Termination of graph rewriting systems through language theory
Guillaume Bonfante, Miguel Couceiro

To cite this version:
Guillaume Bonfante, Miguel Couceiro. Termination of graph rewriting systems through language theory. ALGOS 2020 - 1st International Conference on Algebras, Graphs and Ordered Sets, Aug 2020, Nancy, France. hal-02912877

HAL Id: hal-02912877
https://hal.science/hal-02912877
Submitted on 7 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ABSTRACT

The termination issue that we tackle is rooted in Natural Language Processing where computations are performed by graph rewriting systems (GRS) that may contain a large number of rules, often in the order of thousands. This asks for algorithmic procedures to verify the termination of such systems. The notion of graph rewriting that we consider does not make any assumption on the structure of graphs (they are not “term graphs”, “port graphs” nor “drags”). This lack of algebraic structure led us to proposing two orders on graphs inspired from language theory: the matrix multiset-path order and the rational embedding order. We show that both are stable by context, which we then use to obtain the main contribution of the paper: under a suitable notion of “interpretation”, a GRS is terminating if and only if it is compatible with an interpretation.

Keywords Graph Rewriting · Termination · Order · Natural Language Processing

1 Introduction

Computer linguists rediscovered a few years ago that graph rewriting is a good model of computation for rule-based systems. They used traditionally terms, see for instance Chomsky’s Syntagmatic Structures [1]. But usual phenomena such as anaphora do not fit really well within such theories. In such situations, graphs behave much better. For examples of graph rewriting in natural language processing, we refer the reader to the parsing procedure by Guillaume and Perrier [2] or the word ordering modeling by Kahane and Lareau [3]. The first named author with Guillaume and Perrier designed a graph rewriting model called GREW [4] that is adapted to natural language processing.

The rewriting systems developed by the linguists often contain a huge number of rules, e.g., those synthesized from lexicons (e.g. some rules only apply to transitive verbs). For instance, in [2], several systems are presented, some with more than a thousand of rules. Verifying properties such as termination by hand thus becomes intractable. This fact motivates our framework for tackling the problem of GRS termination.

Following the tracks of term rewriting, for which the definition is essentially fixed by the algebraic structure of terms, many approaches to graph rewriting emerged in past years. Some definitions (here meaning semantics) are based on a categorical framework, e.g., the double pushout (DPÔ) and the single pushout (SPO) models, see [5]. To make use of algebraic potential, some authors make some, possibly weak, hypotheses on graph structures, see for instance the main contribution by Courcelle and Engelfriet [6] where graph decompositions, graph operations and transformations are described in terms of monadic second-order logics (with the underlying decidability/complexity results). In this spirit, Ogawa describes a graph algebra under a limited tree-width condition [7].

Another line of research follows from the seminal work by Lafont [8] on interaction nets. The latter are graphs where nodes have some extra structure: nodes have a label related to some arity and co-arity. Moreover, nodes have some "principal gates" (ports) and rules are actionned via them. One of the main results by Lafont is that rewriting in this setting is (strongly) confluent. This approach has been enriched by Fernandez, Kirchner and Pinaud [9].
who implemented a fully operational system called PORGY with strategies and related semantics. Also, it is worth
mentioning the graph rewriting as described by Dershowitz and Jouannaud [10]. Here, graphs are seen as a generalization
of terms: symbols have a (fixed) arity, graphs are connected via some sprouts/variables as terms do. With such a setting,
a good deal of term rewriting theory also applies to graphs.

Let us come back to the initial problem: termination of graph rewriting systems in the context of natural language
processing. We already mentioned that rule sets are large, which makes manual inspection impossible. Moreover,
empirical studies fail to observe some of the underlying hypotheses of the previous frameworks. For instance, there is
no clear bound on tree-width: even if input data such as dependency graphs are almost like trees, the property is not
preserved along computations. Also, constraints on node degrees are also problematic: graphs are usually sparse, but
some nodes may be highly connected. To illustrate, consider the sentence “The woman, the man, the child and the
dog eat together”. The verb “eat” is related to four subjects and there is no a priori limit on this phenomenon. Typed
versions (those with fixed arity) are also problematic: a verb may be transitive or not. Moreover, rewriting systems
may be intrinsically nondeterministic. For instance, if one computes the semantics of a sentence out of its grammatical
analysis, it is quite common there are multiple solutions. To further illustrate nondeterminism consider the well known
phrasal construction “He saw a man with a telescope” with two clear readings.

Some hypotheses are rather unusual for standard computations, e.g., fixed number of nodes. Indeed, nodes are usually
related to words or concepts (which are themselves closely related to words). A paraphrase may be a little bit longer
than its original version, but its length can be easily bounded by the length of the original sentence up to some linear
factor. In GREW, node creations are restricted. To take into account the rare cases for which one needs extra nodes, a
“reserve” is allocated at the beginning of the computation. All additional nodes are taken from the reserve. Doing so has
some efficiency advantages, but that goes beyond the scope of the paper. Also, node and edge labels, despite being
large, remain finite sets: they are usually related to some lexicons. These facts together have an important impact on the
termination problem: since there are only finitely many graphs of a given size, rewriting only leads to finitely many
outcomes. Thus, deciding termination for a particular input graph is decidable. However, our problem is to address
termination in the class of all graphs. The latter problem is often referred to as uniform termination, whereas the former
is refereed to as non-uniform. For word rewriting, uniform termination of non increasing systems constituted a well
known problem, and was shown to be undecidable by Sénizergues in [11].

This paper proposes a novel approach for termination of graph rewriting. In a former paper [12], we proposed a solution
based on label weights. Here, the focus is on the description (and the ordering) of paths within graphs. In fact, paths in
a graph can be seen as good old regular languages. The question of path ordering thus translates into a question of
regular language orderings. Accordingly, we define the graph multi-set path ordering that is related to that in [13].
Dershowitz and Jouannaud, in the context of drag rewriting, consider a similar notion of path ordering called GPO
(see [14]). Our definitions diverge from theirs in that our graph rewriting model is quite different: here, we do not
benefit (as they do) from a good algebraic structure. Our graphs have no heads, tails nor hierarchical decomposition. In
fact, our ordering is not even well founded! Relating the two notions is nevertheless interesting and left for further work.
Plump [15] also defines path orderings for term graphs, but those behave like sets of terms.

One of our graph orderings will involve matrices, and orderings on matrices. Nonetheless, as far as we see, there is no
relationship with matrix interpretations as defined by Endrullis, Waldmann and Zantema [16].

The paper is organized as follows. In Section 2, we recall the basic background on graphs and graph rewriting systems
(GRS) that we will need throughout the paper, and introduce an example that motivated our work. In Section 3, we
consider a language theory approach to the termination of GRSs. In particular, we present the language matrix, and the
matrix multiset path order (Subsection 3.4) and the rational embedding order (Subsection 3.5). We also propose the
notion of stability by context (Subsection 3.6) and show that both orderings are stable under this condition (Subsection
3.7). In Section 4, we propose notion of graph interpretability and show one of our main results, namely, that a GRS is
terminating if and only if it is compatible with interpretations.

Main contributions: The two main contributions of the paper are the following.

1. We propose two orders on graphs inspired from language theory, and we show that both are monotonic and
 stable by context.

2. We propose a notion of graph interpretation, and show that GRSs that are terminating are exactly those that are
 compatible with such interpretations.
2 Notation and Graph Rewriting

In this section we recall some general definitions and notation. Given an alphabet \(\Sigma \), the set of words (finite sequences of elements of \(\Sigma \)) is denoted by \(\Sigma^* \). The concatenation of two words \(v \) and \(w \) is denoted by \(v \cdot w \). The empty word, being the neutral element for concatenation, is denoted by \(1_\Sigma \) or, when clear from the context, simply by \(1 \). Note that \(\langle \Sigma^*, 1, \cdot \rangle \) constitutes a monoid.

A language on \(\Sigma \) is some subset \(L \subseteq \Sigma^* \). The set of all languages on \(\Sigma \) is \(\mathcal{P}(\Sigma^*) \). The addition of two languages \(L, L' \subseteq \Sigma^* \) is defined by \(L + L' = \{ w \mid w \in L \lor w \in L' \} \). The empty language is denoted by \(0 \) and \(\langle \mathcal{P}(\Sigma^*), +, 0 \rangle \) is also (a commutative) monoid.

A preorder on \(\Sigma \) is a binary relation \(\preceq \subseteq \Sigma^2 \) that is reflexive (\(x \preceq x \), for all \(x \in \Sigma \)) and transitive (if \(x \preceq y \) and \(y \preceq z \), then \(x \preceq z \), for all \(x, y, z \in \Sigma \)). A preorder \(\preceq \) is a partial order if it is anti-symmetric (if \(x \preceq y \) and \(y \preceq x \), then \(x = y \), for all \(x, y \in \Sigma \)). An equivalence relation is a preorder that is symmetric (\(x \preceq y \Rightarrow y \preceq x \)). Equivalence classes \(\{ x \mid x \in \Sigma, x \preceq y \} \) for \(y \in \Sigma \) form a partition.

The remainder of this section may be found in [4] and we refer the reader to it for an extended presentation. We suppose that \(\mu \colon \mathcal{P}(\Sigma^*) \to \mathcal{P}(\Sigma^*) \) is a map and \(\mathcal{P}(\Sigma^*) \) is a monoid. Indeed, \(\langle \mathcal{P}(\Sigma^*), +, 0 \rangle \) is a monoid. Given the distributivity of \(\times \) with respect to \(+ \), the \(\mu \) -tuple \(\langle \mathcal{P}(\Sigma^*), +, 0, 1, \cdot \rangle \) forms a semiring.

A pattern on \(\Sigma \) is some subset \(L \subseteq \Sigma^* \). The set of all patterns on \(\Sigma \) is \(\mathcal{P}(\Sigma^*) \). The addition of two patterns \(L, L' \subseteq \Sigma^* \) is defined by \(L + L' = \{ w \mid w \in L \lor w \in L' \} \). The empty pattern is denoted by \(0 \) and \(\langle \mathcal{P}(\Sigma^*), +, 0 \rangle \) is also (a commutative) monoid.

A pattern morphism \(\mu \colon \mathcal{P}(\Sigma^*) \to \mathcal{P}(\Sigma^*) \) is a map and \(\mathcal{P}(\Sigma^*) \) is a monoid. Indeed, \(\langle \mathcal{P}(\Sigma^*), +, 0 \rangle \) is a monoid. Given the distributivity of \(\times \) with respect to \(+ \), the \(\mu \) -tuple \(\langle \mathcal{P}(\Sigma^*), +, 0, 1, \cdot \rangle \) forms a semiring.
Definition 1 (The command language). There are three basic commands: \texttt{label}(p, \alpha) for node renaming, \texttt{del_edge}(p, e, q) for edge deletion and \texttt{add_edge}(p, e, q) for edge creation. In these basic commands, \(p \) and \(q \) are nodes, \(\alpha \) is some node label and \(e \) is some edge label. A pattern \(\langle P_0, \vec{c} \rangle \) is compatible with a command whenever all nodes that it involves belong to \(P_0 \).

Definition 2 (Operational semantics). Given a pattern \(P = \langle P_0, \vec{v} \rangle \) compatible with some command \(c \), and some pattern matching \(\mu : P \rightarrow G \) where \(G \) is the graph on which the transformation is applied, we have the following possible cases: \(c = \text{\texttt{label}}(p, \alpha) \) turns the label of \(\mu(p) \) into \(\alpha \), \(c = \text{\texttt{del_edge}}(p, e, q) \) removes \(\mu(p) \rightarrow \mu(q) \) if it exists, otherwise does nothing, and \(c = \text{\texttt{add_edge}}(p, e, q) \) adds the edge \(\mu(p) \rightarrow \mu(q) \) if it does not exist, otherwise does nothing. The graph obtained after such an application is denoted by \(G_0 \). A self-application of \(\mu \) is compatible with some command whenever all nodes that it involves belong to \(P_0 \).

Remark 1. We took a slightly simplified version of patterns. Actually, in \cite{4}, we have negative conditions within patterns to avoid some rule applications. But these simplifications should be transparent with respect to termination. Nevertheless, informally, we will omit the right node in a pattern like \(\xrightarrow{\vec{c}} \) to say that there is no edge labeled \(B \) from node \(b_0 \).

Definition 3. A rule is a pair \(R = \langle P, \vec{c} \rangle \) made of a pattern and a (compatible) sequence of commands. Such a rule \(R \) applies to a graph \(G \) via a pattern morphism \(\mu : P \rightarrow G \). Let \(G' = G_0 \), and node \(\vec{c} \) of \(R \) be the resulting graph, i.e., \(G_0 = (G_0 \mu \vec{c}) \). We define \(G_0 \rightarrow G' \) whenever there is a rule \(R \) and a pattern morphism \(\mu \) such that \(G_0 \rightarrow_{R, \mu} G' \).

2.1 The main example

Let \(\Sigma_N = \{A\} \) and \(\Sigma_R = \{\alpha, \beta, T\} \). For the discussion, we suppose that \(T \) is a working label, that is not present in the initial graphs. We want to add a new edge \(\beta \) between node \(n \) and node \(1 \) each time we find a maximal chain: \(\xrightarrow{1 \rightarrow 2 \rightarrow 3 \rightarrow \beta \rightarrow 3} \) within a graph \(G \). Consider the basic pattern \(P_{\text{init}} = \xrightarrow{1 \rightarrow 2 \rightarrow 3 \rightarrow \beta \rightarrow 3} \) together with its two negative conditions \(\nu_1 = \xrightarrow{1 \rightarrow 2 \rightarrow 3 \rightarrow \beta \rightarrow 3} \) and \(\nu_2 = \xrightarrow{1 \rightarrow 2 \rightarrow 3 \rightarrow \beta \rightarrow 3} \). We consider three rules:

Init: \(\langle P_{\text{init}}, \nu_1, \nu_2 \rangle \), \(\langle \text{\texttt{add_edge}}(p, T, q) \rangle \) which fires the transitive closure.

Follow: \(\langle P_{\text{init}}, \nu_1, \nu_2 \rangle \), \(\langle \text{\texttt{add_edge}}(p, T, r), \text{\texttt{del_edge}}(p, T, q) \rangle \) which follows the chain.

End: \(\langle P_{\text{init}}, \nu_1, \nu_2 \rangle \), \(\langle \text{\texttt{del_edge}}(p, T, q), \text{\texttt{add_edge}}(q, \beta, p) \rangle \)) which stops the procedure.

To prevent all pathological cases (e.g., when the edge \(\beta \) is misplaced, when two chains are crossing, and so on), we could introduce more sophisticated patterns. But, since that does not change issues around termination, we avoid obscuring rules with such technicalities.

Example 2. Consider the graph \(G = \xrightarrow{1 \rightarrow 2 \rightarrow 3 \rightarrow \beta \rightarrow 3} \). By applying successively ‘Init’, ‘Follow’ and ‘End’, \(G \) rewrites as: \(\xrightarrow{1 \rightarrow 2 \rightarrow 3 \rightarrow \beta \rightarrow 3} \), \(\xrightarrow{1 \rightarrow 2 \rightarrow 3 \rightarrow \beta \rightarrow 3} \), \(\xrightarrow{1 \rightarrow 2 \rightarrow 3 \rightarrow \beta \rightarrow 3} \), \(\xrightarrow{1 \rightarrow 2 \rightarrow 3 \rightarrow \beta \rightarrow 3} \).

2.2 Three technical facts about Graph Rewriting

It is well known that the main issue with graph rewriting definitions is the way the context is related to the pattern image and its rewritten part. We shall tackle this issue with Proposition 1.

Self-application Let \(R = \langle P, \vec{c} \rangle \) be the rule made of a pattern \(P = \langle P_0, \vec{v} \rangle \) and a sequence of commands \(\vec{c} \). There is the identity morphism \(1_{P_0} : P_0 \rightarrow P_0 \), and thus we can apply rule \(R \) on \(P_0 \) itself, that is, \(P_0 \rightarrow_{R, 1_{P_0}} P_0 = P_0 \cdot 1_{P_0} \). We call this latter graph the self-application of \(R \).

Rule node renaming To avoid heavy notation, we will use the following trick. Suppose that we are given a rule \(R = \langle P, \vec{c} \rangle \), a graph \(G \) and a pattern morphism \(\mu : P \rightarrow G \). Let \(P = \langle P_0, \vec{v} \rangle \). We define \(R_\mu \) to be the rule obtained by renaming nodes \(p \) in \(P_0 \to \mu(p) \) (and their references within \(\vec{c} \)). For instance, the rule ‘Follow’ can be rewritten as \(\text{Follow}_\mu = \langle \xrightarrow{1 \rightarrow 2 \rightarrow 3} \), \(\text{add_edge}(1, T, 3), \text{del_edge}(1, T, 2) \rangle \) where \(\mu \) denotes the pattern morphism used to apply ‘Follow’ in the derivation. Observe that: (i) the basic pattern of \(R_\mu \) is actually \(\mu(P_0) \), which is a subgraph of
G, (ii) \(\iota : \mu(P_0) \to G \) mapping \(n \mapsto n \) is a pattern matching, and (iii) applying rule \(R_\mu \) with \(\iota \) is equivalent to applying rule \(R \) with \(\mu \). In other words, \(G \to_{R_\mu} G' \) if (and only if) \(G \to_{R_\mu, \iota} G' \). To sum up, we can always rewrite a rule so that its basic pattern is actually a subgraph of \(G \).

Uniform rules Let us consider rule 'Init' above. It applies on: \(\begin{array}{c} p \\ \times \end{array} \to \begin{array}{c} \circ \\ \times \end{array} \). Indeed, the only way to add an already present edge (relative to a label) within a graph. Thus, depending on the graph, the rule will or will not append an edge. Such an unpredictable behavior can be easily avoided by modifying the pattern of 'Init': \(\begin{array}{c} p \\ \times \end{array} \to \begin{array}{c} \circ \\ 0 \end{array} \). Thus, we can always suppose that rules are uniform.

Second, the following property holds for uniform rules (see [4]§7 for a proof).

Proposition 1. Suppose that \(G \to_{R_\iota} G' \) with \(R = \{P, \iota\} \) and \(P = \{P_0, \iota\} \) (the basic pattern \(P_0 \) being a subgraph of \(G \)). Let \(C \) be the graph obtained from \(G \) by deleting the edges in \(P_0 \). Then \(G = P_0 \searrow C \) and \(G' = P'_0 \searrow C \) with \(P'_0 \) being the self-application of the rule. Moreover, \(\mathcal{E}_C \cap \mathcal{E}_{P_0} = \emptyset \) and \(\mathcal{E}_C \cap \mathcal{E}_{P'_0} = \emptyset \).

Throughout the remainder of the paper we assume that all rules are uniform.

3 Termination of Graph Rewriting Systems

By a graph rewriting system (GRS) we simply mean a set of graph rewriting rules (see Section 1). A GRS \(R \) is said to be terminating if there is no infinite sequence \(G_1 \to G_2 \to \cdots \). Such sequences, whether finite or not, are called derivations.

Since there is no node creation (node deletion) in our notion of rewriting, any derivation starting from a graph \(G \) will lead to graphs whose size is the size of \(G \). Since there are only finitely many such graphs, we can decide the termination for this particular graph \(G \). However, the question we address here is the uniform termination problem (see Section 1).

Remark 2. Suppose that we are given a strict partial order \(\succ \), not necessarily well founded. If \(G \to G' \) implies \(G \succ G' \) for all graphs \(G \) and \(G' \), then the system is terminating. Indeed, suppose it is not the case, let \(G_1 \to G_2 \to \cdots \) be an infinite reduction sequence. Since there are only finitely many graphs of size of \(G_1 \), it means that there are two indices \(i \) and \(j \) such that \(G_i \to \cdots \to G_j \) with \(G_i = G_j \). But then, since \(G_i \succ G_{i+1} \succ \cdots \succ G_j \), we have that \(G_i \succ G_j = G_i \) which is a contradiction.

A similar argument was exhibited by Dershowitz in [17] in the context of term rewriting. For instance, it is possible to embed rewriting within real numbers rather than natural numbers to prove termination.

Let us try to prove the termination of our main example (see Subsection 2.1). Rules such as 'Init' and 'End' are “simple”: we put a weight on edge labels \(\omega : \Sigma_E \to \mathbb{R} \) and we say that the weight of a graph is the sum of the weights of its edges labels. Set \(\omega(\alpha) = 0, \omega(\beta) = -2 \) and \(\omega(T) = -1 \). Then, rules 'Init' and 'End' decrease the weight by 1 and, since rule 'Follow' keeps the weight constant, it means the two former rules can be applied only finitely many times. Observe that negative weights are no problem with respect to Remark 2.

But how do we handle rule 'Follow'? No weights as above can work.

3.1 A language point of view

Let \(G \to G' \) be a rule application. The set of nodes stays constant. Let us think of graph as automata, and let us forget about node labeling for the time being. Let \(\Sigma_E \) be the set of edge labels. Consider a pair of states (nodes), choose one to be the initial state and one to be the final state. Thus the automaton (graph) defines some regular language on \(\Sigma_E \). In fact, the automaton describes \(n^2 \) languages (one for each pair of states).

Now, let us consider the effect of graph rewriting in terms of languages. Consider an application of the 'Follow' rule: \(G \to G' \). Any word to state \(r \) that goes through the transitions \(p \xrightarrow{\omega} q \xrightarrow{\omega} r \) can be mapped to a shorter one in \(G' \) via the transition \(p \xrightarrow{T} r \). The languages corresponding to state \(r \) contain shorter words. The remainder of this section is
devoted to formalizing this intuition into proper orders on graphs. For that, we will need to count the number of paths between any two states. Hence, we shall introduce \mathbb{N}-rational expressions, that is, rational expression with multiplicity. See, e.g., Sakarovitch’s book [18] for an introduction and justifications of the upcoming constructions. We introduce here the basic ideas.

3.2 Formal series

A formal series on Σ (with coefficients in \mathbb{N}) is a (total) function $s : \Sigma^* \to \mathbb{N}$. Given a word w, $s(w)$ is the multiplicity of w. The set of words $s = \{ w \in \Sigma^* \mid s(w) \neq 0 \}$ is the support of s. Given $n \in \mathbb{N}$, let n be the series defined by $n(w) = 0$, if $w \neq 1$, and $n(1) = n$, where 1 denotes the empty word. The empty language is 0, the language made of the empty word is 1. Moreover, for $a \in \Sigma$, the series a is given by $a(w) = 0$ if $w \neq a$ and $a(a) = 1$.

Given two series s and t, their addition is the series $s + t$ given by $s + t(w) = s(w) + t(w)$, and their product is $s \cdot t$ defined by $s \cdot t(w) = \sum_{u \cdot v = w} s(u)t(v)$. The star operation is defined by $s^* = 1 + s + s^2 + \cdots$. The monoid Σ^* being graded, the operation is correctly defined whenever $s(1) = 0$.

Given a series s, let $s \leq_k$ be its restriction to words of length less or equal to k, i.e., $s \leq_k (w) = 0$ whenever $|w| > k$ and $s \leq_k (w) = s(w)$, otherwise.

An \mathbb{N}-rational expression on an alphabet Σ is built upon the grammar [19]:

$$E ::= a \in \Sigma \mid n \in \mathbb{N} \mid (E + E) \mid (E \cdot E) \mid (E^*) .$$

Thus, given the constructions mentioned in the previous paragraph, any \mathbb{N}-rational expression $E \in \mathbb{E}$ denotes some formal series. To each \mathbb{N}-rational expression corresponds an \mathbb{N}-automaton, which is a standard automaton with transitions labeled by a non empty linear combination $\sum_{i \leq k} n_i a_i$ with $n_i \in \mathbb{N}$ and $a_i \in \Sigma$ for all $i \leq k$.

3.3 The language matrix

Let us suppose given an edge label set Σ_E. Let E denote the \mathbb{N}-rational expressions over Σ_E. A matrix M of dimension $P \times P$ for some (finite) set P is an array $(M_{i,j})_{i,j \in P}$ whose entries are in E. Let \mathcal{M}_E be the set of such matrices. Given a graph G, we define the matrix M_G of dimension $N_G \times N_G$ as follows: $M_{G,i,j} = T_1 + \cdots + T_\ell$ with T_1, \ldots, T_ℓ the set of labels on the transitions between state i and j if such transitions exist, otherwise 0.

Let 1_P be the unit matrix of dimension $P \times P$, that is $(1_P)_{i,j} = 0$ if $i \neq j$ else 1. From now on, we abbreviate the notation from 1_P to 1 if the context is clear. Then, let $M_G^0 = 1 + M_G + M_G^3 + \cdots$. Each entry of M_G^0 is actually an \mathbb{N}-regular expression (see Sakarovitch Ch. III, §4 for instance). The (infinite) sum is correctly defined since for all i, j, we have the equality $(M_G)_{i,j} = T_1 + \cdots + T_\ell$. Thus, $1 \notin (M_G)_{i,j}$.

The question about termination can be reformulated in terms of matrices whose entries are languages (with words counted with their multiplicity). To prove the termination of the rewriting system, it is then sufficient to exhibit some order $>$ on matrices such that for any two graphs $G \to G'$, we have $M_G > M_G'$. To prove such a property in the infinite class of finite graphs, we will use the notion of “stable orders”.

Recall the ’Follow’ rule and consider the corresponding basic pattern L and its self-application R. Their respective matrices are:

$$M_L = \begin{pmatrix} 0 & T & 0 \\ 0 & 0 & \alpha \\ 0 & 0 & 0 \end{pmatrix}, \quad M_R = \begin{pmatrix} 0 & 0 & T \\ 0 & 0 & \alpha \\ 0 & 0 & 0 \end{pmatrix} .$$

Observe that $(M_R)_{13} > (M_L)_{13}$. This matrix deals with edges/transitions. In order to consider paths, we need to compute M_L^* and M_R^* that are given by:

$$M_L^* = \begin{pmatrix} 1 & T & T \cdot \alpha \\ 0 & 1 & \alpha \\ 0 & 0 & 1 \end{pmatrix}, \quad M_R^* = \begin{pmatrix} 1 & 0 & T \\ 0 & 1 & \alpha \\ 0 & 0 & 1 \end{pmatrix} .$$

Any word within M_L^*’s entries is a sub-word of the corresponding entry in M_L^*.

Example 3. Consider now a variation of ’Follow’ made of the pattern $\langle 1 \xrightarrow{a} 2 \xrightarrow{a} 3 \xrightarrow{a} 4 \rangle$ and commands \(\text{add_edge}(p, T, r), \text{del1_edge}(p, T, q) \). By setting L' as its pattern and R' as its self-application, we get the following
We prove that \(r \), where the strict inequality is due to strict monotonicity of addition.

Again, words within \(r \prec s \). To show strict monotonicity, suppose

\[
\text{Definition 5 (Matrix multiset-path order). Let } M \text{ and } M' \text{ be two matrices with dimension } P \times P. \text{ Write } M \preceq M' \text{ if for all } k \geq |P| \text{ and for all } (i, j) \in P \times P, \text{ we have } M_{i,j}^{\leq k} \preceq M'_{i,j}^{\leq k}.
\]

\[
\text{Corollary 1. The addition and the multiplication are monotonic with respect to the matrix multiset-path order.}
\]

\[
M_{r} = \begin{pmatrix}
(T(\gamma))^{*} & T(\alpha(\gamma T \alpha)^{*}) & T(\gamma (\gamma T \alpha)^{*}) \\
(\alpha(\gamma T \alpha)^{*}) & (\alpha(\gamma T \alpha)^{*}) & (\alpha(\gamma T \alpha)^{*}) \\
\gamma (\gamma T \alpha)^{*} & \gamma (\gamma T \alpha)^{*} & (\gamma T \alpha)^{*}
\end{pmatrix}
\]

\[
M_{r} = \begin{pmatrix}
(T(\gamma))^{*} & 0 & T(\gamma T)^{*} \\
0 & (\alpha(\gamma T)^{*}) & 1 \\
(\gamma T(\gamma)^{*}) & 0 & (\gamma T)^{*}
\end{pmatrix}
\]

\[
\text{Again, words within } M_{r}^{*} \text{ are sub-words of the corresponding ones in } M_{r}^{*}.
\]

3.4 The matrix multiset path order

The order we shall introduce in this section is inspired by the notion of multiset path ordering within the context of term rewriting (see for instance [13]). However, in the present context of graph rewriting (to be compared with Dershowitz and Jouannaud’s [14] or with Plump’s [15]), the definition is a bit more complicated. Here, we do consider an order on letters as it is done for terms.

Let \(\preceq \) be the word embedding on \(\Sigma^{*} \), that is, the smallest partial order such that \(1 \preceq w \), and if \(u \preceq v \), then \(u \cdot w \preceq v \cdot w \) and \(w \cdot u \preceq w \cdot v \), for all \(u, v, w \in \Sigma^{*} \). This order \(\preceq \) can be extended to formal series, that is, the multiset-path ordering, see Dershowitz and Manen [20] or Huet and Oppen [21].

\[
\text{Definition 4 (Multiset path order). The multiset path order is the smallest partial order on finite series such that}
\]

\[
\begin{align*}
\text{if there is } w \in t & \text{ such that for all } v \in s, v \prec w, \text{ then } s \preceq t, \text{ and } \\
\text{if } r \preceq s \text{ and } t \preceq u & \text{, then } r + t \preceq s + u.
\end{align*}
\]

We write \(s \prec t \) when \(s \preceq t \) and \(s \neq t \).

\[
\text{Proposition 2. Addition and product are monotonic with respect to the multiset-path order. Moreover, addition is}
\]

strictly monotonic with respect to \(\preceq \), and if \(r \preceq s \), then \(r \cdot t \preceq s \cdot t \) and \(t \cdot r \preceq t \cdot s \), whenever \(t \neq 0 \) (otherwise, we have equality).

\[
\text{Proof. Addition is monotonic by definition. Actually, we prove now that it is strictly monotonic. Suppose that } r \prec s.
\]

We prove that \(r + t \preceq s + t \), by induction (see Definition 4). Suppose that there is \(w \in s \) such that for all \(v \in r \) we have \(v \prec w \), then \(r \preceq s \). Since \(r(w) = 0 \), then \(r(t) = t(w) \prec s(w) + t(w) = (s + t)(w) \), and we are done. Otherwise, \(r = r_0 + r_1 \) and \(s = s_0 + s_1 \) with \(r_0 \preceq s_0 \) and \(r_1 \preceq s_1 \). One of the two inequalities must be strict (otherwise \(r = s \)). Suppose \(r_0 \prec s_0 \). By definition, observe that \(r_1 + t \preceq s_1 + t \). But then, \(r + t = r_0 + (r_1 + t) \) and \(s = s_0 + (s_1 + t) \) and we apply induction on \((r_0, s_0) \). As addition is commutative, the result holds.

For the product, suppose that \(r \preceq s \) and let \(t \) be some series. We prove \(r \cdot t \preceq s \cdot t \); the other inequality \(t \cdot r \preceq t \cdot s \) is similar. Again, we proceed by induction on Definition 4.

\[
\begin{align*}
\text{Suppose there is } w \in s & \text{ such that for all } v \in r, v \prec w. \text{ By induction on } t, \text{ if } t = 0, r \cdot t = 0 \preceq 0 = s \cdot t. \text{ Otherwise, } t = t_0 + t_1 \text{ for a word } v_0. \text{ Observe that } r \cdot v_0 = \sum_{v \in \Sigma} r(v) v \cdot v_0. \text{ Since for all } v \in r, v \cdot v_0 \prec w \cdot v_0, \text{ we have } r \cdot v_0 \prec w \cdot v_0 \preceq s \cdot v_0. \text{ Now, } r \cdot t = r \cdot (t_0 + v_0) = r \cdot t_0 + r \cdot v_0 \text{ and } s \cdot t = s \cdot t_0 + s \cdot v_0. \text{ By} \\
\text{induction, } r \cdot t_0 \preceq s \cdot t_0 \text{ and since } r \cdot v_0 \preceq s \cdot v_0, \text{ the result holds.}
\end{align*}
\]

\[
\begin{align*}
\text{Otherwise, } r = r_0 + r_1. \text{ In this case, } s \cdot r = s \cdot r_0 \cdot s \cdot r_1 \text{ and } t \cdot r = t \cdot r_0 + t \cdot r_1. \text{ The result then follows by} \\
\text{induction.}
\end{align*}
\]

To show strict monotonicity, suppose \(r \prec s \) and again proceed by case analysis. Suppose that there is some \(w \in s \) such that for all \(v \in r, v \prec w. \text{ Since } t \neq 0, \text{ it contains at least one word } v_0 \text{ such that } t = t_0 + v_0. \text{ By } r \prec s, r \cdot v_0 = \sum_{v \in \Sigma} r(v) v \cdot v_0 \preceq \sum_{v \in \Sigma} s(v) v \cdot v_0 = s \cdot v_0. \text{ Now, } r \cdot t_0 \preceq s \cdot t_0 \text{ by monotonicity. Thus } r \cdot t = r \cdot t_0 + r \cdot v_0 \preceq s \cdot t_0 + s \cdot v_0 = s \cdot t \text{ where the strict inequality is due to strict monotonicity of addition.}
\]

\[
\text{Definition 5 (Matrix multiset-path order). Let } M \text{ and } M' \text{ be two matrices with dimension } P \times P. \text{ Write } M \preceq M' \text{ if for all } k \geq |P| \text{ and for all } (i, j) \in P \times P, \text{ we have } M_{i,j}^{\leq k} \preceq M'_{i,j}^{\leq k}.
\]

\[
\text{Corollary 1. The addition and the multiplication are monotonic with respect to the matrix multiset-path order.}
\]

\[
\text{Proof. It follows from Proposition 2 since addition and product of matrices are defined as addition and product of their entries.}
\]
3.5 The Rational Embedding Order

Let Σ be some fixed alphabet. A finite state transducer is a finite state automaton whose transitions are decorated by pairs (a, w), $a \in \Sigma$, $w \in \Sigma^*$. We refer the reader to the book of Sakarovitch [18] for details. To give the intuition, a transducer works as follows. At the beginning, the current state is set to the initial state of the transducer. The reading “head” is put on the first letter of the input and the output is set to the empty word. At each step of the computation, given some state q, some letter a read and some transition $q' \in \delta(q, (a, w))$, the transducer appends w to the output, shifts the input head to the “right” and sets the current state to q'. The computation ends when a) the input word is completely read in which case the result is the output or b) if there is no transition compatible with the current state and the read letter. In this latter case, the computation is said to fail. Thus, compared to a finite state automaton whose computations end on True (a final state) or False (not a final state) given some input word, the transducer output words, thus defining a relation in Σ^*. Given some transducer τ, if for any word, there is at most one successful computation, the transducer outputs at most one word, the relation becomes functional. In that case, we denote the function it computes by $[\tau]$.

Definition 6 (Rational Embedding Order). Given two regular languages L and L' on Σ, write $L \preceq L'$ if:

- there is an injective function $f : L' \to L$ that is computed by a transducer τ and
- such that $|f(w)| \leq |w|$, for every $w \in L'$. Such functions (and the corresponding transducers) are said to be decreasing (in [22]).

The transducer τ is said to be a witness of $L \preceq L'$.

We say that a transition of a transducer is deleting when it is of the form $a \mid 1$ for some $a \in \Sigma$. A transducer whose transitions are of the form $X \mid Y$, with $|Y| \leq |X|$, is itself decreasing. If a path corresponding to an input w passes through a deleting transition, then $|\tau(w)| < |w|$.

In the sequel we will make use of the following results that are direct consequences of Nivat’s Theorem [23] (Prop. 4, §3).

Proposition 3. Let $[\tau] : L \to L'$ be computed by a transducer τ, and let L'' be a regular language. Then the following assertions hold.

1. The restriction $\tau_{|L''} : L'' \cap L \to L'$ mapping $w \mapsto \tau(w)$ is computable by a transducer.

2. The co-restriction $\tau^{|L''} : L \to L' \cap L''$ mapping $w \mapsto \tau(w)$ if $\tau(w) \in L''$ and otherwise undefined, is computable by a transducer.

3. The function $\tau' : L \to L'$ defined by $\tau'(w) = \tau(w)$ if $w \in L''$ and otherwise undefined, is computable by a transducer.

Observe that the identity on Σ^* is computed by a transducer (made of a unique initial/final state with transitions $a \mid a$ for all $a \in \Sigma$). Then, the identity on L is obtained by Proposition [1,2]. Thus we have that \preceq is reflexive. Also, it is well known that both transducers and injective functions can be composed. Hence, we also have that \preceq is transitive. Thus, \preceq is a preorder.

However, we do not have anti-reflexivity in general. For instance, we have

$$L_1 = A \cdot (A + B)^* \preceq L_2 = B \cdot (A + B)^* \preceq L_1.$$

To see this, consider the following transducer (whose initial state is indicated by an in-arrow, whereas the final one by an out-arrow): $\xymatrix{ 1 \ar@/^/[r]^-A & 2 \ar@/^/[r]^-B \ar@/^/[l]^-A & 3 \ar@/^/[l]^-B }$. This shows that $L_1 \preceq L_2$. Swap ‘A’ and ‘B’, to see that the reversed relation also holds.

It is worth noting that there is a simple criterion to ensure a strict inequality.

Proposition 4. Suppose $L_1 \preceq L_2$ has a witness $\tau : L_2 \to L_1$. If τ contains one (accessible and co-accessible) deleting transition, then the relation is strict.

Proof. As before, set $L_1 < L_2$ whenever $L_1 \preceq L_2$ but not $L_2 \preceq L_1$. Ad absurdum, suppose $L_1 \preceq L_2 \preceq L_1$ with a transducer $\theta : L_1 \to L_2$ and τ as above. Then $\theta \circ \tau$ (the composition of the two transducers) defines an injective function. Let w be the smallest input word from the initial state to a final state through the transition $a \mid 1$ in τ. Define the set

$$M^{|w|} = \{ u \in L_2 \mid |u| < |w| \}. $$

For any word \(u \), we have \(|\theta \circ \tau(u)| \leq |u| \). Thus \(\theta \circ \tau(M^{<w}) \subseteq M^{<w} \). Since \(M^{<w} \) is a finite set and \(\theta \circ \tau \) is injective, it is actually bijective when restricted to \(M^{<w} \). However, \(|\theta \circ \tau(w)| \leq |\tau(w)| < w \implies \theta \circ \tau(w) \in M^{<w} \). By the Pigeon-hole Principle, there is one word in \(M^{<w} \) that has two pre-images via \(\theta \circ \tau \). Thus, \(\theta \circ \tau \) cannot be injective, which yields a contradiction. □

Remark 3. From Proposition [3], it follows that if two regular languages \(L \) and \(L' \) are such that \(L \subseteq L' \), then \(L \preceq L' \).

Definition 7. The rational embedding order extends to matrices by pointwise ordering: Let \(M \) and \(N \) with dimension \(P \times P \), and write \(M \preceq N \) if for every \(i, j \in P \times P \), we have \(M_{i,j} \preceq N_{i,j} \).

Recall the modified version of 'Follow' (Example [3]). The following transducers show that all entries strictly decrease.

In the following, to compare two graphs by means of the rational embedding order, we transform graphs into matrices as follows. Given a graph \(G \), let \(M_G' \) be the matrix of dimension \(N_G \times N_G \) such that \((M_G')_{i,j} = T_{i,j}^1 + T_{i,j}^2 + \cdots T_{i,j}^r \) with \(T_{i,j}^1, \ldots, T_{i,j}^r \) the labels of the edges from \(i \) to \(j \). In other words, we "decorate" the labels with the source and target nodes. Then, \(G \preceq G' \) whenever \(M_G' \preceq M_G'' \).

3.6 Stable orders on matrices

A matrix on \(E \) is said to be **finite** whenever all its entries are finite. Two matrices \(M \) and \(M' \) (of same dimension) on \(E \) are said to be disjoint if for every \(i, j \), \(M_{i,j} \cdot M'_{i,j} = 0 \).

Definition 8. Let \(M \) be a matrix of dimension \(P \times P \) and \(P \subseteq G \). The extension of \(M \) to dimension \(G \times G \) is the matrix \(M^{\uparrow G} \) defined by:

\[
(M^{\uparrow G})_{i,j} = \begin{cases}
M_{i,j} & \text{if } i, j \in P \\
0 & \text{otherwise}
\end{cases}
\]

The notation \(M^{\uparrow G} \) is shortened to \(M^{\uparrow} \) when \(G \) is clear from the context.

Fact 1. Let \(M \) be a matrix of dimension \(P \times P \), with \(P \subseteq G \). Then \((M^{\uparrow G})^* = (M^*)^{\uparrow G}\).

Definition 9. We say that a partial order \(\preceq \) on \(E \) is **stable by context** if for every \(P \subseteq G \), all matrices \(L \) and \(R \) of dimension \(P \times P \), and every \(C \) of dimension \(G \times G \), the following assertions hold.

1. If \(L, R, C \) are finite, \(L \) being disjoint from \(C \), \(R \) being disjoint from \(C \) and \(R^* \prec L^* \), then \((R + C)^* \prec (L + C)^*\);

2. If \(R \prec L \), then \(R^{\uparrow G} \prec L^{\uparrow G} \).

Lemma 1. Let \(\preceq \) be a partial order stable by context and consider finite matrices \(L, R \) of dimension \(P \times P \) and let \(C \) be a finite matrix of dimension \(G \times G \) with \(P \subseteq G \). Then, \(R^* \prec L^* \) implies \((R^* + C)^* \prec (L^* + C)^*\).

Proof. If \(R^* \prec L^* \), then we have \((R^*)^\uparrow \prec (L^*)^\uparrow \) by Definition [2]. By Lemma [1], it follows that \((R^*)^\uparrow \prec (L^*)^\uparrow \). Clearly, \(R^\uparrow \) and \(L^\uparrow \) are finite, and from Definition [2], we have \((R^\uparrow + C)^\uparrow \prec (L^\uparrow + C)^\uparrow\) □

Theorem 1. Let \(\preceq \) be a partial order stable by context. Suppose that for every rule \(R = \langle P, \tilde{c} \rangle \) with \(P = \langle P_0, \tilde{v} \rangle \) and \(P_0' \) the self-application of \(R \), we have \((P_0')^* \prec (P_0)^*\). Then the corresponding GRS is terminating.

Proof. Let \(\preceq \) be a partial order on graphs and consider the corresponding order on matrices: \(G \prec G' \) if and only if \(M_G' \prec M_G'' \). We show that for every rule, we have \(G \rightarrow G' \) implies \(G' \prec G \). So let \(R \) be a graph rewriting rule and let \(\mu \) be a morphism such that \(G \rightarrow_{R, \mu} G' \). By the discussion in the beginning of Section 3, without loss of generality, we
can suppose that μ is actually the inclusion of pattern P_0 in G. Now, let P_0 and P_0^+ be respectively the basic pattern and the self-application of R. Define C to be the graph made of the nodes of G without edges in P_0. By Proposition\cite{1}, $M_G = M_{P_0}^+ + M_C$ and $M_C = M_{P_0}^+ + M_C$. Moreover, M_{P_0}, $M_{P_0'}$ and M_C are finite, M_{P_0} is disjoint from M_C, and $M_{P_0'}$ is disjoint from M_C. From Lemma\cite{1} it thus follows that $M_{C^*} = (M_{P_0}^+ + M_C)^* < (M_{P_0'} + M_C)^* = M_G$. \hfill \square

3.7 Stability of the orderings

We can now prove the two announced stability results.

Proposition 5. The multiset path ordering is stable by context.

Proof. We first verify that condition 2 of Definition\cite{9} holds. Suppose that $R \preceq L$ with R, L of dimension $P \times P$. Then, for all $(i,j) \notin P \times P$, $R_{i,j}^G = 0 \leq 0 = L_{i,j}^G$. Now, for all $k \geq |G| \geq |P|$ and for all $(i,j) \in P \times P$, we have $(R^G)_{i,j}^k = R_{i,j}^k \leq L_{i,j}^k = (L^G)_{i,j}^k$. To verify that condition 1 also holds, let $G \times G$ be the dimension of L, R and C. Take $k \geq |G|$. On the one side we have

$$(R + C)^* \leq_k = \sum_{(A_1,\ldots,A_\ell) \in (R,C)^*} \prod_{i \leq k} A_i$$

and on the other side

$$(L + C)^* \leq_k = \sum_{(A_1,\ldots,A_\ell) \in (R,C)^*} A_i \{ R \leftarrow L \},$$

where $A_i \{ R \leftarrow L \} = L$ if $A_i = R$, and C otherwise. As the product and the addition are (strictly) monotonic, the result follows. \hfill \square

Proposition 6. The rational embedding order is stable by context.

Proof. Since we use a component-wise ordering, it is easy to verify that condition 2 of Definition\cite{9} holds. To verify that condition 1 also holds, let $P \times P$ be the shared dimension of L, R and C of dimension $G \times G$ with $P \subseteq G$. Since $R < L$, there are decreasing transducers $\tau_{i,j} : L_{i,j} \rightarrow R_{i,j}$ with at least one of them deleting. We build the family of transducers $(\theta_{p,q})_{p,q \in G \times G}$ as follows. The family of transducers will share the major part of the construction. They only differ by their initial and terminal states. First, we make a copy of all transducers $(\tau_{i,j})_{i,j}$. Then, we add as states all the elements of G outside P. Given a non null entry $T = C_{i,j}$, we set a transition $i \xrightarrow{T_{i,j}^G} j$. That is the transducer "copies" the paths within C. For an entry $T = C_{i,j}$ with $i \notin P$, $j \in P$, we set the transitions: $i \xrightarrow{T_{i,j}^G} q_n$ for all q_n initial state of the transducer $\tau_{r,n}$, $n \in P$. Similarly, for an entry $T = C_{i,j}$ with $i \in P$, $j \notin P$, we set the transitions: $r_n \xrightarrow{q_n}$ for each terminal state r_n of the transducer $\tau_{n,i}$, $n \in P$. This construction can be represented as follows:

![Diagram](image)

where U, T, W, X, Y range over the edge labels. Take $k, \ell \notin P$. Any path from state k to state ℓ describes a path in $C + L$ on the input side and a path in $C + R$ on the output side. Indeed, transitions within C are simply copied and the transducers $\tau_{i,j}$ transform paths in L into paths in R.

It remains to specify initial and final states of $\theta_{p,q}$ with $(p,q) \in G \times G$. Given some entry $p, q \in G$, if $p \notin P$, we set the initial state to be p. Otherwise, we introduce a new state i which is set to be initial, and we add a transition $i \xrightarrow{11} i$ for any state i initial in $\tau_{p,r}$ for some r. If $q \notin P$, then, q is the final state. Otherwise, any state j within some $\tau_{r,q}$, $r \in P$, is final.
Consider some pair \(p, q \in G \). We prove that the transducer \(\theta_{p,q} \) is injective. Consider a word \(w \) in \(C + L \). It can be decomposed as follows: \(w = w_1 \ell_1 \cdots w_k \ell_k \) where the \(\ell_i \)'s are the sub-words within \(L \) (that is the \(w_i \)'s have the shape \(v_i a_i \) where \(a_i \) is a transition from \(C \) to \(L \)). Consider a second word \(w' = w'_1 \ell'_1 \cdots w'_k \ell'_k \) such that the transducer \(\theta_{p,q}(w) = \theta_{p,q}(w') = u \). Given the construction of \(\theta_{p,q} \), consider the word \(u = u_1 r_1 \cdots u_k r_k \) with \(r_1, \ldots, r_k \) some path within \(R \). Indeed, only a letter within \(L \) can produce a letter within \(R \). Consider the case where \(r_k \) is non-empty. When the transducer reaches the first letter in \(\ell_k \), it is in a state \(\tau_{k,0} \) for some \(m \). Actually, \(m = q \) since only \(\tau_{k,\ell} \) contains a final state. Thus, the path is fixed within \(\tau_{k,\ell} \) and then the injectivity of \(\tau_{k,\ell} \) applies. So, \(\ell'_k = \ell_k \). We can go back within \(w_k \). On this part of the word, the transitions have the shape \(T^{i,j} \mid T^{i,j'} \). Thus, \(w_k = w'_k \). We can continue this process up to the beginning of \(w \) and \(w' \).

3.8 Termination with node creation

Up to here, rewriting did not involve node creation. In this subsection, we will address this issue informally, and we leave for future work the definitive formalization.

So consider a new command \texttt{add_node}(\(\alpha \)) with \(\alpha \) a label. This command adds a new node to the graph with label \(\alpha \). As in standard settings, this node is not related to others at creation time.

Actually, we see node creation as follows. Let us consider a fixed denumerable set \(U \) of nodes. For any finite graph, one may suppose without loss of generality that its nodes belong to \(U \). More precisely, we see graphs as having \(U \) as an underlying node set, among which only finitely many are “under focus”. The nodes in this finite set have a label within the set \(\Sigma_G \) and they may be related via edges to some other nodes, all the others are isolated and their label is \(\bot \), a trash label. In other words, there is never some node creation, but some may be added to the focus. Notice that at each step, only finitely many nodes may be added to a graph via rewriting. In finitely many steps, starting from a finite graph, the denumerable set \(U \) is a sufficiently large container.

If we come back to our termination issue, there are a few changes. In the one hand, matrices have infinite dimension, that is, \(U \times U \). But on the other hand, at each step of computation, only finitely many entries are non null. Thus, all established results still apply to this more general framework and the method is still correct.

As a consequence, if we still find some ordering on language matrices, termination will follow. However, there is one important point that must be discussed in detail. We said that the ordering on matrices did not need to be well founded to show termination. And for that, we needed the fact that all graphs met during computation have a fixed size (so that there are only finitely many of them). In the present context, this hypothesis is not reasonable in general. We thus propose two ways of overcoming this apparent limitation.

First, if the ordering on matrices is well-founded, there are no more issues. Termination will hold directly. Second, if the ordering is not well-founded, then we will need an additional ingredient. Let us suppose that the ordering \(\prec \) is stable by edge contraction: that is, if \(G' \) is obtained from \(G \) by contracting some edge \(e \in G \), then \(M_G' \prec M_G \). Suppose furthermore that for any steps, \(G \to G' \), we have \(M_{G'} \prec M_G \), then the system is terminating. Indeed, due to Robertson and Seymour’s Theorem (see [24]), any infinite sequence \(M_{G_1} \succ M_{G_2} \succ \cdots \) will contain two indices for which \(M_{G_j} \) is a (directed) minor of \(M_{G_k} \), for some \(j < k \). That is \(G_j \) is obtained from \(G_k \) by finitely many edge contractions. But, since the order is stable by edge contraction, then, \(M_{G_j} \prec M_{G_k} \) which leads to the contradiction. Thus, the result.

The notion of minors for the directed case may be discussed further, see for instance [25]. We leave that exploration for some other day.

4 Interpretations for Graph Rewriting Termination

Interpretation methods are well known in the context of term rewriting, see for instance Dershowitz and Jouannaud’s survey on rewriting [13]. Their usefulness comes from the fact that they belong to the class of simplification orderings, i.e., orderings for which if \(t \preceq u \), then \(t \preceq u \). In the context of graphs, we introduce a specific notion of “interpretation”, that we will still call interpretation.

Definition 10. A graph interpretation is a triple \(\langle X, \prec, \phi \rangle \) where \(\langle X, \prec \rangle \) is a partially ordered set and \(\phi : G \to X \) is such that given two graphs \(P \) and \(P' \) having the same set of nodes and \(C \) disjoint of \(P \) and \(P' \), if \(\phi(P) \prec \phi(P') \), then \(\phi(P + C) \prec \phi(P' + C) \).

An interpretation \(\Omega = \langle X, \prec, \phi \rangle \) is compatible with a rule \(R \) if \(\phi(P'_0) \prec \phi(P_0) \) where \(P_0 \) is the basic pattern of \(R \) and \(P'_0 \) its self-application. Similarly, an interpretation is compatible with a GRS if it is compatible with all of its rules.

Theorem 2. Every GRS compatible with an interpretation \(\Omega \) is terminating.

The theorem being a more abstract form of Theorem[1], its proof follows exactly the same steps.
We proposed a new approach based on the theory of regular languages to decide the termination of graph rewriting. We thus have the following corollary.

As the next natural step, we intend to explore more systematically graph rewriting with node creations and that take into account node labels. Moreover, in the experiments mentioned in the introduction about natural language processing, in the two cases, we can extend the orders to take into account orders on the edge labels.

Thus, combining Example 4 and Example 5, we have a proof of the termination of the Main Example (Subsection 2.1). Thus, combining Example 4 and Example 5, we have a proof of the termination of the Main Example (Subsection 2.1).

Corollary 2. The GRS given in Subsection 2.1 is terminating.

Example 7. Let \(R \) be a terminating GRS. Then there is an interpretation that “justifies” this fact. Indeed, take \(\langle G, \prec, 1_G \rangle \) with \(\prec \) defined to be the transitive closure of the rewriting relation \(\rightarrow \). The termination property ensures that the closure leads to an irreflexive relation. The compatibility of \(\prec \) with respect to \(1_G \) is immediate.

We thus have the following corollary.

Corollary 3. A GRS is terminating if and only if it is compatible with some interpretation.

5 Conclusion

We proposed a new approach based on the theory of regular languages to decide the termination of graph rewriting systems, which does not account for node additions but settles the uniform termination problem for these GRS. We think that there is room to reconsider some old results of this theory under the new light. In particular, we think of profinite topology \([26] \), is a powerful tool that could give us some insight on the underlying structure of the orders. In the two cases, we can extend the orders to take into account orders on the edge labels.

As the next natural step, we intend to explore more systematically graph rewriting with node creations and that take into account node labels. Moreover, in the experiments mentioned in the introduction about natural language processing, in principle, these two orders should still be sufficient to ensure termination. However, we need to implement these new results for an extensive and complete evaluation.

Acknowledgment. The authors are thankful to the anonymous reviewers for their careful reading of our manuscript and for the constructive remarks and useful suggestions, that were of great help when revising this manuscript.

References

