repaired  tetralogy  of  Fallot

assessed  with  cardiovascular  magnetic  resonance  imaging:  detrimental

role of right ventricular outflow aneurysms or akinesia and adverse right-

to-left ventricular interaction. J Am Coll Cardiol 2002; 40:2044-52.

21. Bonello B, Kempny A, Uebing A, Li W, Kilner PJ, Diller GP, et al. Right

atrial  area  and  right  ventricular  outflow  tract  akinetic  length  predict

sustained  tachyarrhythmia  in  repaired  tetralogy  of  Fallot.  Int  J  Cardiol

2013; 168:3280–3286.

22. Zhong L, Gobeawan L, Su Y, Tan JL, Ghista D, Chua T, et al.  Right

ventricular  regional  wall  curvedness  and  area  strain  in  patients  with

repaired  tetralogy  of  Fallot.  Am  J  Physiol  Heart  Circ  Physiol  2012;

302:H1306-16.



24

Preprint version accepted to appear in European Heart Journal Cardiovascular Imaging.
Final version of this paper available at https://academic.oup.com/ehjcimaging

23. Zaidi  SJ,  Cossor W, Singh A,  Maffesanti  F,  Kawaji  K,  Woo J,  et  al.

Three-dimensional analysis of regional right ventricular shape and function

in repaired tetralogy of Fallot using cardiovascular magnetic resonance.

Clin Imaging 2018; 52:106-112. 

24. Eyskens B,  Ganame J,  Claus  P,  Boshoff D,  Gewillig  M,  Mertens  L.

Ultrasonic strain rate and strain imaging of the right ventricle in children

before and after percutaneous closure of an atrial septal defect. J Am Soc

Echocardiogr 2006; 19:994-1000.

25. Jategaonkar SR, Scholtz W, Butz T, Bogunovic N, Faber L, Horstkotte

D. Two-dimensional strain and strain rate imaging of the right ventricle in

adult  patients  before  and  after  percutaneous  closure  of  atrial  septal

defects. Eur J Echocardiogr 2009; 10:499-502.

26. Hayabuchi  Y,  Sakata  M,  Ohnishi  T,  Kagami  S.  A  novel  bilayer

approach to ventricular septal  deformation analysis by speckle tracking

imaging in children with right ventricular overload. J Am Soc Echocardiogr

2011; 24:1205-12.

27. Ko HK, Yu JJ,  Cho EK, Kang SY, Seo CD, Baek JS, et al. Segmental

Analysis of Right Ventricular Longitudinal Deformation in Children before

and  after  Percutaneous  Closure  of  Atrial  Septal  Defect.  J  Cardiovasc

Ultrasound 2014; 22:182-8.

28. Van De Bruaene A, Buys R, Vanhees L, Delcroix M, Voigt JU, Budts W.

Regional  right ventricular deformation in patients with open and closed

atrial septal defect. Eur J Echocardiogr 2010; 12:206-213.

29. Hui W, Slorach C, Dragulescu A, Mertens L, Bijnens B, Friedberg MK.

Mechanisms  of  right  ventricular  electromechanical  dyssynchrony  and

mechanical inefficiency in children after repair of tetralogy of fallot. Circ

Cardiovasc Imaging 2014; 7:610-8.

30. Lumens J, Fan CS, Walmsley J, Yim D, Manlhiot C, Dragulescu A, et al.

Relative  impact  of  right  ventricular  electromechanical  dyssynchrony

versus  pulmonary  regurgitation  on  right  ventricular  dysfunction  and



25

Preprint version accepted to appear in European Heart Journal Cardiovascular Imaging.
Final version of this paper available at https://academic.oup.com/ehjcimaging

exercise intolerance in patients after repair  of  tetralogy of  Fallot.  J  Am

Heart Assoc 2019; 8:e010903.

31. Bodhey NK, Beerbaum P, Sarikouch S, Kropf S, Lange P, Berger F, et

al.  Functional  analysis  of  the  components  of  the  right  ventricle  in  the

setting of tetralogy of Fallot. Circ Cardiovasc Imaging 2008; 1:141-7.

32. Friedberg MK, Fernandes FP, Roche SL, Slorach C, Grosse-Wortmann

L, Manlhiot  C,  et al.  Relation of  right  ventricular  mechanics to exercise

tolerance  in  children  after  tetralogy  of  Fallot  repair.  Am Heart  J  2013;

165:551-7.

33. Simpson J,  Lopez L, Acar P, Friedberg MK, Khoo NS, Ko HH,  et al.

Three-dimensional  Echocardiography  in  Congenital  Heart  Disease:  An

Expert  Consensus  Document  from  the  European  Association  of

Cardiovascular Imaging and the American Society of Echocardiography. J

Am Soc Echocardiogr 2017; 30:1-27.



26

Preprint version accepted to appear in European Heart Journal Cardiovascular Imaging.
Final version of this paper available at https://academic.oup.com/ehjcimaging

FIGURE TITLES AND LEGENDS

Figure 1: Example of RV endocardial tracking in an ASD patient.

Top:  Identification  of  LV/RV  landmarks  as  suggested  by  the  software.

Middle:  verification  of  the  automatic  RV  endocardial  tracking.  Bottom:

output values (RV volumes and ejection fraction, and 3D RV mesh to be

exported).

Figure 2: Area strain represented over the average RV shape for

each subgroup.

Top  two  rows:  RV  septum;  bottom  two  rows:  RV  free  wall.  Rows

respectively  represent  the  median  area  strain  pattern,  and  the

corresponding statistical differences between subgroups (controls vs. ASD

and TOF patients, as well as ASD vs. TOF patients). The customized colour-

scale allows better visualizing the statistically  significant differences: p-

values <0.05 are red – orange – yellow and green, whereas blue indicates

no significant difference between the studied groups. This figure confirms

at a finer level (local comparisons) the differences in area strain observed

regionally in Table 3, especially in TOF patients against controls and ASD

patients.

Figure  3: Circumferential  and  longitudinal  strains  represented

over the average RV shape for each subgroup. 
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Display similar to Figure 2. The figure illustrates the lower circumferential

strain in TOF patients,  especially  at  the apex, and major differences in

longitudinal strain within the trabecular septum, the apex and the lateral

wall.

Figure 4: RV curvature represented over the average RV shape for

each subgroup.

Display  similar  to  Figure  2.  Statistically  significant  differences  are

observed within the septum between RV chronic volume loading patients

and controls,  whereas almost no difference is  visible  between TOF and

ASD patients, except within the right ventricular outflow tract.
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TABLES

Table 1: Main characteristics of the study groups

Controls

n=55

ASD

n=27

Tetralogy of

Fallot

n=28

p-value

Age, years 33.0[28.0-36.0] 30.0[19.0-42.1] 31.0[24.4-34.0] 0.42

Female sex, n (%) 10 (47.6%) 11 (73.3%) 9 (60%) 0.46

Height, cm 166.3±7.6 167.2±11.2 166.2±11.8 0.71

Weight, kg 69.3±14.1 70.5±17.1 66.2±18.4 0.81

NYHA class, n(%) I or II - 22 (81.5%) 23 (82.1%) 0.96

III - 5 (18.5%) 5 (17.9%) 0.95

Heart rate, bpm 68.3±12.4 76.1±13.4 79.3±15.2 0.73

BNP, ng/mL - 72.2[45.9-81.0] 85.0[49.3-96.8] 0.39

QRS duration, ms - 104.0[87.1-108.9] 140.0[121.3-167.2] 0.0006

Frame rate, Hz 26.0[24.0-28.0] 23.0[21.6-26.0] 25.0[22.0-26.0] 0.53

ASD, atrial septal defect; BNP, brain natriuretic peptide; NYHA, New York Heart Association; PAH,

pulmonary arterial hypertension



29

Preprint version accepted to appear in European Heart Journal Cardiovascular Imaging.
Final version of this paper available at https://academic.oup.com/ehjcimaging

Table 2: Echocardiographic characteristics of the study groups

ASD

n=27

Tetralogy of Fallot

n=28

p-value

RV diameter, mm 43.0[40.2-48.0] 45.0[42.7-49.3] 0.35

RV  wall  thickness,

mm

5.0[4.0-5.5] 8.0[6.7-8.3] <0.001

TAPSE, mm 28.0[24.1-30.9] 19.0[18.0-20.0] <0.001
TV s’, cm/s 14.9±3.4 10.8±3.3 0.006
LV EF, % 60.6±5.6 60.8±8.3 0.96

ASD, atrial  septal  defect;  EF, ejection fraction;  LV,  left ventricular;  RV, right ventricular;  TAPSE,

tricuspid annular plane systolic excursion; TV s’, tricuspid annular peak systolic velocity.
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Table 3: 3D echocardiographic and strain data

Controls

n=55

ASD

n=27

Tetralogy of
Fallot
n=28

p-value

RV EDV, mL 63.0[56.8-67.2] 150.0[121.9-163.0] 163.0[116.1-183.6] <0.001

RV EF, % 56.0[52.9-57.0] 56.0[52.9-59.1] 48.0[43.0-50.6] <0.001
RV Area strain, %

Global -31.5±5.8 -34.1±7.9 -24.8±5.7 <0.001
Anterior wall -27.9±8.6 -31.5±8.6 -21.6±7.5 <0.001
Inferior wall -36.6±8.2 -39.4±8.5 -29.3±9.3 <0.001
Lateral wall -41.2±6.7 -40.5±8.8 -28.1±6.7 <0.001
RVOT anterior -21.8±6.8 -25.3±7.0 -18.3±6.2 0.001
Infundibular septum -27.6±8.5 -30.9±8.2 -23.2±6.1 0.002
Membranous septum -22.7±8.4 -25.7±10.4 -19.3±6.4 0.02
Inlet septum -26.8±10.9 -31.4±11.3 -26.3±7.2 0.11
Trabecular septum -25.4±8.2 -29.7±7.9 -20.4±6.3 <0.001
RV Circumferential strain, %

Global -18.8±3.7 -20.5±5.3 -15.2±3.9 <0.001
Anterior wall -18.7±8.0 -20.9±6.6 -14.1±7.7 0.004
Inferior wall -19.8±6.0 -22.1±6.2 -16.5±6.6 0.004
Lateral wall -27.8±5.2 -27.4±6.7 -19.1±4.9 <0.001
RVOT anterior -10.7±5.3 -12.5±5.1 -10.3±4.8 0.23
Infundibular septum -16.5±4.7 -19.2±5.0 -16.3±5.0 0.04
Membranous septum -12.5±4.5 -15.4±6.0 -11.8±3.8 0.01
Inlet septum -15.5±6.1 -17.6±7.1 -16.0±6.0 0.36
Trabecular septum -13.6±5.6 -15.9±7.0 -10.6±4.6 0.003
RV Longitudinal strain, %

Global -14.2±4.6 -16.0±5.4 -10.3±3.0 <0.001
Anterior wall -10.7±5.3 -12.9±5.5 -8.0±2.9 0.001
Inferior wall -19.3±6.7 -21.1±5.7 -14.3±4.3 <0.001
Lateral wall -15.5±4.6 -16.5±5.1 -10.0±3.1 <0.001
RVOT anterior -12.0±6.1 -13.8±6.6 -8.7±3.6 0.004
Infundibular septum -11.1±7.4 -12.2±8.8 -7.1±4.5 0.02
Membranous septum -10.9±7.2 -11.7±8.0 -7.7±5.2 0.07
Inlet septum -11.8±9.3 -15.2±8.7 -10.6±4.3 0.09
Trabecular septum -12.9±5.4 -15.2±4.1 -10.3±3.6 0.001

ASD,  atrial  septal  defect;  EDV,  end-diastolic  volume;  EF,  ejection  fraction;  PH,  pulmonary

hypertension; RV, right ventricular; RVOT, right ventricular outflow tract.
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Figure 1
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Figure 2
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Figure 3
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Figure 4


