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Abstract

Sample rate conversion (SRC) is ubiquitous and critical function of software defined
radio and other signal processing systems (speech coding and synthesis, computer
simulation of continuous-time systems, etc..). In this paper, we present a survey on
linear phase finite impulse response (FIR) based sampling rate conversion. Many
different FIR-based SRC solutions exist, such as classical FIR, polyphase, Farrow,
cascaded-integrator-comb, and Newton structures. Each one of these solutions is
presented differently in the literature, and SRC reference books introducing the
subject are often missing hardware implementation aspects. The main objective of
this paper is to provide a simple and comprehensive overview of main FIR-based
SRC techniques from theoretical to hardware implementation aspects. The state
of the art of FIR-based SRC filters is summed-up through a concise derivation of
the different solutions from a common root: linear phase FIR filters. Each SRC
solution is presented from both theoretical and practical implementation points
of view. The paper provides a succinct tutorial that introduces SRC, and helps
identifying and implementing the appropriate FIR-based SRC architecture for any
given applications.

Keywords: Sample rate conversion; FIR filter; Polyphase filter; Farrow structure;
Newton structure; CIC filter

Introduction
Flexibility and reconfiguration are essential requirements in modern transceivers. To

implement these features at the front-end interface, sample rate conversion (SRC) is

necessary [1]. However, each transceiver is designed for certain application require-

ments, that may range from high performance and low latency, down to low cost and

low power consumption applications. In each case, the needed SRC implementation

differs to comply with the system requirements. This does not apply to transceivers

only, but also a wide range of signal processing applications are based on SRC,

most notably in the audio processing domain. The importance of SRC made it a

ubiquitous signal processing function used in many domains for over four decades

[2]. Being a classical topic, the literature of SRC is very huge, has been addressed in

a large number of reference books, and many solutions have been developed. How-

ever, extracting the needed information from the literature can be complicated as

each solution is presented from its own point of view. And when referring to books

about the subject, practical implementation aspects are often overlooked.

This article provides a concise tutorial presenting the different available SRC solu-

tions, mainly for engineers in this field, looking for an efficient SRC implementation.

This work focuses on finite impulse response (FIR) SRC filters due to their linear
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phase, that is required in many applications which do not tolerate distortion of the

signal’s phase. Understanding these solutions facilitates the exploration of other

SRC types, and also building new ones.

In the FIR-based SRC literature, five main filter structures can be identified:

classical up-sampling/filtering/down-sampling (U-F-D) [2], polyphase [3], Farrow

[4], cascaded-integrator-comb (CIC) [5], and Newton structures [6]. This tutorial

emphasizes the unified representation shown in Figure 2. This vision derives the dif-

ferent SRC solutions from a common root, which helps in intuitively understanding

the features and limitations of each solution, and its relation to the other structures.

This tutorial also provides an up to date coverage of SRC solutions by including

the modifications of the generalized Newton structure developed in the last four

years [7, 8, 9, 10]. Last but not least, the practical implementation aspects are also

presented for each SRC solution, providing thereby a guide to select and implement

the best adapted SRC solutions for a given desired application.

This article is organized as follows. Section 1 presents the basic SRC concepts,

and summarizes the unified vision approach. Then each of the following sections

studies one of the main SRC solutions by deriving its structure through the intro-

duced unified vision, and then by discussing its practical implementation aspects.

Sections 2, 3, 4, and 5 present the U-F-D/Polyphase, Farrow, CIC, and Newton

structures respectively. The generalization of the Newton structure is studied in

Section 6. Then, Section 7 compares the different presented solutions, and shows

how the proposed unified vision is used to study and select the appropriate sample

rate conversion structures for a given application. Finally, Section 8 concludes this

tutorial.

1 Linear Phase FIR SRC Filters
Let x(t) be a limited-band continuous time signal with its highest frequency com-

ponent designated as fm. The sampling rate conversion (SRC) operation consists

of changing the sampling frequency of the signal x(t) without going through re-

construction and re-sampling. The definition of SRC operation and its relation to

sampling and reconstruction is shown in Figure 1. Sampling x(t) at a frequency

Fin = 1/Tin and Fout = 1/Tout results in two series of samples x(mTin) and

x(kTout), respectively. In order to correctly sample a signal, the Nyquist theorem

states that Fin and Fout should be greater than or equal to 2 × fm [11]. Sampling

rate conversion is then defined as the operation that takes the samples x(mTin) as

input, and outputs x(kTout), with the change in the sampling frequency defined by

the SRC factor R:

R =
Fout
Fin

=
U

D
such that U,D ∈ N. (1)

The SRC operation with R > 1 is called interpolation, while decimation is used

to refer to the case of R < 1. The supposition that U and D are integers results

from the fact that the SRC operation will be implemented in a digital system, that

is quantified and can only handle finite precision. In the SRC jargon, the term

“coarse” SRC is used to refer to a large sampling rate conversion factor that can

be a large integer or simple rational (e.g. R = 1/128, R = 64/10), while the term
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“fine” SRC is used to refer to a very small modification of the sampling factor and

it concerns a fine-tuning factor close to unity (e.g. R = 160/159).

To implement an SRC operation of a factor R = U/D using discrete time signal

processing, the most straightforward solution is to increase the sampling frequency

by U through inserting U−1 zeros between input samples, followed by a decrease of

factor D by keeping one sample from each D samples. Low-pass filtering is required

between these two steps to find the values of the added zero samples (i.e. Figure 4)

and potentially to remove any frequency components that may cause aliasing [2].

This work addresses the FIR based SRC methods due to their multiple advantages:

stability, linear-phase, and implementation efficiency.

The frequency response of the SRC filter is either optimized to reject up-sampling

images or to protect from aliasing. The filter is then called an anti-imaging (AI)

or an anti-aliasing (AA) filter, respectively. In practice, the AI filter is used for

interpolation, while the AA filter is used for decimation. However, nothing prevents

the two types of filter to be used for either kind of SRC factors if the filtering

response is acceptable. The AI and AA filters used for SRC are duals. Duality is

the property where one operation performs the complementary of the other, such

as modulation and de-modulation. The dual of an SRC system is found using the

transposition theorem developed in [12], and also presented in chapter three of [2].

The unified vision in this article is developed for the AI filters version, and their

corresponding AA duals can be found using the transposition theorem.

All of the FIR based SRC filters can be related to at least one of the five main FIR

based SRC structures: the U-F-D, polyphase, Farrow, CIC, and Newton structures.

This article offers a unified derivation, starting from one common root, in order to

derive these structures and to explain clearly their respective correspondences and

differences as shown in Figure 2.

The linear phase FIR filter type is first considered, then more particular filter types

are studied, and by exploiting the characteristics of the impulse response of these

filters, the different implementation structures are derived. The linear phase FIR

filters basic structure is the U-F-D or the polyphase structure. Then particular cases

of linear phase FIR filters are considered, which are: polynomial based, B-spline, and

Lagrange interpolation impulse responses. By exploiting the particular properties of

each response, the Farrow, CIC, and Newton structure are found respectively, and

reveal how to generalize the Newton structure in order to implement any polynomial

based filter.

2 Fundamental SRC: U-F-D & Polyphase Structures
The U-F-D structure is a direct implementation of the theoretical SRC model pre-

sented in last section. It is theoretically capable of implementing any SRC operation

using any linear phase FIR filtering response. However, it does not always create a

practical efficient implementation [2, 13]. The polyphase structure improves the effi-

ciency while keeping the flexibility of the U-F-D structure [3, 14, 15]. The derivation

of these two structures are obtained as presented below.

2.1 Filter Structure Derivation

In the case of the U-F-D structure, the impulse response is directly implemented

using an FIR filter structure as shown in the top of Figure 3. Since the input of the
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filter is the output of the up-sampling of x[m], then we know that for each U input

samples to the filter, only one is non-zero. An example of U = 4 is shown in Figure

4, where for each output only a specific set of coefficients are used (squares, circles,

triangles, or stars). Therefore, if a filtering operation of order N −1 is required, the

number of taps of the FIR filter has to be equal to N ×U . The transfer function of

this filter is written as:

H(z) = Z{h[n]} =

+∞∑
n=−∞

h[n]z−n =

NU−1∑
n=0

h[n]z−n, (2)

with h[n] being the impulse response coefficients. When implementing a rational

SRC factor with D > 1, a number of the filter output samples is dropped by the

following down-sampling operation, meaning that the filter is inefficient since it

calculates unneeded samples. This is addressed by the polyphase structure. The

classical polyphase structure is deduced from the U-F-D structure by rearranging

the filter coefficients, through re-writing H(z) in (2) as:

H(z) =

U−1∑
i=0

z−i
N−1∑
j=0

h[i+ jU ]z−jU =

U−1∑
i=0

z−iHi

(
zU
)
, (3)

where the FIR filter is split into U filters Hi(z) of order N in parallel, with each filter

containing the coefficients used to find a certain output. The matrix representation

of H(z) offers a clear visual description of the filter structure:

H(z)
U×1

=


?1 ?2 . . . ?N
N1 N2 . . . NN
...

...
. . .

...

�1 �2 . . . �N

×


1

z−1

...

z−N+1

 , (4)

with each row i of the matrix H containing the coefficients of the sub-filter Hi(z).

The polyphase structure is then built using U sub-filters Hi(z) of order N in parallel.

For each output y[k], the corresponding sub-filter Hik(z) is selected by a multiplexer

combined with a controller operating at the output sampling frequency Fout. This

results in the polyphase structure shown in Figure 3, that operates efficiently using

the sampling frequencies Fin and Fout only, without needing the higher UFin sam-

pling domain [16]. However for fine-tuned SRC factors, when the values of U and D

are large, the structure still requires having U filters in parallel, which is problem-

atic concerning the structure efficiency. This can be solved using polynomial based

filters that are presented in the next section.

2.2 Practical Implementation

To implement the derived filter structures, a number of practical implementation

aspects need to be addressed. In the case of the U-F-D and polyphase structure,

these aspects are the following.
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Hardware Implementation: For a given filter structure, many hardware imple-

mentation strategies exist, with each favoring a certain implementation constraint.

Pipeline implementations favor high operation speed at the cost of added complex-

ity [17], while a lower consumption at the cost of reduced speed can be achieved

through reusing hardware elements [18]. The second design aspect concerns the

quantization of the implementation, that defines the calculation precision. A wide

range of quantization methods for both the filter parameters [19, 20, 21] and signals

[22, 23, 24] exist in the literature.

SRC Controller: It is often supposed in the literature that for the SRC implemen-

tation, Fin and Fout are actually available digital clocks. However, practical systems

often operate using only one digital clock higher than both sampling frequencies.

The multi-rate operation is then made possible through an SRC controller that con-

trols the samples flow. This is required because the number of inputs to the SRC

filter is not equal to the number of outputs. In the case of the polyphase structure,

for a given output instant k, two indexes are needed to control the filter state. The

first being mk that indicates the input samples used by the filters Hi(z), and the

second being ik that specifies the branch of the polyphase filter that calculates the

output y[k]. These two indexes are managed by the SRC controller in order to im-

plement the desired SRC operation defined by U and D. The control algorithm that

finds these indexes is shown in Algorithm 1, that describes the AI SRC controller

operation.

Algorithm 1 Algorithm of the SRC Controller
Input: U, D
Output: mk, ik, k
1: mk = 0 , ik = 0 , k = 0
2: while True do
3: ik = ik +D
4: while ik ≥ U do
5: mk ++ {Get next input}
6: ik = ik − U
7: end while
8: k ++ {Find next output}
9: end while

Half-Band filters: When performing SRC of large factors, it is possible to improve

the implementation efficiency by breaking the SRC operation into multiple stages

as proposed in [13]. This is also more advantageous when it is possible to break the

SRC factor into factors of two, that can be implemented efficiently using half-band

filters. These filters are a particular case of the U-F-D structure, with a very efficient

implementation that uses only 25% of the multipliers [2].

3 Efficient Arbitrary SRC: Farrow Structure
An efficient solution for finely-tuned SRC implementation is the structure devel-

oped by C. W. Farrow in [4]. This structure implements polynomial based filters,

and is known in the literature under many names, most notably as the Farrow

structure [25, 26]. The introduction of this structure enabled implementing high

precision finely-tuned SRC far more efficiently than it was possible with the previ-

ously existing structures. A modification of the structure was developed in [27] that
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exploits the symmetry of the impulse response in order to reduce the complexity.

The transposed Farrow structure preferably used for SRC decimation was addressed

on multiple occasions in [28, 29, 30, 31]. The transposed Farrow structures has many

other applications beside SRC as discussed in [28, 32, 33].

3.1 Filter Structure Derivation

It was shown in the last section that for each output y[k], only one polyphase

branch is selected by the multiplexer. Therefore it would be interesting that instead

of having U filters in parallel, to have only one filter with its coefficients being

calculated dynamically for each output using the index ik. This can be made possible

by defining the impulse response as being constructed using N polynomial pieces

Pj(µ) with j ∈ {1, 2, . . . , N}. Each polynomial piece is of order M−1 and is defined

as:

Pj(µ) =

M∑
l=1

cl(j)µ
l−1, (5)

then Pj is used to calculate the filter’s coefficient hik [j] corresponding to the output

y[k]. It is then possible to rewrite the Hik(z) filter expression in (3) as:

Hik(z) =

N∑
j=1

[
M∑
l=1

cl(j)µ(ik)l−1

]
z−j+1, (6)

where µ(ik) is used to indicate the position of the coefficients of the filter ik on the

different polynomial pieces. To exploit the symmetry of the impulse response of a

linear phase filter [34], the variable µ(ik) used to develop the polynomials is defined

as:

µ(ik) =
ik
U
− 1

2
∈ [−0.5; 0.5[. (7)

Using this type of impulse response, the coefficients of each filter Hik(z) in (3)

are found as:

Hik(z)
U×1

= µik
1×M

× P
M×N

× Z(z)
N×1

=


1

µik
...

µM-1
ik


T 

c1(1) . . . cN (1)

c1(2) . . . cN (2)
...

. . .
...

c1(M) . . . cN (M)




1

z−1

...

z-N+1

 .
(8)

Through a factorization by µ in (6), the Farrow structure definition is found as:

Hik(z) =

M∑
l=1

Gl(z)µ(ik)l−1 with Gl(z) =

N∑
j=1

cl(j)z
−j+1. (9)

The implementation of this structure is shown in Figure 5, which consists of M

FIR filters Gl(z), each of N taps. The outputs of the Gl filters are then evaluated
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following the Horner’s scheme for polynomial evaluation with µ(ik). In this struc-

ture, the coefficients of the filters Gl are constant and symmetrical, allowing an

efficient implementation by using only half of the multipliers.

3.2 Practical Implementation

The same practical implementation aspects presented in the last section apply the

Farrow structure as well. Two other specific implementation aspects to the Farrow

structure are: the polynomial coefficients and the fractional delay quantization.

Polynomial Coefficients: The Farrow structure has M ×N degrees of freedom to

define the filter response, i.e. the coefficients cl(j). When the linear-phase filter

response is used, the degrees of freedom are divided by two, due to the symmetry of

the response [34]. These coefficients can be found generally in two ways: using well

known polynomial interpolation methods, or applying filter optimization techniques.

Three types of polynomial interpolation methods are widespread in the literature

[35]. Due to their particular mathematical definition, these interpolation types can

be implemented more efficiently using other structures than the Farrow structure

as it will be developed later in this article. These are B-spline interpolation [36, 37,

38, 39], Lagrange interpolation [25, 40, 41], and Hermite interpolation [42, 43].

However, to correctly profit from the Farrow structure filtering performance, the

polynomial coefficients should be defined using filter optimization methods. In the

literature, different techniques are employed [4, 44, 45, 46]. The thesis of M. T.

Hunter [47] develops in details the Farrow structure optimization problem, and

provides a software implementation of the developed optimization algorithm.

Fractional Delay Quantization: Quantization of the fractional delay µ(ik) affects

two implementation aspects: the output sampling rate precision and the filtering

performance. This work uses the approach developed in [47][48][49].

4 Low-cost Coarse SRC: CIC Filter
In 1981, E. B. Hogenauer developed the cascaded-integrator-comb (CIC) filters [5],

illustrated in Figure 6, which are a class of SRC FIR filters with an implementation

that does not require multipliers. These filters are mainly used to implement coarse

SRC operation of a large integer SRC factor.

4.1 Filter Structure Derivation

The Farrow structure previously presented offers an SRC solution with a high degree

of freedom permitting the implementation of different filter responses. Considering

the most simple case of a polynomial filter, where the impulse response consists of

only one polynomial piece (N = 1) of degree zero (M = 1), having a value of one.

This corresponds to the Pi or rectangular function normalized to the input sampling

period Tin noted as Π(t/Tin). Used for interpolation, the Pi function results in a

zero-order-hold reconstruction. An interesting property of the Pi function is its

frequency response HΠ(f) = sinc(f/Fin), with its zeros located at multiples of Fin,

which is the optimal zero position for images suppression, since the up-sampling

images are located on multiples of Fin [2]. The filtering performance of a single Pi
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function may not be sufficient, however it can be improved by cascading N filters.

This results in the impulse response of the B-spline interpolation of order N − 1:

βN (t) = (Π ∗Π ∗ . . . ∗Π︸ ︷︷ ︸
N

)(t). (10)

The B-spline function βN (t) is piece-wise polynomial with N pieces of degree

N − 1 each [36]. Therefore, this interpolation can be implemented using the Farrow

structure as it was developed in [7][37]. However, by exploiting the particularity

of the impulse response definition as a cascade of rectangular functions, a more

efficient implementation structure is found. It was presented previously that NU

filter taps are needed for an SRC filter of order N−1. In the case of the rectangular

function, we have U coefficients taken from the causal rectangular function, with all

coefficients having a value of one, which can be expressed through the Z transform

as:

H(z) =

U−1∑
n=0

z−1 =
(
1− z−U

)( 1

1− z−1

)
= C(zU )I(z). (11)

This is the non normalized moving average filter, which can be implemented in

a recursive running-sum structure. It consists of two construction blocks: the in-

tegrator having the transfer function I(z) and the comb with a delay z−U having

the transfer function C(zU ) [50]. Then by cascading N rectangular function filters,

the B-spline interpolation of order N − 1 is implemented. We know that the comb

and the integrator are linear time-invariant systems and, therefore, their order of

placement relative to one another in the structure can be exchanged. Then, ben-

efiting from the second Noble identity, the comb blocks can be placed before the

up-sampling operation optimizing the implementation by reducing the delay line of

the comb blocks z−U to only one delay element z−1. This results in the structure

presented by Hagenauer in [5], and shown in Figure 6, called the CIC interpola-

tion filter, where a structure having N comb and N integrator blocks implements

B-spline interpolation of order N − 1.

4.2 Practical Implementation

For CIC filters, an SRC controller is not needed since the filter implements a U-F-D

structure. This section develops the particular implementation aspects to the CIC

filters.

Output Re-scaling: The CIC filter has an inherent gain that can be expressed as

GCIC = UN−1, which requires adding IG = dN log2(U)e bits to the processed

signal in the case of fixed-point quantization. Certain implementations may require

that the output of the CIC filter to be normalized to its input, requiring thereby

an output re-scaling. This is done in two steps: coarse and fine gain adjustments.

The coarse gain adjustment consists of normalizing the integer gain factor, by right

shifting the quantization by s = blog2(GCIC)c. Fine gain adjustment then finalizes

the normalization by multiplying the samples with the factor SF = 2s/GCIC . The

output of this multiplication is then rounded to the desired bit width. The reader
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may refer to Hogenauer’s work [5] for more details about the quantization in the

intermediate stages.

Selecting the Filter Order: Three measures are used to select the appropriate CIC

filter order for a given SRC operation: pass-band width, image attenuation level,

and side lobe rejection levels. To simplify the design process, Hogenauer proposed

in the original article tables that sums-up these measures for certain scenarios [5].

CIC Compensation Filter: The frequency response of B-spline interpolation is

known to have an important attenuation in its pass-band. A solution to improve

the frequency response was proposed in [51] that uses filter sharpening techniques

resulting in the sharpened CIC filter structure, with better pass-band and improved

filtering. It is also possible to improve the response by using compensation filters

that aim at correcting the attenuation of the CIC filter [52, 53, 54, 55, 56].

Non-Recursive CIC Filter Structures: Another downside of the classical CIC filter

is the recursive structure of the integrator blocks, that limits the maximum speed of

the implementation. A non-recursive structure was proposed in [57] offering lower

power consumption and higher operating speeds compared to the recursive CIC

structure. Further improvements were achieved in [58] through a polyphase non-

recursive CIC implementation.

5 Low-cost Arbitrary SRC: Newton Structure
The Newton interpolation structure presented in [6], and illustrated in Figure 7,

offers a low-cost arbitrary SRC filter solution based on Lagrange interpolation. The

structure modifies what was proposed in [59][60] to accommodate for a variable

fractional delay.

5.1 Newton Structure Derivation

Lagrange interpolation is a widely used interpolation technique due its simplicity

and the maximally flat pass-band of its frequency response. The Lagrange interpola-

tion filter is piece-wise polynomial by definition and, therefore, can be implemented

using the Farrow structure [25, 26]. In [61], the Lagrange interpolation filter re-

sponse was developed using the B-spline response, and showed that the zeros of

Lagrange interpolation are the same for both interpolations, hence sharing the role

of image suppression. The frequency response of Lagrange interpolation focuses on

approximating the ideal filter at f = 0 Hz the best way possible [62].

The Newton structure is a particular way of implementing the maximally flat FIR

filter at f = 0 Hz. First, the delay factor µ in the case of the Farrow structure is

transformed into the causal version of the delay expressed as d = [(N − 1)/2]− µ.

Then, the Z-domain transfer function of the ideal filter definition can be written as:

Hd(z) = z−d with z = ej2πfTin . (12)

The main mathematical problem of the above expression (12) is that in the Z-

domain, the terms z are used to express delays by an integer number of samples.
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However, in this case d is a real value and, therefore, evaluating Hd(z)X(z) in this

form will result in an ambiguous output expression. This was addressed in [63],

where the transfer function z−p/q was approximated as a partial series of terms

z−i, with p and q being real numbers, and i being integer. This is done using the

generalized binomial theorem, where it is possible to re-write Hd(z) as:

Hd(z) =
[
1 +

(
z−1 − 1

)]d
=

+∞∑
k=0

d(d− 1) . . . (d− k + 1)

k!

(
z−1 − 1

)k
.

(13)

This series converges for |z−1 − 1| < 1. Truncating this expression to the first

N terms is known to result in the partial sum that satisfies the maximally flat

criterion presented previously [60, 64, 65]. And since this criterion has a unique

solution, then the partial sum of N terms corresponds to the Lagrange interpolation

of order N − 1 [62][66]. The partial sum of (13) of order N corresponds to the

Newton backward difference formula of order N − 1, that implements the Lagrange

interpolation [59][60]. The filter structure is to be modified as it is shown by [6] in

order to support variable fractional delays, resulting in the Newton interpolation

structure, presented in Figure 7. This structure has a complexity of O(N) compared

to the Farrow structure implementing Lagrange interpolation of order N with a

complexity of O(N2). It is important to note that a rigorous demonstration of the

convergence of the Newton fractional-delay filter to the ideal fractional delay filter

was recently published in [67].

5.2 Practical Implementation

The Newton structure does not have any different practical implementation aspects

than those presented earlier in this paper. The same hardware implementation

considerations and the same coefficients quantization guidelines presented for the

U-F-D/polyphase structures apply for the Newton structure. The quantization of

the fractional delay follows the same approach presented for the Farrow structure.

Finally, the implementation of the SRC controller is also identical, with the only

difference being the added circuit to calculate the value of the causal fractional

delay d.

6 Improved Low-Cost Arbitrary SRC: Generalized Newton
Structure

To extend the use of the Newton structure, D. Lamb et al. developed the trans-

formation matrices that show the relation between the Farrow implementation of

the Lagrange interpolation and the Newton interpolation structure [7]. Then they

applied these transformations to B-spline interpolation of order 3 using the Far-

row structure to get a modified Newton structure implementation. Later on, this

transformation was used to modify the Newton structure in different ways to obtain

improved low-cost arbitrary SRC solutions [8, 9, 10].

6.1 Farrow to Newton Transformation

The matrix representation of the Farrow structure transfer function presented in (8)

uses a monomial basis vector µk, and a cumulative delay base vector Z(z). The work
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developed in [7] shows that it is possible to transform these base vectors to those

of the Newton structure, allowing thereby to deduce the corresponding Newton

structure implementation of any Farrow structure. The Newton structure is based

on differentials between samples and their derivatives. In this case, the polynomial

evaluation is done with the Newton polynomial base vector dT expressed as:

dT
1×M

=
[
1, d, d(d− 1), . . . ,ΠM−2

i=0 (d− i)
]
. (14)

For the delay vector, the Newton structure uses a differential delay base vector

5Z(z) expressed as:

5Z(z)
N×1

=
[
1, (1− z−1), . . . , (1− z−1)N−1

]
. (15)

Then, the matrix representation of the Newton structure transfer function is writ-

ten as:

Hik(z) = dT
1×M

× Q
M×N

×5Z(z)
N×1

, (16)

where the matrix Q containing the coefficients describing the Newton structure

implementation. By transforming the base vectors in (8) to those of the Newton

structure in (16), the Newton structure coefficients matrix Q corresponding to the

matrix P of the Farrow structure can be found as follows:

H(z, µ) = µTP Z(z)

= µT
(
TTd T−Td

)
P
(
T−1
z Tz

)
Z(z)

= (Td µ)
T (
T−Td P T−1

z

)
(Tz Z(z))

= dT Q 5 Z(z),

(17)

where T−Td =
(
TTd
)−1

and the matrices Td and Tz are the ones transforming the

vectors µ and Z(z) to d and 5Z(z), respectively [7]. The analytical expressions of

these matrices are developed in [8]. This transformation allows implementing any

polynomial based response using a modified Newton structure as shown in Figure

8 for a random example. Concrete examples of modified Newton structures are

provided in the following paragraphs.

6.2 Modified Newton Structures:

In the most general case, the generalized Newton structure can implement any poly-

nomial based filter response, however, the order of complexity will be comparable

to that of the Farrow structure. Nevertheless in certain particular cases, the gen-

eralized Newton structure can offer much more efficient implementations than it is

possible using the Farrow structure. This section presents some of these cases.

B-spline interpolation: The original work that proposed this transformation ap-

plied it to the case of B-spline interpolation of order 3 [7]. This resulted in the

modified structure shown in Figure 9-(a), that modifies the classical Newton struc-

ture of order 3 using only three additional adders.
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Hermite interpolation: A disadvantage of B-spline interpolation is the important

attenuation in its pass-band, limiting its practicality for certain transceiver systems.

Hermite interpolation is a more interesting interpolation method that keeps the flat

pass-band of Lagrange interpolation while improving the side lobes rejection levels.

The modification of the Newton structures to implement this type of interpolation

was developed in [9], that resulted in filter structures having lower complexity than

the classical Newton structures of the same order, while offering improved filtering

performance. An example modified structure of order 3 is shown in Figure 9-(b).

Optimization methods: By using the Farrow to Newton transformation, the filter

response relation to the generalized Newton structure coefficients is not explicit.

However, this relation can be found using the analytical expressions of this trans-

formation as developed in [8]. This results in the closed-form expression of the

generalized Newton structure frequency response. It is then possible to use filter

optimization methods to find customized Newton structures with the best filter

response possible. An example is shown in Figure 9-(c) for a customized structure

of order 3, where it is supposed that the modification introduces feedback lines

from the last delay element only. Then by using filter optimization methods, the

coefficients c1 to c8 that correspond to the optimal approximation of the desired

filter response are found. A concrete example is developed in [8] that shows how it

is possible to achieve similar filtering performance to the Farrow structure, using a

modified Newton structure of a much lower complexity.

Reconfigurable structures: All the previously presented structures are modifica-

tions of the classical Newton structure. By linearly combining the transfer function

of the classical structure with any other modified one, it is possible to find recon-

figurable structures using only one variable parameter c. This is done by expressing

the filter response as HR(z) = (1 − c)HNewton(z) + cHModified(z). The structure

implementing HR(z) is then capable of performing both interpolations (Lagrange

for c = 0, and the second interpolation for c = 1), and also a range of interpolations

that combine the characteristics of both interpolation methods by using a value

of c ∈ [0; 1]. This design approach is developed in [10], where two examples are

provided. The reconfigurable structure implementing both Lagrange and Hermite

interpolations is shown in Figure 9-(d).

7 SRC Solutions Comparison
The developed presentation of the FIR based SRC filters, summed-up in Figure 2,

offers an easy way to grasp the relations between the different structures, clarifying

thereby how to select the most appropriate structure for a certain SRC operation,

how to compare the different structures, and how they can be combined together

to perform any SRC operation efficiently.

A simple chart to select the best adapted SRC solution for a given application

is represented in Table 1. For coarse SRC, the choice has to be made between the

U-F-D/polyphase solution and the CIC filter for best performance and low-cost

applications respectively. While for fine SRC, the choice has to be made between

the Farrow and Newton structures. With the generalization of the Newton structure,
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it is possible to achieve low-cost implementation with filter response approaching

what is possible with the Farrow structure as presented in the last section.

The CIC filter is the reference SRC solution with the lowest complexity. However,

it is only suited for coarse SRC operations. For fine SRC, the Newton structure

used to be the most efficient implementation before our proposition of the modified

Newton structures. We developed in [17] the implementation of low-cost SRC filters

on application specific integrated circuits (ASIC). The results, illustrated in Figure

10, show that a Newton structure of order 5 uses only 72% of the hardware resources

of an equivalent implementation using the Farrow structure. However, the modified

Newton structure for Hermite interpolation requires only half the resources while

offering improved filtering performance. This demonstrates the advantage of the

modified Newton structures that make possible the implementation of fine SRC

with a complexity approaching that of the coarse SRC CIC filters of a similar

order. This was not conceivable a decade ago before the propositions in [6, 7, 9].

For an efficient implementation, the SRC operation is implemented as a cascade

of multiple SRC filters [1, 2, 13]. In order to partition an SRC operation into a

multistage implementation, a simple guide is proposed below:

1 For SRC applications with a large changes in the sampling frequency, extract

the first factor R1 representing an interpolation or decimation operation by

an integer factor larger than eight. Then either the CIC filters or the U-F-

D/polyphase structures are used depending on the filtering requirements. If the

factor R1 can be broken into multiple factors of 2 or 1/2, then half-band filters

offer improved filtering performance with a very low complexity.

2 After extracting the factor R1, identify if there exists a lower coarse rational

or integer SRC factor R2. Usually when a CIC filter is used, this second stage

combines further SRC with the CIC filter response compensation. The imple-

mentation choice of R2 largely depends on the system, but is often implemented

using the U-F-D / polyphase structures.

3 Finally, the fine adjustment of the output sampling frequency is represented by

the factor R3 ≈ 1. Then depending on the application requirements, a Farrow

or Newton structure is used for implementation, offering an average side lobe

attenuation of 60-70 dB or 35-45 dB respectively for an order 5 implementation.

8 Conclusion
In this paper, a succinct presentation of the main FIR based SRC solutions was

developed. This presentation is based on a deep analysis of the previously proposed

solutions for FIR-based SRC filtering, which resulted first in the derivation of a

unified vision of this issue, and second in the development of a design methodology

guide for SRC designers. Both cases of coarse and fine SRC were considered, and

two types of solutions for each case were given: best performance and low-cost

solutions. Recently proposed fine SRC filters based on the Newton structure were

also presented, that allow implementing fine SRC with a complexity approaching

that of the more simple coarse SRC implementations. This presentation also covered

the different practical implementation aspects in hardware, and provided a simple

guide to help implementing any SRC operation using a multi-stage architecture.
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Through this tutorial, any engineer in the field should be able to easily understand

and use the basics of the presented SRC solutions.
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SRC: Sample rate conversion; FIR: Finite impulse response; CIC: Cascaded integrator-comb; U-F-D: Up-sampling/
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technologies. It has been funded by TéléDiffusion de France (TDF) and the French government through the National

Research Agency (ANR) under the Investissements d’Avenir program, with reference number ANR-A0-AIRT-07.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analysed during the study.

Competing interests

The authors declare that they have no competing interests.

Author details
1TDF, 155 bis Avenue Pierre Brossolette, 92120 Montrouge, France. 2IETR UMR CNRS 6164, SCEE,
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Tables

Table 1 Choosing the best adapted SRC solution

Best Performance Low-Cost

Coarse SRC U-F-D / Polyphase CIC filter

Fine SRC Farrow structure Newton structure

Figures
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= U

D

x(kTout)

Sampling @Fout

Reconstruction

Figure 1 Signal sampling, sampling rate conversion, and signal reconstruction

Figure 2 Types of linear phase FIR filters and their corresponding implementation structures for
sample rate conversion
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Figure 5 Efficient arbitrary SRC: Farrow structure
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: 1) Low-cost structure with zero multipliers 

: B-spline interpolation of order N-1 

: Low-cost coarse SRC of average filtering performance 

: 2) Important droop in the passband often requires compensation 

: 1) Limited to the impulse response of B-spline interpolation 

Figure 6 Low-cost coarse SRC: CIC filter
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Newton Structure 

𝑑 𝑖𝑘  

𝑦[𝑘] 

𝑥[𝑚] 
𝐶(𝑧) 𝐶(𝑧) 𝐶(𝑧) 

𝑑 𝑖𝑘 + 1 𝑑 𝑖𝑘 +𝑁 − 1 

1/2 1/N 

𝐶 𝑧 = 1 − z−1 

Application 

Response 

Features 

Limitations 

Technical Specifications: 𝐹𝑠𝑚𝑎𝑥
= 𝐹𝑜𝑢𝑡 / Multipliers 𝑂 𝑁  / Adders 𝑂 𝑁  

: 2) Low-cost implementation with a linear order of complexity 

: 1) Same features of the Farrow structure 

: Constructed using Lagrange polynomials of order N 

: Low-cost fine-tuned SRC of average filtering performance 

: 1) Limited to the impulse response of Lagrange interpolation 

: 3) Dynamically reconfigurable interpolation order  

Figure 7 Low-cost arbitrary SRC: Newton structure

Generalized Newton Structure 

𝑦[𝑘] 

𝑥[𝑚] 
𝐶(𝑧) 𝐶(𝑧) 𝐶(𝑧) 

1/2 1/N 
Application 

Response 

Features 

Limitations 

Technical Specifications: 𝐹𝑠𝑚𝑎𝑥
= 𝐹𝑜𝑢𝑡 / Multipliers 𝑂 𝑁  / Adders 𝑂 𝑁  

: 2) Flexible definition and optimization of the filter response 

: 1) Same features of the Newton structure 

: Polynomial based finite impulse response of order N 

: Low-cost fine-tuned SRC of improved filtering performance 

: 1) Limited to polynomial based impulse responses 

: 3) Possible low-cost reconfigurable response implementations 

Figure 8 Improved low-cost arbitrary SRC: generalized Newton structure

x[m] 1
1 − z−1

y[m]

µ− 2

1/2
1 − z−1

µ− 1

1 − z−1
1/3

µ

(a) Spline interpolation of order 3 [7]
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(b) Hermite interpolation of order 3 [9]
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y[m]
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c4
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(c) Optimized interpolation of order 3 [8]
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1 − z−1

y[m]
µ− 2
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1 − z−1

µ− 1
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1/3 2c

µ

3
1/2

(d) Reconfigurable interpolation of order 3 [10]

Figure 9 Modification examples of the generalized Newton structure
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Figure 10 Complexity on ASIC hardware of order 5 implementations


