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Abstract. In this paper we approach the problem of Mixed Criticality
(MC) for probabilistic real-time systems where tasks execution times are
described with probabilistic distributions. In our analysis, the task enters
high criticality mode if its response time exceeds a certain threshold,
which is a slight deviation from a more classical approach in MC. We
do this to obtain an application oriented MC system in which criticality
mode changes depend on actual scheduled execution. This is in contrast
to classical approaches which use task execution time to make criticality
mode decisions, because execution time is not affected by scheduling
while the response time is. We use a graph-based approach to seek for an
optimal MC schedule by exploring every possible MC schedule the task
set can have. The schedule we obtain minimizes the probability of the
system entering high criticality mode. In turn, this aims at maximizing
the resource efficiency by the means of scheduling without compromising
the execution of the high criticality tasks and minimizing the loss of lower
criticality functionality. The proposed approach is applied to test cases
for validation purposes.

1 Introduction

Real-time applications demand timing guarantees at all of their execution scenar-
ios. Classical approaches apply Worst Case Execution Times (WCET) in order
to have safe/pessimistic models of task executions. The actual task execution
time may vary but will always lie below the WCET because the instances when
the actual execution time is equal to WCET are unlikely [15,17]. Predictability is
assured with schedulability analysis that applies worst-case models like WCETs.

This work is also a result of the CISTER Research Unit (UID/CEC/04234), supported
by FCT/MCTES (Portuguese Foundation for Science and Technology).
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A recent approach to timing analysis involves defining execution times using
a probabilistic Worst Case Execution Time (pWCET). The pWCET is a prob-
abilistic distribution which upper bounds all the possible execution times of a
task [7]. The pWCET generalizes the notion of WCET with multiple worst-case
execution time values, each with the associated worst case probability of being
exceeded. The flexibility from pWCET representations allow for probabilistic
quantification of pessimism in the WCET deterministic models. Moreover, the
probabilistic models are less pessimistic because they are close approximation to
the actual task execution. They contain more information about execution time
than single-valued deterministic WCET.

The probabilistic schedulability analysis like [4,12,18,19] applies on top of
probabilistic models like pWCETs. The results obtained thereafter are also prob-
abilistic as worst-case response time distributions. The probabilistic schedulabil-
ity analysis exploits the flexibility of probabilistic representations, aiming at
reducing the pessimism. There is always an associated cost of complexity when
dealing with probabilistic distributions. Operations like convolution add to this
complexity. The probabilistic models deal with more information given in the
probability distribution than models using WCET. All the possible scenarios of
execution of tasks, given by the pWCET as well as schedule, have to be taken
into account.

In addition, today’s safety critical applications are being approached through
the Mixed Criticality (MC) perspective [5]. MC systems operate by switching
between various criticality modes depending on the resource requirements by the
executing tasks. Whenever there is a higher requirement of resources, the system
switches to a mode of higher criticality in order to guarantee the most critical
tasks in the least. In this mode, only the safety critical tasks are executed and
more resource for their execution is provisioned [22].

The MC problem is supported by the Vestal’s model [22] in which a tuple
of WCETs describe the task execution behaviour. The WCETs in the tuple are
less pessimistic at lower criticalities, and are more pessimistic at higher ones
in order to upper bound more execution conditions. The system mode change
to higher criticality is classically means that all task in lower criticalities are
discarded. This does not take into account if there is room for allowing execution
of low criticality tasks in system high mode. Obtaining a solution for applied MC
scheduling which is ensured safe as well as resource efficient is a complex problem.

Both MC and probabilistic schedulability analysis tend to have a common
characteristic, that is to quantify the existing pessimism and utilize it to max-
imize resource usage by making intelligent scheduling decisions. This also orig-
inates from the fact that safety standards e.g., stemming from the IEC6150,
ISO26262 or DO-178C standards, demand a probability or frequency of the sys-
tem failing at run-time. These standards also extend to mixed criticality systems.
Some works are extending the Vestal’s model to the probabilistic case [8,14,16].
Works involving probabilities in MC systems [1,2,8,14] can be found among the
citations in the MC survey [5]. Scheduling approaches in [10,13] and [3] focus on
assigning safe and feasible task priorities.
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1.1 Problem Discussion and Contribution

In this work, we look for a probabilistic MC scheduling analysis which provides a
reliable probabilistic picture of the system, and safe timing guarantees, especially
for high criticality tasks, or low probability of occurrence of critical events. In
addition, it must be able to exploit the common objective of the MC and prob-
abilistic approaches, which is leveraging probabilities into maximizing resource
usage and minimizing pessimism.

Given a MC periodic non-preemptive task set known beforehand to be executed
on a uniprocessor machine, with each task described with a pWCET, instead of a
WCET, and given a maximum probability of deadline miss for the tasks, how do
we find a schedule such that the probability of the system entering high criticality
mode is minimum?

We aim for a minimization of the probability of system entering high critical-
ity because there are certain predefined actions that are taken when the system
does enter high criticality. Usually, these actions involve discarding the lower
criticality tasks. With our approach, we make such actions least likely. With
this objective in mind, we propose a graph-based task execution model. We
begin constructing a graph based model to represent the possible job orderings.
The possible schedules are then represented in exploration trees. These trees are
explored to obtain a resource efficient schedule. Using graphs allows us explore
all the possible combinations of job scheduling. Only by exploring all the combi-
nations, we can confidently conclude for a schedule with the least probability of
the system switching mode to high criticality among all the possibilities. Using
the graph and other structures to model task executions, we are able to extract
crucial schedulability information like pWCRT and the probabilities associated.
There exist some approaches like [9,20] which use graphs to express for task
execution, but they do so in a non-probabilistic and non-MC domain.

Our approach mainly consists of an offline analysis to obtain a schedule for
the jobs. The schedule obtained is a sequence of jobs which are ensured to con-
tain all the high criticality jobs. In addition, the schedule results in the minimum
probability that the system enters high criticality mode. The exploration process
has exponential complexity. It originates from the complexity of the probabilis-
tic models in addition to the complexity of the MC approaches. However, the
relatively high offline complexity is a trade-off we make at the moment where
we gain a new application oriented MC approach through the advantages of
probabilistic models. The complexity of this exploration is somewhat reduced
in parallel of the offline construction of the schedule by discarding unfeasible
schedules. The complexity will be further improved in the future works.

The online part of the schedule consists of execution of jobs in the sequence
given from the offline analysis. It simply executes the jobs given in the scheduling
order. The online complexity is drastically reduced through our method as the
schedule is a simple list to follow.

As in most works on MC scheduling, we assume a system with tasks of two
criticalities and modes. However, our work can easily extend to multi-criticality
system. Moreover, contrary to classical MC we use probabilistic Worst Case
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Response Time (pWCRT) to make criticality decisions. Any increased resource
demand from a jobs occurs at run-time. The criticality mode change for a job
is a reflection of this increased demand. This run-time execution information
is represented by the response time and not execution time. With this, we also
leverage probabilities into scheduling decisions in order to maximize the resource
usage. This is because the pWCRT is affected by the schedule and the schedule
defines the resource assignment to the jobs.

Outline of the Paper. The paper is divided as follows: Sect. 1 introduces
the context and states the problems which we answer in this paper. Section 2
gives the reader the necessary background to understand this paper as well
as the assumptions made. Section 3 presents the graph-based model and the
exploration trees. Section 4 details the schedulability analysis from graph and
tree representations, together with the offline and online strategies developed.
The paper is concluded in the Sect. 5.

2 Notations and Definitions

In this work we consider pWCETs to define task execution which is probability
distribution.

For a discrete random variable C , the Probability Mass Function (PMF)

fC (x) of C gives the probability that x takes a certain value in C , fC (x)
def
=

P (x = C) with the condition Σ∞

−∞
P (x) = 1. Alternative representations of C are

the discrete Cumulative Distribution Function (CDF) FC (x)
def
= ΣfC (c), and the

discrete Inverse Cumulative Distribution Function (ICDF) F C (x)
def
= 1 − FC (x).

In the rest of the paper, calligraphic letters are for random variables, while non-
calligraphic letters are for deterministic variables. Figures 1 shows an example
of a certain distribution in PMF, discrete CDF and discrete ICDF forms. The
discrete cumulative forms show probability increment or decrement in a step-wise
fashion.

Fig. 1. Example of PDF, discrete CDF and discrete CCDF representations of a certain
distribution.

The task pWCET is a discrete random variable C taking task execution
values where PMF fC (x) represents the probability that the task takes a certain
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WCET. In its representation with CDF, FC (x) is the cumulative probability that
the task respects WCET x while executing; in the ICDF representation, F C (x)
is the probability that the task overcomes WCET x. The deterministic WCET
C from C is the maximum value of C ; for it FC (C) = 1, and F C (C) = 0. Figure 2
shows a discrete form of a pWCET with its maximum value as WCET.

The convolution of two PMFs fX (x) and gY (y), denoted by ⊗, refers to
the summation of the random variables X and Y , given as: f ⊗ g(u) =
Σ∞

v=−∞
f(v)g(u − v).

Fig. 2. pWCET PMF with each worst case execution time having a worst case
probability.

2.1 Computational Model

We assume a fixed set of periodic tasks executing in a system with each instance
of a task called a job. All the tasks are known beforehand. We focus our analysis
on the jobs. A MC job Ji is represented with a tuple of parameters:

Ji = (Ci, ai, di, Li, li); (1)

Ci is the job pWCET probability distribution; the job arrives at time ai; has the
deadline di; and li is the criticality execution time threshold. The arrival time
and the deadline are deterministic variables. The criticality level of the job is Li.
We assume that the arrival of the first job of each task is always at time zero.
The tasks are scheduled periodically and non-preemptively on a uniprocessor
machine in which execution of jobs are suspended at their respective deadlines.

For the jobs, we consider pWCET described with discrete distributions,
although our method applies to both, continuous and discrete distributions. We
analyze the jobs in the hyperperiod because the schedule repeats each hyper-
period. Since the jobs are suspended at the deadline, the execution order does
not change across the hyperperiods. The sequence of the jobs remain the same
and the execution room for each job is sufficiently given within the hyperperiod.
The execution behaviour of the jobs across the hyperperiods can be different and
our approach takes that into account. The hyperperiod is defined as the least
common multiple of the periods of all the tasks.

Definition 1. For a probabilistic job Ji as defined in Eq. (1), its probabilistic
Worst Case Response Time pWCRT is the PMF fRi

(x) which gives the prob-
ability that Ji will take certain time Ri, to end execution after its release. The
CDF is FRi

(x) = ΣfRi
(c), and the ICDF is F Ri

(x) = 1 − FRi
.
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Because the response time is a probability distribution, which in turn comes
from pWCET of the jobs, the deadline miss also has an associated probability.
This is easily extracted from the response time. We assume a certain allowed
maximum probability of deadline miss for any job P max

dm is given. A job Ji is said

to have missed its deadline if 1 − Σdi

x=0fRi
(x) > P max

dm .

Criticality Levels. We consider two level criticality case, hi and lo, with
hi having higher importance than lo. The high criticality job can execute in
hi or lo mode, the low criticality job executes only in lo mode. After its release,
the high criticality job executes in lo criticality mode until the response time
threshold li. A job execution exceeding this threshold is said to execute in the
high criticality mode. Evidently, li is a deterministic single-valued parameter.
The job criticality is given by Li which is its relative importance over others. Li

can take values hi or lo.

Definition 2. A job Ji is said to have entered hi criticality if its response time
exceeds a threshold li, fRi

(x) > li.

We explain criticality using the response time because we can make schedul-
ing decisions based on actual job execution. This implies, criticality decision
takes into account the affect of other job executions as well. Figure 3 shows an
example of a job pWCET and pWCRT. It shows both the distributions with crit-
icality thresholds. The criticality obtained from threshold applied on response
time contains more run-time information than that obtained from pWCET.

Fig. 3. pWCET and pWCRT representation for criticality mode change using thresh-
olds on pWCET and pWCRT distributions.

In the hyperperiod there are n jobs, and the set of jobs is Λ. There are nhi

high criticality jobs in Λ, and nlo low criticality jobs in Λ; Λhi represents the
set of high criticality jobs, and Λlo represents the set of low criticality jobs;
Λ = Λhi ∪ Λlo, and n = nlo + nhi.

Worst-Case Independence. The pWCETs are assumed to be independent [6];
this is because the pWCET represents the worst case execution scenario of the
job. Independence implies that the execution of one job does not inherently
affect the execution of another (dependence in this case would be in the cases like
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shared resources by the two jobs). Any dependencies on execution and criticality
mode changes due to scheduling of the jobs is not assumed and is taken into
account. Any execution delays which are caused apart from the scheduling must
already be included in the pWCET distribution.

3 Probabilistic Scheduling Model

We propose an exploration of graph models for possible job execution combina-
tions. We find a schedule which ensures the schedulability all the jobs. Then, it
ensures that the probability that the system enters high criticality is minimum.
This is when the job criticality is computed from its response time. We begin
by defining the graph model. We follow by elaborating the graph model into
exploration tree.

3.1 Graph Model

The graph represents the possible job combinations as schedules of the system
in each hyperperiod. It uses nodes to represent the jobs and arcs to represent
the possible ordering of execution among them. A directed graph is defined as
a tuple G = {V (G), E(G)}, where V (G) is a finite set of elements called nodes
and E(G) is the finite set of ordered pairs of elements of V (G) called arcs.
The graph is acyclic because the schedule repeats each hyperperiod. Since there
is no passing of information across the hyperperiods, it is not required to be
represented through cyclic graph.

Nodes. Each node Ji ∈ V (G) represents the execution of a job Ji ∈ Λ. Since the
elements of V (G) are one-to-one mapped to the elements of Λ, i.e. it represents
the jobs, we directly use Ji to represent the node.

The system can begin execution with any of the jobs which arrive at time
zero, i.e. first jobs of the tasks. The nodes representing these first jobs are called
the early nodes. The early nodes set S(G) is a subset of the node set V (G),
S(G) ⊆ V (G) such that ∀Ji ∈ S(G) : ai = 0. The system can potentially begin
execution by any of the jobs in this set. Graphically, we identify the early nodes
set S(G) with extra arcs entering in Ji ∈ S(G) without the source node, see
Fig. 5 for an example. These arcs are not considered part of the E(G) set.

Arcs. An arc {Ji, Jj} ∈ E(G) represents a possible ordering of jobs, in partic-
ular, that the job Jj executes after the execution of the task Ji. Formally, for
{Ji, Jj} ∈ V (G):

{Ji, Jj} ∈ E(G) if

{

ai < dj if i �= j

aj = ai + Ti if i = j.
(2)

An arc only exists when the deadline of the next job is greater than the arrival
time of the executing job (previous job). This is enforced to prevent the schedul-
ing of a job which has already passed its deadline. Also, in order to prevent
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scheduling the same job more than once, no self loop (arcs connecting them-
selves) exist, � ∃{Ji, Ji} ∈ E(G). It should be noted that, since the graph is
directed, {Ji, Jj} is not the same as {Jj , Ji}. Also, the arcs do not represent the
time of execution of the jobs, they simply direct to the next job to execute Jj

once the executing job Ji finishes. For {Ji, Jj}, we define a successor node as
succ(Ji) = Jj and a predecessor node pred(Jj) = Ji.

3.2 Scheduling Tree

In order to search for a schedule, the graph is unfolded into trees defined as
follows.

Definition 3 (Exploration Tree). The exploration tree Ts(G) of a graph G
with an early node Js ∈ S(G) is defined as Ts(G) = {V (Ts(G)), E(Ts(G))} :
1 − Σdi

x=0fRi
(x) > P max

dm ∀Ji ∈ V (Ts(G)), where V (Ts(G)) is the set of nodes of
Ts(G) and E(Ts(G)) is the set of arcs of Ts(G) such that E(Ts(G))∃E(G) and
V (Ts(G))∃V (G).

The exploration tree is constructed from the graph beginning with a root
node of the graph as the first job to execute in the schedule. Each node of the
tree is labelled with the job Ji it represents. A node is only added to the tree if
it does not miss its deadline and a corresponding arc exists in the graph, given
that the corresponding node exists the graph. At each time it is added to the
tree, the deadline miss is checked for by the condition 1 − Σdi

x=0fRi
(x) > P max

dm

for a job Ji. If there is a deadline miss, the node/job is not added because the
system should never be scheduled beyond this job.

To relax the notation, from now on we simply write V (T ) and E(T ) to
represent nodes/jobs and arcs respectively of the tree. In particular, since the
tree is a rooted tree, its root is defined as the unique node with the label Js.
Because the system can begin with one of the jobs arriving at time zero, there
are different possible roots of a tree; this implies the number of possible trees is
equal to the number of tasks because each task has a first job arriving at time
zero. These trees are collectively called a forest.

The set of all exploration trees is called the exploration forest : F =
{Ts1

(G), Ts2
(G), ...Tsk

(G)}, where s1, ..., sk are the indices of early jobs in S(G).
The trees represent possible orderings or sequences of jobs beginning with an
early job at the root. A leaf node in the tree is a node with no outgoing tran-
sitions, Jn is a leaf node if succ(Jn) does not exist. Thus, a schedule is a path
taken through the tree from a node to a leaf node defined as follows.

Definition 4 (Path). A path in the T-th tree pathT (Ji, Jn) is a unique
sequence of connected arcs starting from a node Ji to a leaf node Jn:
pathT (Ji, Jn) = {{Ji, Jj}, {Jj , Jk}, ..., {Jl, Jn}} with {Jx, Jy} ∈ E(T ) for any
x, y, i �= j �= k · · · �= n.

Whenever we refer to the notation pathT (Ji, Jn), we always refer to a unique
path with a node Ji and leaf node Jn. Two paths are same if their elements,
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which are the sequences of arcs, are the same. We specify this because there are
many possible paths from the root node to a leaf node notated by the same job.
Also, a path can begin at any node and it ends at a leaf node.

For any node in the tree, there must not exist a same node in the path
between itself and the root node This is done to prevent scheduling the same
job more than once, we enforce the following definition. Formally, a node Ji is
not added to the tree if it already exists between the root and the desired point
of addition:

Jj = succ(Jn) if � ∃Jj ∈ pathT (Js, Jn) : Jn is leaf node, Js ∈ S(G). (3)

Example 1. We use a set of jobs Λ1 shown in Fig. 4 to explain our method. It
consists of five jobs (from two periodic tasks) in the hyperperiod of 30 time
units. The jobs are shown with their pWCET PMF in the figure to visualize
a probabilistic execution and not deterministic execution, the exact values of
PMFs are not yet important. The jobs of task τ1 ((J1, J4)), are hi criticality and
those of task τ2 ((J2, J3, J5)) are lo criticality.

Fig. 4. Jobs of the set Λ1.

Fig. 5. The graph of the jobs in Λ1.

Fig. 6. Graph unfolded into a tree for
jobs of Λ1.

The graph is a direct representation of all the possible ordering of the jobs
in the system, see Fig. 5. There are nodes J1, J2, etc. for each job which are
interconnected by uni-directed arcs which refer to the order of executions; e.g.,
if J3 is executing, then it can be followed by the jobs J1, J4 or J5. The system
can begin execution with J1 or J2. This set of early nodes of the jobs J1 and J2

are represented by the extra arcs entering those nodes. In order to explore this
graph to look for a schedule, it is unfolded into a forest of trees.

For Λ1, a portion of the tree is represented in the Fig. 6. The tree begins with
a root J1 followed by possible jobs which can execute, namely, J2, J3, J4, J5.
This goes on until the leaf nodes where any more addition of nodes will mean a
repetition of the same job in the schedule on the path. For the tree job set Λ1 the
Fig. 6, one possible path is shown by a dotted line. The dotted line represents a
path J1, J2, J4, J3, J5. It also shows another possible tree with just its root J2.
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With the construction of the exploration model complete, we now proceed
extracting certain metrics from the exploration trees in order to decide for a MC
schedule.

4 Evaluation

We first the define the metrics necessary for system criticality and then apply
them to our model. We begin with obtaining a non-preemptive pWCRT for a
job.

Classically, the pWCETs of the jobs are simply convoluted in order to obtain
the pWCRT. The convolution operation does not take different arrival times into
account. Thus, performing a convolution contains a hidden assumption that all
the jobs arrive at the same time, i.e. at a critical instant. This results in a
pessimistic pWCRT. Our approach to obtain the pWCRT involves handling the
discrete distributions in a piece-wise manner. To do so, we first define a tail PMF
as follows.

Definition 5 (Tail Probability Mass Function). A tail distribution of the
response time fRi

(x) of a job Ji with Worst Case Execution Time WCETi for

some time aj(0 < aj < WCETi), is a PMF f
[aj ,WCETi]
taili

(x) given as:

f
[aj ,WCETi]
taili

(x) =

{

fRi
(x + aj) if 0 < x ≤ WCETi

Σ
aj

y=0fRi
(y) if x = 0.

(4)

The tail distribution represents a complete PMF which probabilistically
delays the execution of the next job in the schedule where the next job arrives at
time aj . The probability accumulated at the instant aj (x = 0 in the function)
in the tail PMF represents the probability that the job Ji has finished execution
by then. As in Fig. 7, the tail distribution of job J1 (from Λ1 in Example 1)
accumulates 0.1 + 0.15 + 0.15 + 0.2 = 0.6 time zero. By doing so we prevent any
loss of information in the distribution. We use this to obtain the pWCRT of the
delayed job.

In order to obtain the response time of the jobs, we present the following
theorem. The approach we propose is similar to the ones used by [12,14] but
applied to every job with respect to their arrival times. It is not same as the
classical convolution because convolution does not take the relative arrival times
and the deadlines of the jobs into account. Classical convolution between the
pWCETs of two jobs contains a hidden assumption that the jobs arrive at the
same time. This is easily seen as the tail distribution approaches full pWCET
when the arrival times are equal. Since this is not always the case, convolution
results in a pessimistic response time distribution.

Theorem 1 (Non-Preemptive Probabilistic Worst Case Response
Time). The pWCRT of a job without preemption is represented by convolution
between its pWCET and the Tail PMF of the job executing immediately before.
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Fig. 7. pWCRT from convolution of
Tail and pWCET.

Fig. 8. High criticality from a thresh-
old l1 on pWCRT of a job J1 of Λ1.

Proof. Consider two jobs, Ji arriving at time ai and Jj arriving at time aj ,
ai ≤ aj . A representative example is shown in Fig. 7 as J1 and J3 for the jobs in
Λ1 of Example 1. Probabilistically, Ji can continue to execute after the arrival
time of Jj . That means, there exists a probabilistic delay to the execution of
the job Jj due to the execution of the job Ji. However, the probabilistic delay
only exists due to Ji executing between time aj and its WCET (which is the
maximum value of its pWCET). Thus, the state space which affects the execution
of Jj is [aj ,WCET ]. This state space contains the tail of the pWCRT of Ji. In
order for the state space to be complete it must respect the property that sum
of all the probabilities in the state space is equal to one. This implies, the tail
of pWCRT of Ji must be a PMF on its own. This distribution is given by the

function f
[aj ,WCET ]
taili

(x).
The probability that Jj ends execution at time aj depends on the probability

that Jj finishes at time aj and Ji finishes at time aj OR Ji finishes at time aj +1
OR at time aj + 2 OR ... and so on. Similarly, Jj ends execution at time aj + 1
depends on the probability that Jj finishes at time aj and Ji finishes at time
aj + 1 OR at time aj + 2 OR ... and so on. This way we approach the classical
convolution operation between the pWCET fCj

(x) of Jj and the tail function

f
[aj ,WCET ]
taili

(x), given as:

fRj
(x) = fCj

(x) ⊗ f
[aj ,WCETi]
taili

(x).

⊓⊔

Our approach to obtain the pWCRT separates the part of the pWCRT PMF
which affects the execution of the next job. We do not lose any information in the
distribution as the probabilities before the time aj are accumulated1. Moreover,
we retain the information within the time intervals in the distribution.

Using the pWCRT we apply the job criticality Definition 2 on the paths
through the exploration tree.

1 The distribution function accumulates the probabilities in the intervals of discretiza-
tion at the worst case, e.g. probabilities at execution times 0.2, 0.5, 0.7, etc. are
accumulated the time 1.
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Definition 6 (Job Criticality). A job Jj in a path pathT (Ji, Jn) is said to
have entered high criticality if its response time crosses the threshold lj, fRj

(x) >
lj, the probability of which is given as:

P
hi
j (pathT (Ji, Jn)) = 1 − Σ

lj
x=0fRj

(x), (5)

where lj < dj and Jn is a leaf node.

Example 2. Figure 7 shows a scenario where job J3 executes after J1 from the
jobs in Λ1 in Example 1; for explanation, a pWCET PMF is assumed for J1.
The Tail PMF for the same is shown in the box. To obtain the pWCRT of J3,
this PMF is then convoluted with the pWCET of the job J3.

A pWCRT of the job J1 with its threshold is shown in Fig. 8. The threshold
is shown by the dotted line labelled li = 12. From the Figure, the probability
that this job enters hi-criticality mode is 0.15 + 0.05 = 0.20.

From the job criticality defined using its pWCRT, we define the probability
of the system entering high criticality as follows.

Definition 7 (System Criticality). The system enters high criticality mode
if at least one high criticality job enters high criticality mode.

To elaborate the above definition, system enters high criticality if the first
high criticality job enters high criticality OR the second high criticality job
enters high criticality OR the third..., and so on. This represents a summa-
tion of probabilities. However, the probability that a job enters high criticality
is given from its pWCRT which has its own sample space. In order to sum
the probabilities of all the high criticality jobs involved, we also need to sum
the sample space. This is clear from the fact that the summation of probabil-
ities without considering the sample space can result in a probability greater
than one2. For each job entering high criticality, the probability adjusted for
state space is ΣPhi

i (pathT )/(number of high criticality jobs). We use the law
P (A ∪ B) = P (A) + P (B) − P (A ∩ B) for any two events A and B with P ()
giving their probability of occurrence [21]. Therefore, the probability that the
system enters high criticality is given as the summation of probability of each
high criticality job entering high criticality minus their product.

We apply these definitions to the graph and tree model. In our model, the
schedule is represented as paths. Because the paths represent the schedule, the
probability that the system enters high criticality is also a function of paths.
However, not all the paths in the exploration tree are available for scheduling
because not all paths contain all the high criticality jobs. The set of available
paths are defined as follows.

2 Same reasoning also applies to multiplication of probabilities, however the denomi-
nator 1 gets multiplied too.
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Definition 8 (Available paths). Available paths is a set of all possible paths
in a T -th tree from the root node Js ∈ S(G) to a leaf node Jn, Pavail =
{pathT (Js, Jn)} such that

∀k : Jk = Λ =⇒ ∃Jk ∈ pathT (Js, Jn); (6)

and

∀Jk ∈ pathT (Js, Jn) =⇒ 1 − Σdk

x=0fRk
(x) < Pmax

dm

Pavail is a set of possible schedules of the jobs in MC through the trees as the
available paths. The available paths are the paths in which contain all the jobs
in it and all those jobs meet their respective deadlines. In our context, the set of
available paths represent the possible candidates to find a schedule. It should be
noted that the criteria of all jobs meeting their deadlines is already met while
constructing exploration tree. A node is not added to the tree if it misses its
deadline. To quantify the probability of these paths we apply the definition of
system criticality on the available paths as follows.

Definition 9 (Probability of system entering high criticality). For an
available path pathT (Js, Jn) ∈ Pavail, the probability Psys(pathT (Js, Jn)) that
the system enters high criticality by taking this path is given as:

Psys(pathT (Js, Jn)) = Σj

Phi

j

nhi
− ΠP

hi

j ,∀Jj ∈ pathT (Js, Jn),∀Jj ∈ Λhi; (7)

pathT (Js, Jn) ∈ Pavail.

Using the available paths and the system criticality metric defined above, we
finally obtain a mixed criticality (MC) schedule as follows.

Definition 10 (Mixed Criticality Schedule). A path PMC = pathT (Js, Jn)
is the mixed criticality schedule if Psys(pathT (Js, Jn)) is the minimum among all
possible pathT (Js, Jn) ∈ Pavail ∀i,∃Ji ∈ pathT (Js, Jn), and ∀i∃Ji ∈ Λ where
Js ∈ S(G).

The MC schedule is a path PMC through the exploration tree which contains
all the jobs, no job misses its deadline and the probability of the system entering
high criticality is minimum. It represents the schedule that should be taken
by the system as the ordered sequence of execution of the jobs. To recall, the
probability is minimum given the criticality is defined using the response time.
Thus, we have found a solution to our problem which is a schedule represented
by the path PMC . The path PMC by definition is from root node to a leaf node,
thus we do not need to notate them (unlike jobs Js and Jn in pathT (Js, Jn)).
Since this method is based on complete exploration, the schedule is guaranteed to
be the optimal by minimizing the probability of system entering high criticality.
Any impossible schedule is the one in which a job does not meet its timing
constraints. These impossible schedules are already excluded while building the
tree as we calculate response time in parallel.
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Offline Schedule. As we see, the offline analysis results in a schedule PMC

such that the probability of system entering high criticality is minimum. The
schedule ensures that no job missed its deadline. It uses an exploration of tree
based on a graph representation of job executions. Because it is an exhaustive
exploration, the minimum probability is ensured.

Online Schedule. The online part of our method is straightforward. It takes
the schedule PMC obtained in the offline analysis and executes the jobs as given
in the sequence. The minimization of the probability of system entering high
criticality has already been performed in the offline and is not required to be
done in the online. The jobs are suspended if they reach their deadline and the
sequence of jobs repeat each hyperperiod.

Example 3. We analyze the set of jobs Λ2 shown in Table 1 which consists of 4
periodic tasks and 15 jobs with pWCET and implicit deadline as shown. There
are 6 high criticality jobs from task τ1 and 11 low criticality jobs from the
rest of the tasks. To recall, the job set is to be scheduled non-preemptively on a
uniprocessor system and the jobs are suspended at their deadlines. The threshold
for the high criticality jobs of task τ1 is set at 4 time units. The maximum allowed
probability of deadline miss Pmax

dm for any job is set at 1E − 03.

Table 1. Job set Λ2.

Task Deadline pWCET Criticality

τ1 10

[

1 2 3 4 5 8

0.1 0.3 0.5 0.094 0.005 0.001

]

hi

τ2 20

[

1 2 3 4

0.1 0.4 0.4 0.1

]

lo

τ3 15

[

1 2 3 4

0.1 0.4 0.3 0.2

]

lo

τ4 30

[

1 2 3

0.1 0.7 0.2

]

lo

The proposed schedule PMC is: J11, J41, J31, J32, J21, J12, J13, J42, J33, J22,
J14, J15, J34, J23, J16. The probability that the system enters high criticality is
0.0.00509. The pWCRT of some of the jobs is shown in Fig. 9. The pWCRT jobs
of the high criticality task τ1 remains unchanged as their pWCET as shown in
Fig. 9(a). The pWCRTs of jobs which have been affected by probabilistic delay
in execution are J21, J22, J23, J31, J33, J34 and J41 whose pWCRTs are shown
in Figs. 9(b), (c), (d), (e), (f) and (g), respectively.

We obtain this result along with other possible schedules in which there is no
deadline miss but the probability of the system entering high criticality is higher.
For example, another possible schedule is: J11, J21, J12, J31, J41, J32, J13, J14, J22,
J42, J15, J33, J34, J23, J16. In this case the probability of system entering high
criticality is 0.00605.

On computation, the tree for the job set Λ2 contains 716, 132 nodes.
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Fig. 9. pWCRT PMF of various jobs in Λ2.

Overall, we observe that we can quantify the probability of something occur-
ring in the system, like deadline miss or entering high criticality. This gives us a
global picture of the MC system with pWCETs in terms of risk involved of sys-
tem entering high criticality when applying such a system. In addition, we can
control it through observing the pWCRTs and making the scheduling decisions
accordingly.

Complexity. In general, MC problem lies beyond NP and PSPACE complexity
and it is NP in uniprocessor case [11]. The complexity of our approach depends
on the number of jobs n. The maximum complexity of building the graph is
O(n!). However, this might not always be the case because the tree is not built
in the direction of a node which missed its deadline. Thus, the complexity also
depends on the maximum allowed probability of deadline miss. The complexity
of analyzing the tree and finding the paths is linear to the number of leaf nodes
in the tree. In addition to this, there exists computational complexity of the
convolution operation, which in turn depends on the possible values a random
variable can take. Assuming that all jobs release at one critical instant, the
convolution complexity is O(nn).

Actual complexity of the offline process is much less. Firstly, it is rarely the
case that all the jobs are release at the same time since they belong to periodic
tasks in the hyperperiod. Second, some combinations of sequences of jobs will
result in a deadline miss. This means that the exploration tree is not built in
that direction.
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5 Conclusion

We have utilized a graph base exploratory method to obtain a non-preemptive
schedule for MC probabilistic real-time system on uniprocessor machine, where
task executions are suspended at the deadline. The task criticalities are defined
using the pWCRT. We do this to make criticality decisions based on tasks
demanding more resource at run-time. The obtained schedule minimizes the
probability of system entering high criticality mode. This way, the actions needed
to perform to cope with system high criticality are made less likely for the
application.

At the current state of the work, the complexity of searching through enu-
merations is high. This work is one of the first steps to formalize the mixed
criticality domain through response time. At the cost of complexity, we gain an
application oriented perspective of the mixed criticality approach by using the
response time. We adapt the schedule to the application itself and minimize the
probabilities accordingly. We intend to reduce the complexity through methods
like ordered searches and merging common and similar paths.

We intend to perform comparisons with real benchmarks in the future once
the complexity is feasible for very large task sets. In future work we will extend
this model to optimize the decisions when the system does enter high criticality.
This future step is a hybrid approach where offline probability minimization
has been performed. The online step of the hybrid approach will take care of
the real-time response of the tasks and adjust the schedule accordingly to safer
scenarios without jeopardizing the system critical functionality. We also aim to
perform a sensitivity analysis on the criticality definition using the task response
times.
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