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Filtering in Gaussian Linear Systems
with Fuzzy Switches

Zied Bouyahia, Stéphane Derrode, and Wojciech Pieczynski

Abstract—This work extends recent results on Conditionally Gaussian
Observed Markov Switching Models (CGOMSM) by incorporating fuzzy
switches in the model, instead of hard ones. This kind of generalization is
of interest for applications involving continuous switching regimes, such
as tracking an object using cameras in intermittent sunlight and shadow
conditions. The filter developed hereby is recursive, optimal and exact,
up to an approximation of integrals according to some fuzzy measure.
Experiences on simulated and on real data –dealing with outdoor air
temperature and power consumption of a building– confirm the accuracy
and effectiveness of the proposed filter compared to the hard filter with
’crisp’ switches.

Index Terms—Triplet Markov models, Fuzzy switching linear model,
Fast filtering.

NOMENCLATURE

CMSHLM Conditionally Markov switching hidden
linear model.

CGMSM Conditionally Gaussian Markov switching5

Model.
CGOMSM Conditionally Gaussian observed Markov

switching model, a CGMSM where (5)
holds.

CGOFMSM Conditionally Gaussian observed fuzzy10

Markov switching model, a CGOMSM
with fuzzy switches.

XN
1 A stochastic process of size N .

Xn, xn A random variable at time index n, and a
realization.15

XN
1 , Y N

1 , RN
1 State, observation and switches (also called

jump) processes, respectively.
Zn, T n Denotes (Xn, Yn)ᵀ and (Xn, Rn, Yn)ᵀ,

respectively.
K Number of switches.20

m, q Dimension of the states and observations.
E [Xn|Y n

1 = yn1 ] Filter at time index n (also denoted
xn(yn1 )).

Mn(rn) Denotes E
[(
Xn, Yn

)ᵀ∣∣ rn].
ν = δ0 + δ1 + µ]0,1[ Fuzzy measure on [0, 1] used, where δ25

is the Dirac mass, and µ the Lebesgue
measure.

ν ⊗ ν Denotes the product of measures.

I. INTRODUCTION

Let us consider the problem of statistical optimal filtering in30

the presence of switches. Three stochastic sequences are involved:
states XN

1 = (X1, . . . , XN ), switches RN
1 = (R1, . . . , RN ), and

observations Y N
1 = (Y1, . . . , YN ). For each n = 1, . . . , N , the

random variables Xn and Yn take their values in Rm and Rq
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Fig. 1. Dependence graph of conditionally Gaussian observed Markov switch-
ing model.

respectively, while Rn takes its values in the finite discrete set
Ω = {0, 1, . . . ,K − 1}. For the sake of simplification, we will
assume in the remainder of this paper that (i) m = q = 1, i.e.
XN

1 and Y N
1 are scalar-valued processes, and (ii) that K = 2. We

consider these hypotheses only to simplify the presentation of the 5

filtering method; the algorithms proposed in the following can be
extended to the cases of vectorial processes and for a number of
switches greater than two.

The problem is to sequentially estimate each Xn+1 from Y n+1
1 .

Fast recursive optimal filters compute the estimated x̂n+1(yn+1
1 ) = 10

E
[
Xn+1|Y n+1

1 = yn+1
1

]
from x̂n(yn1 ) and yn+1. The ‘Condition-

ally Gaussian Linear State-Space Models” (CGLSSM), considered
as a natural way to extend Gaussian systems to Gaussian switching
ones, do not allow for a filtering scheme that can be performed in a
reasonable running time [1]–[5]. Classically, CGLSSMs rely on the 15

following assumptions:
1) RN

1 is Markov;
2) XN

1 is Markov conditionally on RN
1 ;

3) (Yn), 1 ≤ n ≤ N , are Gaussian, independent conditionally on
(RN

1 ,X
N
1 ) and verify: 20

p
(
yn

∣∣∣rN1 ,xN1 ) = p (yn |rn, xn ) . (1)

In CGLSSMs, RN
1 and (RN

1 ,X
N
1 ) are both Markov, and

p
(
yn
∣∣rN1 ,xN1 ) is very simple. These assumptions do not allow for

exact computation of recursive filters, since (RN
1 ,Y

N
1 ) is not Markov

and p (rn |yn1 ) cannot be computed sequentially and exactly. This
problem has been addressed in recent “conditionally Markov switch- 25

ing hidden linear models” (CMSHLMs [6]), in which both RN
1 and

(RN
1 ,Y

N
1 ) are Markov, and p (xn+1 |rn1 ,xn1 ) is pretty general. Here

we consider particular Gaussian CMSHLMs called “Conditionally
Gaussian Observed Markov Switching Models” (CGOMSMs [7]–
[9]), which verify: 30

1) RN
1 , (RN

1 ,Y
N
1 ) and (XN

1 ,R
N
1 ,Y

N
1 ) are Markov;

2) (XN
1 ,Y

N
1 ) is Gaussian conditionally on RN

1 .
Figure 1 illustrates the dependencies between the stochastic processes
defining the studied CGOMSM. Such an approach is different from
classic ones since the hidden chain (RN

1 ,X
N
1 ) is no longer assumed 35
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Markov, as it has been usually done. Thus, recursive exact filtering is
feasible in CGOMSMs and the interesting point is that these models
can be quite close to the classic CGLSSMs [7], [10].

The values Rn+1
n = rn+1

n govern the parameters of the distribution

p
(
xn+1, yn+1

∣∣xn, rn+1
n , yn

)
and thus there exist four possible transitions according to rn+1

n ∈
Ω2 = {0, 1}2. The main limitation of the classical switching model5

which relies on hard switches is that it does not take into account
the transient transition between switches. In real world applications
(c.f. Section III), the crisp transition can cause the model to discard
significant information that corresponds to the time period during
which the system switches from one regime to another. Therefore, the10

hard switches modeling impacts the accuracy of the filtering scheme.
If we consider the example of tracking a moving object using sensors
in intermittent sunlight and shadow conditions (both corresponding
to hard switches 0 and 1), there exist intermediary situations as
sunlight condition may fade into shadow in a continuous manner.15

Considering only the hard switches imposes the filtering method to
consider only one of the states 0 and 1 during the transition and
consequently this shall compromise the accuracy of the filtering since
the system state during the transitory phase is a mixture of the two
hard switches. Thus, a more complete model would be to associate20

a set of parameters to each rn+1
n ∈ [0, 1]2. This is the very aim of

the paper: we extend the Markov chain RN
1 used in CGOMSMs to a

‘fuzzy’ one. Such models called ‘fuzzy models’, have been proposed
in [11] in a simple context, without Markovianity, to deal with fuzzy
image segmentation. Then, they have been extensively used in hidden25

Markov chains [12]–[14] and hidden Markov fields [14]–[16]. Here,
the hidden fuzzy Markov chain will be considered to model the
pair (switches, observations) in the context of filtering in presence
of jumps, which is possible as the pair (RN

1 ,Y
N
1 ) is Markov in

CGOMSMs.30

To the best of our knowledge, while there exist several research
works dealing with fuzzy Markov models, the literature for fuzzy
Markov jump model filtering is surprisingly scant despite its practical
potential. Recently, the discrete-time Takagi-Sugano (T.-S.) approach
to fuzzy filter design for Markovian jump model has been gaining a35

significant interest over the last few years –see for example [17],
[18] and the references therein– especially in the fuzzy control
and fault detection research community. Unlike T.-S. model, our
approach assumes that, conditionally to jumps, the model is pairwise
linear, which enriches the classical linear models. The proposed fuzzy40

filter allows for exact calculations for the filter, up to numerical
approximation of some integrals, as precised in the text. In the
remaining, we start with a brief description of the CGOMSM in
Section II, and pursue with the description of the original fuzzy jump
model in Section III. Sections IV and V depict how the corresponding45

‘fuzzy’ filter runs. Section VI reports experimental results that show
how the fuzzy filter can improve filtering from the CGOMSM, while
Section VII reports comparative filtering result on real data.

II. CONDITIONALLY GAUSSIAN OBSERVED MARKOV HARD

SWITCHING MODEL50

Let us set Zn = (Xn, Yn)ᵀ, T n = (Xn, Rn, Yn)ᵀ and assume the
following:

1) TN
1 is Markov;

2) p (rn+1 |tn ) = p (rn+1 |rn ), which implies the Markovianity
of RN

1 ;55

3) ZN
1 = (Z1, . . . ,ZN ) is Gaussian conditionally on RN

1 .
Such a model, introduced in [8], is called “Conditionally Gaussian
Markov Switching Model” (CGMSM), and is defined by p(t1),

transitions p (rn+1 |rn ), and

Zn+1 = An+1(rn+1
n )Zn + Bn+1(rn+1

n )W n+1

+Nn+1(rn+1
n ), (2)

for n = 1, . . . , N − 1, and where
• W n = (Un, Vn)ᵀ with U1, V1, . . . , UN , VN Gaussian zero-

mean independent vectors with identity covariance matrices;
• Matrices An+1(rn+1

n ) and Bn+1(rn+1
n ): 5

An+1(rn+1
n ) =

[
a1n+1(rn+1

n ) a2n+1(rn+1
n )

a3n+1(rn+1
n ) a4n+1(rn+1

n )

]
,

Bn+1(rn+1
n ) =

[
b1n+1(rn+1

n ) b2n+1(rn+1
n )

b3n+1(rn+1
n ) b4n+1(rn+1

n )

]
;

• Means Nn+1(rn+1
n ) = (NX

n+1(rn+1
n ), NY

n+1(rn+1
n ))ᵀ are

given by

Nn+1(rn+1
n ) = Mn+1(rn+1)−An+1(rn+1

n )Mn(rn),

with

Mn(rn) = E
[(

Xn
Yn

)∣∣∣∣ rn] =

[
MX
n (rn)

MY
n (rn)

]
. (3)

Recursive filtering is not workable in the general CGMSM. Be-
sides, let us notice that the classic “Conditionally Gaussian linear
state-space model” (CGLSSM [2]) is a particular CGMSM obtained
by setting, for each rn+1

n ∈ Ω2
10

a2n+1(rn+1
n ) = a4n+1(rn+1

n ) = b2n+1(rn+1
n ) = 0. (4)

However, another particular CGMSM, called “Conditionally Gaus-
sian observed Markov switching model” (CGOMSM) obtained from
CGMSM by setting, for each rn+1

n ∈ Ω2 [7]–[10]

a3n+1(rn+1
n ) = 0, (5)

allows for recursive optimal filtering even with switches [8]. Indeed,
CGOMSM belongs to the category of “conditionally Markov switch- 15

ing hidden linear models” (CMSHLMs) in which recursive optimal
filtering is workable [6].

The aim of this paper is to extend the CGOMSM defined by (1)-
(3) and eq. (5) to a ‘fuzzy’ CGOMSM (denoted by CGOFMSM) and
to show how the related recursive optimal ‘fuzzy’ filter runs. 20

III. CONDITIONALLY GAUSSIAN OBSERVED FUZZY MARKOV

SWITCHING MODEL

Let us begin by illustrating with three examples the interest of the
new proposed model in real situations.

In the first example, let sequence XN
1 model the positions at 25

time index 1, . . . , N of a flying object, and let sequence Y N
1 model

the measurements provided by some optical sensors situated on the
ground. During the tracking process, the sunlight can be partially
or totally hidden due to the presence of clouds, which gives two
models for the distribution of Y N

1 . This can be modelled by a ‘hard’ 30

model with RN
1 such that each Rn takes its value in Ω = {0, 1},

with 0 corresponds to total sunlight exposure and 1 to shadow
condition. In some situations, during cloudy weather conditions that
hide the sun partially, the transition from sunlight to shadow is
‘continuous’, and the duration of ‘intermediary’ light can be of 35

paramount importance to the tracking process. This motivates the
introduction of ‘fuzzy’ model with each Rn belonging to Ω = [0, 1]
rather than to Ω = {0, 1}.

However, the distribution of Rn on Ω = [0, 1] has to verify some
properties. Willing to have non-null probability to have sunshine - 40

and likewise for shadow - implies that there should be two Dirac
masses on 0 and 1. Then one can complete the distribution of Rn
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on Ω = [0, 1] by setting continuous probability on ]0, 1[. Finally,
the distribution of Rn is defined by its density p : [0, 1] → R with
respect to ν = δ0 +δ1 +µ]0,1[, where δ0, δ1 are Dirac’s distributions
on 0, 1, and µ]0,1[ is the Lebesgue’s measure on ]0, 1[.

Let us consider a second example dealing with pedestrian tracking5

for surveillance purposes which consists in tracking the movements of
pedestrians using aggregated data acquired from deployed sensors in
the monitored area [19]. Due to the dynamic aspect of pedestrian
motion in the presence of several contextual information such as
crowd, the use of a two-motion model (corresponding to crowded10

/ uncrowned configurations) is necessary. However, the concept of
‘crowd’ can be seen as a fuzzy phenomenon. Hence, relying on
an abrupt change of parameters within the two-jump scheme does
not take into account the intermediate states of pedestrian motion
and impacts the accuracy of tracking process. Another example of15

the same problem relates to car traffic speed and density in a road
segment [20].

A last example showing the potential interest of a fuzzy model
appears when we want to study the phenomenon associated to out-
door air temperature. Typically, during one day, temperature reaches20

minimal values during the night and maximal during the afternoon.
Between these two ranges, temperatures increase and decrease and
can be represented by the fuzzy nature of the jumps considered in
our model. An example of such a situation is detailed in Section VII.

From this perspective, the use of fuzzy transitions to model the25

transient change of parameters is more relevant than the salient
switching model. The definition of the new “Conditionally Gaussian
Observed Fuzzy Markov Switching Model” (CGOFMSM) we pro-
pose is similar to (1)-(3) and eq. (5), except that we limit our study
to two hard classes and each Rn takes its values in Ω = [0, 1].30

Definition 1. Let XN
1 , Y N

1 and RN
1 be three stochastic sequences of

random variables taking their values in R, R and [0, 1] respectively.
The triplet TN

1 = (T 1, . . . ,TN ), with T n = (Xn, Rn, Yn)ᵀ, will
be said “Conditionally Gaussian observed fuzzy Markov switching
model” (CGOFMSM) if:35

1) TN
1 verifies (1)-(3) and eq. (5);

2) The distribution of each Rn is defined by a density (possibly
depending on n) p : [0, 1]→ R with respect to ν = δ0 + δ1 +
µ]0,1[, where δ0, δ1 are Dirac’s distributions on 0, 1, and µ]0,1[

is the Lebesgue’s measure on ]0, 1[.40

Let us recall some basic rules for integrating a function with respect
to ν = δ0+δ1+µ]0,1[. Such integration has two components: sum of
its values on 0, 1, and ‘classic’ integration over ]0, 1[. More precisely,
for any function φ : [0, 1]→ R, we have

∫ 1

0
φ(r)dν(r) =

∫ 1

0

φ(r)(δ0 + δ1 + µ]0,1[)

= φ(0) + φ(1) +

∫ 1

0

φ(r)dr. (6)

In particular, the expectation of φ(Rn) is written45

E [φ(rn)] =

∫ 1

0

φ(r)p (r) dν(r) = φ(0)p (0)

+φ(1)p (1) +

∫ 1

0

φ(r)p (r) dr. (7)

The distribution of a fuzzy Markov chain (FMC) RN
1 is defined by

the density p (r1) and the conditional densities p (rn+1 |rn ). All of
them are thus defined on Ω = [0, 1] and are densities w.r.t. ν =
δ0 + δ1 + µ]0,1[. According to the general integration w.r.t. ν rule in

eq. (6), we have∫ 1

0

p (r1) dν(r1) = p (0) + p (1) +

∫ 1

0

p (r1) dr1 = 1, (8)

and

p (rn+1) =

∫ 1

0

p (rn) p (rn+1 |rn ) dν(rn)

= p (0) p (rn+1 |0) + p (1) p (rn+1 |1)

+

∫ 1

0

p (rn) p (rn+1 |rn ) drn. (9)

Finally, optimal filtering in ‘fuzzy’ CGOFMSM is not very dif-
ferent from that in ‘hard’ CGOMSM, the difference being that, in
CGOMSM, integrating with respect to rn consists in summing, while 5

in CGOFMSM it consists of integrating with respect to ν.

IV. OPTIMAL FUZZY SWITCHING RECURSIVE FILTER

We wish to compute p
(
rn+1

∣∣yn+1
1

)
, E

[
Xn+1| rn+1,y

n+1
1

]
,

and E
[
X2
n+1

∣∣ rn+1,y
n+1
1

]
from p (rn |yn1 ), E [Xn| rn,yn1 ],

E
[
X2
n

∣∣ rn,yn1 ], and yn+1. According to eq. (2) and (5), (RN
1 ,Y

N
1 ) 10

is a hidden Markov chain, which makes possible the computation of
p
(
rn+1

∣∣yn+1
1

)
as explained below.

First, let us note that the probabilities

p
(
rn+1
n , yn+1 |yn1

)
= p

(
yn+1

∣∣rn+1
n , yn

)
p (rn |yn1 ) p (rn+1 |rn ) ,

(10)
can be calculated since
• p (rn+1 |rn ) are given; 15

• p (rn |yn1 ) can be calculated from(13);
• p

(
yn+1

∣∣rn+1
n , yn

)
are conditional densities of the multivari-

ate Gaussians defined by (2). Taking into account (5), by
using [21, Section 8.1.3, page 40], we obtain means and
variances of a4n+1(rn+1

n )(yn −MY
n (rn)) + MY

n+1(rn+1) and 20

(b3n+1(rn+1
n ))2 + (b4n+1(rn+1

n ))2 respectively.
Secondly, the following probabilities

p (yn+1 |yn1 ) =

∫∫ 1

0

p
(
rn+1
n , yn+1 |yn1

)
(dν(rn)⊗ dν(rn+1)),

(11)
can also be computed accordingly:

p
(
rn+1
n

∣∣yn+1
1

)
=
p
(
rn+1
n , yn+1 |yn1

)
p (yn+1 |yn1 )

. (12)

Finally, using (10), eq. (12) gives the so-called forward probabilities

p
(
rn+1

∣∣yn+1
1

)
=

∫ 1

0

p
(
rn+1
n

∣∣yn+1
1

)
dν(rn)∫ 1

0

p
(
rn+1
n , yn+1 |yn1

)
dν(rn)

p (yn+1 |yn1 )
. (13)

Also, for the later use, note that 25

p
(
rn
∣∣rn+1,y

n+1
1

)
=
p
(
rn+1
n

∣∣yn+1
1

)
p
(
rn+1

∣∣yn+1
1

) . (14)

The “optimal fuzzy switching recursive filter” (OFSRF) we pro-
pose consists of five steps outlined as follows. To start the iterations,
we first use the distribution of T 1. It is then possible to run the
OFSRF iterations, assuming that all quantities have been computed
for sample n: 30

1) Compute p
(
rn+1

∣∣yn+1
1

)
with (12)-(13).

2) Compute E
[
Zn+1| rn+1

n ,yn1
]

and Var
[
Zn+1

∣∣rn+1
n ,yn1

]
.

From (2), we have

E
[
Zn+1| rn+1

n ,yn1
]

= An+1(rn+1
n )E

[
Zn| rn+1

n ,yn1
]

+ Nn+1(rn+1
n ), (15)
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Recalling that Rn+1 and Zn are independent conditionally on
Rn (Condition 2 in the definition of CGMSM), we have

E
[
Zn| rn+1

n ,yn1
]

=

[
E [Xn| rn,yn1 ]

yn

]
.

Also, using (2) and from classical calculations detailed in C,
we have

Var
[
Zn+1

∣∣rn+1
n ,yn1

]
= Bn+1(rn+1

n )Bᵀ
n+1(rn+1

n )

+An+1(rn+1
n )Var

[
Zn

∣∣rn+1
n ,yn1

]
Aᵀ
n+1(rn+1

n )

= Bn+1(rn+1
n )Bᵀ

n+1(rn+1
n )

+An+1(rn+1
n )Var [Zn |rn,yn1 ]Aᵀ

n+1(rn+1
n ). (16)

For the later convenience, let us note:

Var
[
Zn+1

∣∣rn+1
n ,yn1

]
=

[
αn+1(rn+1

n ) βn+1(rn+1
n )

ξn+1(rn+1
n ) δn+1(rn+1

n )

]
.

3) From the multivariate normal distribution specified by (15)5

and (16), compute the parameters E
[
Xn+1| rn+1

n ,yn+1
1

]
and E

[
X2
n+1

∣∣ rn+1
n ,yn+1

1

]
of its marginal Xn+1|yn+1, r

n+1
n

(see [21, Section 8.1.3, page 40]) according to

E
[
Xn+1| rn+1

n ,yn+1
1

]
= E

[
Xn+1| rn+1

n ,yn1
]

+
βn+1(rn+1

n )

δn+1(rn+1
n )(

yn+1 − E
[
Yn+1| rn+1

n ,yn1
])
, (17)

with E
[
Xn+1| rn+1

n ,yn1
]

and E
[
Yn+1| rn+1

n ,yn1
]

given by
eq. (15), and10

E
[
X2
n+1

∣∣ rn+1
n ,yn+1

1

]
= E2

[
Xn+1| rn+1

n ,yn+1
1

]
+ αn+1(rn+1

n )

−βn+1(rn+1
n )

δn+1(rn+1
n )

ξn+1(rn+1
n ); (18)

4) Compute E
[
Xn+1| rn+1,y

n+1
1

]
and E

[
X2
n+1

∣∣ rn+1,y
n+1
1

]
using (14) with

E
[
Xn+1| rn+1,y

n+1
1

]
=
∫ 1

0
E
[
Xn+1| rn+1

n ,yn+1
1

]
p
(
rn
∣∣rn+1,y

n+1
1

)
dν(rn)(19)

E
[
X2
n+1

∣∣ rn+1,y
n+1
1

]
=
∫ 1

0
E
[
X2
n+1

∣∣ rn+1
n ,yn+1

1

]
p
(
rn
∣∣rn+1,y

n+1
1

)
dν(rn).(20)

5) Finally, compute the filtering equations

E
[
Xn+1|yn+1

1

]
=
∫ 1

0
E
[
Xn+1| rn+1,y

n+1
1

]
p
(
rn+1

∣∣yn+1
1

)
dν(rn+1),(21)

and15

E
[
X2
n+1

∣∣yn+1
1

]
=
∫ 1

0
E
[
X2
n+1

∣∣ rn+1,y
n+1
1

]
p
(
rn+1

∣∣yn+1
1

)
dν(rn+1).(22)

Remark 1. Integration with respect to ν above cannot be written
in a closed-form formula. It is, then, approximated by numerical
integration. Let F denote the number of discrete steps used to
compute integrals on ]0, 1[. The impact of F on the restoration results
will be discussed in the experimental section.20

V. MODEL PARAMETRIZATION

In order to assess the interest of the filtering algorithm
on CGOFMSM simulated data, we will consider stationary
CGOFMSM models, with distribution defined by p

(
x2

1, r
2
1,y

2
1

)
=

p
(
r2
1

)
p
(
x2

1,y
2
1

∣∣r2
1

)
. Thus, we have to define p

(
r2
1

)
(Section V-A) 5

and p
(
x2

1,y
2
1

∣∣r2
1

)
(Section V-B). Thanks to the particular structure

of ν, this can be done in such a way that when the fuzziness
disappears, it is to say when p (rn) = 0 on ]0, 1[ for n = 1, . . . , N ,
a CGOFMSM becomes a classical CGOMSM.

A. Distribution of (R1, R2) 10

Let us notice that in the ‘hard’ case with two possible switches,
the distribution P(R1,R2) is simply a probability over {0, 1}2. In the
fuzzy case we deal with, it is a distribution on [0, 1]2, which provides
a wide range of possibilities for choosing its shape. We next describe
two possible shapes of interest for P(R1,R2) (called FMC1 and FMC2 15

models, where FMC stands for ‘Fuzzy Markov Chain’), that will be
experimented in next Section.

1) First case (FMC1 model): The density p
(
r2
1

)
of P(R2

1)
w.r.t.

ν ⊗ ν - where ν = δ0 + δ1 + µ]0,1[ - is of the form:
p(0, 0) = p(1, 1) = α,

p(1, 0) = p(0, 1) = β,

p(r1, r2) = η + (δ − η) |r1 − r2| ,
for (r1, r2) ∈ [0, 1]2 \ {0, 1}2 ,

with 20

∫∫ 1

0
p(r1, r2) dν(r1) dν(r2) = 1. A possible shape for this

density is illustrated in Fig. 2.

Remark 2. We obtain a ‘fuzzy constant’ model by setting δ = η
and, in particular, we get a ‘purely hard’ CGOMSM model by setting
δ = η = 0. 25

The density p (r1) of P(R1) is computed as follows:

p(r1) =


α+ β + δ+η

2
if r1 = 0,

α+ β + δ+η
2

if r1 = 1,
3
2
(δ + η) + (δ − η)(r21 − r1) if r1 ∈]0, 1[.

(23)

Knowing that
∫ 1

0
p(r1) dν(r1) = 1, we get

β =
1− 5

2
(δ + η) + 1

6
(δ − η)

2
− α. (24)

Hence, this model is only parametrized by {α, δ, η} (the calculations
are detailed in Appendix A).

The limit proportion of hard data (pH ) with respect to fuzzy ones 30

(pF ) in a sampled sequence is

pH = p(0) + p(1) = 2(α+ β) + (δ + η),

pF = 1− pH =
3

2
(δ + η)− 1

6
(δ − η). (25)

The density p(r2|r1) of distribution PR2|R1
, w.r.t. ν, is the ratio

between the joint density and the marginal density. We have to
distinguish between different cases, according to the value of r1:

p(r2|r1 = 0) =


α
D1

if r2 = 0,
β
D1

if r2 = 1,
η+(δ−η)r2

D1
if r2 ∈]0, 1[.

(26)

p(r2|r1 = 1) =


β
D1

if r2 = 0,
α
D1

if r2 = 1,
δ+(η−δ)r2

D1
if r2 ∈]0, 1[.

(27)

p(r2|r1 ∈]0, 1[) =


η+(δ−η)r1

D2
if r2 = 0,

δ+(η−δ)r1
D2

if r2 = 1,
η+(δ−η)|r1−r2|

D2
if r2 ∈]0, 1[.

(28)
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(a) Parameters: α = 0.10, η = 0.21, δ = 0.076 (β = 0.03, pH =
0.55).

(b) Parameters: α = 0.15, γ = 0.60, δ = 0.20 (β = 0.0, pH =
0.54).

Fig. 2. Density p (r1, r2) for the FMC1 model (a) and for the FMC2 model
(b).

with D1 = α+ β + δ+η
2

and D2 = 3
2
(δ + η) + (δ − η)(r21 − r1).

For the particular case where δ = η = 0, we have a classical
Markov chain with 2 states, and p(r2|r1) writes

p(r2|r1 = 0) =

{
α

α+β
if r2 = 0,

β
α+β

if r2 = 1.
(29)

p(r2|r1 = 1) =

{
β

α+β
if r2 = 0,

α
α+β

if r2 = 1.
(30)

2) Second case (FMC2 model) : The density p
(
r2
1

)
of P(R2

1)
w.r.t.

ν ⊗ ν is of the form:5

p(0, 0) = p(1, 1) = α,

p(1, 0) = p(0, 1) = β,

γ for r1, r2 ∈ [0, 1]2 \ {0, 1}2 and − δ ≤ r2 − r1 ≤ δ,
0 elsewhere,

with α, β ≥ 0, 0 ≤ δ < 1
2

, and under the constraint that∫∫ 1

0
p(r1, r2) dν(r1) dν(r2) = 1. A possible shape for this density

is illustrated in Fig. 2. By varying δ, this model allows expressing
transient fuzzy changes.

Remark 3. If α+β = 1
2

, then γ = 0, and the joint law is only made
of the four Dirac’s distributions at the four corners, which gives a
CGOMSM.

The density p (r1) of P(R1) is computed as follows:

p(r1) =



α+ β + γδ if r1 = 0,

γ(δ + r1 + 1) if r1 ∈]0, δ],

2γδ if r1 ∈]δ, 1− δ[,
γ(2 + δ − r1) if r1 ∈ [1− δ, 1[,

α+ β + γδ if r1 = 1.

(31)

Since
∫ 1

0
p(r1) dν(r1) = 1, we get 5

β =
1− γM

2
− α, (32)

with M = δ(6− δ), and under the constraint that γ ≤ 1−2α
M

. Hence
this model is only parametrized by (α, γ, δ).

The limit proportion of hard data (pH ) to fuzzy ones (pF ) in a
sampled sequence is

pH = p(0) + p(1) = 2(α+ β + γδ),

pF = 1− pH = γδ(4− δ). (33)

The density p(r2|r1) of distribution PR2|R1
, w.r.t. ν, is the ratio 10

between the joint density and the marginal density. Similarly to the
first case, we have to distinguish between different configurations,
according to the value of r1:

p(r2|r1 = 0) =


α

α+β+γδ
if r2 = 0,

γ
α+β+γδ

if r2 ∈]0, δ],
β

α+β+γδ
if r2 = 1,

0 elsewhere.

(34)

p(r2|r1 ∈]0, δ]) =


1

δ+r1+1
if r2 = 0,

1
δ+r1+1

if r2 ∈]0, r1 + δ],

0 elsewhere.

(35)

p(r2|r1 ∈]δ, 1− δ[) =

{
1
2δ

if r2 ∈]r1 − δ, r1 + δ[,

0 elsewhere.
(36)

p(r2|r1 ∈ [1− δ, 1[) =


1

2+δ−r1
if r2 ∈ [r1 − δ, 1[,

1
2+δ−r1

if r2 = 1,

0 elsewhere.

(37)

15

p(r2|r1 = 1) =


β

α+β+γδ
if r2 = 0,

γ
α+β+γδ

if r2 ∈ [1− δ, 1[,
α

α+β+γδ
if r2 = 1,

0 elsewhere.

(38)

Remark 4. In the two examples of fuzzy Markov models, we assume
that the distribution P(R1,R2) is defined by four masses on the
corners, –i.e. at locations {0, 1} × {0, 1}–, and a density on the
remaining [0, 1]2\{0, 1}2. It is to say that we assume the distributions
on the sides of the square [0, 1]× [0, 1], –i.e. the distributions P(0,R), 20

P(1,R), P(R,0) and P(R,1) for R in [0, 1]–, to be identical to the inner
density of the square. This is a particular case, used here to simplify
the parametrization, since we can set them independently.
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B. Distributions of (X2
1,Y

2
1) conditional on R2

1

To finalize the description of stationary (XN
1 ,R

N
1 ,Y

N
1 ), we need

to define the 4D Gaussian distributions p
(
x2

1,y
2
1

∣∣r2
1

)
= p

(
z2
1

∣∣r2
1

)
for r1, r2 ∈ [0, 1]. The means and covariance matrices of the four
‘hard Gaussians’ corresponding to r1 = i, r2 = j, with i, j ∈ {0, 1},5

are given by

µi,j = E
[
z1

z2

∣∣∣∣ r1 = i, r2 = j

]

=

E
[
x1
y1

∣∣∣∣ r1 = i

]
E
[
x2
y2

∣∣∣∣ r2 = j

]
 =

[
M i

M j

]
, (39)

and

Γi,j =


(σXi )2 bi aij dij
bi (σYi )2 eij cij
aij eij (σXj )2 bj
dij cij bj (σYj )2

 , (40)

with dij = bicij in order to verify (5), i.e. for the model to be a
CGOMSM.

The mean of a ‘fuzzy Gaussians’ with r1 ∈]0, 1[ is defined by10

linear interpolation of M i and M j :

Mr1 = (1− r1)M0 + r1M1, (41)

and its covariance matrix with r1, r2 ∈]0, 1[ is defined by bi-linear
interpolation of the ‘hard covariance matrices’ Γi,j :

Γr2
1

= (1−r1)(1−r2)Γ0,0+r1r2Γ1,1+r1(1−r2)Γ1,0+r2(1−r1)Γ0,1.
(42)

Then, according to (2), we have

Zn+1 = A(rn+1
n )Zn + B(rn+1

n )W n+1 + N(rn+1
n ), (43)

with N(rn+1
n ) = Mrn+1 −A(rn+1

n )Mrn , and15

A(rn+1
n ) =

[
a
rn+1
n

e
rn+1
n

d
rn+1
n

c
rn+1
n

][
(σXrn)2 brn
brn (σYrn)2

]−1

,

B(rn+1
n ) =

[
(σXrn+1

)2 brn+1

brn+1 (σYrn+1
)2

]−1

(44)

−A(rn+1
n )

[
a
rn+1
n

d
rn+1
n

e
rn+1
n

c
rn+1
n

]
. (45)

Also, for the later use, note that, according to (43), we have

p
(
zn+1

∣∣zn, rn+1
n

)
= N

(
A(rn+1

n )(zn −Mrn) + Mrn+1 ,B(rn+1
n )Bᵀ(rn+1

n )
)
.(46)

Remark 5. Fuzzy means (41) and variances (42) can be seen as
linear interpolations of hard ones. Other kind of interpolations can
be used, once they are compatible with the “hard” CGOMSM.20

VI. EXPERIMENTAL STUDIES

Experiments below report results of restoration on simulated data
–using the two joint laws presented in the previous Section–, in order
to measure the quality of the OFSRF restoration algorithm, and the
influence of the number of discretization steps F in approximation of25

integrals. Comparison is also performed with the ‘hard’ CGOMSM
to measure the error in using this model when there exist transient
changes in data.

A. Simulations of a CGOFMSM sample

To simulate a CGOFMSM (XN
1 , RN

1 , Y N
1 ) sample, we first sim-

ulate a fuzzy Markov chain rN1 , and then simulate the observations
and states (yN1 ,x

N
1 ).

To draw a sample from the fuzzy Markov chain, we first simulate 5

r1 using p (r1), and then, for each n = 1, . . . , N−1, rn+1 is obtained
from p (rn+1 |rn ), which is equal to p (r2 |r1 ). For each rn+1 to
be simulated, we first decide if the jump will be a ‘hard’ one or a
‘fuzzy’ one. To do so, a draw is performed beforehand according to
the proportion of hard and fuzzy jumps. Let us explain in detail the 10

simulation process based on the FMC2 model, the procedure is the
same for the FMC1 model:

• Simulation of r1. First, make a draw according to the proportion
in eq. (33) to determine if the sample will be a ’hard’ one or a
‘fuzzy’ one. 15

– If it is hard, then, using eq. (31), make a draw according
to the probability vector [ 1

2
, 1
2
], to determine if the sample

is ‘0’ or ‘1’.
– If it is fuzzy, then make a draw according to the density

specified by the three equations in (31) corresponding to 20

r1 ∈]0, 1[. The target density is not trivial because of
the slopes in its shape, but most of specialized random
number generation libraries offer a solution for sampling
such density (e.g. library ‘scipy’ in Python language).

• Simulation of rn+1, knowing rn. Let us assume rn = 0, the 25

other possible values of rn can be processed similarly.
– According to eq. (34), first make a draw according to the

probability vector [α
S
, β
S
, γ
S

], with S = α + β + γδ, to
determine if rn+1 will be ‘0’, ‘1’ or ‘fuzzy’.

– If it is fuzzy, then make a uniform draw on ]0, δ[ to get 30

rn+1.
Fig. 3 shows two excerpts of simulated trajectories corresponding

to the FMC1 and FMC2 models (green plain line).
Then, knowing (rn, rn+1) and (xn, yn), each pair (yn+1, xn+1)

is sampled from Gaussian distributions (46) whose parameters are 35

obtained by eq. (41) and (42). For experiments conducted hereafter,
we set the ‘hard’ mean vectors and covariance matrices to be

M0 =

[
0
3

]
, M1 =

[
0
0

]
.

and

Γ0,0 =


0.5 0.3 0.1 0.06
0.3 1.0 0.35 0.4
0.1 0.35 0.5 0.3
0.06 0.4 0.3 1.0



Γ0,1 =


0.5 0.3 0.5 0.14
0.3 1.0 0.33 0.6
0.5 0.33 0.75 0.3
0.14 0.6 0.3 0.5


40

Γ1,0 =


0.75 0.3 0.1 0.24
0.3 0.5 0.35 0.4
0.1 0.35 0.5 0.3
0.24 0.4 0.3 1.0



Γ1,1 =


0.75 0.3 0.5 0.18
0.3 0.5 0.33 0.3
0.5 0.33 0.75 0.3
0.18 0.3 0.3 0.5

 .
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(a) FMC1 model

(b) FMC2 model

Fig. 3. Two excerpt of trajectories simulated from the two fuzzy models with
the parameters of Figure 2.

B. Restoration results

The restoration of simulated data is performed according to the
OFSRF algorithm detailed in Section IV, from simulated observations
only. Fig. 4 shows an example of the restoration of rN1 and xN1 for
the FMC2 law and when the number of discrete fuzzy jumps are set5

to F = 5. The restoration of rN1 was obtained by applying Maximum
Posteriori Mode (MPM) principle:
• If p (rn = 0 |yn1 ) + p (rn = 1 |yn1 ) > 0.5 then the restoration

will be “hard”, else it will be “fuzzy”.
• If the restoration is “hard”, set r̂n to be “0” if p (rn = 0 |yn1 ) >10

p (rn = 1 |yn1 ), else set r̂n to be “1”;
• If the restoration is “fuzzy”, set r̂n to the discrete fuzzy jump

which maximizes p (rn |yn1 ).
Note however that the restoration of rN1 is only performed for

illustration purpose and is not required for the restoration of xN1 .15

We can observe the numerical effect of F with the presence of
stair-steps in the restoration of jumps in (b). Fig. (a) shows the
restoration of xN1 assuming that the jumps are known (i.e. using
the simulated fuzzy Markov chain for rN1 ). Fig. (c) assumes that
the jumps are unknown (OFSRF algorithm). Also, fig. (c) allows to20

observe the restoration difference between the ‘classic’ CGOMSM
and the ‘fuzzy’ CGOFMSM, the latter follows the simulated states
better than the first one for n ≤ 30. This behaviour must be compared
with that of the fuzzy jumps in Fig. (b) which shows a large difference
in the restoration of jumps when n ≤ 30.25

To measure the quality of restorations with respect to F , we
compute the mean MSE of 50 independent experiments of N = 300
samples, for the FMC1 Markov law. Fig. 5 shows the MSE evolution

(a) Restoration of states with KJ. The MSEs for
CGOFMSM and CGOMSM are 0.35 and 0.75.

(b) MPM restoration of fuzzy jumps. The MSEs for
CGOFMSM and CGOMSM are 0.03 and 0.11.

(c) Restoration of states with UJ. The MSEs for
CGOFMSM and CGOMSM are 0.47 and 0.54.

Fig. 4. Comparison of restoration of jumps and states when F = 5, for
simulated data from the FMC2 law with the same parameters as in Figure 2
(N = 80). ‘KJ’ stands for known jumps and ‘UJ’ for unknown jumps. The
difference between the hard filter and the fuzzy one is clearly visible in (c),
for n < 30.

for increasing values of F for both xN1 and rN1 . The result of
applying the CGOMSM filter on the data is reported in the same
graph (horizontal black dotted line, denoted as ‘Hard filter - UJ’).
The parameters used for the hard filters are the same than the ones
used for the fuzzy filter, except that we ‘harden’ the Markov laws 5

by integrating the fuzzy laws on all 4 quadrants of [0, 1] to get
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Fig. 5. Evolution of jump (up) and state (down) MSEs according to the
value of the discrete fuzzy steps F (means of 50 experiments of N = 300
samples) for the FMC1 Markov law. Jumps MSEs were computed from a
MPM classification. Parameters: α = 0.07, η = 0.16, δ = 0.05 (β = 0.158,
pH = 0.69).

% of ’hard’ samples - FMC1 48% 58% 67% 75% 93%
jumps MSE (CGOFMSM) 0.051 0.046 0.039 0.034 0.017
states MSE (CGOFMSM) 0.475 0.446 0.431 0.415 0.368
jumps MSE (CGOMSM) 0.126 0.094 0.074 0.057 0.020
states MSE (CGOMSM) 0.599 0.535 0.500 0.468 0.386

% of ’hard’ samples - FMC2 48% 62% 75% 87% 100%
jumps MSE (CGOFMSM) 0.030 0.026 0.021 0.014 0.012
states MSE (CGOFMSM) 0.442 0.442 0.420 0.399 0.37
jumps MSE (CGOMSM) 0.070 0.040 0.033 0.021 0.011
states MSE (CGOMSM) 0.538 0.479 0.457 0.422 0.374

TABLE I
EVOLUTION OF MSES w.r.t. TO THE PERCENTAGE OF HARD DATA IN THE

SAMPLES FOR THE FCM1 (F = 4) AND FMC2 (F = 10) MODELS. JUMPS
MSES WERE COMPUTED FROM A MPM CLASSIFICATION. RESULTS ARE

MEANS OF 20 INDEPENDENT EXPERIMENTS OF N = 1000 DATA.

P (R1, R2). In this figure, we can observe that the excess error over
the model with known jumps is halved. Also, the state MSE reaches
its minimum when F > 3 ; this value depends on the fuzzy Markov
model and on its parameters. According to some other experiments
not reported here, F is always kept relatively small (typically F ≤ 5),5

which is of interest since the larger F is, the more the computing
time increases. Indeed, the complexity is linear w.r.t. to F , which is
to say that the computational burden of CGOFMSM is approximately
the same as the one of CGOMSM with 2 + F jumps.

The last experiment, whose results are reported in Table I for the10

FMC1 and FMC2 laws, shows the restoration MSE for the CGOMSM
and the CGOFMSM filters when the number of fuzzy samples in the
simulated data is decreasing (by adjusting parameter’ values). We can
observe that, for both fuzzy Markov models, the hard filter reaches
the performance of the fuzzy filter only when the percent of hard15

jumps is near 100%. Elsewhere the fuzzy filter provides lower MSE,
and the difference can be very large for hard sample rates lower than
50%. This result confirms the interest of the fuzzy filter in comparison
with the hard one in the presence of transient changes in observation
data.20

VII. ILLUSTRATION ON REAL DATA

This section intends to illustrate the behaviour of the proposed
algorithm when confronted to real data. The experimental data are
time series representing the energy power (in kilo-Watt) consumed by

Fig. 6. Outdoor temperature (red) and energy power consumed (blue) by some
building during the first week of June, 2010 (source: American DOE).

some building along with the outdoor temperature (in Fahrenheit)1.
We try to understand to what extend the fuzzy model is able to infer
the outdoor temperature from the consumed energy for some building
during the first week of June 2010, cf. Fig. 6.

Thus, energy consumption is considered as the observation (Y N
1 ), 5

and the outside air temperature as the state (XN
1 ), to be estimated,

with N = 672. The fuzzy filter requires to know the jumps RN
1

to estimate the best suited parameters for data. Regardless the data,
we have fixed that the lowest temperature appears between 1am and
5am (corresponding to hard jump ’0’), and that the highest appear 10

between 1pm and 5pm (corresponding to hard jump ’1’). Between
these ranges, temperatures increase and decrease linearly and are
represented by the fuzzy nature of the jumps considered in this
model. The shape of the observations suggests that a fuzzy model is
better suited than a hard model (we choose to use the FMC1 model). 15

From this pseudo ground-truth for jumps, using classical empirical
estimators, it is possible to estimate all the required parameters of
the model: on the one hand, mean values and covariance matrices of
(XN

1 ,Y
N
1 ) conditionally en jumps for the two hard jumps, and, on

the other hand, the α, β, η and δ parameters required to define the 20

law of RN
1 .

The results of fuzzy and hard filtering are reported in cyan in
Fig. 7 and 8 respectively, with the measured air temperature given in
red. For the fuzzy filtering, we considered F = 5 because it gives
good results while maintaining low computation times. The MSE of 25

estimated states with respect to the true outdoor air temperature is
8701 for the hard model, and 6759 for the fuzzy model. Regarding
the jumps, the MSE is 0.13 for the hard model, and 0.07 for the
fuzzy one. The better results obtained with the fuzzy model w.r.t. the
hard one are illustrated by both the estimated jumps and the estimated 30

outdoor air temperature.

VIII. CONCLUSION

We proposed a new jump Markov model made of a triplet random
process (observations, hidden states, hidden fuzzy switches), and
designed the related optimal recursive fuzzy filter which is able to 35

restore switches and states from observations. We called this model
“Conditionally Gaussian Observed Fuzzy Markov switching Model”
(CGOFMSM). The work is based on two key ideas:

• A recursive and exact filter to deal with hard jumps, called
CGOMSM, is available, see [7]–[10]. This filter only assumes 40

the presence of a zero-term (5) in the transition matrix of the
very general Conditionally Gaussian Markov Switching model
defined by (2).

1This time series, collected by the American Department of Energy, is open-
data and can be downloaded for free from https://openei.org/datasets/dataset/
consumption-outdoor-air-temperature-11-commercial-buildings. The experi-
ments focus on building #5.

https://openei.org/datasets/dataset/consumption-outdoor-air-temperature-11-commercial-buildings
https://openei.org/datasets/dataset/consumption-outdoor-air-temperature-11-commercial-buildings
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Fig. 7. Filtering result with estimated jumps (up) and estimated states (down)
for the fuzzy model with F = 5. The MSE for jumps is 0.07, while the MSE
for states is 6759.

Fig. 8. Filtering result with estimated jumps (up) and estimated states (down)
for the hard model. The MSE for jumps is 0.13, while the MSE for states is
8701.

• The definition of a mixed measure including two Dirac masses
for hard classes “0” or “1” and a Lebesgue measure to deal with
fuzziness. It should be noted that integral calculations required
some simple and low-time consuming numerical approximation.

We showed through an experimental study that the proposed model5

and its filter provide interesting results in terms of data restoration
accuracy. This behaviour is confirmed when the model in confronted
to real data dealing with outdoor air temperature. In that case, the
fuzzy jumps allow a better modelling of the increasing and decreasing
air temperature cycle during one day.10

In this work, we assume scalar states and scalar observations for
notation convenience ; the extension to a vectorial filter is somewhat

straightforward, using matrix products. However, the extension of the
filter to three and more classes is not as easy, with quite complex
fuzzy Markov laws to deal with, but could be inspired from the
work [22]. The next step in the development of an unsupervised
parameter estimation method for this CGOFMSM–similar to the one 5

proposed for the ‘hard’ model [23]– is the derivation of a fuzzy
smoother for off-line processing. Application of the fuzzy model to
deal with the design of a control system for road traffic congestion
prediction in which traffic dynamics would be modeled by a switching
regime model is another perspective for further work. 10

APPENDIX

Here are the detail to specify the margin p (r1) and the parameter
β from the joint density p (r1, r2) defined in Section V-A1.

A. Calculation for margin law p(r1)

The density p(r1) of distribution PR1 , w.r.t. ν, is obtained by 15

p(r1) =

∫ 1

0

p(r1, r2) dν(r2) = p(r1, 0) + p(r1, 1) +∫ 1

0

η + (δ − η) |r1 − r2| dr2︸ ︷︷ ︸
A(r1)

,

with

A(r1) = η + (δ − η)

∫ 1

0

|r1 − r2| dr2︸ ︷︷ ︸
B(r1)=B1(r1)+B2(r1)

,

and

B1(r1) =

∫ r1

0

(r1 − r2) dr2 = r21 −
1

2
r21 =

1

2
r21,

B2(r1) =

∫ 1

r1

(r2 − r1) dr2

=
1

2
(1− r21)− r1(1− r1) =

1

2
(1 + r21)− r1.

Thus we have B(r1) = 1
2

+ r21 − r1, and A(r1) = η+ (δ− η)( 1
2

+
r21 − r1).

So, for r1 = 0, p(r1) = α+β+A(O) = α+β+ δ+η
2

, for r1 = 1,
p(r1) = α+ β +A(1) = α+ β + δ+η

2
, and for r1 ∈]0, 1[, 20

p(r1) = η + (δ − η)r1 + η + (δ − η)(1− r1) + η +

(δ − η)

(
1

2
+ r21 − r1

)
= 3η + (δ − η)

3

2
+ (δ − η)(r21 − r1)

=
3

2
(δ + η) + (δ − η)(r21 − r1).

Hence, we get eq. (23).

B. Calculation of β

We have∫ 1

0
p(r1) dν(r1) = p(0) + p(1) +

∫ 1

0

p(r1) dr1

= 2(α+ β) + (δ + η) +∫ 1

0

3

2
(δ + η) + (δ − η)(r21 − r1) dr1︸ ︷︷ ︸

C=C1+C2

,
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with

C1 =

∫ 1

0

3

2
(δ + η) dr1 =

3

2
(δ + η),

C2 = (δ − η)

∫ 1

0

(
r21 − r1

)
dr1 = −1

6
(δ − η).

Knowing that
∫ 1

0
p(r1) dν(r1) = 1, we get 2(α + β) + (δ + η) +

3
2
(δ + η)− 1

6
(δ − η) = 1, and find result in eq. (24).

C. Calculation to get eq. (16)

From5

Var
[
Zn+1

∣∣rn+1
n ,yn1

]
= E

[
Zn+1Z

ᵀ
n+1

∣∣ rn+1
n ,yn1

]
−E

[
Zn+1| rn+1

n ,yn1
]
E
[
Zᵀ
n+1

∣∣ rn+1
n ,yn1

]
,

we have

E
[
Zn+1Z

ᵀ
n+1

∣∣ rn+1
n ,yn1

]
= An+1(rn+1

n )E
[
ZnZ

ᵀ
n| rn+1

n ,yn1
]
Aᵀ
n+1(rn+1

n )

+An+1(rn+1
n )E

[
Zn| rn+1

n ,yn1
]
Nᵀ
n+1(rn+1

n )

+Nn+1(rn+1
n )E

[
Zᵀ
n| rn+1

n ,yn1
]
Aᵀ
n+1(rn+1

n )

+Bn+1(rn+1
n )Bᵀ

n+1(rn+1
n ) + Nn+1(rn+1

n )Nᵀ
n+1(rn+1

n ),(47)

and, using (15),

E
[
Zn+1| rn+1

n ,yn1
]
E
[
Zᵀ
n+1

∣∣ rn+1
n ,yn1

]
= An+1(rn+1

n )E
[
Zn| rn+1

n ,yn1
]
E
[
Zᵀ
n| rn+1

n ,yn1
]
Aᵀ
n+1(rn+1

n )

+An+1(rn+1
n )E

[
Zn| rn+1

n ,yn1
]
Nᵀ
n+1(rn+1

n )

+Nn+1(rn+1
n )E

[
Zᵀ
n| rn+1

n ,yn1
]
Aᵀ
n+1(rn+1

n )

+Nn+1(rn+1
n )Nᵀ

n+1(rn+1
n ). (48)

Substracting (47) and (48) gives (16).
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