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Abstract

Moment-independent importance measures are increasingly used by practitioners
to understand how output uncertainty may be shared between a set of stochastic
inputs. Computing Borgonovo’s sensitivity indices for a large group of inputs is
still a challenging problem due to the curse of dimensionality and it is addressed
in this article. An estimation scheme taking the most of recent developments in
copula theory is developed. Furthermore, the concept of Shapley value is used to
derive new sensitivity indices, which makes the interpretation of Borgonovo’s indices
much easier. The resulting importance measure offers a double advantage compared
with other existing methods since it allows to quantify the impact exerted by one
input variable on the whole output distribution after taking into account all possible
dependencies and interactions with other variables. The validity of the proposed
methodology is established on several analytical examples and the benefits in terms
of computational efficiency are illustrated with real-life test cases such as the study
of the water flow through a borehole. In addition, a detailed case study dealing with
the atmospheric re-entry of a launcher first stage is completed.

Keywords: Global sensitivity analysis, input-output models, dependent inputs,
moment-independent importance measures, multivariate copula distributions,
Shapley value.

1. Introduction

In diverse disciplines, system modeling is often achieved by considering a black-
box model for which the observation is expressed as a deterministic function of
external parameters representing some physical variables. These basic variables
are usually assumed random in order to take phenomenological uncertainties into
account. Then, sensitivity analysis (SA) techniques play a crucial role in the handling
of these uncertainties and in the comprehension of the system behavior. These
techniques aim at ranking inputs according to the impact they have on the output
distribution. In addition, two other objectives are pursued: (a) targeting the input
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variables that most reduce the output variability when they are set to prescribed
values, and (b) simplifying the model complexity by omitting the contribution of low
influential inputs. The influence criterion depends on the considered SA approach.
There are various SA techniques in the literature and two essential families emerge
with a clear separation between local and global methods. The reader is referred
to [1, 2] and associated references for a review. Local methods aim at studying
the behavior of the output in the vicinity of specified input nominal values. In
contrast, global sensitivity analysis (GSA) consider the whole variation range of
input variables.

This paper focuses on the GSA method suggested by Borgonovo [3], which
is a more and more popular alternative to the variance-based Sobol approach.
Indeed, Borgonovo’s methodology relies on considering moment-independent global
sensitivity indices (also called δ-sensitivity measures) which take the entire output
distribution into account, by opposition to Sobol indices that only seek to explain
how the second-order moment of the output variable is impacted by input uncertainties.
It is important to distinguish between the first-order and high-order indices. First-
order indices measure the influence, in the sense of Borgonovo, of any single input
variable which is isolated from others. On the contrary, when Borgonovo’s importance
measure is applied to a larger set of r inputs, an r-order sensitivity index is derived
and it accounts for the joint impact of the whole r-dimensional set of variables.
In practice, many studies settle for estimating first-order indices and draw some
conclusions from them even if this can be misleading. In fact, if the first-order index
associated to a given input is very small, two situations may be envisioned. On the
one hand, the input variable may actually be of very small influence. On the other
hand, this variable can become influential once regrouped with others because of a
dependence pattern that was not unclosed by the computation of first-order indices.

The estimation problem in the case of first-order indices has been investigated in
many works. The PDF-based methods [3, 4, 5] attracted most attention since they
stem from the conceptual ideas of the definition. However, as they lead to implement
a double-loop estimation algorithm, other techniques were developed such as the
CDF-based estimator [6], the single-loop estimator [7] and the importance sampling
estimator [8]. Another approach is put forth in [9] and relies on the Nataf transform,
that is on the assumption that the joint distribution between any group of inputs
and the output incorporates a Gaussian copula. When the latter situation is not
justified, a copula-based estimator may be employed instead. It consists in learning
a copula distribution with either an appropriate kernel family [10] or the maximum
entropy method [11].

As far as high-order Borgonovo’s indices are concerned, estimation is harder
to perform. The double-loop method [3] is still applicable but it is illusory to
think that such an expensive estimation scheme can be used for both first-order
and high-order indices. Most alternatives to the double-loop approach depend on
techniques that do not cope with the curse of dimensionality. The estimator based
on the prior application of Nataf transform can be seamlessly generalized to any
high-order index but the Gaussian assumption becomes increasingly controversial
if it is made without proper validation. Extending the copula-based estimator to
high-order indices needs to be considered by fully exploiting recent breakthroughs
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in dependence modelling [12].
In this context, the contribution of this paper is twofold. Firstly, the authors

developed an estimation scheme for high-order indices where the copula-based expression
of Borgonovo’s indices is coupled with numerical procedures for copula density
estimation in high dimension [13]. Taking the most of copula distribution models
in order to refine the estimation of Borgonovo’s δ-sensitivity measures has been
partly addressed in [14], but only within a very particular context where Y is
multidimensional. In addition, this previous work focuses only on the specific case
of parametric regular vine copulas whereas the present paper includes a comparative
study of the estimators resulting from different copula distribution models. Secondly,
for ease of interpretation, the authors come up with a new importance measure which
appraises the overall impact of each input variable on the output distribution. If one
can estimate δ-sensitivity measures at all orders, 2d´1 indices have to be taken into
account, where d denotes the problem dimension. It is thus necessary to synthesize
the information provided by this huge set of Borgonovo’s indices. In a similar way
to what was proposed for Sobol indices in [15], the present article considers the
notion of Shapley effects as an added value to sum up Borgonovo’s indices. Shapley
values were initially introduced in cooperative game theory to share total gains
between players with a fair tribute to all fruitful collaborations. They were later
used in sensitivity analysis where they prove to be a simple solution to remove the
conceptual problem of dependent inputs.

The remainder of this article is organized as follows. Section 2 briefly reviews
Borgonovo’s δ-sensitivity measures and describes the estimation method due to
connections with copula theory. Section 3 surveys different alternatives to learn
copula distributions in high dimension. Furthermore, the definition of Shapley
values as well as their application in the framework of Borgonovo’s GSA method is
discussed in Section 4. The different results developed in this paper are illustrated
with numerical test cases in Section 5.

2. Borgonovo’s moment-independent importance measures

This work is made in the context of a general input-output model Y “MpXq
whereM : Rd Ñ R is a deterministic function which represents a computationally
expensive simulation code but is considered as a black box. The scalar output
variable Y is computed from a random vector X “ pX1, . . . , Xdq lying in Rd. As
extracting subvectors fromX is a task repeated throughout this work, the following
notations are introduced:

• Pd is the power set of rds :“ t1, . . . , du.

• If u “ pu1, . . . , urq P Pd, |u| “ r and Xu “ pXu1 , . . . , Xurq.

• The absolute complement of u is denoted by ū.

• Hr “ r0 , 1s
r is the hypercube associated to Rr.

In addition, it is assumed that all manipulated random vectors are absolutely
continuous with respect to Lebesgue measure. The PDFs of X, Xu and Y are
respectively denoted by fX , fXu and fY .
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2.1. Definition of Borgonovo’s sensitivity indices
The moment-independent SA method, first introduced by [16], focuses on finding

inputs (or groups of inputs) that, if fixed within their distribution ranges, lead to the
most significant modification of the entire output distribution. For any given set of
values xu P Rr, the discrepancy between the unconditional output PDF fY and its
conditional version fY |Xu“xu is measured through the L1-norm of their difference.
This number is referred to as the shift spxuq and, graphically speaking, is nothing
but the area enclosed between the two representative curves:

spxuq “
›

›

›
fY ´ fY |Xu“xu

›

›

›

L1pRq
“

ż

R

∣∣∣fY pyq ´ fY |Xu“xupyq
∣∣∣ dy. (1)

So as to consider the whole range of values Xu may take, Borgonovo’s δ-sensitivity
measure was defined as the normalized expectation of spXuq:

δYu “
1

2
E rspXuqs “

1

2
E

«

›

›

›
fY ´ fY |Xu

›

›

›

L1pRq

ff

. (2)

For the sake of brevity, if there is no point of ambiguity, denoting δu will be preferred
to δYu . Unlike variance-based sensitivity measures such as Sobol indices, Borgonovo’s
δ-sensitivity measures attempt to take into account the entire variability of the
output distribution fY instead of only focusing on how VpY q is impacted. Moreover,
and it is perhaps one of their most valuable advantages over Sobol indices, they are
perfectly suited for non-independent input variables. The properties verified by this
family of importance measures were thoroughly investigated and the most essential
results are recalled in the proposition below.

Proposition 2.1 (δ-sensitivity measures)

• @u P Pd , 0 ď δu ď 1.

• The total index δrds is equal to 1.

• Let v P Pd be such that v Ă u. Then, one has always δv ď δu.

• All indices δu are invariant under monotonic transformations.
If Ỹ “ ϕpXq with ϕ a C1-diffeomorphism, δYu “ δỸu for any u P Pd.

The three first points are demonstrated in [3] while the last one is addressed in [4].
Estimating δ-sensitivity measures has been actively explored over the last decade
and the forthcoming subsections aim at introducing the two estimation strategies
that will be carried out throughout the paper.

2.2. The double-loop estimation method
A very intuitive estimation method stemming from (2) consists in replacing the

expectation operator by its empirical counterpart, which gives:

δ̂u “
1

2N

N
ÿ

n“1

›

›

›
fY p¨q ´ fY |Xu

`

¨ |Xn
u

˘

›

›

›

L1pRq
(3)
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where:
!

Xn
u “

`

Xn
u1
, . . . , Xn

ur

˘

)

1ďnďN

i.i.d.
„ fXu . (4)

As no prior information is available on the output distribution, any PDF involving
Y is unknown and needs to be estimated before summing L1-norms. On the one
hand, estimating fY seems fairly straightforward provided that one is given a set of
input observations Xk i.i.d.

„ fX . The associated outputs Y k are computed with M
and kernel density estimation (KDE) yields f̂Y :

f̂Y pyq “
1

N

N
ÿ

k“1

1

h
K

ˆ

y ´ Y k

h

˙

with Kpzq “
1
?

2π
e´

1
2
z2

(5)

where h is called the bandwidth and regulates how smooth the resulting curve f̂Y
is. The kernel method is discussed with full details in [17] while a review of fully
automatic bandwidth selectors can be found in [18]. On the other hand, and this is
not surprising, estimating the conditional distributions fY |Xu is a much more thorny
issue since it requires being able to sample Y knowing thatXu is constrained to take
prescribed values. For any xu P Rr, random generation according to Y | Xu “ xu

may be achieved as follows:

1. Generate samplesXk
ū according toXū |Xu “ xu . It is not something trivial

in the general case but two particular cases are worth mentioning. First, ifXu

and Xū are independent, it amounts to simulate according to fXū . Secondly,
in the Gaussian case, the conditional distribution fXū|Xu can be derived easily,
as explained in [19].

2. Compute the associated outputs Y k
xu
“M

`

xu,X
k
ū

˘

.

If one succeeds in drawing samples from fY |Xup¨ | xuq, a density estimator can be
constructed exactly in the same spirit as (5):

f̂Y |Xupy | xuq “
1

N

N
ÿ

k“1

1

hxu

K

ˆ

y ´ Y k
xu

hxu

˙

(6)

where the bandwidth hxu is updated every time a new conditioning set xu is
encountered. After replacing fY and fY |Xu by their respective estimators (5) and (6),
the naive estimator set out in (3) becomes:

δ̂Ku “
1

2N

N
ÿ

n“1

›

›

›
f̂Y p¨q ´ f̂Y |Xu

`

¨ |Xn
u

˘

›

›

›

L1pRq
. (7)

For now, δ̂Ku is called the double-loop estimator and the estimation procedure comprises
the five steps below:

1. Generate an input dataset Xobs from the input joint distribution fX :

Xobs :“
”

Xn
ı

1ďnďN
with Xn

“

´

Xn
u ,X

n
ū

¯

.

2. Compute the associated outputs:

Yobs :“
”

Y n
ı

1ďnďN
with Y n

“M
`

Xn
˘

.
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3. Use output samples Y n and (5) to estimate fY .
4. For every observed subvector Xn

u, generate conditional output observations:
!

Y k
Xn

u

)

1ď kďN

i.i.d.
„ fY |Xup¨ |X

n
uq .

and estimate fY |Xu

`

¨ |Xn
u

˘

with (6).
5. Compute δ̂Ku with (7).

This approach will be considered as the reference in the simulation study of Section 5.
As far as norms are concerned, since the metric space is L1pRq, the Monte Carlo
method is not the only workable way of computing the associated integrals and
vectorized adaptive quadrature techniques may be used [20]. The second and fourth
steps respectively implyN andN2 calls toM, which raises the required computational
budget to NpN ` 1q model evaluations. A variant of δ̂Ku was developped in [5] in
order to secure convergence of the resulting estimator. The trick lies in constructing
a finely grained partition of the sample space covered by Xu. Moreover, if one is
willing to estimate all first-order Borgonovo’s indices δ̂Ki without multiplying by d
the computation budget, a permuted column sampling plan developed in [21] may
be deployed. Because of the computational burden it implies, δ̂Ku is often regarded as
a brute-force estimator that should be considered only as a last resort. The following
subsection provides a quick overview of existing alternatives.

2.3. Single-loop alternatives
Another kernel estimation method is introduced in [22] with actual computational

gains, but the most promising idea can be found in [5]. Basic calculations allow to
rewrite δu under the following form:

δu “
1

2

ż

Rr`1

∣∣∣fXupxuqfY pyq ´ fXuY pxu, yq
∣∣∣ dxu dy (8)

“
1

2

›

›

›
fXufY ´ fXuY

›

›

›

L1pRr`1q
. (9)

From a given input-output dataset, PDF estimates can be constructed with KDE
for both fY and fXuY and they give birth to a plug-in estimator:

δ̂u “
1

2

›

›

›
fXu f̂Y ´ f̂XuY

›

›

›

L1pRr`1q
. (10)

The remaining L1-norm must be computed with the classical Monte Carlo method
in Rr`1. Using f̂XuY as sampling distribution is advised in [7] and a nonparametric
importance sampling approach is proposed in [8]. However, all these methods
depend on how the kernel method resists the curse of dimensionality. Indeed, even if
resorting to state-of-the-art techniques such as those in [23], nonparametric density
estimation suffers from finding optimal smoothing parameters for kernel functions. A
way forward to keep improving single-loop methods is offered by copula theory. The
potential that copula functions offer from the perspective of estimating Borgonovo’s
indices, as well as currently ongoing works on this subject, are dealt with in the
following subsection.
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2.4. The copula-based estimation method
Since its very beginning, copula theory is concerned with identifying, learning

or creating relevant dependence patterns for multivariate distributions when their
margins are provided. Sklar’s theorem [24] states that any absolutely continuous
multivariate joint PDF could be expressed as the product of its marginal PDFs and
a copula term draining all information regarding dependence among the involved
variables. Let it be written for the random vector pXu, Y q:

fXuY “ cXuY

´

FXu1
, . . . , FXur

, FY

¯

ˆ

«

r
ź

i“1

fXui

ff

ˆ fY , (11)

where cXuY is defined on Hr`1 and fulfills the requirements of a copula function,
that is:

´

U1, . . . , Ur, V
¯

„ cXuY where

#

Ui :“ FXui
pXui

q

V :“ FY pY q
. (12)

When cXuY is a Gaussian copula, fXY is said to follow a Nataf distribution, even
if the marginal distributions are unspecified. This particular case is examined in
[9] where it is also assumed that all input variables are mutually independent. The
integral expression in (8) thus becomes:

δu “
1

2

ż

Rr`1

∣∣∣cN´FXupxuq, FY pyq
∣∣ρ0

¯

´ 1
∣∣∣ fY pyq

«

r
ź

i“1

fXui
pxui

q

ff

dxu dy , (13)

where ρ0 is the correlation matrix of the probability-transformed vector pU , V q.
Applying the Nataf transform consists in using a change of variables based on the
standard normal CDF Φ:

#

ΦpSiq “ FXui
pXui

q

ΦpT q “ FY pY q
. (14)

Integration by substitution then yields:

δu “
1

2

ż

Rr`1

∣∣∣∣φps1q . . . φpsrqφptq

φ2

`

s, t |ρ0

˘ ´ 1

∣∣∣∣φ2

`

s, t |ρ0

˘

ds dt (15)

“
1

2
E

«∣∣∣∣φpS1q . . . φpSrqφpT q

φ2

`

S, T |ρ0

˘ ´ 1

∣∣∣∣
ff

, (16)

where φ and φ2 denote respectively the PDFs of N p0, 1q and N p0,ρ0q. Then, the
Nataf-based estimator δ̂Tu comes naturally:

δ̂Tu “
1

N

N
ÿ

k“1

∣∣∣∣φpSk
1 q . . . φpS

k
r qφpT

kq

φ2

`

Sk, T k |ρ0

˘ ´ 1

∣∣∣∣ with pSk, T kq
i.i.d.
„ N p0,ρ0q . (17)

Nevertheless, this methods suffers two major drawbacks. On the one hand, ρ0 is
unknown, subject to certain exceptions, and each correlation coefficient between Si
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and T has to be determined by solving numerically a nonlinear equation [25]. On
the other hand, the construction of δ̂Tu is underpinned by two strong assumptions.
Regarding mutual independence, one could easily consider correlated inputs and
adapt δ̂Tu accordingly. On the contrary, as far as Gaussianity is concerned, there
is no doubt that it is too restrictive to estimate accurately high-order Borgonovo’s
indices in a general context. In order to develop an estimator that goes beyond
this assumption, one needs to make the most of the opportunities offered by copula
theory. As suggested for the first time in [10], combining (8) and twice (11) leads
to:

δu “
1

2

ż

Hr`1

ˇ

ˇ

ˇ
cXuY

`

u1, . . . , ur, ur`1

˘

´ cXu

`

u1, . . . , ur
˘

ˇ

ˇ

ˇ
du (18)

after operating a simple change of variables so as to fall back on an integral defined
over Hr`1. It should be noted that copula PDF cXu becomes 1 if either u is
a singleton or Xu is made of mutually independent variables. A copula-based
estimation δ̂Cu of δu may thus be derived by first learning cXuY from data and
secondly computing a Monte Carlo estimate of the integral:

δ̂Cu “
1

2N

N
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ĉXuY

`

Uk
1 , . . . , U

k
r`1

˘

´ cXu

`

Uk
1 , . . . , U

k
r

˘

ˇ

ˇ

ˇ

ˇ

, (19)

where:
!

U k
“
`

Uk
1 , . . . , U

k
r`1

˘

)

1ď kďN

i.i.d.
„ U

´

r0 , 1s
¯b r`1

. (20)

Copulas are gaining increasing interest in sensitivity analysis, as underlined by [26]
and [27]. Indeed, Borgonovo’s indices are not the only association measures that
can be rewritten in terms of distance in a well-chosen metric space between the
intrinsic dependence structure underlying pXu, Y q and independence. Moreover,
from a statistical learning viewpoint, as copula functions belong to the space of
multivariate distributions, inference can be performed with most estimation methods
whether they are parametric or not. Insights into bivariate estimation methods are
provided by [28] and [29] while [30] strives to compare parametric, semiparametric
and nonparametric approaches. It was ascertained that the curse of dimensionality
is somewhat easier to face from the angle of copula estimation. Developments in
copula theory produced key results, most notably the pair-copula factorization,
which enabled coming up with more flexible and more tractable copula models
to tackle high dimensional problems [13]. A brief survey of recents advances and
current limits in the field of dependence modeling is proposed in Section 3. As far as
Borgonovo’s δ-sensitivity measures are concerned, copula estimation was conducted
with Gaussian kernels in the first copula-focused paper [10] and by resorting to a
maximum entropy approach in [11]. More recently, and in a slightly different context
where Y is multivariate, one can find in [14] a first attempt to connect vine copula
models and Borgonovo’s indices. Before going further, let us recall the procedure
leading to δ̂Cu:

1. Generate an input dataset Xobs from the input joint distribution fX :

Xobs :“
”

Xn
ı

1ďnďN
with Xn

“

´

Xn
u ,X

n
ū

¯

.
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2. Compute the associated outputs:

Yobs :“
”

Y n
ı

1ďnďN
with Y n

“M
`

Xn
˘

.

3. Rescale input samples with marginal CDFs:

Uobs :“
”

Un
ı

1ďnďN
with Un

“

´

F1pX
n
1 q , . . . , FdpX

n
d q

¯

.

4. Compute ranks on output samples as suggested in [29] to offset the lack of
knowledge about FY :

Vobs :“
”

V n
ı

1ďnďN
with V n

“
1

N ` 1

N
ÿ

i“1

1tY iďY nu .

5. Estimate ĉXuY from Uobs and Vobs with any copula estimation method.
6. Compute δ̂Cu with (19) where cXu is given by:

cXupuq “ fXu

´

F´1
Xu1
pu1q, . . . , F

´1
Xur
purq

¯

.

Unlike what was noted in Section 2.2, model evaluations are only necessary at the
second step. The computational budget is significantly alleviated since only N calls
to M yield δ̂Cu. Another salient feature lies in the fact that the first four steps do
not depend on the subset u under consideration. Therefore, and it was not the case
with δ̂Ku , the computational burden remains equal to N if one needs to estimate a
collection of several Borgonovo’s δ-sensitivity measures. Because of its numerical
efficiency, the copula-based estimation method seems to be an appealing alternative
to δ̂Ku . However, its accuracy directly hinges on how well the copula density is
estimated at the fifth step. The next section seeks to show that, whether copula
density estimation may sometimes be an easy task, it is more often a tricky problem,
especially when intricate patterns of dependence have to be learnt.

3. A few words on copula estimation

3.1. Inference with bivariate copulas
3.1.1. Parametric families

Since the boom of copula theory, a surge of parametric models have been designed
to satisfy three complementary criteria: interpretability, flexibility and tractability [30].
An allegedly exhaustive compendium of existing models is available in [31]. Elliptical
copulas arise from elliptical distributions [32] and thus encompass both the Gaussian
and t-Student copulas. The Archimedean class of copulas comprises many classical
families such as Clayton, Frank, Gumbel and Joe. For each one, the copula CDF is
obtained from a convex decreasing function ψp¨q which is called the generator and
gives notable properties [33]. Another class deserving interest consists of extreme-
value copulas [34] since they gave birth to prominent concepts such as max-stability
and tail dependence.
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3.1.2. Model selection
In the light of all those candidate models, a practitioner may wonder which

one is the most relevant in view of given data, especially if no prior idea about the
underlying distribution is available. Most often, fitting a chosen parametric model to
data is performed through a maximum likelihood approach. Then, a validation step
requires testing the zero-assumption according to which the true copula distribution
belongs to the prescribed parametric family. It can be done with one of the many
methods discussed in [35] and [36]. A method to retain the best model in terms
of goodness-of-fit consists in maximizing a likelihood-based information criterion
such as Akaike or Bayes. Before that, a model shortlist may be constituted from
a qualitative study of the graphical properties observed on copula samples. In the
case where several Archimedean copulas are competiting, a nonparametric graphical
procedure was proposed in [37] to guide copula selection.

3.1.3. Nonparametric tools
If one is willing to outright evade the parametric framework, many nonparametric

procedures have been explored [28]. To cite but a few, common practices include the
mirror image method [38] to offset any possible bias introduced by the boundaries,
transformed kernels [39] to be brought back to KDE in R2, and beta kernels [40] to
directly handle kernels with compact support. Another frequently used method is
based on the fact that Bernstein polynomials are dense in the space of all continuous
functions [41].

3.2. Graph models to face the curse of dimensionality
A substantial majority of copula models can be easily generalized as d goes

up. However, increasing dimensionality makes the minimum number of required
parameters inflate exponentially and classical parametric families are outperformed
since they were not designed to this end. To remedy this problem, tree-based
hierarchical constructions have been developped with pair-copulas as building blocks.
The main idea is to build up on bivariate dependence modeling, which is nowadays
a properly processed task, to elaborate flexible dependence structures that should
be able to face the growth of polymorphism.

3.2.1. Nested Archimedean copulas
Nested Archimedean copulas [42] are generalizations of Archimedean copulas

that allow for asymmetry and provides more flexibility. Such a copula distribution
is defined recursively since its CDF is obtained from an initial Archimedean copula
CDF by replacing one or several of its arguments by another (possibly nested)
Archimedean copula. In the case where there are d´ 1 nesting levels, it results in a
hierarchical structure that exactly looks like a cluster dendogram [43]. A bivariate
Archimedean copulas is affected to each node and models how the related clusters
statistically depend on each other. Those copula models aroused interest in finance,
especially in portfolio management where hierarchical structures often naturally
emerge from real-life data. Commonly known Archimedean generators lead to an
abundance of nested Archimedean copulas but a sufficient “nesting” condition has
nevertheless to be fulfilled before combining copulas. An estimation algorithm to
perform inference into this rich repertoire may be found in [44].
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3.2.2. Product of bivariate copulas
Another class of multivariate copula distributions is proposed by Mazo [45]

who simplifies what was done by Liebscher [46] in order to envision applications.
This approach based on the product of transformed bivariate copulas. In general,
multiplying several copula CDFs does not yield another copula CDF because the
resulting margins are not uniform. In this model, dependence is described by a set
of pairwise associations which are summarized in a tree E. Then, each variable ui
in the copula CDF expression is raised to the power 1{ni where ni is the number
of edges connected to the node i in the graphical representation E. This makes
the margins be uniform and a theorem by Liebscher [46] ensures the constructed
function is indeed a copula CDF.

3.3. Pair-copula constructions
Among multivariate copula distributions, pair-copula constructions have gained

increasing popularity over the last decade because of their notable level of flexibility.
The first idea is due to Joe [47] but the current formalism appeared a few years laters
with Bedford and Cooke [48, 49]. The main idea lies in a factorization result on the
copula PDF obtained after applying recursively Sklar’s theorem and Bayes’ rule.
The copula PDF may thus be written as a product of conditional pair-copula PDFs.
Their arrangement is governed by a sequence of nested trees tE1, ..., Ed´1u consisting
of nodes and edges. E1 is a spanning tree connecting variables U1, . . . , Ud. Then,
Ei`1 may be derived from Ei provided that a “proximity condition” is obeyed. This is
compulsory to be sure that the ensuing tree sequence coincides with a feasible copula
factorization. Thus, any edge e involved in a tree Ei joins two nodes, denoted by je
and ke, and is subject to a conditioning set uDe . Accordingly, one has:

cXpuq “
d´1
ź

i“1

ź

ePEi

cjeke|De

´

uje|De , uke|De

ˇ

ˇ

ˇ
uDe

¯

, (21)

with:
uje|De “ Fje|Depxje | xDeq and uke|De “ Fke|Depxke | xDeq . (22)

To enable fast and robust inference, the so-called “simplifying assumption” is made
in most cases. The covariate term uDe involved in the conditioning mechanism is
considered uninformative and is omitted. A simplified version of (21) is then used:

cXpuq “
d´1
ź

i“1

ź

ePEi

cjeke|De

´

uje|De , uke|De

¯

. (23)

For a given tree sequence, the dependence structure is organized as a cascade of pair-
copulas which can be chosen independently. Models of this kind are referred to as
regular vine copulas (R-vines). For the sake of simplicity, two particular subclasses
were popularized [50] since the start of research on this topic: “canonical” vine
copulas (C-vines) and “drawable” vine copulas (D-vines) depending on whether E1

has a star-like structure or a chain-like structure. Aas [51] paved the way through
inference with an estimation procedure applicable to simplified C-vines and D-vines.
Dissmann [52] bridged the remaining gaps and came up with an automated model
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selection technique in the simplified R-vine framework. For similar reasons as in the
bivariate case, R-vine models have been recently adapted to embed nonparametric
tools. This is a promising advance since it allows to deploy kernel methods without
incurring the curse of dimensionality. Benefits in terms of convergence are shown
in [53]. Among all available inference procedures, a comparative study led in [54]
reveals that none is uniformly better than all others when one has to estimate a
nonparametric R-vine copula.

The focus of this section was to stress the fact that many copula models were
developped to date and that they often compete with each other. However, in
many application fields, including financial econometrics, insurance, engineering,
hydrology, earth sciences or marketing, R-vine models have become a multipurpose
copula-based solution to construct, learn and simulate dependence patterns in high
dimension. Their reputation is strengthened by their user-friendly software availability
under the R packages CDVine and VineCopula. Incorporating nonparametric copulas
within an R-vine tree structure is now possible with the R package kdevine and
offers hope for even more flexibility. In this view, R-vine copulas must be regarded as
a relevant option for the copula-based estimation of δ-sensitivity measures introduced
in Section 2.4. Besides, they will be an essential ingredient throughout the simulation
study proposed in Section 5.

4. Shapley values

4.1. Definition and properties of Shapley values
In cooperative game theory, Shapley values [55] allow to fairly apportion earnings

among players knowing that some of them may have collaborated to enhance their
chances of success. A cooperative game requires a finite set of players rds “ t1, . . . , du
and a cost function c̃p¨q which maps any coalition of players u P Pd to the total payoff
expected after working collaboratively. Mathematically speaking, c̃p¨q is such that:

c̃ :

ˇ

ˇ

ˇ

ˇ

Pd ÝÑ R

u ÞÝÑ c̃puq
with c̃pHq “ 0 , (24)

Then, the Shapley value assigned to the i-th player is computed as follows:

φi :“ φipc̃q “
1

d

ÿ

uĎrdsrtiu

ˆ

d´ 1

|u|

˙´1
´

c̃puY tiuq ´ c̃puq
¯

. (25)

The i-th player might join
`

d´1
|u|

˘

coalitions of size |u|. Insofar as joining a coalition

is a uniformly random choice,
`

d´1
|u|

˘´1
is the probability that the player joins one

particular coalition of size |u|. The cost difference c̃pu Y tiuq ´ c̃puq must be seen
as the marginal contribution of the i-th player in the coalition u. Hence, φi is the
average gain obtained after taking into account all coalitions this player might be
involved in. It was shown in [55] that the values defined in (25) satisfy several
axioms that sound rather natural in a cooperative game context.
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Proposition 4.1 (Shapley values)

1. Efficiency. Shapley values sum to the total gain of the great coalition:

d
ÿ

i“1

φi “ c̃
`

rds
˘

.

2. Symmetry. If c̃puY tiuq “ c̃puY tjuq for all u Ď rdsr ti, ju, then φi “ φj.

3. Dummy. If c̃puY tiuq “ c̃puq for all u Ď rdsr tiu, then φi “ 0.

4. Linearity. For any cost functions c̃1 and c̃2, one has:

@i P rds, φipc̃1 ` c̃2q “ φipc̃1q ` φipc̃2q .

4.2. Application in sensitivity analysis
In sensitivity analysis, Shapley values were not used until a fairly recent work

due to Owen [15]. To understand analogy with cooperative game theory, the set of
single input variables X1, . . . , Xd must be thought as a set of players and the chosen
importance measure as a cost function. This approach has already been studied in
the framework of variance-based sensitivity analysis methods [56] and especially in
the correlated case [57, 58] where the use of Shapley values is all the more justified.
In this paper, the novel idea is to consider the following cost function:

c̃puq “ δu , (26)

which maps any coalition u to its sensitivity measure δu established in Section 2.
Adopting this definition complies with Shapley value theory since:

c̃pHq “ δH “ 0 . (27)

Applying the new cost function (26) defines Shapley values with respect to Borgonovo’s
δ-sensitivity measure:

Shi :“
1

d

ÿ

uĎrdsrtiu

ˆ

d´ 1

|u|

˙´1

pδuYtiu ´ δuq . (28)

The efficiency axiom stated in Proposition 4.1 implies the following result:

d
ÿ

i“1

Shi “ 1 . (29)

Shapley values Shi allow an easier interpretation of Borgonovo’s indices. On the one
hand, the information provided by Borgonovo’s indices at all orders, that is 2d ´ 1
values, is now summed up by a much smaller set consisting of only d sensitivity
indicators. On the other hand, (29) suggests a Sobol-like interpretation in terms
of percentage. And finally, computing Shapley values from the complete set of
Borgonovo’s indices does not require any additional call toM and must be regarded
as an easily achievable GSA byproduct.
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4.3. Synthesis on sensitivity analysis with Shapley values
The objective of this section is not to review all the sensitivity analysis techniques.

An exhaustive review is notably available here [1]. Nevertheless, it is of interest to
analyse the principal merits and demerits of Sobol indices, Borgonovo’s indices and
their respective Shapley value extensions. For that purpose, we summarize and
compare some of their different characteristics in Table 1. Sobol indices focus on
the impact of inputs on the variance output whereas Borgonovo’s indices consider
the entire distribution. In many cases, both indices give the same tendencies unless
the variance is not a representative quantity of the output distribution. To ease
the interpretation of GSA indices, it is preferable that they sum to 1 which is
unfortunately not the case of Borgonovo’s indices. Dependent inputs have long been
a major deficiency of variance-based GSA. Shapley values were recently coupled with
Sobol indices to overcome this issue [15]. Borgonovo’s importance measure can be
applied on dependent variables but, when a group of inputs is considered, it does not
allow to distinguish between dependence effects (due to the copula) and interaction
effects (due to howM works). In some engineering applications, it is also relevant
to only have one scalar index by input, which is the case for Shapley values. All
these GSA indices can be estimated with a single input-output dataset. This type
of low-cost estimation with Sobol indices and Shapley values of Sobol indices is very
recent [59].

Table 1: Main features of various GSA indices: Sobol indices Si, Borgonovo’s indices δi and their
respective Shapley value extensions denoted by Shsoboli and Shborgoi .

GSA features Si Shsobol
i δi Shborgo

i

Quantity of interest VpY q VpY q fY fY

Sum equal to 1 ` ` ´ `

Adapted to dependent inputs ´ ` ` `

Adapted to grouped inputs ` ´ ` ´

Estimation from
 

Xobs ,Yobs

(

` ` ` `

5. Simulation study

In this section, the proposed methodology is applied to several numerical test
cases with increasing complexity. A very simple situation is first considered where
M is a linear mapping which takes Gaussian inputs. Having a look at such a trivial
example is however important because it is the only case presented in this work
where one could derive analytical expressions of the copula densities highlighted
in (18). Hence, the theoretical values of both Borgonovo’s indices and Shapley
values can be estimated with as much accuracy as desired. Having access to those
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values enable to check if both the double-loop estimation method and the copula-
based one are properly tuned. Then, two other analytical test cases are examined in
higher dimension, with d being respectively equal to 6 and 8. Both are widely used
by the uncertainty analysis research community and may be regarded as benchmark
examples involving a significant level of nonlinearity in the way they transform the
input variables. Finally, in order to be more consistent with the initial assumption
according to which M is a black-box model, the proposed approach is confronted
with a simulation code which is truly representative of the underlying physics.

The main objective of the following numerical simulations is to compare the
Shapley values estimators Ŝhi resulting from the prior computation of all Borgonovo’s
indices with either the double-loop estimator δ̂Ku or a copula-based estimator δ̂Cu. The
corresponding Shapley value estimators for input Xi are given respectively by Ŝh

K
i

and Ŝh
C
i . The real issue is actually to assess the extent to which δ̂Cu, despite the

lack of theoretical guarantees regarding its convergence, can be a suitable substitute
for δ̂Ku in order to compute Shapley values. Let us now denote by NK and NC the
number of input samples respectively used for the double-loop and the copula-based
estimation procedures described in Sections 2.2 and 2.4. Every time an averaged
estimation of Shapley values has to be performed for a given estimation method
δ̂u of Borgonovo’s indices, the same computational procedure is applied. Further
details are specified in Appendix A.

5.1. Gaussian linear model
5.1.1. Description

Let us consider the case where the model output may be expressed as:

Y “M
`

X
˘

“ AX (30)

with A “ 0.1ˆ
“

17 18 19 20
‰

. The input random vectorX lies in R4 and follows
a Gaussian distribution N pµ ,Σq such that:

µ “

»

—

—

–

0
0
0
0

fi

ffi

ffi

fl

and Σ “

»

—

—

–

1 1{2 1{3 1{4
1{2 1 1{2 1{3
1{3 1{2 1 1{2
1{4 1{3 1{2 1

fi

ffi

ffi

fl

.

It is straightforward to see that the augmented vector Zu which brings togetherXu

and Y is also a centered Gaussian distribution since:

Zu “

„

Xu

Y



“

„

Su

A



X (31)

where:

Su “

”

αij

ı

P t0, 1u|u|ˆd with αij “

#

1 if ui “ j

0 otherwise
. (32)

Thus, Zu „ N p0 ,Λuq and the covariance matrix Λu may be divided into four
blocks:

Λu “

«

ΛXu ΛXuY

Λᵀ
XuY

VpY q

ff

P M|u|`1pRq (33)
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with ΛXu the covariance matrix of Xu and:

ΛXuY :“
”

Cov
`

Xui
, Y

˘

ı

1ď iď |u|
P R|u| . (34)

As Xu and Zu are Gaussian, the underlying copulas are both Gaussian. Moreover,
they are fully-parametrized by the correlation matrices ΓXu and Γu which can
respectively be extracted from the covariance matrices ΛXuY and Λu. In light of
that fact, the copula-based integral expression of Borgonovo’s importance measure
δu established in (18) becomes:

δu “
1

2

ż

Hr`1

ˇ

ˇ

ˇ

ˇ

cN

´

u1, . . . , ur, ur`1

ˇ

ˇ

ˇ
Γu

¯

´ cN

´

u1, . . . , ur

ˇ

ˇ

ˇ
ΓXu

¯

ˇ

ˇ

ˇ

ˇ

du (35)

and a natural Monte Carlo estimator of δu is thus adapted from (19):

δ̂Iu “
1

2N

N
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

cN

´

Uk
1 , . . . , U

k
r , U

k
r`1

ˇ

ˇ

ˇ
Γu

¯

´ cN

´

Uk
1 , . . . , U

k
r

ˇ

ˇ

ˇ
ΓXu

¯

ˇ

ˇ

ˇ

ˇ

. (36)

The above estimator δ̂Iu may be regarded as a reference one, in the sense that its
variability does not come from the estimation of copula densities but only from
stochastic integration over the hypercubeHr`1. Such a variability may be reduced as
much as desired by increasing the amountN of pointsU k sampled overHr`1 and it is
worth noting that it does not entail any call to the black-box modelM. Moreover,
δ̂Iu inherits all the statistical properties associated with Monte Carlo integration
and is therefore unbiased, consistent and asymptotically Gaussian. As far as the
double-loop method is concerned, the estimation algorithm is run with NK “ 100
input samples. Moreover, a natural choice for the copula-based estimator consists in
directly learning a Gaussian copula from a datasetXobs bringing togetherNC “ 5 000
input samples. It can be done with both the maximum likelihood method and the
method of moments [60]. The reader is referred to [61] for general considerations
about parametric copula estimation and to [62] for a specific focus on elliptical
copulas. The resulting estimator may be written as follows:

δ̂Cu “
1

2N

N
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ĉN

´

Uk
1 , . . . , U

k
r , U

k
r`1

ˇ

ˇ

ˇ
Γ̂u

¯

´ cN

´

Uk
1 , . . . , U

k
r

ˇ

ˇ

ˇ
ΓXu

¯

ˇ

ˇ

ˇ

ˇ

, (37)

where Γ̂u is a maximum-likelihood estimation of the correlation matrix Γu. One
major criticism could be to point out the fact that the whole correlation matrix Γ̂u

is estimated whereas most correlation coefficients Γij can be directly found in ΓXu .
However, if estimation is limited to the missing coefficients, there is no assurance
that Γ̂u remains positive semidefinite. Moreover, it can be numerically verified that
this provides less accurate estimates.

5.1.2. Results
Shapley values are estimated with M “ 100 times for the three aforementioned

estimators. The computational procedure is recalled in Appendix A. As expected,
the reference estimators Ŝh

I
i are unbiased and evidence very small dispersion. This
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level of accuracy is achieved with N “ 106 points in (36). Estimation is also accurate
but with slightly larger coefficients of variation for the two other estimators. It is
worth noting that rankings are unchanged for the three methods. It has to be
stressed because A and Γ were chosen so that hierarchy among sensitivity indices
would be hard to retrieve. From now, the values given to NK and NC are considered
as validated tuning setups for the next test cases. The outstanding results obtained
for this first application should be put in perspective as all copulas are Gaussian and
perfectly suitable for a maximum-likelihood parametric estimation. Two examples
presenting more complex dependence structures are studied in the next sections.

Table 2: Estimation of Shapley values Shi for the Gaussian linear model defined in (30).

Inputs Ŝh
I
i Ŝh

K
i with NK “ 100 Ŝh

C
i with NC “ 5 000

Mean Rank CV(%) Mean Rank CV(%) Mean Rank CV(%)

X1 0.2213 (4) 1.0 0.2234 (4) 2.9 0.2212 (4) 3.0
X2 0.2532 (3) 0.7 0.2515 (3) 2.5 0.2536 (3) 2.6
X3 0.2678 (1) 0.5 0.2671 (1) 2.6 0.2678 (1) 2.5
X4 0.2578 (2) 0.8 0.2580 (2) 2.5 0.2574 (2) 2.8

5.2. Single Degree of Freedom (SDoF) oscillator
5.2.1. Description

A non-linear oscillator is now addressed. Detailed explanations and a schematic
may be found in [63]. The system consists of a mass M connected by two springs at
a stationary support. Both have the same free length R but differ by their stiffness
coefficients C1 and C2. The system is subject to a rectangular load pulse with
random duration T and amplitude F . The model output is defined by:

Y “MpXq “ ´3R `

∣∣∣∣∣ 2F

C1 ` C2

sin

˜

c

C1 ` C2

m

T

2

¸
∣∣∣∣∣ , (38)

and stands for the difference between the maximum displacement response and 3R.
The six input variables C1, C2, R, M , T and F are mutually independent and
lognormally distributed with respective parameters given in Table 3 according to
what can be found in Table 5 from [63]. Such a two-spring-mass test case is often
examined in uncertainty analysis when the accuracy of a newly-designed surrogate
model needs to be assessed [64, 65, 66]. For this model, the underlying copulas
do not have a closed-form expression. If one assumes they belong to a prescribed
parametric family, it could lead to serious misestimations of Borgonovo’s indices.
In order not to incur this, copula PDFs have to be learnt with a multivariate class
of distribution tailored to resist high dimension, like those introduced previously
in Section 3. The copula-based estimator Ŝh

C
i is coupled with parametric R-vine

copula models since they offer an interesting balance between learning flexibility
and implementation easiness.

The double-loop estimator Ŝh
K
i is now regarded as a reference because it does

not make any model assumption regarding how Y may be tied to an input subvector
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Table 3: Input probabilistic model attached to the SDoF oscillator. Each marginal distribution
fXi

is assumed lognormal, that is logpXiq „ N pµi, σ
2
i q.

Input Description (unit) Parameters

X1 Stiffness coefficient C1 (N.m´1) µ1 “ 2.0 σ1 “ 0.20
X2 Stiffness coefficient C2 (N.m´1) µ2 “ 0.2 σ2 “ 0.02
X3 Free length R (m) µ3 “ 0.6 σ3 “ 0.05
X4 Mass M (kg) µ4 “ 1.0 σ4 “ 0.05
X5 Duration T (s) µ5 “ 1.0 σ5 “ 0.20
X6 Amplitude F (N) µ6 “ 1.0 σ6 “ 0.20

X. For purposes of comparison, the first-order and total-effect Sobol indices are also
computed with a “Pick-and-Freeze” estimation scheme [67]. The expected goal is to
discuss whether the summary provided by Shapley values match the conclusions one
could have drawn after glancing at Sobol indices.

5.2.2. Results
The computational procedure presented in Appendix A is repeated M “ 100

times to produce the results shown in Tables 4 and 5. Generally speaking, Ŝh
K
i and

Ŝh
C
i seem to lead to the same kind of conclusions. Rankings are slightly different

but an overall trend appears with three groups. X4 and then X1 emerge as the most
influential variables while X5 and X6 form a second group of competing variables.
Very small Shapley values are observed for X2 and X3. From a computational
viewpoint, it must be noted that the double-loop estimator proves to be somewhat
less robust than its copula-based contender. However, the associated simulation
budget BK is computed as follows:

BK “ number of δ-indices ˆ number of calls toM per δ-index

“
d´1
ř

i“1

`

d
i

˘

ˆ NKpNK ` 1q

BK “ p2d ´ 2q ˆNK ˆ pNK ` 1q “ 626 200 calls toM .

On the contrary, the simulation budget BC required by the copula-based method is
limited to NC “ 5 000 calls toM. As can be seen in Section 2.4, the copula paradigm
allows to derive all Borgonovo’s indices from a single input-output dataset.

Examining total-effect Sobol indices in Table 5 sheds a different light on this
sensitivity analysis problem. Within the pair (X1,X4) of roughly equal influence,
total-effect Sobol indices designateX1 as the main variance contributor, well ahead of
all others variables. In this sense, focusing on variance may lead to wrongly identify
X1 as the only prevailing variable. High values are observed for some coefficients of
variation, in particular those concerning Ŝ2, Ŝ3 and ŜT

2 . It must be noticed that the
corresponding mean values are all very small. In fact, the Monte Carlo estimation
of small Sobol indices often suffers from a loss of accuracy due to the fact that
the variance of the conditional expectation becomes too small with respect to the
square of the output mean value. As this problem is often deplored in practice,
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Table 4: Estimation of Shapley values Shi for the input-output function introduced in (38).

Inputs Ŝh
K
i with NK “ 100 Ŝh

C
i with NC “ 5 000

Mean Rank CV(%) Mean Rank CV(%)

X1 0.3315 (2) 8.1 0.2890 (2) 2.7
X2 0.0419 (5) 14.8 0.0914 (6) 3.7
X3 0.0254 (6) 16.6 0.0919 (5) 3.6
X4 0.3442 (1) 8.0 0.2923 (1) 3.1
X5 0.1845 (3) 7.8 0.1168 (4) 4.4
X6 0.0725 (4) 12.6 0.1187 (3) 3.9

Table 5: Estimation of both first-order and total-effect Sobol indices for (38).

Inputs Ŝi ŜT
i

Mean Rank CV(%) Mean Rank CV(%)

X1 0.4867 (1) 0.7 0.6615 (1) 0.5
X2 0.0027 (6) 72.4 0.0002 (6) 48.3
X3 0.0029 (5) 71.4 0.0062 (5) 4.9
X4 0.2703 (2) 1.4 0.2704 (2) 1.0
X5 0.0313 (4) 10.7 0.1880 (3) 1.2
X6 0.0344 (3) 10.1 0.0618 (4) 3.5

better estimators have been constructed [68, 69] but their implementation is beyond
the scope of this paper. For small indices, standard deviations should rather be
examined and most people would agree that there is no cause of worry since the
rankings of Sobol indices are not endangered.

5.3. Water flow through a borehole
5.3.1. Description

Let us now consider the physical model used in the literature to describe the water
flow between an upper aquifer and a lower aquifer separated by an impermeable rock
layer. Water can though be transferred from one to the other through a borehole.
The flow rate Y is thus computed from eight scalar parameters describing either
geological layout or hydrological properties:

Y “MpXq “
2πTu

`

Hu ´Hl

˘

log

ˆ

R

Rw

˙

¨

˝1`
2LTu

log
´

R
Rw

¯

R2
wKw

`
Tu
Tl

˛

‚

. (39)

A schematic and further details on physical assumptions, especially in fluid mechanics,
can be found in [70] where (39) seems to have been introduced for the first time.
As a general remark, it can be said that this model is sometimes used during
the prospecting of nuclear waste repositories. In the research community, it is
widely used to validate various computer experiment techniques [71, 72]. The input
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probabilistic model is given in Table 6 and follows what is stated in Table B.1.‹
from [73]. For many variables, expert knowledge limits to providing the upper and
lower bounds of the distribution support. Uniform distributions are derived and
this is sort of common practice in this application field. The resulting probabilistic
model may be subject to possible updates in the future with the availability of new
operational data.

Table 6: Input probabilistic model attached to the borehole function defined in (39). Distribution
types include the normal (N ), lognormal (L) and uniform (U) distributions.

Input Description (unit) Parameters

X1 pN q Radius of borehole Rw (m) µ1 “ 1.0ˆ 10´1 σ1 “ 1.6ˆ 10´2

X2 (L) Radius of influence R (m) µ2 “ 7.7 σ2 “ 1.0
X3 pUq Tansmissivity of upper aquifer Tu (m2/yr) a3 “ 6.3ˆ 104 b3 “ 1.2ˆ 105

X4 pUq Potentiometric head of upper aquifer Hu (m) a4 “ 9.9ˆ 102 b4 “ 1.1ˆ 103

X5 pUq Tansmissivity of lower aquifer (m2/yr) a5 “ 6.3ˆ 101 b5 “ 1.2ˆ 102

X6 pUq Potentiometric head of lower aquifer Hl (m) a6 “ 7.0ˆ 102 b6 “ 8.2ˆ 102

X7 pUq Length of borehole L (m) a7 “ 1.1ˆ 103 b7 “ 1.7ˆ 103

X8 pUq Hydraulic conductivity of borehole Kw (m/yr) a8 “ 9.9ˆ 103 b8 “ 1.2ˆ 104

5.3.2. Results
The computational procedure found in Appendix A is applied M “ 10 times

to get averaged estimates for Ŝh
K
i and Ŝh

C
i . Just as in Section 5.2, estimating all

copula PDFs cXuY with R-vine models is the key step that makes the copula-based
method work. The results are presented in Table 7 where X1 is identified as the
most influential variable by both estimation methods. Then X4, X6 and X7 can
be regarded as equally influential on Y behind X1. In this test case, the results
are even more convincing as rankings are exactly the same between Ŝh

K
i and Ŝh

C
i .

However, it may be noted that the coefficient of variation for Ŝh
C
5 is abnormally high.

Similarly to what was observed in Table 5, this occurs for an index with a small
mean value, but the explanation must be sought elsewhere since Table 7 deals with
Shapley values. If a variable Xi has no influence on Y , one must expect to have
δ̂uYtiu « δ̂u for almost all subsets u that do not include i. As a result, all difference
terms involved in (28) are hard to estimate accurately and may even be wrongly
negative. That is why it is not very surprising to observe a deterioration of the
coefficient of variation in this situation. Moreover, from a computational viewpoint,
here is yet another example proving the relevancy of the copula-based method since
the simulation budget BC only amounts to NC “ 5 000 calls toM while:

BK “ p2d ´ 2q ˆNK ˆ pNK ` 1q “ 2 565 400 calls toM .

Comparison with total-effect Sobol indices is quite reassuring since the four more
influential variables are common in Tables 7 and 8. However, as in the previous test
case, Sobol indices tend to give too much importance to some variables, as if sharing
the variance was a too discriminating approach. Furthermore, one can see that Ŝ2,
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Ŝ3, Ŝ5 and their total-effect counterparts feature much larger coeffients of variation.
Once again, this must be imputed to the difficulties inherent to the estimation of
small sensitivity indices. Up to now,M has always been an analytical input-output
performance function that could be written as a simple composition of classical math
tools. A fully non-transparent simulation code is under study in Section 5.4.

Table 7: Estimation of Shapley values Shi for the input-output function introduced in (39).

Inputs Ŝh
K
i with NK “ 100 Ŝh

C
i with NC “ 5 000

Mean Rank CV(%) Mean Rank CV(%)

X1 0.4513 (1) 6.0 0.4660 (1) 2.2
X2 0.0571 (6) 5.4 0.0287 (6) 19.1
X3 0.0625 (5) 0.1 0.0299 (5) 24.8
X4 0.1190 (3) 11.3 0.1347 (3) 4.9
X5 0.0515 (7) 9.7 0.0162 (7) 222.8
X6 0.1192 (2) 11.5 0.1362 (2) 6.1
X7 0.1105 (4) 10.9 0.1279 (4) 6.8
X8 0.0291 (8) 27.8 0.0604 (8) 8.0

Table 8: Estimation of both first-order and total-effect Sobol indices for (39).

Inputs Ŝi ŜT
i

Mean Rank CV(%) Mean Rank CV(%)

X1 0.6635 (1) 0.4 0.6939 (1) 0.5
X2 0.0029 (7) 66.8 0.0001 (8) 91.6
X3 0.0029 (8) 66.8 0.0001 (7) 74.9
X4 0.0959 (3) 3.8 0.1057 (3) 1.5
X5 0.0029 (6) 66.8 0.0001 (6) 65.8
X6 0.0954 (2) 3.5 0.1059 (2) 1.5
X7 0.0909 (4) 3.5 0.1027 (4) 2.0
X8 0.0225 (5) 14.7 0.0251 (5) 4.1

5.4. A launcher stage fallout model
5.4.1. Description

Estimating Shapley values is attempted for a much more complex test case, where
M is no longer an analytical input-output performance function. This application
is taken from the field of aerospace engineering. During the launch of a satellite, the
payload is put into orbit after a highly technological process. Before the spacecraft
is released, several tasks have to be carried out, including first stage separation,
fairing jettisoning and second stage separation. Even if the mission’s main goal leans
on having the satellite successfully placed in orbit, monitoring how the propulsion
module subsystems are dropped is of utmost importance to guarantee that the fall-
back in the atmosphere do not jeopardize human life and activities. M consists of
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a simplified trajectory simulation code of the dynamic fallout phase of a generic
launcher first stage. It has also been used in [74] for an extensive sensitivity
analysis study. The simulation code needs to be given flight parameters describing
the system state at the instant when the first-stage rocket boosters are ejected.
Running M allows to predict the re-entry trajectory and the impact point in the
ocean. Input flight parameters X are subject to aleatory uncertainties because
of the physical perturbations that may affect the real flight before its arrival at the
separation position. The model output Y is the distance between the theoretical and
experimental impact positions. The former is computed from nominal input values.
The latter is computed from measured data forwarded by embedded systems. The
input probabilistic model is presented in Table 9 and it has already been deemed
appropriate in previous works, see Table 1 from [74]. All variables are assumed to
be independent and normally distributed.

Table 9: Input probabilistic model chosen to describe perturbations occurring at flight separation.
All marginal distributions are assumed normal and centered.

Input Description (unit) Std

X1 Stage altitude at separation ∆a (m) σ1 “ 1.7ˆ 102

X2 Velocity perturbation ∆v (m.s´1) σ2 “ 3.7
X3 Flight path angle perturbation ∆γ (rad) σ3 “ 1.0ˆ 10´3

X4 Azimuth angle perturbation ∆ψ (rad) σ4 “ 1.8ˆ 10´3

X5 Propellant mass residual perturbation ∆m (kg) σ5 “ 7.0ˆ 101

X6 Drag force error perturbation ∆Cd (1) σ6 “ 1.0ˆ 10´1

5.4.2. Dependence structure
To raise interest about the additional level of difficulty brought by the simulation

code, pairwise dependencies are plotted in Figure 1. Remember that cXiY is nothing
but the joint PDF arising from pUi , V q where Ui “ FXi

pXiq and V “ FY pY q.
Of course, pair-copulas are only a first glimpse of the real dependence structure
underlying pX, Y q and they do not allow to take definitive decision in terms of
sensitivity analysis. One should recall the copula-based expression (18) and notice
that any first-order index may be written as:

δi “
1

2

ż

H2

ˇ

ˇ

ˇ
cXiY

`

ui , v
˘

´ 1
ˇ

ˇ

ˇ
dui dv . (40)

As a consequence, any pairplot that provides visual evidence that Xi and Y are
almost independent must coincide with a small value of δ̂i. It is confirmed in Figure 1
where δ̂1, δ̂3, δ̂5 and δ̂6 are classified as the four smallest first-order Borgonovo’s
indices. On the contrary, sloped data clusters are observable in the pairplot pU2 , V q,
especially in the lower left corner and, in a lesser extent, in the lower right corner.
It suggests that cX2Y features non-zero tail dependencies [75] that deserve specific
attention [76]. Likewise, according to the fourth pairplot, cX4Y seems to lie within
a strict subdomain of H2 because of some geometrical constraints coming from how
M transforms X into Y . As may be intuited from visual considerations, δ̂4 and δ̂2

emerge as the two largest first-order indices in Figure 1.
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Figure 1: Pair-copula samples pUn
i , V

nq „ cXiY

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

U1

V

δ̂1 “ 0.03

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

U2
V

δ̂2 “ 0.17

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

U3

V

δ̂3 “ 0.11

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

U4

V

δ̂4 “ 0.25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

U5

V

δ̂5 “ 0.04

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

U6
V

δ̂6 “ 0.08

In addition of the benchmark double-loop algorithm, two copula-based estimation
methods are used in this test case to compute Shapley values. They are respectively
denoted by Ŝh

C1

i and Ŝh
C2

i . They only differ by the inference procedure they use
to estimate copula PDFs. Ŝh

C1

i resorts to parametric R-vines whereas Ŝh
C2

i adopts
a nonparametric variant based on the transformed KDE of all pair-copulas. The
reason why a second copula-based estimator is deployed may be found in the fact
that parametric R-vines are feared not to be enough flexible to capture properly the
subtleties of the dependence structure brought into play byM. As already touched
upon, the dependence pattern observed for cX4Y looks unusual. The associated
copula might be non-exchangeable [77], that is the PDF is not arranged symmetrically
along one of the two bisectors. Most parametric copula families are exchangeable1

and hence are very likely to fail to reconstruct cX4Y . After scanning all parametric
families, the one maximizing Akaike information criterion is the non-exchangeable
Tawn copula [78]. Even if this family is tailored to deal with non-exchangeability,
one can see in Figure 2 that the estimated copula does not share the same support
than initial simulated data. On the contrary, trying out a nonparametric approach
gives compelling results since the fitted model precisely matches the contours of the
targeted subdomain.

1A copula is said to be exchangeable if @pu, vq P H2, Cpu, vq “ Cpv, uq.
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Figure 2: Copula estimation for the pair pX4 , Y q
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5.4.3. Results
The computational procedure described in Appendix A is applied M “ 10

times and the achieved results for all three estimation methods may be consulted in
Table 10. Comparison with total-effect Sobol indices is also possible with Table 11.
As in previous cases, the “Pick-and-Freeze” estimation scheme used to compute Sobol
indices does not produce robust estimates for small indices. For instance, Ŝ1 and Ŝ5

show larger coefficients of variation compared with all other indices. The double-
loop estimator Ŝh

K
i gives results which are in reasonable agreement with total-effect

Sobol indices ŜT
i . X2 is identified as the most influential input variable while X3,

X4 and X6 make up a second group of less impactful variables. As noticed in the
previous test cases, Sobol indices tend to help the leading variable to pull away from
others whereas Shapley values seem to share contributions with fewer differences
between variables. One can notice that both copula-based methods are failing to
correctly estimate Shapley values. For those estimators, the relevancy of Shapley
value analysis could almost be questioned, with all variables being roughly of equal
influence.

Table 10: Estimation of Shapley values whenM is a realistic trajectory simulation code.

Inputs Ŝh
K
i Ŝh

C1

i Ŝh
C2

i

Mean Rank CV(%) Mean Rank CV(%) Mean Rank CV(%)

X1 0.0402 (5) 9.6 0.1417 (6) 2.9 0.1135 (6) 2.7
X2 0.3150 (1) 6.6 0.2210 (1) 4.2 0.2261 (2) 3.6
X3 0.2134 (3) 5.5 0.1775 (2) 5.5 0.1637 (3) 3.7
X4 0.2425 (2) 13.0 0.1566 (4) 2.6 0.2494 (1) 1.6
X5 0.0391 (6) 10.8 0.1438 (5) 3.4 0.1137 (5) 3.5
X6 0.1498 (4) 8.6 0.1593 (3) 4.9 0.1336 (4) 4.5
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Figure 3: Global method comparison for the estimation of Borgonovo’s indices at all orders. It is
recalled that (a) δH “ 0, (b) δrds “ 1 and (c) u Ď v ñ δu ď δv .
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Table 11: Estimation of Sobol indices whenM is a realistic trajectory simulation code.

Inputs Ŝi ŜT
i

Mean Rank CV(%) Mean Rank CV(%)

X1 0.0009 (6) 143.2 0.0151 (6) 3.0
X2 0.2649 (1) 1.1 0.6594 (1) 0.6
X3 0.0664 (3) 4.6 0.3820 (2) 0.6
X4 0.1871 (2) 1.5 0.2105 (4) 0.8
X5 0.0012 (5) 106.3 0.0171 (5) 2.6
X6 0.0186 (4) 20.6 0.2198 (3) 0.6

5.4.4. Analysis
In order to understand what is going on with Shapley values estimated with

copula-based methods, a natural idea is to check whether all Borgonovo’s indices
are estimated properly. That is what is done in Figure 3 where the values obtained
with δ̂Ku and δ̂C2

u are compared. One needs to investigate which are the δ-indices
responsible for the lack of accuracy evidenced by copula-based estimators of Shapley
values. Whether both estimators seem to match as long as |u| ď 3, it is no longer
the case for some high-order indices. For instance, δ346 is well estimated by the
copula-based method whereas δ2346 is not. It suggests that nonparametric copula
estimation succeeds in learning cX346Y but fails to reiterate with cX2346Y . Let us
recall that Bayes rule for densities allows to write:

fX2346Y px2346, yq “ fX2Y |X346px2, y | x346q ˆ fX346px346q . (41)

Then, the conditional version of Sklar’s theorem is applied on fX2Y |X346 and one has:

fX2Y |X346px2, y | x346q “ fX2|X346px2 | x346q ˆ fY |X346py | x346q ˆ . . .

cX2Y |X346

´

FX2|X346px2 | x346q , FY |X346py | x346q

ˇ

ˇ

ˇ
x346

¯

. (42)

After noting that X2 is independent from X3456, combining (41) and (42) yields:

fX2346Y px2346, yq “

»

–

ź

iPt2,3,4,6u

fXi
pxiq

fi

flˆ fY pyq ˆ . . .

cX2Y |X346

´

FX2px2q , FY |X346py | x346q

ˇ

ˇ

ˇ
x346

¯

ˆ . . .

cX346Y

´

FX3px3q, FX4px4q, FX6px6q, FY pyq
¯

. (43)

The second and third lines in (43) account for the copula density term and thus
cX2346Y and may be factorized as follows:

cX2346Y pu2, . . . , u6, vq “ cX346Y pu3, u4, u6, vq ˆ . . .

cX2Y |X346

´

u2 , hpu3, . . . , u6, vq
ˇ

ˇ

ˇ
F´1
X3
pu3q, . . . , F

´1
X6
pu6q

loooooooooooomoooooooooooon

x346

¯

, (44)
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where:
hpu3, u4, u6, vq “

ż v

0

cX346Y pu3, u4, u6, tq dt . (45)

As pointed out just before, R-vine models are likely to learn very accurately cX346Y .
To derive an estimation of cX2346Y , the factorization (44) shows that all boils down to
learning the conditional pair-copula cX2Y |X346 . For inference purposes, parametric
and nonparametric R-vines handle conditional pair-copulas as if the conditioning
process exerted no impact on the intrinsic dependency they hold. It is the so-called
“simplifying assumption” previously discussed in Section 3. In the case of cX2Y |X346 ,
it implies that the dependence structure between X2 and Y remains unchanged
regardless of the values X346 might take. To rule on the validity of such a risky
assumption in the context under study, it would be necessary to observe several
samples of the random pair pX2 , Y q for different values of the conditioning set. This
can be achieved by proceeding as indicated below:

1. Set x346 “ px3, x4, x6q P R3.
2. Generate input samples of the remaining variables:

!

Xn
125 “

`

Xn
1 , X

n
2 , X

n
5

˘

)

1ďnďN

i.i.d.
„ fX125 .

3. Compute the associated output samples:

Y n
“MpXn

1 , X
n
2 , x3, x4, X

n
5 , x6q .

4. Any pairwise observation pXn
2 , Y

nq needs to be rescaled:

Un
2 “ FX2pX

n
2 q and V

n
“

1

N ` 1

N
ÿ

i“1

1tY iďY nu .

5. Plot the resulting copula samples:
!

pUn
2 , V

n
q

)

1ďnďN
.

The procedure is repeated several times, as shown in Figure 4, and it is glaring
clear that the dependence structure underlying cX2Y |X346 evolves according to the
values given to covariates. It can thus be concluded that some of the copula
distributions induced by the black-box model do not obey the simplifying assumption.
Therefore, in this particular context, copula estimation with R-vine models can not
be considered as a reliable approach.

The simplifying assumption has long aroused a lively debate [79, 80, 81], especially
about how misleading it might be if wrongly accepted. Ongoing research initiatives
to address this issue have to be noted. A review of recent advances in this field is
available in [12]. The main ideas were put forth in the parametric framework and
they ambition to let copula parameters depend on the covariates [82, 83, 84]. The
copula factorization given by (21) becomes:

cXpuq “
d´1
ź

i“1

ź

ePEi

cjeke|De

´

uje|De , uke|De

ˇ

ˇ

ˇ
θ
`

uDe

˘

¯

, (46)
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Figure 4: Conditional pair-copula samples pUn
2 , V

nq „ cX2Y |X346
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where θ
`

uDe

˘

stands for an arbitrary parametrization of the conditional pair-copula
cjeke|De . Unfortunately, those improvements are highly insufficient to seize the entire
volatility of the conditional copula cX2Y |X346 displayed at Figure 4. A fully non-
simplified and nonparametric approach has to be used and it is yet to be explored.

5.4.5. Further discussion
This aerospace test case reveals the limits of the copula-based method in a

context where the dependence structure extracted from real-life data contains intricacies.
There may be a debate about the most relevant copula model in this situation.
Even resorting to nonparametric R-vines is not always a quick-fix approach. On the
contrary, in some cases, estimating a Gaussian copula works fine. In the current
situation, selecting an appropriate copula distribution model is mainly based on
graphical considerations and remains an open problem. A promising research avenue
for future work would consist in coupling the copula-based estimation of high-order
Borgonovo’s indices with the wide literature on goodness-of-fit tests for copulas
[35, 36]. In particular, goodness-of-fit tests have recently been designed for the
special class of vine copulas [85] and shed new light on this topic compared with
previous works based on the Rosenblatt transform [51]. The simplifying assumption
can also be tested [86] for purposes of validation and, if it is rejected, this may
indicate the need to deploy more sophisticated copula models.

6. Conclusion

In this paper, the authors advocate to compute Shapley values with Borgonovo’s
importance measure as cost function. The resulting sensitivity indicators appear
to be an all-in-one solution since they are easily interpretable, take into account
the entire output distribution and do not require independent inputs. However,
estimating Borgonovo’s indices at all orders is a mandatory first step. It can not be
properly done with a double-loop estimator because it would force the simulation
budget to be an exponential function of the problem dimension. To circumvent
this pitfall, copula-based methods are gaining increasing interest since they allow to
derive all Borgonovo’s indices from a single input-output dataset. Nonetheless, one
is brought back to the thorny topic of copula estimation in possibly high dimension.
One important point of criticism about the copula-based approach lies in the heavy
influence that the accuracy of copula estimation has on the resulting Borgonovo’s
indices. To date, even high-dimensional copula models are not able to guarantee
convergence to the true underlying copula distribution without operating strong
assumptions. In that context, copula model selection remains an open question
that may be addressed with appropriate goodness-of-fit tests. It was shown that
using multivariate copula distributions, in particular R-vine copulas, offers enough
flexibility to some extent. The numerical study highlights that existing copula
models fail to neatly estimate high-order Borgonovo’s indices in the case of a complex
aerospace dataset. The so-called “simplifying assumption” does not hold and yields
misestimations. Furthermore, improvements or extensions of this work include the
following points:

1. In the light of recent research effort to develop non-simplified regular vine
copulas, there is no doubt that the shortcomings identified in the aerospace
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application will be overcome very soon with the advent of even more flexible
copula models.

2. As briefly discussed when examining the Gaussian linear model, one may regret
that the estimation procedure of cXY is merely data-driven and does not better
incorporate the information brought by cX since:

cXpuq “

ż 1

0

cXY pu, tq dt . (47)

3. The copula-based estimation method could be easily extended to the case
where the input distribution fX is unknown and subject to statistical learning.
The only extra task would consist in estimating the copula PDF between input
variables. The resulting copula-based estimator would be given by:

δ̂Cu “
1

2N

N
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ĉXuY

`

Uk
1 , . . . , U

k
r`1

˘

´ ĉXu

`

Uk
1 , . . . , U

k
r

˘

ˇ

ˇ

ˇ

ˇ

. (48)

4. Shapley values can always be rewritten as a sum over all possible permutations
of the players. Moreover, it was shown that only using a small set of randomly
selected permutations is enough to produce accurate estimates of Shapley
values. This idea was introduced in sensitivity analysis in order to reduce
the number of Sobol indices that have to be estimated to compute Shapley
values. The same could be done here with Borgonovo’s δ-sensitivity measures
instead of Sobol indices.
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Appendix A. Computational procedure

The whole computational procedure for the estimation of Shapley values in the
numerical study is detailed hereafter.

1. A sequence of M input datasets Xpkq
obs is generated and must be regarded as

independent N -samples from the input joint distribution fX :

X
pkq
obs :“

”

Xn
1 , . . . , X

n
d

ıpkq

1ďnďN
.

2. The associated collections of Borgonovo’s indices ∆̂pkq are estimated. To
construct ∆̂pkq, the only required material consists of Xpkq

obs andM:

∆̂pkq :“
!

δ̂pkqu : u P Pd

)

.
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3. Every Shapley value Shi is estimated M times, as expanded in (28):

Ŝh
pkq

i “
1

d

ÿ

uĂt1,...,duztiu

ˆ

d´ 1

|u|

˙´1
´

δ̂
pkq
uYtiu ´ δ̂

pkq
u

¯

.

4. The empirical mean ĎShi of each Shapley value estimator (MEAN column in
the different result tables) Ŝhi is computed:

ĎShi “
1

M

M
ÿ

k“1

Ŝh
pkq

i .

5. In a similar way, the variability of each Ŝhi is assessed through classical
unbiased estimators of both the variance and the coefficient of variation (CV
column in the different result tables):

σ̂2
i “

1

M ´ 1

M
ÿ

1“1

´

Ŝh
pkq

i ´ĎShi

¯2

and ν̂i “
σ̂i
ĎShi

.
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