
HAL Id: hal-02913050
https://hal.science/hal-02913050

Submitted on 2 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Synthesis of Real-Time Observers from Past-Time
Linear Temporal Logic and Timed Specification

Charles Lesire, Stéphanie Roussel, David Doose, Christophe Grand

To cite this version:
Charles Lesire, Stéphanie Roussel, David Doose, Christophe Grand. Synthesis of Real-Time Observers
from Past-Time Linear Temporal Logic and Timed Specification. 2019 International Conference on
Robotics and Automation (ICRA), May 2019, MONTREAL, Canada. �10.1109/ICRA.2019.8793754�.
�hal-02913050�

https://hal.science/hal-02913050
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Synthesis of Real-Time Observers from Past-Time Linear Temporal

Logic and Timed Specification

Charles Lesire, Stéphanie Roussel, David Doose, Christophe Grand

Abstract— Fault-tolerant architectures are mandatory to en-
sure the robustness of autonomous robots performing missions
in complex and uncertain environments. The first step of a
fault-tolerant mechanism is the detection of a faulty behavior
of the system. It is then important to provide tools to help robot
developers specify relevant observers. It is moreover crucial to
guarantee a correct implementation of the observers, i.e. that
the observers do not miss data and do not trigger unsuitable
recovery actions in case of false detection. In this paper, we
propose a specification language for observers that uses Past-
Time LTL to express complex formulas on data produced by
software components, and timed constraints on the evaluations
of these formulas. We moreover provide an implementation of
this specification that guarantees a real-time evaluation of the
observers. We briefly describe the observers we have specified
for a patrolling mission, and we evaluate the performance of
our approach compared to state of the art on a benchmark in
which we detect errors on a laser range sensor.

I. INTRODUCTION

Autonomous robots are there. Their capabilities to evolve

in complex environments have been considerably improved

in the last years. However, no autonomous robot is really

used today, neither in public area nor in critical industrial

applications. In the later, there is especially a need to prove

that the behavior of the robot is safe whatever the foresee-

able situations. These situations may be internal failures or

environmental disturbances (e.g., dynamic obstacles, sensing

conditions). To ensure such a robutsness faced with such

disturbances, fault-tolerant control (FTC) architectures [1]

have been developed. FTC first requires to detect the fault

(Fault Detection), then to identify or isolate the faulty part of

the architecture (Fault Isolation), and finally apply an action

to tolerate the fault (Fault Recovery). In this paper, we focus

on Fault Detection (FD). The use of observers is identified

in [2] as the most common FD mechanism used in robotics.

To monitor the mere dynamics of the system, observers

are based on classical system state estimation, like Kalman

filters [3]. To monitor plan execution, execution controllers

like PLANEX [4] or PRS [5] compare the actual state of the

system to expected action outcomes.

While these mechanisms use system and action models to

detect failures, there is also a need to monitor specific situa-

tions. In addition to model-based observers, [6] has moreover

identified two other FD mechanisms used in robotic systems:

timing checks, that monitor component liveness through

timers, and reasonableness checks, that monitor data values

with respect to reasonnable bounds. While there is very few

Authors are with ONERA/DTIS, Université de Toulouse, F-31055
Toulouse, France <firstname>.<lastname>@onera.fr

works focusing on these approaches, they are common ways

of designing situations in which a reaction is neccessary. For

instance, some works that implement safety rules (i.e., rules

to apply in case of failures to enforce the system safety, [7],

[8], [9]) use as a common example of monitoring the robot

velocity with expressions similar to Listing 1.

1 i f l i n e a r s p e e d > max speed then s t o p

Listing 1. max speed safety rule

In this paper, we are interested in providing tools or

patterns to design observers, that can be used as the condition

part of such safety rules. Most of the previous works let the

developer implement such observers in a programming lan-

guage [6], [8], and then neither rely on a formal modelling,

nor guarantee a correct behavior of observers.

DeRoS [9], a Domain Specific Language to define safety

rules, allows to specify observers using a combination of

value testing (value within intervals), propositional logic and

timing constraints, as depicted in Listing 2.

1 e n t i t y d r i v e s y s t e m {
2 max speed exceeded : l i n e a r s p e e d > max speed

f o r 2 s e c ;
3 }

Listing 2. DeRoS specification of the max speed rule (from [9])

This entity generates a ROS node that monitors the

rule periodically. The monitor frequency must be empirically

defined, and is set to 30Hz in [9]. As a consequence, DeRoS

does not provide any guarantee that the execution rate of

the monitor is consistent with the timing specification of the

safety rules. This may lead to false detections; for instance,

the ROS node may miss a data with linear speed <

max speed within the two seconds.

While DeRoS is a good step towards providing a formal

language to design observers, including specifying timing

constraints, we claim that: (1) there is a need for more com-

plex operators to design observers, (2) real-time execution

of observers must be tightly related to the specified timing

constraints. In this paper, we propose to specify observers

using a combination of Past-Time LTL for low-level ob-

servers, and timed specification for high-level observers. This

specification leads to the synthesis of observers attached to

the emission of data, ensuring a real-time behavior of these

observers.

1

The paper is organized as follows. Section II presents the

background of software architectures for robotics, introduces

some terminology, and presents Past-Time LTL. Section III

presents the specification language for observers, as well as

the timed semantics. The specification of observers for a

ground robot performing a patrolling mission is described

in Sec. IV. In Sec. V, we finally evaluate the performance

of the proposed real-time observers compared to the state of

the art on monitoring the failure of a laser sensor.

II. BACKGROUND

A. Software Architectures for Robotics

Component-based architectures have become a common

paradigm for developping robot software [10], [11]. Mid-

dlewares and toolchains for developping software architec-

tures distinguish (i) components (term used in Orocos [12],

MAUVE [13], SmartMDSD [14], Genom [15], or node

in ROS [16]) that support the execution of functions, and

(ii) communication between components through data ports

(term used in Orocos [12], MAUVE [13], Genom [15], or

communication objects in SmartMDSD [14], or topics in

ROS [16]). In this paper, we then adopt the terms component

to talk about an executable entity of the system, and port to

talk about data streams between components.

B. Past-Time Linear Temporal Logic

Past-Time Linear Temporal Logics (PastLTL) is a finite
trace past temporal logic, first introduced in [17] and used
in [18] to monitor Java program executions. Let P be a set of
propositional variables, p an element of P, and op a standard
propositional operator in {∧,∨,→}. Then the formulas of
PastLTL are defined as follows:

ϕ ::= true | false | p | ¬ϕ | ϕ op ϕ |

Y (ϕ) | O(ϕ) | H(ϕ) | ϕS ϕ
(1)

Y (ϕ) should be read ”yesterday ϕ”, O(ϕ) ”once ϕ”, H(ϕ)
”historically ϕ”, and ϕ1 S ϕ2 ”ϕ1 since ϕ2”.

The semantics of this logic is based on the concept of
trace. A trace t is a sequence of states (s0 , . . . , sk). A state
si is a valuation of variables of P at the ith execution step.
For a trace t = (s0 , . . . , sk) and an integer i ∈ [0 . . k], t[i]
denotes the sequence (s0 , . . . , si). The semantics of PastLTL,
defined in [18], is given by1:

t � true (2)

t � false (3)

t � ¬ϕ iff t � ϕ (4)

t � p iff sk (p), i.e. iff p is true in t’s final state (5)

t � ϕ1 ∧ ϕ2 iff (t � ϕ1) and (t � ϕ2) (6)

t � ϕ1 ∨ ϕ2 iff (t � ϕ1) or (t � ϕ2) (7)

t � ϕ1 → ϕ2 iff (t � ϕ1) implies (t � ϕ2) (8)

t � Y (ϕ) iff t[k − 1] � ϕ if k > 1, t � ϕ otherwise (9)

t � O(ϕ) iff ∃i ∈ [0 . . k], t[i] � ϕ (10)

t � H(ϕ) iff ∀i ∈ [0 . . k], t[i] � ϕ (11)

t � ϕ1 S ϕ2 iff ∃i ∈ [0 . . k], t[i] � ϕ2 ∧

∀j ∈ [i+1 . . k], t[j] � ϕ1

(12)

1Note that other definitions can be found in the literature for those
operators.

The use of PastLTL is particularly relevant for fault detection

in robotic architectures, compared to more classical logics

such as LTL. First, during a run, we only know about

the past and cannot predict the future in the general case.

Thus, having modal operators for future is useless. Secondly,

PastLTL is based on finite trace and has a recursive nature,

making it possible to evaluate formulas in a very effective

way. For instance, for a trace t of size k > 0, we have

the following property: t � H(ϕ) iff t � ϕ and t[k − 1] �
H(ϕ). This property indicates that the value of the formula

H(ϕ) can be computed by just looking one step backwards.

Similar properties hold for each temporal operator (see [18]),

meaning that only the values of modal formulas at previous

time step need to be known to compute their current value.

This makes PastLTL much more efficient than LTL. Finally,

PastLTL offers an expressivity that makes it easy to use by

non-expert engineers.

C. Extension of PastLTL

In order to offer more expressivety for the temporal

properties to evaluate, we introduce new operators to the

PastLTL logic. For a PastLTL formula ϕ, we extend PastLTL

with the following formula:

• for n ∈ N, On(ϕ); meaning that ϕ has been true at least

once during the last n states;

• for n ∈ N, Hn(ϕ); meaning that ϕ has always been true

during the last n states.

Let t = (s0 , . . . , sk) be a trace with length k, and ϕ a
PastLTL formula, the semantics of these new operators is
defined the following way:

t � On(ϕ) iff ∃i ∈ [k−n+ 1 . . k], si � ϕ (13)

t � Hn(ϕ) iff ∀i ∈ [k−n+ 1 . . k], si � ϕ (14)

These operators are mandatory to specify formulas on the

behavior of robots. Formulas over all the values from the

beginning of the mission, which would be the case using

standard H or O operators, are rarely meeningfull. It is

indeed more common to detect faults by looking for values

over a limited horizon.

III. SPECIFICATION OF REAL-TIME OBSERVERS

We split the specification of real-time observers into two

layers. The first layer is closely related to data published by

components, and allows to express temporal properties on

these data. To do so, we use the PastLTL logic defined in

the previous section. The second layer is dedicated to high

level properties that combine several first-layer observers into

a timed specification.

A. Temporal Observers on Data Ports

Temporal observers (atomic observers) are designed to

evaluate formulas on values written on data ports. Each

observer is attached to a given component and can contain

several formula targetting ports of this component. These

formulas are based on PastLTL and do not contain any timing

constraint as they are linked to the component’s execution

2

1 atomicObs : : = atomic-observer idObs on idComp {
l i s t F o r m u l a }

2 idFormula : : = idForm : f o r m u l a ;

3 l i s t F o r m u l a : : = idFormula | idFormula l i s t F o r m u l a

4 f o r m u l a : : = i d P r e d (l i s t A t o m)

5 | f o r m u l a opProp f o r m u l a

6 | op1 f o r m u l a | op2 (f o r m u l a , i n t)

7 opProp : : = and | or | implies | iff | S

8 op1 : : = not | H | O

9 op2 : : = H | O

10 atom : : = p o r t I d | i n t | r e a l

11 l i s t A t o m : : = atom | atom , l i s t A t o m

Listing 3. Grammar of atomic observers

period. More formally, an atomic observer is defined using

the grammar presented in Listing 3.

The basic element of each formula is a predicate (line 4),

i.e. a function implemented within the observer. Predicate

arguments can either be the data written on component

ports, or numbers (line 10). Formula can then be composed

(lines 7 to 9) using classical operators (and, or, implies,

iff, not), standard PastLTL operators (H, O, S) or

extensions Hn and On (lines 6, 9).

Figure 4 shows the specification of an atomic observer

gpsObs on component gps. Formula signalDeg expresses that

the frame accuracy of the gps has been bad for the last 10

cycles of component gps. Predicate goodAccuracy is defined

by the user, and checks that the field accuracy contained in

the data written to port frame of component gps is under a

threshold (5 meters in our implementation).

1 atomic−observer gpsObs on gps {
2 s i g n a l D e g : H(not goodAccuracy (gps . f rame) , 1 0) ;
3 }

Listing 4. gspObs atomic observer specification

B. Timed Observers

Timed observers are designed to combine several atomic

observers, and evaluate them with respect to timed con-

straints. The grammar of timed observers is given in List-

ing 5.

1 o b s e r v e r : : = observer idObs on l i s t I d A t o m i c {
l i s t F o r m u l a }

2 l i s t I d A t o m i c : : = i d A t o m i c | i d A t o m i c ,

l i s t I d A t o m i c

3 oneFormula : : = (i d : f o r m u l a ;)
4 l i s t F o r m u l a : : = oneFormula | oneFormula

l i s t F o r m u l a

5 f o r m u l a : : = tForm | not

tForm | tForm opProp tForm
6 tForm : : = bForm | opTimed bForm within t i m e

7 bForm : : = atom | not atom | bForm opProp bForm

8 opProp : : = and | or | implies | iff

9 opTimed : : = all | one

Listing 5. Grammar of timed observers

Timed constraints can be specified using the second part

of tForm (line 6), as either formula one ϕ within δ,

meaning that ϕ must have been true at least once within the

last δ seconds, or all ϕ within δ, meaning that ϕ must

have been true during the last δ seconds. ϕ can be defined

using classical operators (line 7). Timed constraints can also

be composed using classical operators (line 5). Atoms of the

formulas correspond to the formulas of the atomic observers.

Examples of specification of timed observers are given in

the next section that presents an application.

C. Observer Implementation

The evaluation of observers formula must be done in real-

time, i.e., must guarantee that no information is lost from the

components that are being observed. To do so, the observers

must be implemented as close as possible to the port in which

data is written. To ensure such a real-time evaluation of

observers, we made a first implementation using the real-time

middleware MAUVE [13]. In this middleware, we can attach

some code to port writting, so that this code is executed each

time a data is written on the port.

The evaluation of observers is then done at the port level,

and is decomposed in three steps, described in the following

paragraphs.

1) Evaluation of atomic formulas: In this step, we eval-
uate the formulas of each atomic observer each time a data
is written on the ports of the observed component. This
evaluation of formula ϕ at time t is represented with two
variables: the current value ν of the formula (whether it is
true or false), and the time τ of the last change of this value.

eval(ϕ, t) = (ν, τ) (15)

ν = t � ϕ (16)

τ = τ
′

if ν = ν
′

else t (17)

with τ ′, ν′ the previous evaluation of the formula.

2) Evaluation of timed observers: The second step con-

sists in evaluating the timed observers. This evaluation is

performed each time one of the atomic formulas is updated,

and uses the evaluation of the atomics, i.e. their variables ν
and τ . The evaluation of parts based on standard operators

is straightforward. We detail only the evaluation specific to

timed constraints.
The semantics of the all operator is given by eq. (18).

t � all ϕ within δ iff ν ∧ (t− τ ≥ δ) (18)

where (ν, τ) = eval(ϕ, t) is the evaluation of the atomic

sub-formula ϕ at time t. This evaluation is true if the

evaluation of ϕ is true at time t, and the last change happened

more than δ ago.
The semantics of the one operator is given by eq. (19).

t � one ϕ within δ iff ν ∨ (t− τ ≤ δ) (19)

where (ν, τ) = eval(ϕ, t) is the evaluation of the atomic

sub-formula ϕ at time t. This evaluation is true if the

evaluation of ϕ is true at time t, or the last change happened

less than δ ago.

3

3) Memorisation of formula edges: The previous step

evaluates the formulas of every observer, immediately when a

data is written to the ports of the observed components. In the

context of fault detection, the evaluation of these formulas

must be used in order to implement reactions to failures.

While fault recovery is not part of this paper, we consider

that an external (i.e., in another component) entity monitors

the observers to trigger recovery actions (an example is given

in next section). This monitor executes at its own rate.
From the observer point of view, we want to guarantee that

this monitor will not miss a fault detection, for instance if
the monitor reads the observer evaluation just after its value
became false. To that purpose, this last step memorizes the
time of the last rising and falling edges of each observer
formula.

eval(φ, t) = (τrise, τfall) (20)

τrise =

{

t if (t � φ) ∧ (t′ � φ)

τ ′

rise otherwise
(21)

τfall =

{

t if (t � φ) ∧ (t′ � φ)

τ ′

fall otherwise
(22)

where (τ ′rise, τ
′

fall) = eval(φ, t′) is the previous evaluation.

4) Illustration: Figure 1 shows an illustration of the

evaluation of a timed observer specified as all ϕ within

δ. The upper timeline shows the evolution of an evaluation

of the atomic formula ϕ along time t. The timeline in the

middle shows the value taken by formula all. This formula

becomes true only when ϕ has been true for δ, and stays true

while ϕ is true. The lower timeline shows the final evaluation

of the formula, that is represented by the times of the last

rising and falling edges of the formula.

t

t
δ

0

0

⊤

⊥

⊤

⊥

τfallτrise

ϕ

all ϕ within δ

eval(all ϕ within δ)

Fig. 1. Example timeline for the evaluation of all ϕ within δ.

IV. APPLICATION

A. Overview

The specification of real-time observers has been applied

to the architecture of a ground robot that performs an

autonomous mission (Fig. 2).

This mission consists in the survey of a critical site, by

performing patrols in an area. The map of the area is known

in advance, and the robot plans patrolling itineraries on this

map. The robot is equiped with a GPS sensor to localize

itself. It is also equiped with a laser range sensor, used to

build a local map around the robot. This local map is used

by a guidance algorithm to compute the trajectory towards

the next point while avoiding obstacles.

Fig. 2. Robot for the patrolling mission

B. Observers

In this section, we present some timed observers we

have specified to handle some failures occuring during the

patrolling mission. The first type of observers are applied to

sensors, and test whether some sensors provide erroneous

data. We present only the observers on the laser sensor, but

the similar observers are applied to other sensors of the

architecture (GPS, IMU, . . .). Then we present observers

adressing the behavior of the robot, and that observe the

guidance algorithm.

1) Laser sensor observers: Atomic observers on the laser

component check the range values collected from the sensor

and written in the scan port (see Listing 6).

1 atomic−observer l a s e r O b s on l a s e r {
2 b a d s c a n : tooLowValues (l a s e r . scan , 1) ;
3 f i x e d s c a n : sameValuesThanPrev (l a s e r . s ca n) ;
4 }

Listing 6. Specification of laser atomic observer

The bad scan formula (line 2) tests whether the entire

scan has values below 1 meter. The fixed scan tests whether

the scan is similar to the previous scan. Both tests are

actually implemented in predicates.

The laserError timed observer defines two formulas on

these atomic observers (see Listing 7). The laser data error

(line 5) says that all scans within the last 2 seconds are bad

(i.e., with values below 1 meter).

The second formula combines information from the laser

sensor and the actual velocity of the robot. The velocityObs

atomic observer defines formula robot moves (line 2), that

observes if the robot velocity has been non null for the last

100 values. Formula laser conn error (line 6) then observes

if the robot has moved at least once within the last 10

seconds, while all the scans are identical. In that case, we

suspect that the connection with the laser sensor is broken.

The last part of Listing 7 defines the monitoring, i.e.

the rate at which we want to react to observers, and the

actions to trigger if a formula is true. As mentionned in the

previous section, monitoring is out-of-scope of this paper,

and is just shown to illustrate how the real-time observers

4

1 atomic−observer v e l o c i t y O b s on r o b o t {
2 r o b o t m o v e s : H(not i s N u l l (r o b o t . v e l o c i t y) ,

100) ;
3 }
4 observer l a s e r E r r o r on l a s e r O b s , v e l o c i t y O b s {
5 l a s e r d a t a e r r o r : a l l b a d s c a n w i t h i n 2 s e c ;
6 l a s e r c o n n e r r o r : (one r o b o t m o v e s w i t h i n 10

s e c) and (a l l f i x e d s c a n w i t h i n 10 s e c) ;
7 }
8 monitor l a s e r E r r o r at r a t e 1 {
9 i f l a s e r d a t a e r r o r then s t o p ;

10 i f l a s e r c o n n e r r o r then s t o p ;
11 }

Listing 7. Specification of laser error timed observers

are used in a complete fault management architecture.

2) Guidance errors: Here we want to observe situations

in which the guidance algorithm is trying to avoid an

obstacle, but the guidance algorithm fails in finding a correct

trajectory. Typically, we want to observe if the robot is just

shaking left and right, failing in finding an exit from a

complex obstacle. The observer on the guidance component

(Listing 8) is decomposed into an atomic observer that

evaluates if the guidance algorithm is currently avoiding an

obstacle (formula avoiding, line 2), and if the robot seems

to be static (line 3).

1 atomic−observer guidanceObs on g u i d a n c e {
2 a v o i d i n g : i s A v o i d i n g (g u i d a n c e . s t a t e) ;
3 m o v e l e s s t h a n 1 : hasMovedLessThan (g u i d a n c e .

poses , 1) ;
4 }
5 observer s t o p p e d W h i l e A v o i d i n g on guidanceObs {
6 s t o p p e d W h i l e A v o i d i n g := a l l (m o v e l e s s t h a n 1

and a v o i d i n g) w i t h i n 10 s e c ;
7 }

Listing 8. Specification of the guidance observers

The stoppedWhileAvoiding timed observer then combines

these two formulas and observes if the robot was almost

stopped while avoiding an obstacle during the last 10 seconds

(line 6).

V. BENCHMARKING

A. Benchmarking protocol

In this section, we compare a real-time observer based on

a mixed PastLTL and timed specification, and an observer

following a behavior similar to what can be specified using

DeRoS [9] or ROSRV [8]. In this experiment, the objective

is to detect an error in the laser range sensor, by analysing

the range values of the scan. The real-time observer is

laser data error, given in Listings 6 and 7. The equivalent

specification using DeRoS would be similar to that shown

in Listing 9.

The DeRoS observer has been implemented in a single

component that reads data in the laser. The evaluation of the

formula has been implemented following the pseudo-code

1 e n t i t y l a s e r {
2 l a s e r f a i l u r e : (s c an < 1) f o r 2 s e c ;
3 }

Listing 9. DeRoS specification of the laser error observer

given in [9, Fig. 6]. The period of the DeRoS component is

one of the benchmark parameters, and is denoted TD.

The objective of this experiment is to compare the detec-

tion behavior of the two architectures, in term of detection

delay (time between the real failure and the detection by the

observers), and false detection rate. In this aim, we modified

the laser component in order to (1) generate randomly some

data such that scan < 1, and (2) put the laser in a failure

mode so that it will systematically procude values such

that scan < 1. In the experiment, we made vary: (1) the

probability to generate a scan with scan < 1, (2) the time

at which the laser is definitely failing, (3) the period TL of

the laser component, (4) the period TD of the DeRoS-like

observer, (5) the period TM of the monitor that reads the

timed observer value.

B. Evaluation when the DeRoS frequency varies

In a first setting, we fixed the laser period TL to 100 ms

(10Hz), the monitor period TM to 1 second (as specified in

the monitor of Listing 7), and made vary the probability to

produce bad scans from 1% to 50%. The DeRoS period TD

is varying from 1 second (similar to our monitor) to 1/30 (the

default period used in [9]). We ran a hundred of executions

for each value of TD. We then measured the false detections

and the detection delay of the DeRoS observer and of our

observer (noted PLTL-Monitor in the following figures).

Figure 3 shows the detection delays according to the

DeRoS frequency. First, we can notice that the delay at

30Hz is similar to the results given in [9, Tab. 1], then

validating the implementation of this observer. When DeRoS

runs faster than the laser (frequency greater than 10Hz), we

can notice that the delay is very short. However, when the

DeRoS frequency is low, the detection delay inscreases, up

to more than 1.7 seconds whereas the observer period is 1
second. In comparison, our monitor observes the fault with

no more than 1 second of delay, and its mean delay is about

0.4 seconds whereas its period is 1 second.

Figure 4 shows the false detections of the observer. These

false detections come from the fact the observer missed some

data. The timed observer implementation ensures that the

evaluation of observer formulas are executed exactly when

the data is written. As a consequence, it is impossible to

miss data, leading to no false detection, as noticed during

the executions. The DeRoS observer has made some false

detection, especially at low frequencies, i.e. when it is more

likely to miss data.

C. Evaluation when the laser frequency varies

In this second setting, we fixed the DeRoS frequency

and the monitor frequency to 30Hz. The laser frequency

varies from 10Hz to 100Hz. We made a hundred of runs

5

Fig. 3. Evolution of the detection delay w.r.t. DeRoS frequency. The
blue dashed line shows the mean value of the PLTL-Monitor delay over
all the executions. The blue envelop displays the standard deviation around
this value. Green and red envelops respectivelty display the minimal and
maximal delays for PLTL-Monitor and DeRoS.

Fig. 4. Evolution of the number of false detections w.r.t. DeRoS frequency.
The vertical bar represents the average number of false detection per run.
The vertical line represents the maximal number of false detection per run.

for each laser frequency. Figure 5 shows the delay of the

two observers, and Fig. 6 the false detections.

Fig. 5. Evolution of the detection delay w.r.t. Laser frequency. The dashed
lines show the mean values of the delays. The envelops display the standard
deviation.

As soon as the laser runs faster than the observers, the

DeRoS observer detects false alarms, whereas it is never the

case for the monitor. Detection delays of DeRoS are correct,

but sometimes greater than the DeRoS period. Our monitor

has better detection delays and never overtakes its period.

Fig. 6. Evolution of the average number of false detections w.r.t. Laser
frequency. The vertical bar represents the average number of false detection
per run. The vertical line represents the maximal number of false detection
per run.

VI. CONCLUSION

In this paper, we have proposed a specification language

for observers. Atomic observers observe the data written

on component ports, and can be expressed using PastLTL.

PastLTL allows particularly to define complex behaviors by

reasoning over the last n values written on the port. As far

as we know, there is no other specification language for fault

detection that uses PastLTL in robotic architectures. Atomic

observers are then combined into timed observers. We have

proposed timed formulas with the all ... within and

one ... within constructs, that allow to test if a sub-

formula was true everytime (or once) within a given duration.

We have provided a sound semantics for these operators, and

a real-time implementation that evaluates the observers on

each data writting, hence ensuring that no data is missed.

The evaluation of the observers is then provided (for a

monitoring component) as the times of the last rising and

falling edges of the observer formula. We have shown a part

of the specification of observers for a robot performing a

patrolling mission. We have also compared the behavior of

our observer with respect to a state-of-the-art observer for

detecting laser errors. The conclusion of this benchmark is

that we guarantee that no data is missed, and then we cannot

produce false detections. Note that this property is guaran-

teed by construction: observers are systematically evaluated

each time a new value is produced by any component.

The implementation of the observers is real-time, and as a

consequence, the reaction delay to faults is only dependent

on the rate of the monitoring component. Compared to the

DeRoS observer, which behavior is very dependent on the

relative rates of DeRoS and the monitored components, it

means that we can guarantee a good reaction time with

appropriate rates, without having to run the monitor faster

than the components we observe.

ACKNOWLEDGMENT

This work has been partly funded by the ONERA research

program for drone safety PHYDIAS granted by the French

Civil Aviation Authority (DGAC).

6

REFERENCES

[1] E. Khalastchi and M. Kalech, “On Fault Detection and Diagnosis in
Robotic Systems,” ACM Computing Surveys, vol. 51, no. 1, 2018.

[2] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics

and Autonomous Systems, vol. 53, no. 2, pp. 73 – 88, 2005.
[3] R. Washington, “On-board real-time state and fault identification for

rovers,” in International Conference on Robotics and Automation

(ICRA), San Francisco, CA, USA, 2000.
[4] M. Fichtner, A. Grossmann, and M. Thielscher, “Intelligent Execution

Monitoring in Dynamic Environments,” Fundamenta Informaticae,
vol. 57, no. 2-4, pp. 371–392, 2003.

[5] F. Ingrand, R. Chatila, R. Alami, and F. Robert, “PRS: A High Level
Supervision and Control Language for Autonomous Mobile Robots,”
in International Conference on Robotics and Automation (ICRA),
Minneapolis, MN, USA, 1996.

[6] D. Crestani, K. Godary-Dejean, and L. Lapierre, “Enhancing fault
tolerance of autonomous mobile robots,” Robotics and Autonomous

Systems, vol. 68, pp. 140 – 155, 2015.
[7] M. Machin, J. Guiochet, H. Waeselynck, J.-P. Blanquart, M. Roy,

and L. Masson, “SMOF - A Safety MOnitoring Framework for
Autonomous Systems,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 48, no. 5, pp. 702–715, 2018.
[8] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan,

and G. Rosu, “ROSRV: Runtime Verification for Robots,” in Inter-

national Conference on Runtime Verification (RV), Toronto, Canada,
2014.

[9] S. Adam, M. Larsen, K. Jensen, and U. P. Schultz, “Rule-based
Dynamic Safety Monitoring for Mobile Robots,” Journal of Software

Engineering for Robotics (JOSER), vol. 1, no. 7, pp. 120–141, 2016.
[10] D. Brugali and P. Scandurra, “Component-based robotic engineering

(part I),” IEEE Robotics and Automation Magazine, vol. 16, no. 4, pp.
84–96, 2009.

[11] D. Brugali and A. Shakhimardanov, “Component-based robotic engi-
neering (part II),” IEEE Robotics and Automation Magazine, vol. 17,
no. 1, pp. 100–112, 2010.

[12] P. Soetens and H. Bruyninckx, “Realtime Hybrid Task-Based Control
for Robots and Machine Tools,” in International Conference on

Robotics and Automation (ICRA), Barcelona, Spain, 2005.
[13] D. Doose, C. Grand, and C. Lesire, “MAUVE Runtime: a component-

based middleware to reconfigure software architectures in real-time,”
Journal on Software Engineering for Robotics (JOSER), vol. 8, no. 1,
pp. 128–140, 2017.

[14] D. Stampfer, A. Lotz, M. Lutz, and C. Schlegel, “The SmartMDSD
Toolchain: An Integrated MDSD Workflow and Integrated Develop-
ment Environment (IDE) for Robotics Software,” Journal of Software

Engineering for Robotics (JOSER), vol. 7, no. 1, pp. 3–19, 2016.
[15] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. F. Ingrand,

“GenoM3: Building middleware-independent robotic components,”
in International Conference on Robotics and Automation (ICRA),
Anchorage, AK, USA, 2010.

[16] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, and
A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA

workshop on open source software, Kobe, Japan, 2009.
[17] E. Emerson, “Temporal and Modal Logic,” in Handbook of Theoretical

Computer Science, Volume B:Formal Models and Semantics, J. van
Leeuwen, Ed. Elsevier, 1990, pp. 995–1072.

[18] K. Havelund and G. Rosu, “Synthesizing monitors for safety prop-
erties,” in International Conference on Tools and Algorithms for

Construction and Analysis of Systems (TACAS), Grenoble, France,
2002.

7

