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mpNet: variable depth unfolded neural network
for massive MIMO channel estimation

Taha Yassine, Luc Le Magoarou

Abstract—Massive MIMO communication systems have a huge
potential both in terms of data rate and energy efficiency,
although channel estimation becomes challenging for a large
number of antennas. Using a physical model allows to ease the
problem by injecting a priori information based on the physics
of propagation. However, such a model rests on simplifying
assumptions and requires to know precisely the configuration
of the system, which is unrealistic in practice. In this paper we
present mpNet, an unfolded neural network specifically designed
for massive MIMO channel estimation. It is trained online in an
unsupervised way. Moreover, mpNet is computationally efficient
and automatically adapts its depth to the SNR. The method we
propose adds flexibility to physical channel models by allowing
a base station to automatically correct its channel estimation
algorithm based on incoming data, without the need for a
separate offline training phase. It is applied to realistic millime-
ter wave channels and shows great performance, achieving a
channel estimation error almost as low as one would get with a
perfectly calibrated system. It also allows incident detection and
automatic correction, making the base station resilient and able
to automatically adapt to changes in its environment.

Index Terms—Deep unfolding, MIMO channel estimation,
online learning.

I. INTRODUCTION

DATA processing techniques are often based on the man-
ifold assumption: Meaningful data (signals) lie near a

low dimensional manifold, although their apparent dimension
is much larger [1], [2] [3, Section 5.11.3] [4, Section 9.3].
This fact has classically been exploited in two different ways.

On the one hand, for decades if not centuries, scientists
have handcrafted analytical models. This amounts to come
up with a mathematical description of the manifold, based on
domain knowledge and careful observation of the phenomena
of interest. This approach reaches its limits for complex phe-
nomena that are difficult to model with a reasonable number
of parameters, in which case simplifying assumptions have to
be made, hindering model relevance.

On the other hand, thanks to the advent of modern com-
puters, machine learning techniques have emerged and led
to tremendous successes in various domains [5], [3]. One
of their main feature is to avoid any explicit mathematical
description of the manifold at hand, which is taken into
account via a large amount of training data sampling it. Such
an approach is particularly successful in application domains
for which building analytical models is difficult, since it is
much more flexible. However, flexibility comes at the price
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of computationally heavy learning and difficulties to inject a
priori knowledge on the phenomena at hand.

Recently, a promising approach meant to combine the
advantages of the two aforementioned approaches has been
proposed under the name of deep unfolding (also known
as deep unrolling). It amounts to unfold iterative algorithms
initially based on analytical models so as to express them as
neural networks that can be optimized [6], [7], [8]. This has the
advantage of adding flexibility to algorithms based on classical
models, and amounts to constrain the search space of neural
networks by using domain knowledge. Moreover, this leads
to inference algorithms of controlled complexity (see [9] and
references therein for a complete survey).

Channel estimation is of paramount importance for com-
munication systems in order to optimize the data rate/energy
consumption tradeoff. In modern systems, the possibly large
number of transmit/receive antennas and subcarriers makes
this task difficult. For example, it has been recently proposed
to use massive multiple input multiple output (massive MIMO)
wireless systems [10], [11], [12] with a large number of
antennas in the millimeter-wave band [13], [14], where a
large bandwidth can be exploited. In that case the channel
comprises hundreds or even thousands of complex numbers,
whose estimation is a very challenging signal processing
problem [15]. Fortunately, despite the high dimension of the
channel, realistic channels are often well approximated by
only a few dominant propagation paths [16] (typically less
than ten). Such channels are said sparse. For massive MIMO
channel estimation, it is thus customary to use an analytical
model based on the physics of propagation in order to ease the
problem. This amounts to parameterize a manifold by physical
parameters such as the directions, delays and gains of the
dominant propagation paths, the dimension of the manifold
being equal to the number of real parameters considered in
the model. Physical channel models allow injecting strong a
priori knowledge based on solid principles [17], [18], [19],
but necessarily make simplifying assumptions (e.g. the plane
wave assumption [20]) and require knowing exactly the system
configuration (positions of the antennas, gains, etc.). Such
requirements being unrealistic in practice, the massive MIMO
channel estimation task could perfectly benefit from the flex-
ibility offered by the deep unfolding approach.
Contributions. In this paper, we introduce mpNet, an
unfolded neural network specifically designed for massive
MIMO channel estimation. The unfolded algorithm is match-
ing pursuit [21], which is a greedy computationally efficient
algorithm taking advantage of the massive MIMO channel
sparsity. The network takes as input the least squares channel
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estimates, with the objective to denoise them. The weights of
mpNet are initialized using an imperfect physical model. The
main concerns while designing the method were to make it:
• Unsupervised: no need for clean channels to train mp-

Net, the method uses the least squares channel estimates
as training data and a reconstruction cost function. It is
thus trained as an autoencoder [22].

• Online: no need for a separate offline training phase,
mpNet is initialized with an imperfect physical model
and trained incrementally using online gradient descent
[23].

• SNR adaptive: no need for several networks trained at
different SNRs, mpNet automatically adapts its depth to
incoming data.

• Computationally efficient: backpropagation through
mpNet is cheaper than classical channel estimation using
a greedy sparse recovery algorithm (which corresponds to
the forward pass of mpNet).

To the best of the authors’ knowledge, the proposed method
is the only one meeting all these requirements. Such a method
is particularly suited to imperfectly known or non-calibrated
systems. Indeed, starting from an imperfect physical channel
model, our method allows a base station to automatically
correct its channel estimation algorithm based on incoming
data.

Note that this paper is partly based on a previously pub-
lished work [24]. This paper is however much more exhaus-
tive, since the method is exposed in a more comprehensive
way, SNR adaptivity is totally new, and a much more extensive
set of experiments is performed in order to empirically assess
the method.
Related work. Machine learning holds promise for wireless
communications (see [25], [26], [27] for exhaustive surveys).
More specifically, since the physics of propagation provides
pretty accurate analytical models, model-driven machine learn-
ing approaches [28] seem particularly suited. The method
we propose can be seen as an instance of the model-driven
approach.

In the context of massive MIMO channel estimation, it has
recently been proposed to use adaptive data representations
using dictionary learning techniques [29]. However, classical
dictionary learning employing algorithms such as K-SVD
[30], as proposed in [29], is very computationally heavy, and
thus not suited to online learning, as opposed to the mpNet
approach.

Deep unfolding has also been considered by communi-
cations researchers (see [31] for a survey). It has mainly
been used for symbol detection, unfolding projected gradient
descent [32] or approximate massage passing [33] algorithms.

Regarding MIMO channel estimation, it has been proposed
in [34] to unfold a sparse recovery algorithm named denoising-
based approximate message passing (DAMP) [35]. However,
the method is directly adapted from image processing [36] and
does not make use of a physical channel model as initialization
as we propose here. A recent work also proposes to use deep
unfolding of the DAMP algorithm for MIMO channel esti-
mation [37], using a physical model to optimize the shrinkage
functions used by DAMP. However, these previously proposed

methods all require collecting a database of clean channels
and an offline training phase, due to their intrinsic supervised
nature. This may hinder their practical applicability. Moreover,
the proposed unfolded neural networks are much more com-
putationally complex than mpNet, and do not comprise an
automatic way to adapt to the SNR.

Finally, deep learning has also been applied to channel
estimation in an orthogonal frequency-division multiplexing
(OFDM) context, which is mathematically very close to the
one studied here. In [38], a neural network is used as a
post-treatment of the least squares channel estimates in order
to denoise them, and included in a joint channel estimation
and detection framework. In [39], the noisy time-frequency
response of the channel is viewed as an image and is de-
noised using classical denoising neural networks. Once again,
these approaches are supervised, and are of high complexity
compared to classical methods [40].
Organization. The remaining of the paper is organized as
follows. First, section II introduces the problem at hand and
describes the physical model on which mpNet is based. Then,
the motivations behind the proposed solution is presented
in section III. Section IV introduces in details mpNet: the
deep unfolding based strategy we propose for MIMO channel
estimation. In section V, different experiments are conducted
in order to assess and validate the potential of our approach.
Finally, section VI discusses the contributions and concludes
the paper.

II. PROBLEM FORMULATION

A. System settings

We consider in this paper a massive MIMO system, also
known as multi-user MIMO (MU-MIMO) system [10], [11],
[12], in which a base station equipped with N antennas
communicates with K single antenna users (K < N ). Let
us consider for ease of presentation a transmission on a single
subcarrier, even though everything presented in the paper can
obviously be generalized to the multicarrier case. The system
operates in time division duplex (TDD) mode, so that channel
reciprocity holds and the channel is estimated in the uplink:
each user sends a pilot sequence pk ∈ CT of duration T
(orthogonal to the sequences of the other users, pHk pl = δkl)
for the base station to estimate the channel. The received signal
is thus expressed

R =

K∑
k=1

hkp
H
k +N, (1)

where N ∈ CN×T is Gaussian noise. After correlating the
received signal with the pilot sequences, and assuming no
pilot contamination from adjacent cells for simplicity, the base
station gets noisy measurements of the channels of all users,
taking the form

xl , Rpl =
∑K

k=1
hkp

H
k pl︸ ︷︷ ︸

hl

+Npl︸︷︷︸
nl

, (2)

for l = 1, . . . ,K, with nl ∼ CN (0, σ2Id), ∀l. In order to
simplify notations in the remaining parts of the paper, we
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drop the user index and denote such measurements with the
canonical expression

x = h+ n, (3)

where h is the channel of the considered user and n is noise,
with n ∼ CN (0, σ2Id). Such a dropping of the user index
does not harm the description of our approach, since it treats
the channels of all users indifferently. Note that x is already
an unbiased estimator of the channel, obtained by solving a
least squares estimation problem, so that we call it the least
squares (LS) estimator in the sequel. Its performance can be
assessed by the input signal-to-noise ratio

SNRin ,
‖h‖22
Nσ2

.

However, one can get better channel estimates using a physical
model which allows to denoise the least squares estimate, as
is explained in the next subsection.

B. Physical model

Let us denote {g1, . . . , gN} the complex gains of the
base stations antennas and {−→a1, . . . ,−→aN} their positions with
respect to the centroid of the antenna array. Then, under
the plane wave assumption and assuming omnidirectional
antennas (isotropic radiation patterns), the channel resulting
from a single propagation path with direction of arrival (DoA)−→u is proportional to the steering vector

e(−→u ) , (g1e
−j 2πλ

−→a1.−→u , . . . , gNe−j
2π
λ
−→aN .−→u )T

which reads h = βe(−→u ), with β ∈ C. In that case, a sensible
estimation strategy [17], [18], [19] is to build a dictionary
of steering vectors corresponding to A potential DoAs: E ,(
e(−→u1), . . . , e(−→uA)

)
and to compute a channel estimate with

the procedure

−→v = argmax−→ui |e(
−→ui)Hx|,

ĥ = e(−→v )e(−→v )Hx.
(4)

The first step of this procedure amounts to find the column of
the dictionary the most correlated with the observation (least
square channel estimate) to estimate the DoA and the second
step amounts to project the observation on the corresponding
steering vector. The SNR at the output of this procedure reads

SNRout ,
‖h‖22

E
[
‖h− ĥ‖22

] ,
and we have at best SNRout = NSNRin (neglecting the
discretization error), if the selected steering vector is collinear
to the actual channel. This is a direct consequence of the
Cauchy-Schwarz inequality, and is intuitively explained by the
fact that from the N complex dimensions of x corrupted by
noise, only one is kept when projecting on the best steering
vector, so that the effective noise variance is divided by N .
The potential gain of using such a physical model can be huge,
especially for massive MIMO systems in which the number
of antennas N is large.

Moreover, this strategy can be generalized to estimate sparse
multipath channels of the form

h =
∑P

p=1
βpe(
−→up), (5)

by iterating the procedure (4) until some predefined stop-
ping criterion is met. This leads to greedy sparse recovery
algorithms such as matching pursuit (MP) [21] or orthogonal
matching pursuit (OMP) [41]. Since the method proposed
in this paper is based on the unfolding of the matching
pursuit algorithm, a high level overview of it applied to
channel estimation, with dictionary E and input x is given
in algorithm 1.

Algorithm 1 Matching pursuit [21] (high level overview)

Input: Dictionary E, input x (noisy channel)
1: r← x
2: while Stopping criterion not met do
3: Find the most correlated atom: s← argmax

i
|eHi r|

4: Update the residual: r← r− ese
H
s r

5: end while
Output: ĥ← x− r (denoised channel)

III. MOTIVATION: IMPERFECT MODELS

Basing an estimation strategy on a physical model, as
suggested in the previous section, requires knowing precisely
the physical parameters of the system (in particular the
positions and gains of the antennas) in order to build an
appropriate dictionary. Then, even in the case of perfect system
knowledge, some simplifying hypotheses (such as the plane
wave assumption considered in the previous section) have to
be made in order to keep the model mathematically tractable.
Consequently, every model, regardless of its sophistication,
is necessarily imperfect. Such a situation is well-known and
summarized by the aphorism “All models are wrong” [42].

In the context of MIMO channel estimation, what is the
impact of an imperfect knowledge of the physical parameters
and/or of the invalidity of some hypotheses? In order to
address this question, let us perform a simple experiment.
Consider an antenna array of N = 64 antennas at the
base station, whose known nominal configuration is a uni-
form linear array (ULA) of unit gain antennas separated by
half-wavelengths and aligned with the x-axis. This nominal
configuration corresponds to gains and positions {g̃i, −̃→ai}Ni=1.
Now, suppose the knowledge of the system configuration is
imperfect, meaning that the unknown true configuration of the
system is given by the gains and positions {gi,−→ai}Ni=1, with

gi = g̃i + ng,i, ng,i ∼ CN (0, σ2
g),

−→ai = −̃→ai + λnp,i, np,i = (ep,i, 0, 0)
T
, ep,i ∼ N (0, σ2

p).
(6)

This way, σg (resp. σp) quantifies the uncertainty about the
antenna gains (resp. spacings). Moreover, let

ẽ(−→u ) , (g̃1e
−j 2πλ

−̃→a1.−→u , . . . , g̃Ne−j
2π
λ
−̃→aN .−→u )T
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be the nominal steering vector and Ẽ ,
(
ẽ(−→u1), . . . , ẽ(−→uA)

)
be a dictionary of nominal steering vectors. The experiment
consists in comparing the estimation strategy of (4) using the
true (perfect but unknown) dictionary E with the exact same
strategy using the nominal (imperfect but known) dictionary
Ẽ. To do so, we generate measurements according to (3) with
channels of the form h = e(−→u ) where −→u corresponds to
azimuth angles chosen uniformly at random, and SNRin is set
to 10 dB. Then, the dictionaries E and Ẽ are built by choosing
A = 32N directions corresponding to evenly spaced azimuth
angles. Let ĥE be the estimate obtained using E in (4), and
ĥẼ the estimate obtained using Ẽ. The SNR loss (performance
decrease) caused by using the imperfect but known dictionary
Ẽ instead of the perfect but unknown dictionary E is measured
by the quantity

‖ĥẼ − h‖22
‖ĥE − h‖22

.

Results in terms of SNR loss, in average over 10 antenna
array realizations and 1000 channel realizations per antenna
array realization are shown on figure 1. From the figure, it
is obvious that even a relatively small uncertainty about the
system configuration can cause a great SNR loss. For example,
an uncertainty of 0.03λ on the antenna spacings and of 0.09
on the antenna gains leads to an SNR loss of more than 10 dB,
which means that the mean squared error undergoes a more
than tenfold increase.
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Fig. 1: SNR loss in decibels (dB) due to imperfect knowledge
of the system.

This short experiment simply highlights the fact that using
imperfect models can severely harm MIMO channel estima-
tion performance. Note that we took here as an example of
imperfection the uncertainty about antenna positions and gains,
but many other sources of imperfection will impact real world
practical systems. The main contribution of this paper is to
propose a method that takes into account and corrects to some
extent imperfect physical models using machine learning, and
more specifically deep unfolding.

IV. PROPOSED APPROACH: MPNET

Let us now propose a strategy based on deep unfolding
allowing to correct a channel estimation algorithm based on
an imperfect physical model incrementally, via online learning.

A. Unfolding matching pursuit

The estimation strategy summarized in algorithm 1 can be
unfolded as a neural network taking the observation x as input
and outputting a channel estimate ĥ. Indeed, the first step in
the while loop amounts to perform a linear transformation
(multiplying the input by the matrix EH ) followed by a nonlin-
ear one (finding the inner product of maximum amplitude and
setting all the others to zero) and the second step corresponds
to a linear transformation (multiplying by the matrix E). Such
a strategy is parameterized by the dictionary of steering vectors
E. In the case where the optimal dictionary E is unknown (or
imperfectly known), we propose to learn the dictionary matrix
used in (4) directly on data via backpropagation [22].
Neural network structure. This is done by considering
the dictionary matrix as weights of the neural network we
introduce, called mpNet, whose forward pass is given in
algorithm 2. The notation HT1 refers to the hard thresholding
operator which keeps only the entry of greatest modulus of
its input and sets all the others to zero. The parameters of
this neural network are the weights W ∈ CN×A, where A is
an hyperparameter denoting the number of considered atoms
in the dictionary. Note that complex weights and inputs are
handled classically by stacking the real and imaginary parts
for vectors and using the real representation for matrices. The
forward pass of mpNet can be seen as a sequence of K
iterations whose schematic description is shown on figure 2.
The stopping criterion determining the number K of replica-
tions of the aforementioned structure, which corresponds to the
number of estimated paths, is studied in section IV-C, with the
objective to make the depth of mpNet adaptive to the SNR.

Algorithm 2 Forward pass of mpNet

Input: Weight matrix W ∈ CN×A, input x
1: r← x
2: while Stopping criterion not met do
3: r← r−WHT1(W

Hr)
4: end while

Output: FW(W,x)← x− r

rk WH HT1 W + rk+1
−

+

Fig. 2: One layer of mpNet.

B. Training mpNet

The method we propose to jointly estimate channels while
simultaneously correcting an imperfect physical model is
summarized in algorithm 3. Note that mpNet is fed with
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normalized inputs of the form x
‖x‖2 , since we noticed it

improved its performance. The training strategy amounts to
initialize the weights of mpNet with a dictionary of nominal
steering vectors Ẽ and then to perform a minibatch gradient
descent [43] on the weights W to minimize the risk

R , E

[
1

2

‖x− ĥ‖22
‖x‖22

]
. (7)

Denoting B the current minibatch of size B, the expectation
involved in the risk is approximated by computing an average
over the minibatch observations, leading to the cost function

C ,
1

2B

∑
x∈B

‖x− ĥ‖22
‖x‖22

. (8)

Note that this cost function evolves with time, since all
minibatches are made of different observations, thus allowing
real-time adaptation of mpNet to changes in the channel
distribution. The network is trained to minimize the average
discrepancy between its inputs and outputs, exactly as a classi-
cal autoencoder. It operates online, on streaming observations
xt, t = 1, . . . ,∞ of the form (3) acquired over time (coming
from all users indifferently). Note that, as opposed to the
classical unfolding strategies [6], [7], [8], the proposed method
is totally unsupervised, meaning that it requires only noisy
channel observations and no database of clean channels to run.
Note that in all the experiments performed in this letter, we use
minibatches of 200 observations and the Adam optimization
algorithm [44] with an exponentially decreasing learning rate
starting at 0.001 and being multiplied by 0.9 every 200 mini-
batchs. By abuse of notation, we denote Adam(W, ∂C∂W , α)
the update of the weights W by the Adam algorithm on cost
function C using the learning rate α.

Algorithm 3 Online training of mpNet

Input: Nominal dictionary Ẽ ∈ CN×A, minibatch size B,
learning rate α

1: Initialize the weights: W← Ẽ
2: Initialize the cost function: C ← 0
3: for t = 1, . . . ,∞ do
4: Get observation xt following (3)
5: Estimate the channel (forward pass):

ĥt ← ‖xt‖2FW
(
W, xt

‖xt‖2

)
6: Increment the cost function:

C ← C + 1
2B‖xt‖22

‖xt − ĥt‖22
7: if t mod B = 0 then
8: Update the weights (backward pass):

W← Adam(W, ∂C∂W , α)
9: Reset the cost function: C ← 0

10: end if
11: end for

Computational complexity. Let us denote K the number of
times line 3 of algorithm 2 is executed, which corresponds
to the number of estimated channel paths. This number de-
pends on the chosen stopping criterion, which is studied in
section IV-C. The forward pass of mpNet costs O(KNA)

arithmetic operations, its complexity being dominated by the
multiplication of the input by the matrix WH (first block
of figure 2). The backpropagation step costs only O(KN)
arithmetic operations (A times less), since the error flows
through only one columns of the weight matrix W at each
step, due to the hard thresholding operation done during the
forward pass. This short complexity analysis means that jointly
estimating the channel (forward pass) and learning the model
(backward pass) is done at a cost that is overall the same order
as the one of simply estimating the channel with a greedy
algorithm (MP or OMP), without adapting the model at all
to data (which corresponds to computing only the forward
pass). This very light computational cost makes the method
particularly well suited to online learning, as opposed to
previously proposed channel estimation strategies based on
deep unfolding [34], [37], [40].

C. Choosing the stopping criterion

mpNet is the unfolded version of the matching pursuit
algorithm, and its number K of layers corresponds to the
number of iterations of the said algorithm. It also represents
the number of estimated channel paths. In fact, K is nothing
else but an hyperparameter that needs to be optimized. But
how can we determine this number appropriately? In the
preliminary version of this study [24], this was done by testing
different values of K and choosing the one yielding the best
results in terms of relative error in average over channel
observations, by cross-validation. In that case, the number of
estimated paths was the same for every channel observation.
For practical systems, this strategy is suboptimal. Indeed, the
number of estimated paths should ideally depend on the SNR:
the higher the SNR the more paths can be estimated reliably.
The SNR depending on the distance separating the users and
the base station, the path loss and gains of the different
propagation paths, the depth of mpNet should be allowed to
vary in order to estimate a number of path adapted to each
channel observation.

In order to do so, let us take advantage of the adaptive stop-
ping criteria proposed for greedy sparse recovery algorithms.
In [45], [46], the authors show that OMP with the stopping
criterion

SC1 : ‖r‖22 ≤ σ̃2(N + 2
√
N logN), (9)

with σ̃2 , σ2

‖x‖22
is optimal in a support recovery sense.

Moreover, for a small number of iterations and an incoherent
enough dictionary, MP and OMP give very close results.
Hence, we propose to use SC1 as stopping criterion for
mpNet. Implementing this stopping criterion requires knowing
the noise variance σ2 or at least having an estimate σ̂2.
Fortunately, the noise variance can be estimated quite reliably
in MIMO systems [47]. In the sequel, we assume that a perfect
noise variance estimate is available (σ̂2 = σ2).

Note that practical channels h and learned weights W do
not follow exactly the generative model used in [45], [46] to
derive the optimal stopping criterion, so that SC1 may lose its
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Fig. 3: Channel estimation performance on synthetic realistic channels for various SNRs and model imperfections.

optimality in the case studied here. For this reason, we propose
also to use the simpler and more intuitive stopping criterion

SC2 : ‖r‖22 ≤ σ̃2N. (10)

From a neural network perspective, using the stopping
criteria SC1 and SC2 means training a neural network whose
depth is adaptive and dynamically adjusted during learning and
inference. The structure of figure 2 is indeed replicated until
the used stopping criterion is met. The two stopping criteria
SC1 and SC2 are empirically compared on realistic synthetic
channels in section V.

V. EXPERIMENTAL VALIDATION

Let us now assess mpNet on realistic synthetic channels.
To do so, we consider the SSCM channel model [16] in order
to generate non-line-of-sight (NLOS) channels at 28GHz (see
[16, table IV]) corresponding to all users. We consider the
same setting as in section III, namely a base station equipped
with an ULA of 64 antennas, with an half-wavelength nominal
spacing and unit nominal gains used to build the imperfect
nominal dictionary Ẽ (with A = 8N ) which serves as
an initialization for mpNet. The actual antenna arrays are
generated the same way as in section III, using (6), and are
kept fixed for the whole experiment.

A. Fixed SNR

For the first set of experiments, we consider two model
imperfections: σp = 0.05, σg = 0.15 (small uncertainty)
and σp = 0.1, σg = 0.3 (large uncertainty) to build the
unknown ideal dictionary E. The input SNR is fixed during
the experiment and takes the values {5, 10} dB.

We compare the performance of various configurations of
mpNet, namely the version with a fixed number of iterations
K, with K set to 6 for the SNR of 5 dB and to 8 for
the SNR of 10 dB (determined by cross validation) and the
versions with an adaptive stopping criterion, using criteria SC1
and SC2 described in section IV-C. In addition, the proposed
method is compared to the least squares estimator and to
the OMP algorithm using the stopping criterion SC2, with
either the imperfect nominal dictionary Ẽ or the unknown
ideal dictionary E. Finally, in order to show the interest of
the imperfect model initialization, we compare the proposed
method to mpNet using the well-known Xavier initialization
[48].

Results. The results of this experiment are shown on figure 3
as a function of the number of channels of the form (3) seen
by the base station over time. The performance measure is
the relative mean squared error (rMSE = ‖ĥ − h‖22/‖h‖22)
averaged over minibatches of 200 channels. Several comments
are in order: leftmargin=*

1) The imperfect model is shown to be well corrected by
mpNets, the green and the two blue curves being very
close to the red one (ideal unknown dictionary) after a
certain amount of time. This is true both for a small
uncertainty and for a large one and at all tested SNRs.
Note that using the nominal dictionary (initialization
of mpNet) may be even worse than the least squares
method, showing the interest of correcting the model,
since mpNet always ends up outperforming the least
squares, thanks to the learning process.

2) Comparing the leftmost and center figures, it is inter-
esting to notice that learning is faster and the attained
performance is better with a large SNR (the green and
the two blue curves get closer to the red one faster),
which can be explained by the better quality of data
used to train the model.

3) Comparing the leftmost and rightmost figures, it is
apparent that a smaller uncertainty, which means a better
initialization since the nominal dictionary is closer to the
ideal unknown dictionary, leads to a faster convergence,
but obviously also to a smaller improvement.

4) Looking at the purple curve on all figures, it is apparent
that initialization matters. Indeed, the random initializa-
tion performs much worse than the initialization with
the nominal dictionary and takes longer to converge.

5) The green and the two blue curves are all close to each
other. In terms of performance, the light blue curve
(corresponding to the use of SC2 as a stopping criterion)
always leads to the best performance, followed by the
green curve (corresponding to a fixed depth) and finally
the dark blue curve (corresponding to the use of SC1).
The central figure shows that with a lower SNR, the gap
between the dark blue and the rest of the mpNet curves
is more pronounced. To further understand the difference
between SC1 and SC2, we show on figures 4 and 5
histograms of the selected depths for the experimental
settings corresponding to the leftmost figure in figure 3.
We see that, for SC1, the distribution is centered at
K = 5 which is 3 iterations behind the network with
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the best results at a fixed depth. However, for SC2,
the distribution is centered at K = 8 which is the
optimal value for a fixed depth. Moreover, the SC2
version outperforming the fixed depth one is a result
of its adaptability to each channel observation.

These conclusions are very promising and highlight the appli-
cability of the proposed method.
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Fig. 4: Histograms of depths selected by mpNet when
equipped with SC1.
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Fig. 5: Histograms of depths selected by mpNet when
equipped with SC2.

B. Varying SNR

In practical scenarios, the SNR is not fixed, and rather
depends on the distance between the transmitter and the
receiver as well as propagation conditions. This variability
has to be taken into account for the learning algorithm to
be efficiently optimized. Using SC2, which takes into account
both the noise level and the signal intensity, suggests that
our model is capable of automatically adapting to the SNR.
To verify this claim, we consider the same SSCM channel
model described in the previous section, but this time, the
distance between the transmitter and the receiver is sampled
from a uniform distribution ranging from 60m to 200m.
Our model is then compared to its fixed depth versions for
a selected set of values of K ({3, 6, 8, 14}), as well as
to the other previously presented estimation methods. The
results are shown in figure 7. While all versions of mpNet

are capable of learning overtime, the adaptive one is clearly
outperforming the others throughout the whole experiment,
starting once again at the same error level as OMP equipped
with the nominal dictionary (the maroon curve). Furthermore,
compared to the precedent experiment at a fixed SNR, the
gap between the fixed depth and the adaptive version is more
pronounced. The performance of mpNet with SC2 is indeed
very close in terms of performance in this more realistic
scenario to what is achievable with a perfect knowledge of
the physical parameters (here represented by the red curve).

Finally, figure 6 shows how the SNR of the generated
channel observations is distributed. Note that we choose not to
consider observations with a low SNR (< 1 dB) as the model
struggles to learn from very noisy instances. In practice, this
could be achieved by setting a threshold on the intensity of
received signals as a way to filter out useless observations. This
leads to a truncated normal distribution of the SNR centered
at 10 dB.
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Fig. 6: SNR distribution over 5000 generated channel obser-
vations.
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Fig. 7: Channel estimation performance on synthetic realistic
channels for a varying SNR.

C. Anomaly detection and recovery

One of the benefits of online learning is the continuous
adaptation of the model to incoming data. If this data is
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Fig. 8: Adaptation to antenna damage. The horizontal bar at the middle marks the moment at which the break happens.

disturbed, the impact would be observed on the cost function
used by the system. Indeed, the distribution of the new data
would be different from the one on which the system has
learned so far. The speed at which the error increases would
be proportional to the rate at which the distribution of the new
data shifts from its original state. Furthermore, this increase
in the error is simultaneously compensated by the training
that is done on the network. This behavior may prove useful
for detecting and recovering from anomalies. Anomalies could
occur for many reasons in a massive MIMO system, including:
• Bent or broken antennas due to natural causes
• Improperly adjusted antennas after a technical interven-

tion
• Disoriented array due to wind

In this section, we propose to test the ability of our model to
detect and adapt to various types of anomalies.
Out of order antennas. Let us first simulate antennas that
go out of order, in a base station equipped with 64 antennas.
This is done by setting some of the antenna gains to zero at a
certain point of time during training. In this case, we consider
3 scenarios: 10%, 30% and 50% of broken antennas (chosen
uniformly at random). Similarly to previous experiments,
the channels are generated following the SSCM model at a
variable SNR and the adaptive version of mpNet with SC2
is compared to the other estimation methods. Figure 8 shows
the results. It can be seen that the training starts as usual with
our model slowly approaching the performance of OMP with
the optimal dictionary. The anomaly can be observed at the
middle of training when the number of seen channels reaches
∼100000 channels. All the estimation methods see their error
jump, with the exception of LS where no change is observed.
The amount by which the error increases is proportional to the
number of broken antennas. The error starts decreasing again
for mpNet as the training resumes, but naturally stays the
same for OMP based methods that do not correct the dictionary
they use. By the end of the experiment, and depending on the
number of broken antennas, mpNet can completely recover
from the damage and its error reaches once again the level it
successfully attained right before the anomaly.

The LS estimation method does not depend on any physical
parameter, which explains the stable error level it displayed
throughout the experiment. OMP methods, however, see their
error increase because the physical parameters they are based
on become less precise and thus induce a bigger error. Those
methods are hence capable of detecting the exact moment

where the damage happens but are incapable of adapting. On
the other hand, and for the same reason, mpNet is also capable
of detecting the anomaly but rapidly adapts its parameters
(dictionary). In practice, the detection could be implemented
via a simple threshold.

Note that the anomaly recovery only concerns the channel
estimation performance. Indeed, a base station with broken
antennas will always be less efficient than a fully functional
one, especially in terms of channel capacity. In summary, the
model does the best it can on the channel estimation task with
the available means.
Aging antenna array. The second type of anomaly we
consider is antenna aging. It corresponds to antenna gains
slowly shifting away from their initial values. Considering
antenna aging, using the initially ideal dictionary will lead
to an increase of the error over time since the physical
parameters are less and less precisely known. To simulate
this phenomenon, we consider the same settings as for the
precedent experiment. We then iteratively add noise to the
antenna gains over the course of training. This is done for 10
iterations. Antenna gains at iteration t are thus expressed as

gi,t = gi,t−1 + ni, ni ∼ CN (0, σ2
a), (11)

where σa could be seen as a measure of the severity (speed)
of aging. We consider 3 levels of aging: σa = 0.05 (mild),
σa = 0.1 (medium) and σa = 0.2 (severe). Again, channels
are generated following the SSCM model at a variable SNR
and the adaptive version of mpNet with SC2 is compared to
the other estimation methods. Results are shown on figure 9.
We observe that both OMP based estimations see their error
progressively increase at a rate proportional to the severity of
aging, but performance worsens more rapidly when starting
with an ideal dictionary. On the other hand, the neural network
continues to learn and the impact of aging is barely noticeable.
mpNet online learning compensates for the error induced
by the continuous change of physical parameters. Finally, no
noticeable change is observed on the LS estimation method.

D. From ULA to UPA

The physical model on which is based mpNet is structure-
agnostic, meaning that it is meant to work with any antenna
array structure. This suggests that our model, which was
initially tested on ULAs, is capable of working with any
structure as well. To verify this claim, we propose to adapt
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Fig. 9: Adaptation to antenna aging. The horizontal bars mark the different moments at which the aging happens.

it to uniform planar arrays (UPAs). A change in the way
steering vectors are generated is required to take into account
the rotational symmetry that was verified for ULAs and that
no longer holds for UPAs. Therefore, the dictionary of steering
vectors has to be built from DoAs sampled from the whole
3D half space, instead of a half-plane in the case of ULAs.

We conducted an experiment similar to the ones described
in section V. We consider an UPA consisting of a square grid
of 8 × 8 antennas (N = 64) separated by half-wave lengths
and placed on the xz-plane . Channels are generated at a fixed
SNR of 10 dB. To take into account the additional dimension
of UPAs, ideal antenna positions are this time given by

−→ai = −̃→ai + λnp,i, np,i = (ex,p,i, 0, ez,p,i)
T
, (12)

with ex,p,i, ez,p,i ∼ N (0, σ2
p). We compare the adaptive ver-

sion of mpNet equipped with SC2 to other estimation methods.
The results are shown on figure 10. Once again, the model
successfully learns overtime reducing its estimation error while
the other classical methods maintain their performances.

This small experiment can be seen as a sanity check to show
that, indeed, the model is capable of accepting any antenna
structure with minimal changes in the implementation.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we introduced mpNet: a neural network
allowing adding flexibility to physical models used for MIMO
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Fig. 10: Channel estimation performance on synthetic realistic
channels for a base station equipped with a UPA.

channel estimation. It is based on the deep unfolding strategy
that views a classical algorithm (matching pursuit in this case)
as a neural network, whose parameters can be trained. The
proposed method was shown to correct incrementally (via
online learning) an imperfect or imperfectly known physical
model in order to make channel estimation as efficient as if
the unknown ideal model were known. It is trained in an
unsupervised manner as an autoencoder, and mpNet can be
seen as a denoiser for channel observations. Training mpNet
thus does not necessitate a database of clean channels, nor an
offline training phase, which makes it particularly attractive for
practical systems and unalike previously proposed methods.

We have shown that initializing the network with a dic-
tionary of imperfect steering vectors (as opposed to using a
random initialization) improves performance considerably. In
the experimental part of the paper, we simulated the model
imperfection by introducing uncertainties on the antenna gains
and positions, but it is important to highlight the fact that the
method could in principle correct many other model imper-
fections (such as uncertainties about the antenna diagrams,
couplings between neighboring antennas, etc.).

Moreover, we introduced a stopping criterion, inspired by
previous work on the OMP algorithm, to dynamically select
the optimal depth of mpNet. This was shown to be particularly
convenient when working on observations with a varying SNR
level, which more accurately resembles real world channel ob-
servations. Evaluated on realistic synthetic data, this approach
showed great results compared to other methods.

In addition, online learning enabled us to exploit the
observed change in data distribution following an anomaly
occurrence to detect and recover from it. We simulated two
types of anomalies: antenna damage and aging. In both cases,
our model was capable of efficiently recovering from the
decrease in performance overtime.

Finally, we proved that our model is capable of adapting to
any antenna structure with no apparent drop in performance
or change in behavior. In particular, we showed that a simple
change in the steering vector generation process was required
to adapt the model, previously based on a ULA structure, to
a UPA structure.

In future work, we could explore the unfolding of more
sophisticated sparse recovery algorithms (such as iterative soft
thresholding [49] or approximate message passing [50]) using
the same strategy. In addition, other stopping criteria could
also be integrated to the model and tested. Finally, the deep
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unfolding of the matching pursuit algorithm initialized with a
dictionary based on an imperfect model is by no means limited
to the MIMO channel estimation task and could be exploited
for other tasks, as long as an initial model is available.
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