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Cable tension identification via
nonlinear static inverse problem

Arnaud Pacitti1 , Michaël Peigney2, Frédéric Bourquin3

and Walter Lacarbonara4

Abstract
A new identification technique is proposed to evaluate the tension of a cable using a static inverse approach that couples
a universal cable model with displacement sensors, strain gauges and added masses that should preserve operational
affordability. An inverse problem is formulated as the minimization of a data misfit functional based on the differences in
terms of vertical displacements and axial strains between two equilibrium configurations of the cable, namely, one loaded
and the other free. The inverse problem formulation echoes the parametric study of a non-conventional functional sug-
gesting a way to identify the cable parameters, namely, its length, its axial stiffness, and its mass per unit length. The com-
putational resolution of the inverse problem is implemented as a two-step identification procedure. First, the axial
stiffness and mass per unit length are kept constant and the length of the cable is approximately found via a simple line
search algorithm using finite differences to estimate the functional derivatives. Second, the other physical parameters are
assessed using an adjoint method for which the direct problem, the adjoint problem, and the parameter sensitivities are
defined as derivatives of a Lagrangian functional with respect to dual variables, primal variables, and parameters, respec-
tively. Due to the ill-conditioning of the problem, the proposed method does not enable an exact parameter identifica-
tion but yields a good tension assessment. An experimental test campaign conducted on a multilayered 21-m long
stranded cable subject to several tension levels confirms the relevance of the proposed inverse method. A field test cam-
paign of the method on three 120-m long cables of Bonny-sur-Loire (France) suspension bridge is also presented. It
proves the reliability and affordability of the overall tension identification process.

Keywords
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Introduction

Because of its leading role in structural health monitor-
ing, tension identification of bridge cables has been
widely studied over the years. At the cable level, it
enables one to estimate its remaining load-bearing
capacity. At the bridge scale, tension assessment yields
quantitative information on the structural tuning and
possible malfunctioning. When no permanent monitor-
ing system is installed on a bridge, three main methods
exist for tension assessment: the use of jacks, the use of
tensiometers, and dynamical testing. Using jacks on a
job site is costly and more likely to happen during a
repair or heavy maintenance operation (suspender or
anchorage replacement, suspension tuning operation,
etc.) for which an accurate tension assessment is usually
not necessary.

The tensiometer can be of great help for tension
identification of small cables and ropes but its response

depends on the cable type, urging for laboratory cali-
bration. It is therefore an effective tool for tension
assessment in post-tensioned strands but its scope does
not embrace the large diversity of cable types encoun-
tered in civil engineering.
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Last but certainly not least, because of its applica-
tion feasibility and low cost, dynamical testing for ten-
sion assessment has been extensively treated in the
literature and used on sufficiently long cables. Most
dynamical testing methods are based on an explicit or
an implicit relationship between the tension and the
natural frequencies of the cable. Despite the big differ-
ences between all the established methods in the way
this relationship is found and used, they all rely on a
combination of three parts: a cable model, several sen-
sors, and data post-processing to obtain the natural fre-
quencies of the cable. Along these lines, the most
famous method uses the explicit relationship given by
the string theory with accelerometers whose output is
post-processed via a fast Fourier transform (FFT). In
France, this method is known as the LPC35.1 Zui
et al.2 presented a method based on a tensed clamped
beam model with additional terms to take into account
small sag effects of long stay cables. Because anchorage
conditions impact on the dynamical behavior of short
cables, three different kinds of anchorages for the
tensed beam theory (clamped-clamped, hinged-
clamped, and hinged-hinged) were investigated by
Bouton and Crémona,3 increasing the analytical devel-
opments burden but keeping the formulas easy to use.
Gentile4 used the string theory with a microwave inter-
ferometer allowing to measure the dynamic responses
of several stay cables at once. Various data-processing
options were investigated in order to improve the accu-
racy of the spectral identification,5 and richer alterna-
tives to the conventional FFT were proposed,6 such as
wavelet transforms or MUltiple SIgnal Classification
(MUSIC) algorithm. A synthetic overview of dynami-
cal testing for tension assessment7 confirms the reliabil-
ity of the methods for cables longer than 19 m.

For shorter cables, physical uncertainties due to
unknown boundary conditions or physical parameters
of the cable such as its length or flexural stiffness have
set the tension assessment issue in terms of identifica-
tion and inverse problems using tensed (and straight)
beam modeling. Li et al.8 used modal shapes and length
identification of a tensed beam model to identify the
tension of a cable with uncertain boundary conditions.
Several authors9–12 proposed an identification of stiff-
nesses at the boundary using the minimization of a data
misfit functional taking advantage of the natural
frequencies.

To the best of the authors’ knowledge, very few
works consider the mass per unit length as an unknown
of the problem. In practice, its value is seldom known
with accuracy. Its computation would request the avail-
ability of information on coating, corrosion protection
system, paint, and internal structure of the cable.
Depending on the case, the resulting uncertainty on the
mass per unit length of cable is likely to be around

5%–10%. In the case of dynamical testing using the
string theory, this uncertainty directly propagates to
the tension identification and deteriorates the precision
thereof.

In the presented work, an inverse problem is formu-
lated as the minimization of a data misfit functional
involving an observation made of the differences in
terms of vertical displacements and axial strains
between two equilibrium configurations of the cable:
one loaded and the other free. It enables one to find
the tension in a cable without knowing precisely a
priori its physical parameters, namely, its (unstretched)
length L, its mass per unit length, and its axial stiffness.

Section ‘‘Preliminaries: inverse problem and cable
parameters’’ gives an overview on the proposed
method, mixing general inverse problem theory and
practical considerations on cable parameters. In section
‘‘Cable model,’’ we introduce the data misfit designed
for the static tension identification method and we pres-
ent an original mixed formulation for nonlinear cables.
A numerical parametric study of the data misfit is con-
ducted and suggests a two-step tension identification
procedure described in section ‘‘Data misfit.’’ The idea
of a two-step procedure to reduce the ill-conditioning
of cable problems has already been used and can be
found in the literature; see, for instance, Lepidi et al.13

for dynamic damage identification and Joaquim et al.14

for dynamic tension assessment. These studies do not
consider the mass per unit length of cable as an
unknown despite its importance in the cable dynamics.
It is worth noticing that contrary to most frequency-
based studies, the characterization of the static config-
uration is part of the inverse problem presented in
Lepidi et al.13 In section ‘‘Cable model,’’ the inverse
problem is presented and its successful experimental
validation is illustrated in section ‘‘Inverse problem.’’
The methodology can be applied to a large variety of
cables and its performance is investigated in section
‘‘Performance assessment of the inverse methodology.’’
A version considering flexural stiffness has been investi-
gated by Pacitti.15 In section ‘‘Experimental valida-
tion,’’ an experimental validation made at Cerema’s
test facilities on a 21-m long cable tensed at six different
levels of tension is presented. The method proved to be
operationally effective when applied to three cables of
the Bonny-sur-Loire (Loiret, France) suspension
bridge. The results of this successful in situ test cam-
paign are reported in section ‘‘Application to three top
cables of a suspension bridge.’’

All simulations were conducted in a Python environ-
ment on the computing platform FEniCS.16 Space dis-
cretization is done with P1 Lagrangian finite elements
for the cable positions and P0 discontinuous elements
for its tension and strain. Derivatives are projected at
quadrature points and validation of the routines was
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performed by comparison with the closed-form solution
of a strongly nonlinear three-dimensional (3D) catenary
problem.15

Preliminaries: inverse problem and cable
parameters

In this section, general matters on inverse problems are
briefly recalled and used to give an overall picture of
the proposed method. The tension assessment problem
is an optimization problem that involves a state equa-
tion, a set of cable parameters, and experimental data.
Let the three Hilbert spaces P, U, and D be the para-
meter space, the state space, and the data space, respec-
tively. The state equation gives the implicit relation
between the parameters and the state

F q, uð Þ= 0, q 2 P, u 2 U ð1Þ

Section ‘‘Cable model’’ presents the elastic cable
model used to express equation (1). An elastic cable is
fully described by four parameters among five possible,
namely, its length L, its axial stiffness EA, its mass per
unit length m, its tension at one anchorage, and the
relative positions of its anchorages. Because these latter
can be easily assessed with a good accuracy in practice
(e.g. with a laser sensor, or when the construction draw-
ings are available), they are taken as a datum of the
problem. The four other parameters are not precisely
known. The observation equation gives the relation
between the observed data and the state

d = Hu, u 2 U ð2Þ

where H is the observation operator. An inverse prob-
lem aims to find the parameters q such that d = H(S(q)),
where S(q) is the solution of F(q, S(q)) = 0. Let f be the
implicit function such that f(q) = H(S(q)). In practice,
the problem can be rewritten as

Find q 2 P such that

J qð Þ= minJ pð Þ= min
1

2
f pð Þ � dk k2

D

for all p 2 Pq � P

ð3Þ

Problem (3) is well-posed according to Hadamard17

iff (1) a solution exists, (2) the solution is unique, and
(3) the solution’s behavior changes continuously with
the initial conditions. For the tension assessment prob-
lem, requirements (1) and (3) are a priori fulfilled. On
the contrary, requirement (2) is not met in most cases.
Two cables laying between the same points can have
indistinguishable tensions in practice, but quite differ-
ent parameters (L,m,EA). The first sources of practical
ill-conditioning are the low sensitivities of parameters

m and EA for taut and sagged cables, respectively. One
can easily imagine that adding + 10% mass per unit
length (respectively axial rigidity) to a taut cable
(respectively to a sagged cable) will only induce negligi-
ble changes in its tension. The second sources of ill-
conditioning are relative to parameters (L,EA) for taut
cables and (L,m) for sagged cables. Two cables slightly
differing in parameters (L,EA) (respectively (L,m)) can
have indistinguishable tensions if the shortest is stiffer
(respectively heavier) than the longest. To cover all
types of cables, the inverse problem has to circumvent
requirement (2) and needs to consider the three para-
meters (L,m,EA). One consequence of the violation of
(2) is that a standard inverse problem using one state
equation like equation (3) does not lead to a correct
tension assessment, as illustrated in section ‘‘Setting the
stage: why a standard residual does not work?’’ An
original data misfit Ja, b involving two state equations is
introduced to overcome requirement (2). In section
‘‘Numerical exploration of the novel data misfit func-
tional Ja, b,’’ a numerical exploration of the proposed
data misfit Ja, b enlightens the problem sensitivity to the
parameters (L,m,EA) for three different cable config-
urations: one taut, one sagged, and one intermediate.
Among the cable parameters, L plays a preponderant
role. Thus, and as described in section ‘‘Identification
of the natural length of the cable,’’ its identification is
treated first, letting Ja, b = Ja, b(L) and freezing the other
parameters p = (m,EA) to their initial guess values.
Once a length L has been found, the adjoint method
described in section ‘‘Identification of the tension’’ is
used to find a set of parameters (m,EA) that returns the
correct tension. In the following, the application of the
method to problem (3) is summarized. If u and p are
the independent variables, a Lagrangian functional of
the minimization problem is built

L u, p, lð Þ=
1

2
f pð Þ � dk k2

D
�\l,F p, uð Þ., 8 l 2 A ð4Þ

where l is the Lagrangian multiplier of the constraint
F(p, u) = 0,\� , �. denotes the scalar product used, and
A is the Hilbert space. The partial derivative of L(u, p, l)
with respect to l gives the variational formulation of the
state equations

\dl,F p, uð Þ. = 0, 8 dl 2 A ð5Þ

The partial derivative of L(u, p, l) with respect to u

gives the variational formulation of the adjoint
equations

\Hdu,Hu� d. =\l, ∂uF p, uð Þdu., 8 du 2 U ð6Þ
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If u(p) is the solution of the direct variational prob-
lem (5) and l is the solution of the adjoint problem (6),
the differential of J(p) reads

\l, ∂pF p, u pð Þð Þdp. = Jp pð Þdp ð7Þ

The subscript p denotes the differentiation with
respect to the parameters p. In finite-dimensional space,
Jp(p)dp =rJ(p)tdp. Once the gradient of J is found, the
sensitivities of the problem are known and the para-
meters can be updated. An introduction to inverse
problem can be found in Bui18 or in Kern.19

Cable model

The tension is expressed in terms of its associated safety
factor

g =
Afy

N
^

max

ð8Þ

where fy is the yield stress of the cable, A its cross-
sectional area, and N

^

max is the maximum value of the
tension in the cable.

In this section, we briefly present the nonlinear
mixed formulation modeling of cable used for tension
assessment (for more details, see Pacitti15).

Formulation of the static problem

A cable in the Newtonian basis fe1, e2, e3g with ori-
gin O can be described in two configurations: the
stress-free configuration B0 and the current configura-
tion B

^

which could be static or not. In configuration
B0, the cable is described by a curve C0 parameterized
by its arc length s. The configuration B0 can be fully
described as B0 : = fr0, s 2 ½0, L�g, where L is the length
of the cable C0 and r0 is the position vector of a mate-
rial point M of C0 at s. Similarly, quantities C

^

, s
^
, r

^
,

and L
^

are defined for the current configuration B
^

. An
illustration of configurations B0 and B

^

are shown in
Figure 1.

Assuming clamped (Dirichlet) boundary conditions
and a linearly elastic behavior for the cable, the classical
form of the static problem is cast as

n
^

s + f
^

= o

n
^

= EAD
^

r
^

s

D
^

= 1
2

r
^

s � r^ s � 1
� �

r
^

0ð Þ= o and r
^

Lð Þ = L1 e1 + L2 e2 + L3 e3

8>>>><
>>>>:

ð9Þ

where n
^
is the tension (generalized stress resultant vec-

tor) in the cable, f
^

is the external force per unit refer-
ence length exerted on the cable, EA is the axial
stiffness, and D

^

= 1=2 r
^

s � r^ s � 1
� �

is the Green strain

measure. The subscript s denotes the differentiation
with respect to the arc length s. The parameters
(L1, L2, L3) are prescribed to set the cable ends.20,21

Considering a space H1 of sufficiently smooth dis-
placement fields over ½0, L�, we define the two spaces
V= f r^ 2 H1jr^(0) = o and r

^
(L) = L1e1 + L2e2 + L3e3g and

V0 = fd r
^ 2 H1jd r

^
(0) = o and d r

^
(L) = og. The varia-

tional problem associated with equation (9) is formu-
lated as follows

Find r
^ 2 V such that for every d r

^ 2 V0

ðL
0

n
^ � d r^ s

� �
ds�

ðL
0

f
^

� d r^
� �

ds = 0

n
^

= EAD
^

r
^

s for s 2 0, L½ �

This problem is a non quadratic minimization
problem

Find r
^ 2 V minimizing

J r
^
� �

=

ðL
0

1

2
EAD

^2

� r
^ � f

^
� �

ds
ð10Þ

Mixed variational formulation of the static problem

The static problem can be solved using the
displacement-only formulation (10) given above. For
data assimilation purposes, however, it is interesting to
introduce the strain as an unknown by imposing its def-
inition as a constraint. More precisely, the relation
D
^

= 1=2(r
^

s � r^s � 1) in equation (9) is relaxed and

Figure 1. Stress-free configuration B0 and current
configuration B

^

.
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considered as a constraint on (r
^
,D
^

). Among the several
options to impose a constraint in an optimization prob-
lem, we choose the method of Lagrange multipliers.
Letting T

^

be the Lagrange multiplier associated with
the constraint, the problem (10) reads

Find r
^ 2 V,D

^

2 PD and T
^

2 PT

such that r
^
,D
^

, T
^

� �
is a saddle point of

J r
^
,D
^

, T
^

� �
=

ðL
0

1

2
EAD

^2

� T
^

D
^

� D
^e� �
� r

^ � f
^

� �
ds

where D
^e

: =
1

2
r
^

s � r^s � 1
� �

ð11Þ

By saddle point we mean that such J(r
^
,D
^

, T
^

) is a
relative minimum for r

^
and D

^

and a relative maximum
for T

^

. We recall that the boundary conditions are taken
into account within appropriate spaces V, PD, and PT .

Let us briefly show how equation (11) is related to
the classical formulation (9). For any saddle point
( r
^
,D
^

, T
^

) of the function J in equation (11), the first
variation dJ ( r

^
,D
^

, T
^

) vanishes, that is

dJ =

ðL
0

EAD
^

� T
^

� �
dD
^

+ T
^

r
^

s � d r^s

h

� D
^

� D
^e� �

dT
^

� f
^

� dr^
i
ds = 0

ð12Þ

In equation (12), we recognize the following three
sets of equations:

� EAD
^

= T
^

is the constitutive equation. As one
expects, the Lagrange multiplier associated with the
constraint is the tension T

^

.

� D
^

= D
^e

is the strain–displacement relationship,
which plays the role of a constraint in equation
(11).

� After an integration by parts on the integralÐ L

0
(T
^

r
^

s � d r^s � f
^

� dr^)ds, we recover the strong form
of the static equilibrium (T

^

r
^

s)s + f
^

= 0.

Starting form equation (10), J ( r
^
,D
^

, T
^

) is con-
structed as a Hu–Washizu functional for the cable
problem. More information on the Hu–Washizu for-
mulation can be found in He.22 Additional details on
the numerical implementation of equation (12) are
reported in Appendix 1.

It is convenient to introduce the quantities

k = EA=EAth m = 106rAl=EAth ð13Þ

where l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

1 + L2
2 + L2

3

p
and EAth = 3=16Epd2

c with E

being an estimate of the Young’s modulus of the wires

in the cable and dc being its diameter. The parameter k

is nondimensional and m�1 has the dimension of an
acceleration. By employing SI units, k and m are both
close to unity for most cables commonly used in civil
engineering. In the following, our parameters of inter-
est will be k, m, and L. Note that according to equation
(13), k and m are directly related to the axial stiffness
and the mass per unit length, respectively.

Data misfit

Setting the stage: why a standard residual does not
work?

We suppose that the monitoring system consists of N

strain gauges and M displacement sensors. Our goal is
to recover the tension of the cable or the corresponding
safety factor g defined by equation (8) in the static con-
figuration. We let a be the natural static configuration
of the cable laying under its own weight.

The most natural choice for J is

J
a L, k,mð Þ=

XN

i = 1

cstr

2
D
^ i

� Di

� �2

+
XM
j = 1

cdisp

2
r
^j

1 � r
j
1

� �2
ð14Þ

where the superscripts i and j are the sensor numbers,
r1 is the vertical component of the position vector r ,
and D is the axial strain. Breve quantities (r

^

1,D
^

) are
model-based, and non-breve quantities (r1,D) denote
the experimental data. The weighting parameters cstr

and cdisp in equation (14) need to be chosen so that (1)
accuracies of the sensors are respected and (2) the two
resulting quantities are of the same order of magnitude.
The data misfit functional equation (14) proves very
difficult to handle in practice. First, absolute strain
measures require the placement of sensors to be done in
a stress-free configuration of the cable, which is rarely
the case. Moreover, when taut cables are considered, a
small bias on its sag characterization can lead to large
errors in terms of tension identification. More impor-
tantly, even when the natural length of the cable L is
known, the minimization problem min(k,m) J

a(L, k,m) is
strongly ill-conditioned for the multiplicity of solutions
and the non-uniqueness of the corresponding tensions
found in the cable. To illustrate this point, we consider
the example of 21.5-m long cable tensioned with g = 2:3
and equipped with three strain sensors (labeled as JI,
JII, and JIII) and two displacement sensors (labeled as
D1 and D2). This specific configuration will be further
discussed in the experimental validation part of this
article.
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The function (k,m)7!Ja(L, k,m) is shown in Figure
2(a) using simulated data (r1,D) obtained from the
solution of the static problem (10) with k = 9:444 10�1

and m = 1:253. Weighting parameters cstr and cdisp are
equal to 1012 and 104=d2

c , respectively, where dc is the
diameter of the cable. As one can observe in Figure
2(a), the function (k,m) 7!Ja(L, k,m) features several
minima (indicated as blue points). Figure 2(c) shows
the value of the cable safety factor g as a function of
fk,mg. Comparing Figure 2(a) and (c) reveals that each
couple (k,m) solving the minimization problem
min(k,m) J

a(L, k,m) leads to a different value of the
cable safety factor (and of the tension). This was
expected because one can only choose independently
four among the five parameters of the cable
fk,m, g, L,Lsg, where Ls is the chord vector defined by
the two cable supports. Note that the direction of Ls is
irrelevant and Ls could be replaced either by the space
coordinates of the cable supports or by the cable chord
length Ls = k Ls k and the chord angle with respect to
the horizontal plane. It is proposed to use a data misfit
functional based on two configurations a and b. The
configuration a is the natural static configuration of
the cable laying under its own weight, as considered in
equation (14). The configuration b is the static config-
uration of the cable when subject to a given additional
load. The data misfit functional Ja, bðL; k;mÞ that we
consider is defined by

J
a, b = Jstr + Jdisp ð15Þ

Jstr =
XN

i = 1

cstr

2
D
^ i, b

� D
^ i, a

� �
� Di, b � Di, a
	 
� �2

ð16Þ

Jdisp =
XM
j = 1

cdisp

2
r
^j, b

1 � r
^j, a

1

� �
� r

j, b
1 � r

j, a
1

� �h i2

ð17Þ

where the superscripts a and b denote the configura-
tion, breve quantities are calculated via the static prob-
lem (11), and other quantities are the measured data.

To first illustrate the relevance of the data misfit
functional in equation (17), consider the example of a
21.5-m cable introduced previously. In configuration b,
the cable is subjected to a point load of 1 kN as
depicted in Figure 3. The corresponding function
(k,m) 7!Ja, b(L, k,m) is shown in Figure 2(b). As it can
be seen in Figure 2(b) and (c), the modification of the
data misfit does not prevent the ill-conditioning of the
minimization problem min(k,m) J

a, b(L, k,m) but it does
lead to a unique and correct safety factor value g = 2:3.
Looking at Figure 2(a) to (c), it can be anticipated that
Ja + Ja, b would lead to a well-posed problem and a cor-
rect identification of all cables’ parameters, namely, the
tension, the mass per unit length, and the axial stiff-
ness. However, since it is easier to measure strain differ-
ences and displacements than absolute strains and
positions, we choose to construct our tension assess-
ment method using Ja, b only. As it will be developed in
the following sections, the proposed data misfit can be
considered as a reliable workaround for the tension
assessment problem.

Numerical exploration of the novel data misfit
functional Ja, b

In this section, we use some numerical simulations to
further highlight the most striking feature of the data
misfit functional Ja, b in equation (15), namely, its abil-
ity to convey the right information in view of tension
assessment. We choose to explore two completely dif-
ferent configurations of a generic cable—one taut and
the other sagged—with a span of 50 m and a diameter
50 mm in both cases. The true values of the axial stiff-
ness and linear mass of the cables are ktc = 1:0 and
mtc = 2:297. The natural length of the taut cable is

Figure 2. (a) Values of Ja(L, k,m) when configuration a only is considered, (b) values of the proposed data misfit functional
Ja, b(L,k,m) based on the difference between configurations a and b, and (c) corresponding safety factors. The cable has been
simulated with L = 21.5 m, k = 9:444 10�1, and m = 1:253.
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Ltc = 49:79m and that of the sagged cable is Ltc = 57:5m.
The taut and sagged cables have a sag-to-span ratio of
6 1026 and 0.25, respectively, and a safety factor of 2.3
and 550, respectively. Data measures are simulated via
the static problem (10), and the weighting parameters
cstr and cdisp are equal to 1012 and 104=d2

c , respectively,
where dc is the diameter of the cable. These values are
consistent with the accuracies of most strain gauges
(0.1 mdef) and displacement sensors (0.1 mm). Because
the exact length of the cable is an unknown of the prob-
lem, the numerical exploration of the data misfit
(k,m) 7!Ja, b(L, k,m) is done with three different lengths
in both cases. For the taut cable, it is reasonable to
choose three values of L that are close to the actual
length Ltc, and we therefore numerically investigate
(k,m) 7!Ja, b(k,m) for L = 0:999Ltc, L = Ltc, and
L = 1:001Ltc as shown in Figure 4. For the sagged cable,
we let the uncertainties on the length of the cable be
greater by choosing L = 0:99Ltc, L = Ltc, and L = 1:01Ltc

as shown in Figure 5. Observing the two sets of graphs

raises three main comments. First, the data misfit func-
tional allows an exact assessment of the tension when-
ever the exact length of the cable is known as shown by
the perfect alignment of the minimal values in graphs
(b). Second, we notice that the problem is more sensi-
tive to the stiffness parameter k for the taut cable and
to the mass per unit length parameter m for the sagged
cable. It is not surprising since the displacements of a
cable subject to an applied load are related to elastic
deformation for a taut cable and to geometric adapta-
tion (with little elastic deformation) for a sagged cable.
This is also highlighted by the design of Figures 4 and 5
that uses inverted k- and m-axes but results in similar
graphs. Considering both parameters k and m as
unknowns of our inverse problem ensures its universal
applicability. This feature will be illustrated in the fol-
lowing section. Last but not least, the error introduced
by the lack of precision on the length of the cable pro-
pagates to the tension assessment but has a very limited
impact. Even in the worse cases depicted in graphs (1a),

Figure 3. Drawing of the test setup used in the experimental validation campaign.
D: displacement sensor; A: accelerometer; J: strain gauges. Positioning is given in meters from the left anchorage.

Figure 4. Taut cable: (1) parametric study of Ja, b(L,k,m) for (1a) L = 0:999Ltc, (1b) L = Ltc, and (1c) L = 1:001Ltc and (2)
corresponding safety factor errors jg � gtcj=gtc, where gtc = 2:3.
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(2a) and (1c), (2c) of Figure 5 for which a 1% error has
been introduced on a very loose cable (gtc = 550), the
data misfit functional minima lead to less than 1.5%
error on the tension.

The minimization problem is ill-posed since it has
multiple solutions in all the investigated cases (taut and
sagged cables). However, these solutions lead to a cor-
rect identification of the tension in the cable.
Parametric studies showed that the minimization prob-
lem is very sensitive to the length parameter L in all
cases and sensitive to the stiffness parameter k or to the
mass per unit length parameter m when the cable is taut
or sagged, respectively.

A flow chart of the proposed method construction is
shown in Figure 6. Conclusions of the numerical inves-
tigations made for Ja in section ‘‘Setting the stage: why
a standard residual does not work?’’ and the ones pre-
sented for Ja, b are summarized. On the flow chart, it
can clearly be seen that both data misfits are based on
the nonlinear elastic model of cable proposed in section
‘‘Cable model,’’ thus covering all types of cables.
Although the ill-conditioning exists for both data mis-
fits, Ja, b is the only one leading to a correct tension
assessment.

Inverse problem

Identification of the natural length of the cable

As confirmed by the numerical investigations presented
in section ‘‘Data misfit,’’ the static behavior of taut
cables is more sensitive to variations of k and L while

for sagged cables, the two parameters m and L have a
preponderant part.

In our work, all three parameters fk,m, Lg are
treated as unknown since the tension assessment
method covers all types of cables (taut, sagged, and
nonshallow). However, looking for the triplet fk,m, Lg
in a single-step procedure would lead to an ill-
conditioned problem showing slow convergence due to
endless updates. Because of its importance in taut and
sagged cables, we choose to address first the identifica-
tion of the natural length L for given k and m. Then,
we identify parameters k and m for a fixed length L. In
the following, we illustrate the suitability of this choice
with three examples: a taut cable and a sagged cable as
described in section ‘‘Numerical exploration of the
novel data misfit functional Ja, b’’ and an intermediate
one for which g = 29:13. For each of the three cables,
we show a numerical exploration of Ja, b as a function
of (k, L) keeping m constant and as a function of (m, L)
keeping k constant. The ensuing graphs are reported in
Figures 7 and 8, respectively, together with their safety
factor errors. Here it is to be pointed out that in our
simulations, sagged cables correspond to large safety
factors g but one could also have highly tensioned
sagged cables. Tensioned and sagged cables are notably
used for suspension bridges with sag-to-span ratios
close to 0.125 and safety factors between approximately
2.3 and 7.

Looking at the four graphs (a) in Figures 7 and 8,
we see the data misfit functional main variations for
taut cables. In Figure 7(1a) and (2a), we notice that
Ja, b and the relative error made on gtc have similar

Figure 5. Sagged cable: (1) parametric study of Ja, b(L,k,m) for (1a) L = 0:99Ltc, (1b) L = Ltc, and (1c) L = 1:01Ltc and (2)
corresponding safety factor errors jg � gtcj=gtc, where gtc = 550.
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Figure 6. Flow chart of the proposed method. The tension assessment uses two configurations a and b introduced in a novel data
misfit Ja, b via an original variational formulation dJ of a nonlinear elastic model covering all types of cables. Sources of ill-conditioning
are highlighted and the more conventional data misfit Ja leading to an incorrect tension assessment is reported for comparison
purposes.

Figure 7. (1) Parametric study of Ja, b(L, k) with m fixed for (1a) a taut cable with g = 2:3, (1b) an intermediate cable with
g = 29:13, and (1c) a sagged cable with g = 550. (2) Corresponding safety factor errors jg � gtcj=gtc. The graphs illustrate the
predominance of the length parameter in the sagged case while the taut cable case is also impacted by the stiffness parameter.
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topologies and they are minimal for the same values of
(k, L). It shows that the data misfit is quite a good
choice for tension identification. Figure 7(2a) has a
simple physical interpretation: if m can be neglected
and Ls is fixed, two cables have the same tension as
long as their difference in length is compensated by
their difference in stiffness. Using the data misfit in this
specific case is very efficient since one can either fix
fk,mg and search for L such that Ja, b(L) reaches its
minimum or fix fL,mg and search k such that Ja, b(k)
reaches its minimum. In both cases, the problem of the
tension assessment is well-posed and leads to the cor-
rect tension. In turn, Figure 8(2a) confirms the limited
influence of m while Figure 8(1a) suggests that the data
misfit is able to return a correct value of m.

For sagged cables, the four graphs (c) in Figures 7
and 8 show the clear preponderance of the parameter
m. This was expected since for cables with very large
sag, the maximum tension of the cable depends more
directly on the total weight it carries, that is, the prod-
uct mL. The error made on the tension assessment will
therefore be roughly proportional to d(mL)=mL =
dm=m + dL=L with dm=m� dL=L. This is illustrated in
Figure 7(1c) and (2c) when m is fixed and in Figure
8(1c) and (2c) when k is fixed.

The four graphs (b) in Figures 7 and 8 are not as
easy to interpret as in the previous cases since they
illustrate a cable that is neither taut nor completely
sagged. For this cable configuration and looking at the
graphs, it is reasonable to think that all parameters are

of importance, with a clear preponderance for the cable
length.

In accordance with these three last numerical investi-
gations, we choose to address first the identification of
the natural length L at fixed k and m and then the iden-
tification of parameters k and m at fixed length L.
Length search is done in a very simple way via a line
search method, making use of the static problem (10)
to numerically assess the derivative of Ja, b with respect
to L. The corresponding pseudocode is given in
Algorithm 1 in Appendix 1.

Identification of the tension

Let L be the length of the cable found via the line
search method. In order to identify the tension, we
need to find a set of parameters (k,m) that minimizes

Ja, b(L, k,m). Standard minimization algorithms require

the evaluation of the sensitivities ∂Ja, b=∂k and ∂Ja, b=∂m

at each iteration. In our case, evaluating those sensitiv-
ities is not straightforward since the function J in equa-
tion (17) is not expressed explicitly in terms of (k,m).
Rather, the function J depends implicitly on (k,m)
through the influence of those parameters on the static

solution (r
^i, a

, r
^i, b

,D
^ i, a

,D
^ i, b

). That difficulty can be
overcome using the adjoint state method, as is now
explained (a complete introduction on inverse problems
can be found in Bui18). The data misfit functional is
rewritten as

Figure 8. (1) Parametric study of Ja, b(L,m) with k fixed for (1a) a taut cable with g = 2:3, (1b) an intermediate cable with
g = 29:13, and (1c) a sagged cable with g = 550. (2) Corresponding safety factor errors jg � gtcj=gtc. For the taut cable, the data
misfit is highly sensitive to the length parameter and could theoretically lead to a correct identification of m. In the sagged case, the
parameter m is predominant.
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similar expressions and ci(s) = n=L Dirac(s� si), and n

is the number of mesh elements. Define the Lagrangian
La, b as
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and J a has the same expression with a superscripts
instead of b. We recall that D

^e

: = 1=2(r
^

s � r^ s � 1). The
Lagrangian equation (20) is formula (4) applied to the
special data misfit Ja, b. The direct variational problem
is obtained via La, b derivatives with respect to starred
quantities (dual variables)

dJb =
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A similar expression holds for dJ a. The sum
dJ a + dJ b is formula (5), where the two states a and b

are used. Another way to obtain the direct variational
problem is to imagine a non-physical state a + b and use
the variational formulation (12) to express dJ b + dJ a.
An integration by parts of equation (22) is reported in
Appendix 1 and leads to the strong form of the direct
problem in b
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Same equations with a superscripts complete the
direct problem. Problem (23) corresponds to the static
problem (9) for the configuration b. The adjoint

problem is obtained computing the derivatives of La, b
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where f D and f r are the following quantities

f D = �
XN

i = 1

cstr

ðL
0

dD
^ i, b, a

cids� dDi, b, a

0
@

1
Aci

f r = �
XM
j = 1

cdisp

ðL
0

dr
^j, b, a

1 cjds� r
j, b, a
1

0
@

1
Acje1

After an integration by parts (see Appendix 1), strong
forms of the adjoint problem in b can be recovered
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Same equations with a superscripts complete the
adjoint problem. Comparing equation (25) with equa-
tion (23), we notice the extra terms show up in the equi-
librium equations and in the constitutive law compared
to the direct problem. Moreover, it can be observed
from the strain–displacement relationships and the
equilibrium equations in equation (25) that the adjoint
problem has the same mathematical structure as the
linearized direct problem around its equilibrium.
Sensitivities are obtained computing the derivatives of
La, b with respect to m and k
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=
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∂k
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The above expressions show that the solutions of the
direct and adjoint problems give a direct access to the
sensitivities. This procedure can be embedded in any
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first-order optimization algorithm to seek the para-
meters m and k minimizing the data misfit Ja, b(L, k,m).
All the examples presented in this article have been
obtained with the Barzilai–Borwein algorithm23 that
can be found in Algorithm 2 in Appendix 1.

Performance assessment of the inverse
methodology

Sensor placement

In Figure 9(a) to (d), a numerical exploration of
(k,m) 7!Ja, b(L, k,m) is presented for four typical sensor
placements when the cable is subjected to a 1.0 kN
point load located at midspan. The cable considered is
21.5 m long with ktc = 0:944 and mtc = 1:253. For this
study, only one displacement sensor (M = 1) and one
strain gauge (N = 1) are used. Data measures are simu-
lated by solving the static problem with the true values
(ktc,mtc). For each one of the two sensors, two posi-
tions are tested: one next to the left anchorage and the
other at midspan, leading to four different combina-
tions. As it can be seen with the chosen load magnitude
for the point load, the minimization problem at hand
shows two kinds of behavior: whenever the displace-
ment sensor is placed near the anchorage, the problem

seems to be well-posed and leads to the correct tension
but would require strain and displacement sensors hav-
ing extremely good precisions if compared to those usu-
ally used in bridge monitoring. On the contrary, when
the displacement sensor is placed at midspan, the strain
contribution is less visible and the problem is once
again ill-posed but leads to the correct tension and can
be conducted with a standard displacement sensor hav-
ing a precision of 60.1 mm.

Load magnitude

In Figure 10(a) to (c), a numerical investigation of
Ja, b(L, k,m) is carried out at different load magnitudes.
As in the previous section, only one displacement sen-
sor and one strain gauge are used in the study. In order
to test one of the most severe cases, we choose to place
both sensors and the load point at 2.1 m from the left
anchorage. Three tested load cases are presented: 1.0,
2.0, and 3.0 kN. As expected, the three graphs have
similar shapes (but different values) and lead to the cor-
rect tension identification but the load magnitude
clearly acts as a regularization of the data misfit func-
tional: in practice, a greater load will ease the tension
identification. In fact, when the cable is tensed and the
applied load is small, the relation between the load

Figure 9. Data misfit values using one displacement sensor and one strain sensor in various positions: (a) displacement and strain
sensors near the left anchorage at s = 1:75 m and s = 2:1 m, respectively, (b) s = 10:5 m and s = 2:15 m, respectively, (c) s = 1:75 m and
s = 10:5 m, respectively, and (d) s = 10:5 m and s = 10:5 m, respectively. The 1.0 kN point load is located at midspan in all four cases.
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point magnitude and the displacement of the point of
application of the load is almost linear and strain
changes in the cable remain small, making the identifi-
cation of the tension more difficult.

Robustness with respect to sensor uncertainties
(noise)

The noise is usually tuned to be negligible with respect
to the systematic bias. Moreover, the stochastic noise
gets eliminated through time averaging over a typical
interval of 10 s, in order to get kinematic quantities that
correspond to the static configuration. Hence, we do
concentrate on the systematic bias and its propagation
to the quantity of interest, that is, the cable tension.

To this end, the sensitivity of the tension to the sen-
sor output can be computed by means of an optimality
system. However, in this article, we will simply compute
the error made in the tension assessment corresponding
to an error of 610% made on the reference values of
two displacement sensors placed at midspan and a third
of the span. Numerical errors are introduced via two
parameters a0:33 and a0:5 which multiply the simulated
experimental data in Ja, b(L, k,m). Results of the error
propagation through the inverse problem method are
shown in Figure 11. Considering in a first time the line
a0:33 = 1:0 corresponding to the case where only the dis-
placement sensor located at midspan is affected by
uncertainties of 610%, we notice that the correspond-
ing error in the tension assessment is of less than 4%.
Moreover, paying now attention to the blue points in
the graph corresponding to an exact tension identifica-
tion, we notice that errors made with opposite signs on
the two sensors can reduce the overall error. Another
comment concerns the lack of symmetry of the graph
that is due to the way biases have been introduced:
measured displacement is greater at a third of the span
than at midspan when the point load is placed at a
quarter of the span, and so are the biases introduced
via the coefficient multiplication. In practice, an

absolute bias per sensor would lead to an inverted sym-
metry since the relative error made on the greater mea-
sured displacement would be smaller than the one
made on the smallest measured displacement. It con-
firms that it is better to place the displacement sensors
near the point load, where the resulting displacements
are larger. The robustness of the method can be
assessed considering the extent of the area correspond-
ing to an error in the tension assessment of less than
4% (in yellow and blue).

Universal ambition of the method

In order to show the universal applicability of the
method, we choose to numerically assess the tension of
cables spanning a large range of Irvine’s parameters l.
Irvine’s parameter definition can be found in Irvine,24

Chapter 2. As mentioned by its inventor, there is a cut-
off value for l2 at 24 above which [the cable’s] response
has more in common with a heavy cable and below which
it is akin to that expected of a taut string. The Irvine
parameter is nondimensional and characterizes the sta-
tic behavior of a cable. In theory, the method should
perform as efficiently on cables with the same Irvine
parameter.

Parametric studies were performed focusing on the
length of a steel cable with a diameter of 50 mm hang-
ing between two supports at the same level with a span
Ls = 50m. The mass of 2 kN at s = L=4 and initial
guesses L = 0:999Ls, k = 1:02ktc, and m = 1:05mtc were
the same for all the 201 tested cables. Corresponding
safety factor values fall within the range 1.19–73. Two
cases, namely, (1) and (2) are investigated: (1) solving
the minimization problem considering all three para-
meters fL, k,mg as unknowns or (2) only the two para-
meters fL, kg are treated as unknowns. Differences
between the two cases shed light on the role played by
m in the inverse problem. For both cases (1) and (2), the
relative error made on L is identical. Figure 12 shows
the error made on the assessment of the cable

Figure 10. Data misfit values for a load point positioned at 2.1 m from the left anchorage having a magnitude of (a) 1.0 kN, (b)
2.0 kN, and (c) 3.0 kN.
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parameters for a large variety of cables. Two general
comments can be made. First, the proposed inverse
method for tension assessment gives a relative error
within ½�2:6 : 1�% for (1) and within ½�3:6 : 1:4�% for
(2). Second, the first step of the procedure leads to a
length assessment which is below 0.015% in all tested
cases. The left part of the graph from
log l2 = � 3to� 0:6 mostly corresponds to taut cables
with safety factors from 1.19 to 6, respectively. As it
can be seen, the tension estimation in that part of the
graph is very accurate in both cases (1) and (2). Since
the length and the tension are assessed correctly, the

second step of the inverse problem has no impact on k,
as suggested by the taut cable example in section
‘‘Identification of the natural length of the cable.’’
When m is an unknown, that is, in case (1), the inverse
problem leads to its accurate estimate, as predicted in
Figure 8(a). The right part of Figure 12 shows that the
tension assessment is improved in case (1), that is, when
m is a variable of the problem. Interestingly, this
improvement is stronger for l2 values beyond the cut-
off value equal to 24.

Additional simulations were carried out following
the same procedure but introducing a noise of + 1%
and 21% in all measured values. Figure 13 gives the
corresponding relative errors made on the safety factor
in both cases (1) and (2). For instance, the curve
g(m, + 1%) is a case (1) set of 201 simulations introdu-
cing a noise of + 1% in all measured parameters. As in
the previous case, there is almost no difference in the
tension assessment between cases (1) and (2) for taut
cables while case (1) gives better results for sagged
cables. It is worth noticing that the results shown in
section ‘‘Robustness with respect to sensor uncertain-
ties (noise)’’ can be extended to the whole range of taut
cables and that the error diffusion is very limited.

At a computational level, the algorithm exhibits sta-
ble behavior and reaches convergence within 10–20
iterations for the length search and less than 10 itera-
tions for the adjoint problem. With a standard laptop
computer—i7-4510U CPU 2.00 GHz/2.6 GHz, 8Go
RAM—and using 2505 degrees of freedom, the overall

Figure 11. Error diffusion in tension assessment for
parameters a0:33 and a0:5 2 ½0:9, 1:1� corresponding to
uncertainties of 610% on the two displacement sensors
measures at s = 7 m and s = 10:5 m for a point load of 1.0 kN
located at s = 5:4.

Figure 12. Relative error for several cable parameters w.r.t. log l2. Parameters obtained considering m as unknown of the problem
have the notation (m) next to them. Introduced errors on initial guesses k and m are equal to + 2% and + 5%, respectively. The
initial guess used for the length is L = 0:999Ls and its relative error was multiplied by 100. For clarity purposes, only a few simulations
are marked with a symbol.
Note: log 24 = 1:38.
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tension assessment does not take more than 3 min per
cable.

Experimental validation

Setup

Experimental validation was conducted with a steel
multilayered stranded cable 21 m long and 22 mm in
diameter. The test protocol reproduces the two static
configurations a and b of the cable for six different ten-
sion levels in configuration a. The point load is applied
via a 86.120 kg mass of steel as depicted in Figure 14.
In order to double-check the tension obtained via the
load cell, dynamical testing was performed for each

tension level. The monitoring system consists of the fol-
lowing items:

� Two accelerometers: DeltaTron type 4507 B 002
Brüel & Kjær 670 m s22 peak.

� Two displacement sensors: Intelligent-L300 Laser
Sensor Keyence 160–450 mm.

� A load cell: FN2796 Measurement Specialties up to
400 kN.

� Four strain gauges from Tokyo Sokki Kenkyujo
Co., Ltd.

Sensors are shown on Figures 14 and 15. A drawing
of the setup appears on Figure 3 where the four strain
sensors are placed at 18 m from the left anchorage.

Figure 13. Relative error obtained for g w.r.t. log l2. Information on the noise introduced in all measured parameters and on the
dependency on m is bracketed. Introduced errors on initial guesses k and m are equal to + 2% and + 5%, respectively. Initial guess
used for the length is L = 0:999Ls. For clarity purposes, approximatively a tenth of the simulations are marked with a symbol.
Note: log 24 = 1:38.

Figure 14. Test bench. From left to right: bench structure, jack and load cell, and additional mass to create a point load.
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The following protocol has been applied at six differ-
ent tension levels from 55 to 205 kN:

1. Cable installation up to a specific tension (load
cell).

2. Static measurements.
3. Mass positioning.
4. Static measurements.
5. Mass removal.

Contemporaneously to the experimental validation
of our method, dynamical testing based on taut string
theory was performed for double-checking purposes:
FFTs were applied on the acceloremetric data in order
to obtain the cable vertical natural frequencies. In the
taut string theory, the explicit relationship between the
(constant) tension T in the cable and its first natural fre-
quency f1 is simply T = 4f 2

1 l2rA, where l is the length of
the cable which is also its span.

The use of the string theory is justified for validation
purposes since it can be shown that in our testing con-
ditions, its accuracy is almost constant through all the
tests and is driven by the precision of the knowledge of
rA. In fact, even for the lowest tested tension, we have:
dT=T = 2dl=l + 2df1=f1 + drA=rA’drA=rA. For the test,
we assume that the mass per unit length of cable is
equal to rA = 781030:75p30:0112 kgm�1, in accor-
dance with the commonly used fill ratio for stranded
cables.

Results

Data from the tests are reported in Table 1. Post-pro-
cessing data using both the string theory and our
inverse problem method lead to the results shown in
Table 2. Paying attention to the results obtained with
the dynamical testing methods, we notice a large varia-
tion of the accuracy of the method over the tests from

Figure 15. Sensors used. From left to right: displacement laser sensor, strain gauge, and accelerometer.

Table 1. Data obtained for six tension levels.

Sensor Parameters Units Tests

Load cell Tension (kN) 55 85 115 145 175 205
Distance meter l (m) 21.733 21.747 21.763 21.777 21.794 21.809
J8-J11 Db � Da (mdef) 47.6 17.6 1.4 3 0.4 1.6

D1 r1, b
1 � r1, a

1
(mm) 252.5 235.7 226.1 220.7 216.9 214.4

D2 r2, b
1 � r2, a

1
(mm) 264.2 243.3 231.7 224.8 220.3 217.5

Table 2. Tension assessment results for the six tested tensions.

1 2 3 4 5 6

Tcell (kN) 55.9 84.7 114.7 145.1 174.6 205.7
Tinv (kN) 50.9 79.3 110.1 139.6 171.2 199.8
einv (%) 28.9 26.4 24.0 23.7 22.0 22.9
Tdyn (kN) 49.8 77.1 107.1 135.2 164.8 193.3
edyn (%) 210.9 29.0 26.7 26.8 25.6 26.0
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210.9% to 26.0%. This result is in contradiction with
the expected constant accuracy of the method, as previ-
ously discussed. According to the calibration tests, the
accuracy of the load cell is close to 1 kN for high values
of tensions and about 3 kN for low tensions. Trusting
the highest load measurement at 205 kN, it is possible
to calibrate the dynamical method by correcting the
mass per unit length of cable to obtain a reference ten-
sion Tref in the cable for all tests. We report in Table 3
the corresponding values.

At it can be seen, the correction leads now to a consis-
tent and constant error for the dynamical tension assess-
ment. Using the load cell and the test at the highest level
of tension, we are able to say that our estimation of the
mass per unit length of cable was a 6% underestimation.
More importantly, the proposed inverse problem
achieves good accuracy in finding the cable tension for
all the six tension levels tested despite the poor knowl-
edge we had on the mass per unit length of cable.

As mentioned in section ‘‘Universal ambition of the
method,’’ the ambition of the proposed method is to be
able to assess the tension of all different types of cables
(cables with taut profile, sagged profile, tensed or not).
Focusing on the tension assessment of taut cables, very
light frequency-based methods using contactless sen-
sors exist4 but require a refined knowledge of the mass
per unit length of cable. In turn, these frequency-based
methods can serve to identify the mass per unit length
of cable provided that the tension is known. The

proposed inverse method can therefore be used to cali-
brate these methods and enhance their precision.

Application to three top cables of a
suspension bridge

Top cables

The method was used on three top cables of a 77-year-
old French suspension bridge crossing Loire river at
Bonny-sur-Loire (see Figure 16). According to the proj-
ect design from 1948 found in the bridge owner’s
archives, top cables are 120 m long and 80 mm in dia-
meter (cross-sectional area 3765 mm2). They are tensed
at 1071 kN and their mass per unit length of cable is
31.719 kg m21. Before applying our method, three
comments are in order: (1) the data found in the
archives are not always available and it is very difficult
to know if the construction products delivered on the
job site 77 years ago are the one described in the project
design, (2) measured diameters are around 82 mm and
would also match commonly used cables with a dia-
meter of 81.6 mm, a cross-sectional area of 3926 mm2,
and a mass per unit length of cable equals to 33.085 kg
m21, and (3) the corrosion protection complex (pitch-
based mixture inside the cable and paint) is no longer
efficient and due to the age of the cables, their mass per
unit length is deemed overestimated by both previously
mentioned values.

Table 3. Tension assessment results for the six tested tensions.

1 2 3 4 5 6

Tref (kN) 53.0 82.0 113.9 143.9 175.3 205.7
Tinv (kN) 50.9 79.3 110.1 139.6 171.2 199.8
einv (%) 23.9 23.3 23.3 22.9 22.4 22.9
Tdyn (kN) 49.8 77.1 107.1 135.2 164.8 193.3
edyn (%) 26.0 26.0 26.0 26.0 26.0 26.0

Figure 16. Bonny-sur-Loire (Loiret, France) suspension bridge with top cables.
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Because for taut cables the displacement part Jdisp of
the functional Ja, b is preponderant, a variant of the
method was formulated so as to comply with the fol-
lowing light and cheap monitoring system consisting in
a TME P-15A displacement sensor placed at midspan
plus a force sensor SCAIME-K25 0–5 kN. The load
was applied at midspan via a manual winch shown in
Figure 17. Three load steps were applied on each cable
at 1.0, 1.5, and 2 kN. Table 4 gives the corresponding
obtained displacements and calculated tensions.

For comparison purposes, first frequencies of vibra-
tion were measured and two traditional frequency-
based methods were applied to assess the tension in
the cables: namely, the string theory method1 and the
method proposed by Zui et al.2 Table 6 summarizes the
main physical characteristics of the tested cables and
can be found in Appendix 1. Found first frequencies
are almost the same for the three cables and we there-
fore expect to find similar tensions via the frequency-
based methods. The first frequencies f1 are quite small
and at the lower limit of the frequency range of the
accelerometer used to perform the tests. Differences
between higher modes f3 � f2 and f4 � f3 suggest that
first frequencies f1 are overestimated. As a result, the
two frequency-based methods were also applied on
higher frequency orders. Table 5 presents the obtained
tensions when the first four modes are used. It can be
clearly seen that the first frequencies lead to an over-
estimation of the tension with both dynamical methods.
Discarding tensions calculated with mode 1, we notice
that the tensions assessed with the LPC35 are close to

700 kN, the ones given by Zui et al.’s2 method are
around 680 kN while the static inverse method gives
tensions around 660 kN. The mass per unit length of
cable that has been used comes from the design project
and is a standard value accounting for the overall
weight of the cable (steel plus a standard corrosion pro-
tection weight commonly used when the bridge was
built). Taking into account aging factors, it is reason-
able to consider that actual masses per unit length of
cables are smaller, especially because visual inspection
showed that the internal corrosion protection product
used is leaking out of a large number of cables. The cor-
responding variation in the mass per unit length of
cable is around 5%. Therefore, under this hypothesis,
LCPC35 and Zui et al.2 would yield around 665 and
646 kN, respectively. Hence, assuming the validity of
this hypothesis, the static inverse method would lead to
more accurate results than the frequency-based method.
In this specific case, it would have been interesting to
truly assess the mass per unit length of cable by apply-
ing the inverse method in its full version, that is, as it is
described in section ‘‘Inverse problem.’’

Affordability

It might look very expensive to advocate the use of
added masses and displacement sensors that need to be
attached to bridge deck and the cable. However, cur-
rent maintenance procedures impose periodic man
power over the bridge with often heavy equipment
(visual inspection). The tension evaluation process that
we propose here only needs to be carried out every time
a large maintenance or repair operation is done on the
bridge such as cable painting renewal. It can thus be
considered as lean process that only incurs marginal
extra cost. The outcome of the method might be viewed
as the necessary pre-processing stage of the standard
and very cheap standard dynamical testing methods as
described in Gentile.4

Conclusion

In this article, we proposed an innovative tension iden-
tification procedure that relies on limited prior knowl-
edge of the cable, use of current practice
instrumentation schemes, and an inverse static problem

Table 4. Test results and tension assessment via static inverse method.

Cable name AmT1CT1 AmT1CT2 AvT1CT1

Load (N) 1005 1573 1883 1135 1616 2062 1063 1571 2074
Displacement (mm) 238.5 261.0 272.6 242.7 261.2 277.5 241.6 260.1 279.5
Tinv (kN) 669.8 650.6 653.7 688.3 676.3 680.7 646.0 666.5 658.2

Figure 17. Application of the inverse method on a real
suspension bridge.
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based on a nonlinear mixed formulation of elastic cable
equilibrium. More precisely, several novelties in the
presented tension identification should be here high-
lighted. To the authors’ knowledge, tension identifica-
tion in cables is seldom addressed via an inverse static
approach. Moreover, only a few works consider the
length, the stiffness, and the mass per unit length of
cable as unknowns of the problem despite their impor-
tance and the fact that they are only roughly known in
practice. From a modeling point of view, the use of a
mixed formulation for a geometrically exact cable is
also unusual in the literature regardless of the advan-
tages one could reap from the direct calculation of
strains and stresses viewed as primary variables.15 The
inverse problem for tension identification is obtained
via a data misfit functional Ja, b(L, k,m) relying on the
differences in terms of displacements and strains mea-
sured at a few points on the cable between two static
configurations, thus alleviating to a large extent the sys-
tematic bias of standard sensors as well as systematic
modeling errors due to the lack of accurate knowledge
of some physical parameters. Pure noise is also cured
from data by time-averaging or low-pass filtering since
static quantities are considered. Parametric studies of
Ja, b have been presented for a simulated 21-m long,
flat cable with a diameter of 22 mm. Despite the
ill-posedness of the inverse problem caused by the mul-
tiplicity of its solutions, it has been shown that the cor-
rect tension could be found following a two-step
procedure. First, fixing the axial stiffness and the mass
per unit length at their initial guess values, the length L

of the cable is approximately found via a simple line
search algorithm using finite differences to estimate the
functional derivative of Ja, b with respect to L. Second,
the other two physical parameters are assessed using an
adjoint method for which the direct problem, the
adjoint problem, and parameter sensitivities are found
as derivatives of a Lagrangian functional with respect
to dual variables, primary variables, and parameters,
respectively. Numerical simulations given at the end of
section ‘‘Performance assessment of the inverse metho-
dology’’ illustrate the potential of the method: even if
physical parameters of the cable are not correctly
assessed, their evaluation discrepancies are mutually
canceled in the minimization problem leading to the

correct tension identification. In theory and for taut
cables, the mass per unit length of cable could also be
correctly assessed. An experimental validation has been
carried out with a 21-m long, multilayered stranded
cable having a diameter of 22 mm undergoing six dif-
ferent tension levels from 55 up to 205 kN. A compari-
son with a traditional dynamical testing showed the
reliability of the proposed method and its interest; ten-
sions were correctly assessed within less than 4% error
without requiring a fine knowledge of the cable’s stiff-
ness and mass per unit length. Last but not least, the
method has been successfully tested on three 120-m
long top cables of a real bridge and showed its robust-
ness for on-site applications.
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19. Kern M. Problèmes inverses: aspects numériques (Lec-

ture), 2002, https://hal.archives-ouvertes.fr/cel-00168393
20. Antman SS. Nonlinear problems of elasticity. 2nd ed. New

York: Springer, 2005.

21. Lacarbonara W. Nonlinear structural mechanics: theory,

dynamical phenomena, and modeling. New York: Springer,

2013.
22. He J. Equivalent theorem of Hellinger–Reissner and Hu–

Washizu variational principles. J Shanghai Univ: Engl Ed

1997; 1(1): 36–41.
23. Barzilai J and Borwein JM. Two-point step size gradient

methods. IMA J Numer Anal 1988; 8(1): 141–148.
24. Irvine HM. Cable structures. Mineola, NY: Dover Publi-

cations, 1984.

Appendix 1

Newton–Raphson iterative procedure

In practice, we solve the nonlinear problem via an itera-
tive procedure. At each step k, the linearized problem
to be solved is

Find dr
^ 2 V0, dD
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and corresponds to the linearization of the nonlinear
problem (9) around f r^,D
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where the following boundary conditions have to be
applied: d r

^�b
(0) = dr

^�b(L) = o. Same equations with a

superscripts hold true.
Integration by parts of equation (24)
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where the following boundary conditions were used:
dr
^b

(0) = d r
^b

(L) = o . Same equations with a superscripts
hold true.

Backtracking the length of the cable

The pseudocode to backtrack the length of the cable via
finite differentiation of the data misfit Ja, bðLÞ is given
in Algorithm 1.

Barzilai–Borwein algorithm

Using the notations, x= t½k,m� and g=rxL. The
Barzilai–Borwein algorithm pseudocode can be found
in Algorithm 2.

Data used for frequency-based tension
assessment methods

Physical characteristics of the tested cables are shown
in Table 6.

Algorithm 1: backtracking the length of the cable

Data: k, m, L0 and a parameter h 2 �0, 0:01�
Result: Lk

/* Initialization */
Evaluate Ja, b0 via direct problem;
Set L1 = L0 � h;
Evaluate Ja, b1 AB

�!
via direct problem;

Find the descent direction d1 = sgn(dJ) with
dJ = (Ja, b1 � Ja, b0)=(L1 � L0)
/* Iterations */
While h.10�10 do

Evaluate Ja, bk via direct problem;
Find the descent direction dk = sgn(dJk) with
dJk = (Ja, bk � Ja, bk�1)=(Lk � Lk�1);
/* Backtracking test */
if dkdk�1.0 then

Lk = Lk�1 � hdk;
else

h = h=a with a ø 2;
Lk = Lk�1 � hdk;

end
end

Algorithm 2: Barzilai–Borwein algorithm used for the
minimization problem

Data:x0 and x1

Result:xk + 1 and gk
/* Initialization */
assess g0 and g1 via equation (26);
compute dg1 = g1 � g0 and dx1 = x 1 � x0;
compute a1 = (dx1 � dg1)=(dg 1 � dg1);
update solution x 2 = x1 � a1g1;
/* Iterations */
While k g k k ø e do

compute dgk = g k � g k�1 and
dx k = x k � x k�1;
compute ak = (dxk � dg k)=(dgk � dg k);
update solution xk + 1 = xk � akg k;
k + = 1;

assess gk via equation (26);
end

Table 6. Main physical characteristics of the tested cables.

Cable name AmT1CT1 AmT1CT2 AvT1CT1

rA (kg m21) 31.719 31.719 31.719
L (m) 120 120 120
E (GPa) 150 150 150
f1 (Hz) 0.68 0.68 0.66
f2 (Hz) 1.23 1.24 1.23
f3 (Hz) 1.85 1.86 1.9
f4 (Hz) 2.47 2.49 2.47
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