Miguel Couceiro 
email: miguel.couceiro@loria.fr
  
Michel Grabisch 
email: michel.grabisch@univ-paris1.fr
  
  
  
Monotonic computation rules for nonassociative calculus

Keywords: Nonassociative calculus, symmetric maximum, computation rules, monotonic rules

come    

The symmetric maximum is intended to extend the maximum on L with 0 as neutral element, while fulfilling symmetry. However, this symmetry requirement immediately entails that any extension of the maximum operator ∨ cannot be associative. To illustrate this point, let L = N and observe that (2 3) (-3) = 3 (-3) = 0 whereas 2 (3 (-3)) = 2 0 = 2. Nonetheless, Grabisch [START_REF] Grabisch | The Möbius transform on symmetric ordered structures and its application to capacities on finite sets[END_REF] showed that the "best" definition of (see Theorem 1 below) is:

a b = -(|a| ∨ |b|) if b = -a and |a| ∨ |b| = -a or = -b 0 if b = -a |a| ∨ |b| otherwise. (1) 
In other words, if b = -a, then a b returns the element that is the larger in absolute value among the two elements a and b. Moreover, it is not difficult to see that satisfies the following properties:

(C1) coincides with the maximum on L2 ;

(C2) a (-a) = 0 for every a ∈ L;

(C3) -(a b) = (-a) (-b) for every a, b ∈ L.
Hence, almost behaves like + on the real line, except for associativity a (b c) = (a b) c, for every a, b, c ∈ L.

For instance, we have:(-3 3) 1 = 0 1 = 1 but -3 (3 1) = -3 3 = 0. However, it was shown in [START_REF] Grabisch | The Möbius transform on symmetric ordered structures and its application to capacities on finite sets[END_REF] that if one requires that (C1), (C2) and (C3) hold, then (1) is the best possible definition for . Theorem 1. [START_REF] Grabisch | The Möbius transform on symmetric ordered structures and its application to capacities on finite sets[END_REF]Prop. 5] No binary operation satisfying (C1), (C2), (C3) is associative on a larger domain than .

Further properties of were presented in [START_REF] Grabisch | The Möbius transform on symmetric ordered structures and its application to capacities on finite sets[END_REF][START_REF] Couceiro | On the poset of computation rules for nonassociative calculus[END_REF]Prop. 5]. In particular, it was shown that is associative on an expression involving a 1 , . . . , a n ∈ L, with |{i :

a i = 0}| > 2, if and only if n i=1 a i = - n i=1 a i .
Sequences fulfilling this condition were referred to as associative in [START_REF] Couceiro | On the poset of computation rules for nonassociative calculus[END_REF].

To remove the ambiguity when evaluating on nonassociative sequences, Grabisch [START_REF] Grabisch | The Möbius transform on symmetric ordered structures and its application to capacities on finite sets[END_REF] suggested ways of making associative. The solution proposed was to define a rule of computation, that is, a systematic way of putting parentheses so that the result is no longer ambiguous. Let us present here informally three of these rules1 that are rather natural:

(i) aggregate separately positive and negative terms, then compute their symmetric maximum. Taking the sequence 3, 2, -3, 1, -3, -2, 1, we obtain

(3, 2, -3, 1, -3, -2, 1) = (3 2 1 1) ((-3) (-3) (-2)) = 3 (-3) = 0.
(ii) aggregate first extremal opposite terms to cancel them, till there is no more extremal opposite terms. This gives:

(3, 2, -3, 1, -3, -2, 1) = (3 (-3)) (2 1 (-3) (-2) 1) = 0 (-3) = -3.
(iii) the same as above, but first aggregate these extremal opposite terms. This gives:

(3, 2, -3, 1, -3, -2, 1) = (3 ((-3) (-3))) (2 (-2)) (1 1) = (3 (-3)) 0 1 = 0 1 = 1.
One sees that all results differ, and that many other rules can be created. In fact, it is more convenient to define a rule as a systematic way of deleting terms in a sequence of numbers, so as to make it associative, provided the way of deleting terms corresponds to some arrangement of parentheses. Indeed, the first rule consists in deleting all terms whenever the sequence does not fulfill the condition of associativity. The second rule consists in deleting recursively all pairs of extremal opposite elements, and the third rule deletes recursively all occurrences of extremal opposite elements. However, one has to be careful that any systematic way of deleting elements making any sequence associative does not necessarily correspond to an arrangement of parentheses. For example, deleting the maximal element 3 in the above sequence makes it associative, however no arrangement of parentheses can produce this.

This framework based on rules of computation was formalized in [START_REF] Couceiro | On the poset of computation rules for nonassociative calculus[END_REF], and we will recall it in the next section. We will also recall equivalent, yet semantically rather different, quasi-orderings of rules, and briefly survey the main characteristics of the resulting partially ordered set of (equivalent classes) of computation rules.

Denoting a computation rule by R, R is an unambiguously defined operator acting on any sequence of L, by first making the sequence associative by means of R, and then computing the result by . Then, to any given computation rule R corresponds an aggregation operator R , aggregating all "numbers" of a sequence into a single number in L.

In the sequel, we only deal with countable sets L, so that L can be thought to be Z. It follows that such a study is related to the aggregation of integers, in particular to the so-called integer means or Z-means, see [START_REF] Bennett | Integer valued means[END_REF]. In the latter work, it is shown that the decomposability property introduced by Kolmogoroff [START_REF] Kolmogoroff | Sur la notion de moyenne[END_REF] imposes a very limitative form of integer means, namely that the output depends only on the smallest and greatest entries. In [START_REF] Couceiro | On integer-valued means and the symmetric maximum[END_REF], we have weakened the decomposability property and shown that a whole family of operators R can serve as integer means.

The main objective of this paper is to study monotonic computation rules R, that is, leading to an aggregation operator R which is monotonically nondecreasing w.r.t. all terms of the sequence. This property is a basic requirement in most fields of application, and this is why aggregation operators, defined on either real numbers or integers, are always required to be nondecreasing (see, e.g., any kind of means, median, order statistics, etc.). As it will be shown, not all computation rules are monotonic. The main result of this paper, shown in Section 3, is to give a characterization of the set of monotonic computation rules.

Rules of Computation

We now recall the formalism of [START_REF] Couceiro | On the poset of computation rules for nonassociative calculus[END_REF]. As we will only consider countable sequences of elements of L, without loss of generality, we may assume that L = Z. In this way, elements of L * are (finite) sequences of integers, denoted by σ = (λ i ) i∈I for some finite index set I, including the empty sequence ε, i.e.,

L * = n∈N ( L) n ∪ {ε}.
This convention will simplify our exposition and establish connections to the theory of integer means. Also, as is commutative, the order of symbols in the word does not matter, and we can consider the decreasing order of the absolute values of the elements in the sequence (e.g., 5, 5, -5, -3, 2, -2, 1, 0). Since sequences are ordered, we can consider the following convenient formalism for representing sequences. For an arbitrary sequence σ = (n 1 , . . . , n 1 p1 times , -n 1 , . . . , -n 1 m1 times , . . . , n q , . . . , n q pq times , -n q , . . . , -n q mq times ) with n 1 ≥ • • • ≥ n q , let θ(σ) = (n 1 , . . . , n q ) be the sequence of absolute values (magnitudes) of integers in σ, and let ψ(σ) = ((p 1 , m 1 ), . . . , (p q , m q )) be the sequence of pairs of numbers of occurrence of these integers. For instance, if

σ = (3, 3, -3, 2, -2, -2, 1, 1, 1, 1), then θ(σ) = (3, 2, 1); ψ(σ) = ((2, 1), (1, 2)(4, 0)).
Let S denote the set of all integer sequences in this formalism, including the empty sequence, and let S 0 be the subset of all nonassociative sequences.

To facilitate the precise definition of rules of computation, we proposed [START_REF] Couceiro | On the poset of computation rules for nonassociative calculus[END_REF] a language formalism over a 5-element alphabet made of 5 elementary rules ρ i : S → S that act on σ in the following way:

(i) Elementary rule ρ 1 : if p 1 > 1 and m 1 > 0, then p 1 is changed to p 1 = 1; (ii) Elementary rule ρ 2 : same as in (i) with p 1 , m 1 exchanged; (iii) Elementary rule ρ 3 : if p 1 > 0, m 1 > 0, the pair (p 1 , m 1 ) is changed into (p 1 -c, m 1 -c), where c = p 1 ∧ m 1 ; (iv) Elementary rule ρ 4 : if p 1 > 0, m 1 > 0, and if p 2 > 0, then p 2 is changed into p 2 = 0; (v) Elementary rule ρ 5 : same as in (iv) with m 2 replacing p 2 .

Hence, elementary rules delete terms only in nonassociative sequences, and leave the associative ones invariant.

A (well-formed) computation rule R is a word built with the alphabet {ρ 1 , . . . , ρ 5 }, i.e., R ∈ L(ρ 1 , . . . , ρ 5 ), such that R(σ) ∈ S \ S 0 for all σ ∈ S. The set of (well-formed) computation rules is denoted by R. Examples of rules are (words are read from left to right) (i) • + -= (ρ 4 ρ 5 ) * ρ 1 ρ 2 ρ 3 , that corresponds to first putting parentheses around all positive terms and all negative terms, and then computing the symmetric maximum of the two results. (ii) • 0 = ρ * 3 , that corresponds to putting parentheses around each pair of maximal symmetric terms. (iii) • = = (ρ 1 ρ 2 ρ 3 ) * , that corresponds to putting parentheses around terms with the same absolute value and sign, and then to putting parentheses around each each pair of maximal symmetric resulting terms.

It is shown in [START_REF] Couceiro | On the poset of computation rules for nonassociative calculus[END_REF] that each computation rule R ∈ R corresponds to an arrangement of parentheses together with a permutation on the terms of sequences. Thus each R ∈ R turns the symmetric maximum into an associative operation R : L * → L defined by R = •R, since R(σ) ∈ S \ S 0 for all σ ∈ S2 . Moreover, each computation rule has the form R = T 1 T 2 • • • , where each T i has the form ωρ α 1 ρ β 2 ρ 3 , with ω ∈ L(ρ 4 , ρ 5 ) and α, β ∈ {0, 1} (factorization scheme) 3 Now, to compute R (σ) one needs to delete symbols in the sequence θ(σ) exactly as they are deleted in ψ(σ). This entails an ordering of R that is discussed below.

Let R, R ∈ R and, for each sequence σ = (a i ) i∈I , let J σ ⊆ I and J σ ⊆ I, be the sets of indices of the terms in σ deleted by R and R , respectively. Then, we write R R if for all sequences σ ∈ S we have J σ ⊇ J σ . Clearly, it is

These will be revisited in Section

and formally defined in the proposed language formalism of[START_REF] Couceiro | On the poset of computation rules for nonassociative calculus[END_REF].

For convenience, we assume that R (ε) = 0 and R (a) = a, for every a ∈ L

reflexive and transitive, and thus it is a preorder. This induces an equivalence relation ∼ defined as follows: R ∼ R if R R and R R. The following proposition reassembles several results in [START_REF] Couceiro | On the poset of computation rules for nonassociative calculus[END_REF], and provides equivalent definitions of ∼. Proposition 1. Let R, R ∈ R. Then the following assertions are equivalent.

(iii) Ker( R ) = Ker( R ), where Ker( R ) denotes the kernel of R that is defined by

Furthermore, any two equivalent rules have exactly the same " factorized irredundant form". Recall that a rule R ∈ R is considered in factorized irredundant form (FIF) if the two following conditions are verified:

(i) Factorization: R can be factorized into a composition

where each term has the form T i = ω i ρ ai 1 ρ bi 2 ρ 3 , with ω i ∈ L({ρ 4 , ρ 5 }) (possibly empty), and a i , b i ∈ {0, 1}. (ii) Simplification: Suppose that in (2) there exists j ∈ N such that ω j = ωρ * 4 or ωρ * 5 for some ω ∈ L({ρ 4 , ρ 5 }), or that ρ 4 and ρ 5 alternate infinitely many times in ω j . Let

4 or ωρ * 5 }, and k 2 = min{j : ρ 4 and ρ 5 alternate infinitely many times in ω j }.

Observe that every non-terminal term T j (i.e., of the form ωρ a 1 ρ b 2 ρ 3 ) in a rule in FIF has a "certificate". Certificates can be defined recursively as follows. A certificate γ of non-terminal term T = ωρ a 1 ρ b 2 ρ 3 is an element of Ker(T ) such that no letter of T is left unused (unread or without deleting an element of γ) when γ is deleted. For instance, consider T = ρ 4 ρ 2 5 ρ 4 ρ 3 . Then σ = (1, 1)(2, 1)(0, 1) is a kernel element but not a certificate, while γ = (1, 1)(2, 1)(1, 1) is a certificate. 4 The definition is then recursively extended to rules in R/ ∼ using factorization.

The structure of the poset R/ ∼ of equivalence classes endowed with the partial order induced by was investigated in [START_REF] Couceiro | On the poset of computation rules for nonassociative calculus[END_REF] and shown to be highly complex. To give an idea, the subposet R 123 / ∼ of equivalence classes of rules R ∈ L(ρ 1 , ρ 2 , ρ 3 ) has infinitely many maximal elements, and (R 123 / ∼ , ) (and thus (R/ ∼ , )) embeds the powerset (2 N , ⊆) of natural numbers, and hence it is of continuum cardinality. For further results on R/ ∼ , see [START_REF] Couceiro | On the poset of computation rules for nonassociative calculus[END_REF].

The complex structure of (R/ ∼ , ) gives little hope to obtain a complete description of this poset. In addition to considering restrictions on the syntax of computation rules, another approach to provide local descriptions is to consider computation rules with certain desirable properties. One of such properties is monotonicity which is particularly relevant in applied mathematics, especially, in decision making and aggregation theory. In the next section we provide the explicit description of monotonic computation rules in terms of their factorized irredundant form (FIF).

Monotonic computation rules

In this section we aim to describe those computation rules that are monotonic. Recall that a rule

. . , a n ), whenever a i a i for every n ∈ N and i = 1, . . . , n. For instance, it is not difficult to see that both • 0 and • + -are monotonic, however, • = is not:

In order to study monotonicity, first observe the following facts.

(i) R is monotonic for every rule R on S \ S 0 . Hence, we can consider only sequences in S 0 . 4 Note that a certificate exists if and only if ω neither contains ρ * 4 , ρ * 5 nor (ρ4ρ5) * .

(ii) It is sufficient to study the effect of increasing one element of the sequence σ. If we increase n k to n > n 1 , then the sequence becomes associative, and the value of R is n. Hence, it is sufficient to consider an increase to any value at most n 1 . Lemma 1. Let σ ∈ S 0 . Then R is monotonic w.r.t. any element n 1 or -n 1 of the sequence, for any rule

Proof. Suppose that an element n 1 is changed to n 1 > n 1 . Then the new sequence σ becomes associative and

Let us start with computation rules with a single term.

Proof. Let σ ∈ S 0 . After the application of (ρ 4 ρ 5 ) * only the first term (p 1 , m 1 ) remains, so that it is enough to study the effect of increasing ±n 1 . If n 1 is increased to n 1 , then R (σ ) = n 1 , and if -n 1 is increased, this can only increase the result of R .

Lemma 3. Let R ∈ R be in FIF. Proof. We show that (i) holds; the proof of (ii) is analogous. To see that the condition is necessary, suppose that (a, b) = (a, 1), where a ∈ {0, 1}. Consider the sequence

where σ ω is a certificate of ω and σ a sequence such that the difference between the smallest absolute value of σ ω and the greatest absolute value of σ is at least 2. Then R (σ 1 ) = -n for some -n in σ if it exists, or R (σ 1 ) = 0. Consider now the sequence σ 2 = (1, 1)σ ω (0, 1)σ , obtained from σ by increasing -n 1 to -n greater than all -n in σ ω and smaller than all -n in σ . Clearly,

To see that we must have ω = ε, suppose to the contrary that ω = ε. Hence, ω has the form ω = ω ρ 5 , otherwise we would have ω ρ * 4 = ρ * 4 . Consider the sequences σ = (1, 1)σ ω (0, 1)(1, 0) < (1, 1)σ ω (1, 0)(0, 1) = σ where σ has been obtained from σ by increasing the last but one element -n to -n s.t. n < n , with n the last element in σ. Then R (σ) = 0 > R (σ ) = -n , which contradicts the fact that R is monotonic. Hence, ω = ε.

To prove sufficiency, consider the case (a, b) = (0, 0)

It is not difficult to check that, in each case, any increase in σ can only result in an increase of R (σ).

We now extend our study to rules made of several terms, and we will make use of the two following auxiliary results to simplify our search for nonmonotonic rules. Lemma 4. Suppose that R is not monotonic, and let T ∈ L(ρ 1 , . . . , ρ 5 ) such that T R ∈ R be in FIF. Then T R also is not monotonic.

Suppose that R is not monotonic, and let σ and σ be sequences such that σ < σ and R (σ ) > R (σ ). Consider the two composite sequences σσ and σσ . Clearly, σσ < σσ but

In other words, T R is not monotone. Lemma 5. Let R ∈ R be in FIF, and let T = ρ k 3 R with k ≥ 1. Then, R is monotonic if and only if T is monotonic.

Proof. From Lemma 4 it follows that the condition is sufficient. Conversely, suppose that R is monotonic. It suffices to prove that ρ3R is monotonic and apply k times the result. Consider any sequence σ = (p 1 , m 1 )σ 1 ∈ S 0 . By Lemma 1, ρ3R is monotonic w.r.t. ±n 1 . Now, consider σ obtained by increasing any element in σ 1 . Then

In the second case, we have ρ3R (σ )

Proof. Assuming that R is in FIF, by Lemma 4, we may assume that k = 1.

, and thus R is not monotonic.

• Suppose that (a 1 , b 1 ) = (0, 1) and ω 1 = ρ * 5 , (ρ 4 ρ 5 ) * . Consider the sequences σ 1 = (1, 2)(0, 1) |ω1|ρ 5 and σ 2 = (1, 1)(0, 1) |ω1|ρ 5 (0, 1), obtained from σ 1 by increasing the value -n 1 to -n |ω1|ρ 5 +2 . Clearly, σ 1 < σ 2 but R (σ 1 ) = 0 > -n |ω1|ρ 5 +2 = R (σ 2 ), and thus R is not monotonic.

• The remaining case (a 1 , b 1 ) = (1, 1) and ω 1 = ρ * 4 , ρ * 5 , (ρ 4 ρ 5 ) * is dealt with similarly.

We now consider the case where (a i , b i ) = (0, 0) in each term

and that no term contains ρ 1 nor ρ 2 . If there is k ≥ 1 such that ω k in T k is of the AFT type or equal to ρ α 4 or ρ β 5 , then R is not monotonic.

Proof. By Lemma 4, it suffices to consider the case k = 1. Suppose first that R = ωρ 3 R with ω of the AFT type, say

Clearly, R (σ) = n t+2 . Now let us increase the term with value n t+2 to n j , where j is the first index such that χ j = 1, so that we obtain the sequence σ . Clearly, we have σ < σ but R (σ) = n t+2 > n t+3 = R (σ ). Now, w.l.o.g. suppose that ω = ρ α 4 with ω = ρ * 4 ; the other case ω = ρ β 5 with ω = ρ * 5 is dealt with similarly. Consider σ = (1, 1)(1, 0) α (1, 0)(1, 0) and σ obtained from σ by increasing the value of n α+2 to n 2 , i.e., σ = (1, 1)(2, 0)(1, 0) α-1 (1, 0).

In this case, we get R (σ) = n α+2 > n α+3 = R (σ ).

In both cases, we get that R is not monotonic. 5 Here χi = 1 if αi > 0, otherwise χi = 0. Similarly, ξi = 1 if βi > 0, otherwise ξi = 0.

We can now provide a complete description of monotonic rules. Theorem 2. Let R ∈ R be in FIF. Then R is monotonic if and only if either Proof. Let us prove that all rules in (i) and (ii) are monotonic. It was already established that ρ * 3 = • 0 is monotonic. As for (ii), by using Lemma 5, it suffices to prove monotonicity for R = T , which is obtained by Lemmas 2 and 3.

It remains to prove that no other rule is monotonic. As rules are in FIF, no term can exist after T . Moreover, by Lemmas 6 and 7, no term of the form T = ω ρ a 1 ρ b 2 ρ 3 with ω ∈ L(ρ 4 , ρ 5 ) finite can occur before T or before ρ k 3 . Furthermore, by Lemma 3, it is not possible to add a finite ω ∈ L(ρ 4 , ρ 5 ) before T . Thus, every monotonic rule must be of one of the stated forms, and the proof of Theorem 2 is now complete.