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A model of plasmid-bearing and plasmid-free organisms in a chemostat competing for a single resource in the presence of an external inhibitor and with different removal rates is considered. This model was previously introduced in the case where the growth rate functions and the absorption rate of inhibitor follows the Monod kinetics and removal rates are the same as the dilution rate. In this paper, we consider the general case of monotonic functions and different removal rates. Through the three operating parameters of the system, represented by the dilution rate, the input concentrations of the substrate and the inhibitor, we give necessary and sufficient conditions for existence and stability of all equilibria. By means of operating diagrams, we describe the asymptotic behavior of the model with respect to those operating parameters. Some examples are given to illustrate the mathematical results.

Introduction

The chemostat is a simple and well-adopted laboratory apparatus used for the continuous culture of microorganisms. The first introduction of the chemostat dates of 1950 by A. Novick and L. Szilard in [START_REF] Novick | Description of the chemostat[END_REF], and J. Monod in [START_REF] Monod | La technique de culture continue: théorie et applications[END_REF]. Competition between different populations of microorganisms (bacteria, yeast, phytoplankton, zooplankton, ...) for single or multiple resources, with conservation of environmental parameters (PH, temperature, pressure,...), evolution of resource acquisition, ..., have been investigated in ecology and biology using chemostat as in [START_REF] Monod | La technique de culture continue: théorie et applications[END_REF][START_REF] Monod | Recherches sur la croissance des cultures bactériennes[END_REF][START_REF] Hoskisson | Continuous culture-making a comeback?[END_REF]. A detailed mathematical description of competition in the chemostat may be found in [START_REF] Smith | The theory of the chemostat: Dynamics of microbial competition[END_REF][START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF].

One of the major developments in biotechnology is the ability to produce desired products using genetically altered organisms. Genetic alteration generally takes place by the insertion of DNA into the cell in the form of a plasmid to code for the production of the desired protein. The load imposed by production can result in the genetically altered (plasmid-bearing) organism being a competitor is less efficient than the plasmid-free organism. Unfortunately, the plasmid can be lost during reproduction. Since commercial production can take place on a scale of many generations, it is important to understand the dynamics of this process. To deal with this, an additional piece of genetic material is added to the plasmid, one that codes for resistance to an inhibitor, and the inhibitor is added to the reactor.

The study of mathematical models for the competition between plasmid-free and plasmid-bearing organisms recently been a problem of considerable interest, the importance of such models is emphasized upon in the chapter "New Directions" of [START_REF] Smith | The theory of the chemostat: Dynamics of microbial competition[END_REF]. We refer to the literature [START_REF] Hsu | A survey of mathematical models of competition with an inhibitor[END_REF][START_REF] Hsu | Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor[END_REF][START_REF] Hsu | A model of the effect of anti-competitor toxins on plasmid-bearing, plasmid-free competition[END_REF][START_REF] Hsu | Global analysis of a model of plasmid-bearing, plasmid-free competition in a chemostat[END_REF], and the references therein, for recent studies on this subject.

In this paper, we consider the model introduced by S. B. Hsu, T. K. Luo and P. Waltman [START_REF] Hsu | Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor[END_REF] with different removal rates and general monotone growth functions, where a plasmid-free x and plasmid-bearing y organisms compete for a single limiting resource S in presence of an external inhibitor p, which inhibits the growth of plasmid-free organism, while it can take up plasmid-bearing organism with no deleterious effect. Moreover, the plasmid-free organism is able to detoxify the environment, that is to remove the inhibitor from the environment. Some chemostat models incorporating inhibitors could be found in [START_REF] Hsu | Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor[END_REF][START_REF] Ai | Periodic solutions in a model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor[END_REF][START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF][START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF][START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF].

The organization of this paper is as follows. In Section 2, we present the model and some properties of its solutions. In Section 3, we discuss the existence and the local and global asymptotic stability of equilibria. In Section 4, we present the operating diagrams. In Section 5, we consider examples and we give numerical simulations. A discussion follows in Section 6.

Mathematical model

The model of the chemostat with an external inhibitor with different removal rates we consider here is of the form

         S = (S 0 -S)D -f (p)f 1 (S) x β -f 2 (S) y β x = [f (p)f 1 (S) -D 1 ]x + qf 2 (S)y y = [(1 -q)f 2 (S) -D 2 ]y p = (p 0 -p)D -g(p)y (2.1)
with S(0) ≥ 0, x(0) > 0, y(0) > 0 and p(0) ≥ 0. S(t) denotes the concentration of the substrate at time t; x(t), y(t) are the concentrations of the competitors at time t and p(t) is the concentration of the external at time t. S 0 > 0 is the input concentration of the nutrient, D > 0 is the dilution rate of the chemostat, D 1 and D 2 are the removal rates of x and y respectively, p 0 > 0 is the input concentration of the inhibitor, all of which are assumed to be constant and parameters D, S 0 and p 0 are under the control of the experimenter. In general, the removal rate for each competitor is the sum of D and death rate. Thus the most reasonable assumption is D i ≥ D, and

D i = D + e i , i = 1, 2
, where e 1 and e 2 are death rates of x and y respectively. The parameter β > 0 is the growth yield coefficient. The so-called functional responses f i , i = 1, 2, represent the specific growth rates of the competitors, f representes the degree of inhibition of p on the growth rate of x and the function g represents the absorption rate of the external inhibitor relative to y.

The global analysis of the model (2.1) when there is no inhibitor is considered by B. Li, Y. Kuang and H. L. Smith [START_REF] Li | Competition between plasmid-bearing and plasmid-free microorganisms in a chemostat with distinct removal rates[END_REF] with f 1 and f 2 monotone increasing functions. The paper [START_REF] Li | Competition between plasmid-bearing and plasmid-free microorganisms in a chemostat with distinct removal rates[END_REF] concludes with emphasizing the importance of the study of their model in the presence of an inhibitor.

The global analysis of the model (2.1) when was considered by Hsu et al. [START_REF] Hsu | Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor[END_REF], where m i , K i , i = 1, 2 , δ, K and µ are some positive constant parameters. Here, except for the three variable operating (or control) parameters, which are the input of the inhibitor p 0 , the dilution rate D and the inflowing substrate S 0 , all the other parameters are biological parameters which depend on the organisms, substrate and inhibitor considered. In this same setting S. Ai [START_REF] Ai | Periodic solutions in a model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor[END_REF] has provided conditions that establish the existence of a limit cycle.

D 1 = D 2 = D, with f 1 (S) = m 1 S K 1 + S , f 2 (S) = m 2 S K 2 + S , g(p) = δp K + p and f (p) = exp(-µp) (2.
In this paper, we consider the general model (2.1) without restricting ourselves to the special case of Monod functions of growth rates of the competitors f i and of absorption rate of inhibitor g and f mentioned before. We suppose only that f i , i = 1, 2, f and g in system (2.1) are C 1 -functions satisfying the following conditions:

(C1): For i = 1, 2, f i (0) = 0 and f i (S) > 0 for all S ≥ 0. (C2): g(0) = 0 and g (p) > 0 for all p ≥ 0. (C3): f (0) = 1 and f (p) < 0 for all p ≥ 0.

Proposition 1. For non-negative initial conditions, all solutions of system (2.1) are bounded and remain non-negative for all t > 0. Moreover, for any ε > 0 the compact set

Ω ε = {(S, x, y, p) ∈ R 4 : S ≥ 0, x ≥ 0, y ≥ 0, 0 ≤ p ≤ p 0 +ε, βS +x+y ≤ DβS 0 D min +ε}
is positively invariant and globally attracting for (2.1).

Proof. The first equation of system (2.1) indicates that S = DS 0 > 0 at S = 0. Then we have S(t) ≥ 0 for all positive t. The second equation of (2.1) indicates that x ≥ 0 at x = 0, which gives x(t) ≥ 0 for all positive t. The third equation of (2.1) gives y = 0 at y = 0 so that y(t) ≥ 0 for all positive t. At last, the fourth one yields p = Dp 0 > 0 at p = 0, and so p(t) ≥ 0 for all positive t. Hence, all solutions of (2.1) with positive initial conditions remain positive, for all positive t. Let Σ = βS + x + y. We have

Σ = DβS 0 -(DβS + D 1 x + D 2 y) ≤ DβS 0 -D min Σ, Σ(0) = βS(0) + x(0) + y(0)
where .

D min = min{D, D 1 , D 2 }. Then Σ ≤ DβS 0 D min + Σ(0) - DβS 0 D min exp(-D min t). D2 1 -q D1 f (p 0 ) λ2 λ + S f 2 f 1 (a) Dβ S 0 -λ2 D2 p p 0 (b) K p pc
At the same time, for p, one can obtain

p(t) ≤ p 0 + (p(0) -p 0 ) exp(-Dt).
Hence, for any ε > 0, we have Σ ≤ DβS 0 D min + ε and p(t) ≤ p 0 + ε, for large t.

(2.3)

From the first equation of (2.1) we have S (t) ≤ D(S 0 -S(t)). By integration we get S(t) ≤ S 0 + (S(0) -S 0 ) exp(-Dt), so that lim t→+∞ sup S(t) ≤ S 0 . Hence, solutions of (2.1) are bounded and remain positive for all t. From (2.3) we can deduce that the set Ω is positively invariant and globally attracting for (2.1).

Existence and stability of equilibria

Hereafter we use the following conditions and notations: for functions f i , i = 1, 2, f and g in (2.1), conditions (C1)-(C3) hold. From (C1) one can deduce that f i is a bijective (and then an invertible) function from [0, +∞) into [0, m i ) where

m i = sup S>0 f i (S) = f i (+∞). Using the inverse functions f -1 1 : I 1 → R + and f -1 2 : I 2 → R + , with I 1 = [0, f 1 (+∞)) and I 2 = [0, f 2 (+∞))
, we define the break-even concentrations, see Fig. 1(a):

λ 2 (D) = f -1 2 D 2 1 -q , λ + (D, p 0 ) = f -1 1 D 1 f (p 0 ) (3.1)
which are the unique solutions of equations (1 -q)f 2 (S) = D 2 and f (p 0 )f 1 (S) = D 1 , respectively. Note that λ 2 and λ + are defined for D2 1-q ∈ I 2 and D1 f (p 0 ) ∈ I 1 , respectively. Let p * (D) = f -1 D1 f1(λ2) and p = max{p * , 0}. We define the function

K by K(p, D, p 0 ) = W 1 (p, D, p 0 )W 2 (p, D), for p ∈ (p, p 0 ]
where

W 1 (p, D, p 0 ) = D(p 0 -p) g(p) and W 2 (p, D) = 1 1 -q qf (p) f (p * ) -f (p) + 1 . Using (C2
) and (C3), for all p ∈ (p, p 0 ), we have K(p, D, p 0 ) > 0, K (p, D, p 0 ) < 0, lim p→ p K(p, D, p 0 ) = +∞ and K(p 0 , D, p 0 ) = 0. Therefore, when λ 2 < S 0 , equation

K(p, D, p 0 ) = Dβ(S 0 -λ2)

D2

in p has a unique solution denoted by p c , see Figure 1(b). Hence

K(p c , D, p 0 ) = Dβ(S 0 -λ 2 ) D 2 . (3.2)
3.1. Existence of equilibria. The existence of equilibria of system (2.1) is stated by the following result.

Proposition 2. Assume that (C1)-(C3) are satisfied. System (2.1) has three boundary equilibrium points:

• The washout equilibrium E 0 = (S 0 , 0, 0, p 0 ), that always exists.

• The equilibrium E 1 = (λ + , x, 0, p 0 ) of extinction of plasmid-bearing organism y, where x = Dβ(S 0 -λ + )

D1

and λ + is given by (3.1). This equilibrium exists if and only if λ + < S 0 .

• The coexistence equilibrium E c = (λ 2 , x c , y c , p c ), where λ 2 , p c are given by (3.1) and (3.2), respectively, and y c , x c are given by

y c = W 1 (p c , D, p 0 ), x c = qD 2 y c (1 -q)f 1 (λ 2 )(f (p * ) -f (p c )) . (3.3) 
This equilibrium exists if and only if λ 2 < min{λ + , S 0 }.

Proof.

The equilibria of (2.1) are the solutions of the set of equations:

           (S 0 -S)D = f (p)f 1 (S) x β + f 2 (S) y β [f (p)f 1 (S) -D 1 ]x = -qf 2 (S)y [(1 -q)f 2 (S) -D 2 ]y = 0 (p 0 -p)D = g(p)y. (3.4)
• The washout equilibrium E 0 = (S 0 , 0, 0, p 0 ) where both populations are extinct, that always exists. • The equilibrium of extinction of the second population with x 1 > 0, E 1 = (S 1 , x 1 , 0, p 1 ). The components S = S 1 , x = x 1 and p = p 1 of the boundary equilibrium E 1 are the solutions of (3.4) with x > 0 and y = 0. From the fourth equation of (3.4), we have p 1 = p 0 . Then

D(S 0 -S 1 ) = f (p 0 )f 1 (S 1 )x 1 β (3.5) f (p 0 )f 1 (S 1 ) = D 1 . (3.6)
Therefore, from (3.6) we have S 1 = λ + , where λ + is given by (3.1). Then, using (3.5) we deduce that

x 1 = Dβ(S 0 -λ + ) D 1
. Equilibrium E 1 exists if and only if x 1 > 0, that is λ + < S 0 . We can see that there is no equilibrium point with x = 0 and y > 0, since a plasmid-bearing state contributes input to the plasmid-free state.

• The components of E c = (λ 2 , x c , y c , p c ), a positive equilibrium of (2.1), are the solutions of (3.4) with x > 0 and y > 0. Hence, from the third equation of (3.4) we have (1 -q)f 2 (S c ) = D 2 ; that is S c = λ 2 , where λ 2 is given by (3.1) and

(S 0 -λ 2 )D = f (p c )f 1 (λ 2 ) x c β + f 2 (λ 2 ) y c β (3.7) (f (p c )f 1 (λ 2 ) -D 1 )x c = -qf 2 (λ 2 )y c (3.8) (p 0 -p c )D = g(p c )y c . (3.9) 
From (3.9) we have y c = W 1 (p c ), and from (3.8) we get

x c = -qf 2 (λ 2 )W 1 (p c ) f (p c )f 1 (λ 2 ) -D 1 .
We replace x c , y c and f 2 (λ 2 ) by

D 2 1 -q in (3.7) to obtain (S 0 -λ 2 )Dβ = f (p c )f 1 (λ 2 )x c + f 2 (λ 2 )y c = D 2 W 1 (p c ) 1 -q -qf (p c )f 1 (λ 2 ) f (p c )f 1 (λ 2 ) -D 1 + 1 .
Therefore p c , y c and x c are given by (3.2) and (3.3), respectively. Hence, a positive equilibrium E c of system (2.1), if it exists, is unique. The equilibrium point E c exist, if both x c , y c and p c are positive. From equation (3.7) we get λ 2 < S 0 .

(3.10) From (3.8) and (3.9), we obtain p < p c and p c < p 0 , respectively.

f -1 D 1 f 1 (λ 2 ) = p * ≤ p < p 0 ⇔ f (p 0 ) < D 1 f 1 (λ 2 ) ⇔ f 1 (λ 2 ) < D 1 f (p 0 ) = f 1 (λ + ).
Using conditions (C1) and (C3) we have

p < p 0 ⇔ λ 2 < λ + . (3.11)
By (3.10) and (3.11), we conclude that E c exists if and only if λ 2 < min(λ + , S 0 ).

3.2.

Local stability of equilibria. In the following we investigate the local stability of the points of equilibrium of (2.1). The Jacobian matrix for the linearisation of (2.1) at an equilibrium point E c = (λ 2 , x c , y c , p c ) takes the form

M c =        m 11 m 12 -D 2 β(1 -q) m 14 m 21 m 22 qD 2 1 -q m 24 m 31 0 0 0 0 0 m 43 m 44        (3.12)
with

m 11 = -D -f (p c )f 1 (λ 2 ) x c β -f 2 (λ 2 ) y c β , m 12 = - f (p c )f 1 (λ 2 ) β , m 14 = -f (p c )f 1 (λ 2 ) x c β , m 21 = f (p c )f 1 (λ 2 )x c + qf 2 (λ 2 )y c , m 22 = f (p c )f 1 (λ 2 ) -D 1 , m 24 = f (p c )f 1 (λ 2 )x c m 31 = (1 -q)f 2 (λ 2 )y c , m 43 = -g(p c ), m 44 = -D -g (p c )y c .
Proposition 3. Assume that (C1)-(C3) are satisfied. The stability of equilibria of (2.1) is as follows:

• The equilibrium E 0 is LES (locally exponentially stable) if and only if S 0 < min{λ 2 , λ + }. • The equilibrium E 1 , if it exists, has at least three-dimensional stable manifolds and is LES if and only if

λ + < λ 2 . • The equilibrium E c , if it exists, is LES if and only if A 3 (A 1 A 2 -A 3 ) > A 2 1 A 4 (3.13)
where A 1 , A 2 , A 3 and A 4 are defined by:

A 1 = - i =3 m ii , A 2 = D 2 m 31 β(1 -q) + (m 22 + m 11 )m 44 -m 12 m 21 + m 22 m 11 A 3 = -D 2 m 31 β(1 -q) (m 44 + βqm 12 + m 22 ) -m 44 (m 11 m 22 -m 12 m 21 ) -m 31 m 43 m 14 A 4 = -(m 12 m 24 -m 14 m 22 )m 43 m 31 + D 2 m 31 m 44 β(1 -q) (βqm 12 + m 22 ). (3.14) 
Proof.

• The Jacobian matrix evaluated at the washout equilibrium E 0 = (S 0 , 0, 0, p 0 ) is given by the triangular form M 0 = A B 0 C where

A = -D -f (p 0 )f1(S 0 ) β 0 f (p 0 )f 1 (S 0 ) -D 1 , B = -f2(S 0 ) β 0 qf 2 (S 0 ) 0 , C = (1 -q)f 2 (S 0 ) -D 2 0 -g(p 0 ) -D .
The eigenvalues of M 0 are -D (with multiplicity 2), f (p 0 )f 1 (S 0 ) -D 1 and (1 -q)f 2 (S 0 ) -D 2 . Then, the equilibrium E 0 is LES if and only if f 1 (S 0 ) < D1 f (p 0 ) and (1 -q)f 2 (S 0 ) < D 2 , or equivalently, λ + > S 0 and λ 2 > S 0 .

• Suppose that the equilibrium E 1 exists, that is λ + < S 0 . The Jacobian matrix evaluated at E 1 takes the triangular form

M 1 = A B 0 C where A = -D -f (p 0 )f 1 (λ + ) x β -f (p 0 )f1(λ + ) β f (p 0 )f 1 (λ + )x 0 , B = -f2(λ + ) β -f (p 0 )f 1 (λ + ) x β qf 2 (λ + ) f (p 0 )f 1 (λ + )x , C = (1 -q)f 2 (λ + ) -D 2 0 -g(p 0 ) -D .
The eigenvalues of M 1 are -D and (1 -q)f 2 (λ + ) -D 2 , which are the eigenvalues of C, along with the eigenvalues of A. Since Trace(A) < 0 and Det(A) > 0, the eigenvalues of A have negative real parts. Therefore E 1 is LES if and only if (1 -q)f 2 (λ + ) < D 2 , or equivalently, λ + < λ 2 .

• At E c , the variational matrix M c is given by (3.12). Thus the characteristic polynomial of M c is given by

P (λ) = λ 4 + A 1 λ 3 + A 2 λ 2 + A 3 λ + A 4
where A 1 , A 2 , A 3 and A 4 are given in (3.14). Since A 1 , A 2 , A 4 > 0, then by the Routh-Hurwitz criterion [START_REF] Coppel | Stability and Asymptotic Behavior of Differential Equations[END_REF], E c is LES if and only if

A 3 (A 1 A 2 -A 3 ) > A 2 1 A 4 . (3.15) 
We note that E 0 is LES if and only if E 1 does not exist, and when E c and E 1 both exist, E 1 is unstable. We conclude that there is only one equilibrium which is stable.

By Propositions 2 and 3, and equivalence (3.11), and by defining

F 1 (S 0 , D, p 0 ) = A 3 (A 1 A 2 -A 3 ) -A 2 1
A 4 we can summarize the results on existence and local stability of equilibria of (2.1) with respect to the operating parameters D, S 0 and p 0 in Table 2.

Equilibria Existence

Local exponential stability

E 0 Always D 1 > f (p 0 )f 1 (S 0 ) & D 2 > (1 -q)f 2 (S 0 ) E 1 D 1 < f (p 0 )f 1 (S 0 ) p 0 < p(D) E c (1 -q)f 2 (S 0 ) > D 2 & p(D) < p 0 F 1 (S 0 , D, p 0 ) > 0 Table 2.
The conditions of existence and stability of equilibrium points of (2.1), with respect to the operating parameters D, S 0 and p 0 .

We prove in the following that, under some conditions, E c undergoes a Hopf bifurcation, Theorem 1 (Hopf bifurcation). Let D, S 0 be fixed and let p 0 = p crit be such that E c exists. Suppose that (1) F 1 (S 0 , D, p crit ) = 0, (2) ∂F1 ∂p 0 (S 0 , D, p crit ) = 0, then E c undergoes a Hopf bifurcation.

The second hypothesis is for the Hopf transversality condition, i.e. the derivative of the real part of the eigenvalue with respect to the bifurcation parameter evaluated at the critical value when the real parts are zero is non-zero. We can also use the partial derivative with respect to D or S 0 (depending on the parameters we are fixing or changing).

Proof. The proof is based on the results of [START_REF] Asada | Coefficient criterion for four-dimensional Hopf bifurcations: a complete mathematical characterization and applications to economic dynamics[END_REF]. We have A 4 > 0, and if F 1 (S 0 , D, p crit ) = 0 then the fact that

A 3 A 1 A 2 = A 2 3 + A 2 1 A 4 , where A 1 , A 2 , A 4 > 0, means that A 3 A 1 > 0.
Thus the conditions of [19, Theorem. 2 (A)] are satisfied, so that the characteristic polynomial P (λ) at E c has a pair of pure imaginary roots and two roots with non-zero real parts. The second condition is the one in [19, Theorem 3 (i)] insuring Hopf transversality condition.

3.3. A certain limit system of model (2.1). Suppose that 0 < q < ε and |D i -D| < ε, i = 1, 2, for ε small anough. As the eigenvalues vary continuously as functions of the parameters, the local behavior of system (2.1) is close to that of the following model, studied by Dellal et al. in [START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF]:

         S = (S 0 -S)D -f (p)f 1 (S) x β -f 2 (S) y β x = [f (p)f 1 (S) -D]x y = [f 2 (S) -D]y p = (p 0 -p)D -g(p)y. (3.16)
There, some conditions were given (on µ, i.e. on f ) to ensure local stability of the positive equilibrium whenever it exists, where f 1 and f 2 as given in (2.2). We express the same condition adapted for the function f (p) = 1 1+µp . Let Ẽc = ( λ2 , xc , ỹc , pc ) be the positive equilibrium of system (3.16) and

b 1 (D) = 2Df 1 ( λ2 )f ( pc )[f 2 ( λ2 ) + g ( pc )] + f 2 ( λ2 )g( pc )f ( pc )f 1 ( λ2 ), µ 1 = 2 m 2 K 1 m 1 K 2 and µ 0 = 2 √ K 2 + 4K -K m 1 K 2 m 2 K 1 -1 .
We have the following result on the asymptotic stability of the positive equilibrium Ẽc (which is unique, see [START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF] for more details) of the system (3.16): Proof. From g(p) = δp K+p and g (p) = δK (K+p) 2 one has g(p) ≤ g (p) if and only if (K + p)p ≤ K, that is, p is between the roots of p 2 + Kp -K = 0. Since p ≥ 0 we have

Proposition 4. If K 1 < K 2 and µ 0 ≤ µ ≤ µ 1 , (3.17 
g(p) ≤ g (p) ⇐⇒ 0 ≤ p ≤ √ K 2 + 4K -K 2 . (3.18) 
We find that pc (D) is such that

pc = f -1 D f 1 ( λ2 ) = 1 µ m 1 K 2 m 2 K 1 + D(K 2 -K 1 ) -1 . Since K 1 < K 2 and pc is decreasing, from µ 0 ≤ µ, we get pc (D) < pc (0) = 1 µ m 1 K 2 m 2 K 1 -1 ≤ √ K 2 + 4K -K 2 .
Therefore, from (3.18), one has Since

f 1 ( λ2 (D)) = m 1 K 1 (m 2 -D) 2 (m 2 K 1 + D(K 2 -K 1 )) 2 and f 2 ( λ2 (D)) = (m 2 -D) 2 m 2 K 2 ,
we get 2 . Thus M > 0 if and only if N > 0. Since pc (D) > 0 we have

M = (m 2 -D) 2 m 2 K 2 (m 2 K 1 + D(K 2 -K 1 )) 2 N , where N = 2m 1 m 2 K 1 K 2 -µ(m 2 K 1 + D(K 2 -K 1 ))
m 1 K 2 -m 2 K 1 > D(K 2 -K 1 )
from which we deduce that

N > 2m 1 m 2 K 1 K 2 -µ(m 2 K 1 -m 2 K 1 + m 1 K 2 ) 2 = 2m 1 m 2 K 1 K 2 -µm 2 1 K 2 2 . Then N > 0 if µ ≤ 2 m 1 m 2 K 1 K 2 m 2 1 K 2 2 = 2 m 2 K 1 m 1 K 2 .
From µ ≤ µ 1 , we obtain N > 0. Therefore, b 1 (D) > 0.

3.4. Global stability. In this section, we shall investigate the global asymptotic stability of the boundary equilibria of (2.1).

Theorem 2.

(1) If S 0 < min{λ 2 , λ + }, then the washout equilibrium E 0 of system (2.1) exists and is GAS (globally asymptotically stable). ( 2) If S 0 < λ 2 and S 0 > λ + , then the boundary equilibrium E 1 of system (2.1) exists and is GAS with respect to solutions with x(0) > 0.

Proof.

(1) From Proposition 1 we have, for any ε 1 there is t(ε) large enough such that S(t) < S 0 + ε 2 , ∀t > t(ε). Let 0 < ε ≤ min{λ 2 -S 0 , λ + -S 0 }. Then for t > t(ε) we have

S(t) < min{λ 2 , λ + } - ε 2 . Thus (1-q)f 2 (S(t))-D 2 < (1-q)(f 2 (λ 2 -ε 2 )-f 2 (λ 2 )) = α(ε) < 0, ∀t > t(ε).
From the y equation of (2.1) we obtain lim t→∞ y(t) = 0, from which we get lim t→∞ p(t) = p 0 . Hence, the limiting behavior of x is governed as follows:

x = [f (p 0 )f 1 (S) -D 1 ]x < f (p 0 )[f 1 (λ + - ε 2 ) -f 1 (λ + )]x. Since f (p 0 )[f 1 (λ + -ε 2 ) -f 1 (λ + )] < 0, we have lim t→∞ x(t) = 0, which yields lim t→+∞ ((S(t), x(t), y(t), p(t)) = E 0 .
(2) If λ 2 > S 0 and λ + < S 0 , then using the same argument as before we get lim t→∞ y(t) = 0 and lim t→∞ p(t) = p 0 , and the limiting system becomes

S = (S 0 -S)D -f (p 0 )f 1 (S) x β x = [f (p 0 )f 1 (S) -D 1 ]x. (3.20)
We conclude that (see [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF]), lim t→+∞ (S(t), x(t)) = (λ + , x). Combining what preceded with the results of Thieme [START_REF] Thieme | Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[END_REF] we obtain lim t→+∞ (S(t), x(t), y(t), p(t)) = E 1 .

Operating diagrams

In this section, we will focus on creating an operating diagram. Using the parameters D, S 0 and p 0 we will represent the operating diagram, but it is difficult to represent the regions of existence and stability of the equilibrium points in the three-dimensional space (D, p 0 , S 0 ). For this reason we will fix the operating parameter D and show the regions of existence and stability in the operating plane (p 0 , S 0 ). The boundaries of the regions in the operating diagram are surfaces where bifurcations occur. In order to construct the operating diagram of the system one must compute these boundaries. Using Propositions 2, 3 and Table 2, these boundaries are the following surfaces of the (D, S 0 , p 0 )-space.

(a) (b) 4.

J 0 J 1 J S 2 ← J S 3 p 0 S 0 p(D) . . . . . . . . . . λ 2 ..... Γ 1 Γ 2 Γ 3 J 0 J 1 J U 2 ← J S 2 J S 3 J U Γ 1 Γ 2 Γ 3 Γ 4
The subset

Γ 1 = (D, p 0 , S 0 ) : D 1 = D + e 1 = f (p 0 )f 1 (S 0 ) (4.1)
is the border to which E 1 exists. The subset

Γ 2 = (D, p 0 , S 0 ) : D 2 = D + e 2 = (1 -q)f 2 (S 0 ), p(D) < p 0 (4.2)
is the border to which E c exists. The subset

Γ 3 = (D, p 0 , S 0 ) : p 0 = p(D), D 2 = D + e 2 < (1 -q)f 2 (S 0 ) (4.3)
is the border to which E c exists and E 1 is instable. The subset

Γ 4 = D, p 0 , S 0 : F 1 (D, p 0 , S 0 ) = 0, (1 -q)f 2 (S 0 ) > D 2 , p(D) < p 0 (4.4)
is the border to which E c is stable. We combined and described these regions in Table 3, where D > 0 is fixed. The curves Γ i , i = 1..3, intersect at point (p 0 , S 0 ) where p 0 = p(D) and S 0 = λ 2 (D). In addition, the curves Γ i separate the operating plane (p 0 , S 0 ) into four regions, labeled J 0 , J 1 , J 2 and J 3 , as illustrated by Figure 2. In the case where the curve Γ 4 is not empty, one additional region J U 3 can appear, such that E c is LES in J S 3 and unstable in J U 3 .

Boundary Color Equation in p 0 , S 0 -plane, with

D ∈ I 2 ∪ I 1 fixed Γ 1 blue Graph of S 0 = f -1 1 ( D1 f (p 0 ) ) Γ 2 black Horizontal line S 0 = λ 2 (D) Γ 3 green Vertical line p 0 = p(D) and S 0 > λ 2 (D) Γ 4 red Curve of equation F 1 (D, p 0 , S 0 ) = 0
Table 3. Boundaries of the regions in the operating diagram.

Proposition 5. The behavior of system (2.1) in each of the six regions J 0 , J 1 , J S 2 , J U 2 , J S 3 and J U 3 is given in Table 4.

Regions J 0 J 1 J S 2 J U 2 J S 3 J U 3 E 0 S U U U U U E 1 S U U E c S U S U Table 4.
Existence and stability of equilibrium points in the regions of the operating diagram, shown in Figure 2. The letter S (resp. U) means stable (resp. unstable) and no letter means that the equilibrium does not exist.

Numerical simulations

In the following examples (unless stated otherwise), we consider the functions f 1 , f 2 , g and f given by

f 1 (S) = m 1 S K 1 + S , f 2 (S) = m 2 S K 2 + S , g(p) = δp K + p and f (p) = 1 1 + µp (5.1)
where values of the biological parameters are given in Table 5.

Case Table 5. Biological parameters values used in the numerical computations shown in the figures. The yield is β = 1.

m 1 m 2 K 1 K 2 δ K µ q e 1 e 2
5.1. Biological parameters in Table 5, Case 1. This case is illustrated in Figure 3 with D = 1. This diagram shows that the region of instability of E c is a bounded set in the (p 0 , S 0 ) plane. We can also see that the region J U 2 (the region where both E 1 and E c are unstable) is empty. Figure 3(b) shows that the positive equilibrium E c corresponding to the case (p 0 , S 0 ) = (4, 2.5) (respectively, (p 0 , S 0 ) = (p 3 = 1.57, 2.5)) is stable, (respectively unstable) which is also confirmed in Figure 4(a) By Theorem 1, we know that when E c is destabilized, then it can undergo a Hopf bifurcation. In Figure 5(a) we plot the graph of F 1 in function of p 0 when S 0 = 2.5 and D = 1. We see that F 1 (2.5, 1, p 0 ) = 0 for two values p 1 ≈ 1.18228 and p 2 ≈ 2.79400 (see also Figure 4(b)). We can see in Figure 5(a) that condition 2 of Theorem 1 holds true for both points p 1 and p 2 , meaning that at these points E c undergoes a Hopf bifurcation. We plot in Figure 5(b) the projection of the orbit of the solution into the (S, x, y)-space, which shows that the solution tends to a limit cycle (in red). Simulations seem to suggest that it is the only attractor for positive initial conditions, which means that the Hopf bifurcation is super-critical (since a unique stable limit cycle emerges). In both cases of Figure 6, the positive equilibrium is always stable when it exists.

J S 3 J U 3 J S 0 ↓ p 0 S 0 (a) J 0 J 1 J S 2 ↓ 2.5 p 3 p 1 p 2 J S 3 ← J U 3 p 0 S 0 (b)
(a) (b) Figure 6(b) corresponding to D = 0.31, illustrates the case when J 1 is empty and J 2 is not, because in this case p * = -2.04 × 10 -4 (i.e. p = 0), and the fact that D 1 = 0.81 < sup S>0 f 1 (S) = m 1 = 2 means that Γ 1 , defined by (4.1), is nonempty and thus J 2 is nonempty. 5, Case 3. All the simulations given in Subsections 5.1 and 5.2 show that the curve Γ 4 does not intersect with the curve Γ 1 . In fact this was the case in all our simulations for the Monod growth functions as given in (2.2). This means that the region J U 2 is always empty, which suggests (for the Monod growth functions) that when E 1 and E c both exist, E c is always locally exponentially stable. However we show that this region can exist for Holling type 3 growth functions f 1 , f 2 , g and f , as shown in Figure 7: In this case we can see that both regions J S 2 and J U 2 are nonempty, since Γ 1 and Γ 4 intersect. Figure 7 5, Case 4. In this case we have |D i -D| < 0.0007 and q = 0.0005 is very small, the condition (3.17) of subsection.3.3 is satisfied. We obtain µ 0 ≈ 0.98 and µ 1 ≈ 1.09. Thus µ 0 ≤ µ ≤ µ 1 , D i , i = 1, 2, are very close to D and q is very small. According to what preceded, E c should be stable whenever it exists. The operating diagram in (p 0 , S 0 )-plan for D = 0.5 is shown in Figure 9 If we consider D i not close to D, or increase q, we may lose the stability as we illustrate by considering Case 5 in Table 5, where the parameters are the same as in Case 4, except that D 1 is changed from 0.5005 to 0.8 and D 2 is changed from 0.507 to 1.63. In this case we see that the region of instability of E c is starting to appear, see Figure 9(b).

J 0 J S 3 p 0 S 0 Γ 2 J 0 J S 2 ↓ J S 3 Γ 1 Γ 2 p 0 S 0

Biological parameters in Table

f 1 (S) = m 1 S 2 K 2 1 + S 2 , f 2 (S) = m 1 S K 1 + S , g(p) = δp K + p , f (p) = 1 1 + µp . J 0 ↓ J 1 ← J U 2 J S 2 J S 3 J U 3 ← p 0 S 0 (a) p 0 S 0 115 185 235 (b) J 0 ↓ J 1 ← J S 2 J S 2 ← J U 2 J S 3 J U 3 ← J U 3 p 0 S 0 (c) 
p 0 S 0 J 0 ↓ J 1 ← J S 2 J S 3 J 0 J 1 J S 2 ← J U 3 ← J S 3 p 0 S 0

Discussion

In this work we have studied the model of competition between plasmid-bearing and plasmid-free organisms in the chemostat with an external inhibitor with different removal rates and general growth rate functions of competitors and absorption rate of external inhibitor. This model was considered in the case of equal removal rates D 1 = D 2 = D in [START_REF] Hsu | Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor[END_REF]. It was also considered in [START_REF] Li | Competition between plasmid-bearing and plasmid-free microorganisms in a chemostat with distinct removal rates[END_REF] with different removal rates but without assuming the presence of an inhibitor, and it was noted in the conclusion of this paper that it would be interesting to study the effect of the inhibitor in the present context and so the objective of our work was twofold: first, combine the two aforementioned models, second, to construct the operating diagram (bifurcation diagram with respect to the control parameters S 0 , D and p 0 ), which is a powerful tool for engineers in understanding the asymptotic behavior of the system when changing the control parameters. Our mathematical analysis of the model has revealed several possible behaviors. Proposition 5 provides a complete description of the outcome of the competition. The region J 0 is where the washout equilibrium exists and is stable. J 1 is the region for which the equilibrium where the plasmid-bearing organism washes out of the chemostat. The most important regions in the operating diagrams are the regions J 2 and J 3 of existence for the positive equilibrium. The union of J U 2 and J U 3 is the region where this positive equilibrium is unstable.

The results should be of interest in biotechnology. Since plasmids are used to code for the manufacture of a product, the loss of the plasmid results in an organism that is a better competitor. To guard against that, a toxin is used to inhibit the plasmid-free organism, while the plasmid-bearing organism is unaffected.

We represented the operating diagram in the (p 0 , S 0 )-plane (after fixing D), we can also fix the operating parameter S 0 and show the regions of existence and stability in the operating plane (p 0 , D) or fix the operating parameter p 0 and show the regions of existence and stability in the operating plane (S 0 , D). These diagrams give other views on the properties of the model. Also the region of instability was found to be bounded in all our simulations. It would be interesting to investigate this in the general case. More extensions and details will be considered in a future work.
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 1 Figure 1. (a): Definitions of λ 2 = λ 2 (D) and λ + = λ + (D, p 0 ). (b): Definition of p c = p c (D, p 0 , S 0 ) satisfying K(p c , D, p 0 ) = Dβ(S 0 -λ2) D2

) then b 1 (

 1 D) > 0 for all D. So the positive equilibrium Ẽc of system(3.16) is LES whenever it exists.
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  (p c (D)) ≤ g (p c (D)). (3.19) It is clear that f (p) = -µf 2 (p). Then by (3.19) and f (p c ) = D f1( λ2(D)) we have b 1 (D) ≥ Df (p c (D))g(p c (D))M where M = 2f 1 ( λ2 (D)) -µf 2 ( λ2 (D)). Thus if M > 0 then b 1 (D) > 0.
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 2 Figure 2. Illustrative operating diagrams for D fixed: (a) corresponds to the situation where region of instability of E c is empty. (b) the stability of E c does not always occur and a region of instability can appear. The existence and stability of the equilibrium points in the regions of these diagrams are shown in Table4.
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 3 Figure 3. The biological parameters values are given in Table 5, Case 1. (a): The operating diagram for D = 1. (b): A zoom showing the instability of E c when S 0 = 2.5, D = 1, p 0 = p 3 = 1.57, and its stability when p 0 = 4.
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 4 Figure 4. The biological parameters values are given in Table 5, Case 1, and S 0 = 2.5, D = 1, x (in red) and y (in blue). (a): Time course for p 0 = 4 (E c is stable). (b): Time course for p 0 = 1.57 (E c is unstable).
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 552 Figure 5. The biological parameters values are given in Table 5, Case 1, and S 0 = 2.5, D = 1. (a): The graph of the function F 1 (2.5, 1, •). (b): Projection of the solution for p 0 = p 3 = 1.57 ∈ [p 1 , p 2 ] (E c is unstable) into the (S, x, y)-space.
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 6 Figure 6. The biological parameters values are given in Table 5, Case 2. (a): Operating diagram corresponding to the case D = 1.6 (i.e. p * < p = 0). (b): Operating diagram corresponding to the case D = 0.31 (i.e. p * 0 = p).
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 78 Figure 7. The biological parameters values are given in Table 5, Case 3. (a): Operating diagram corresponding to the case D = 0.00035. (b): A zoom of sub-figure (a) showing the stability and instability of E c for values (p 0 , S 0 ). Operating diagram corresponding to the case D = 0.00039.
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 54 (a) is the operating diagram for D = 0.00035. Figure 7(c) is the operating diagram for D = 0.00039. If we set S 0 = 0.3 in the case where D = 0.00035 (see Figures 7(a) and 7(c)), we can see that the positive equilibrium E c corresponding to p 0 = 60 or p 0 = 235 is stable and for p 0 = 115 or p 0 = 185 is unstable, which is confirmed by Figure 8. Biological parameters in Table 5, Case 4. Let us consider the parameter values given in Table
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 9 Figure 9. The biological parameters values are given in Table 5, Case 4 for Figure (a), Case 5 for Figure (b), in all diagrams we take D = 0.5.
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