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Abstract—In this study, a mathematical model for the produc-
tion of Fructo-oligosaccharides (FOS) by Aureobasidium pullulans
is developed. This model contains a relatively large set of
unknown parameters, and the identification problem is analyzed
using simulation data, as well as experimental data. Batch
experiments were not sufficiently informative to uniquely estimate
all the unknown parameters, thus, additional experiments have
to be achieved in fed-batch mode to supplement the missing
information.

Index Terms—Mathematical modeling, Parameter estimation,
Fisher Information, Fructo-oligosaccharides, Biotechnology

I. INTRODUCTION

Human health and well-being are mainly preserved by
the metabolic activity of the bacterial community present in
the gastrointestinal tract. Pre-, pro- and synbiotics can be
used to control the intestinal function through modulation
of microbiota composition and activity [10]. Because of
their bifidogenic nature and their health-promoting properties,
fructo-oligosaccharides (FOS), are classified as prebiotics.
Functional properties as well as the technological potential of
FOS make them widely attractive for food and pharmaceutical
applications [7], [6], [1], [8].

Principal FOS include 1-kestose (GF2), nystose (GF3) and
fructofuranosylnystose (GF4) and can be naturally found in
trace amounts in fruits, vegetables and honey [5]. Industrially,

FOS can be produced from sucrose by β-fructofuranosidase
enzymes with transfructosylating and hydrolytic activity, pro-
vided by fungi, such as Aureobasidium pullulans [4], [12],
[15], [3]. FOS production yields can be affected by sucrose
concentration in the medium as well as the amounts of small
saccharides, such as glucose and fructose that can inhibit the
fructosyltransferase enzymes and trigger FOS hydrolysis.

The maximization of the productivity, as well as the mini-
mization of the small monosaccharides in the medium can be
achieved by a tight process control. To this end, a dynamic
model of the FOS production process is needed. The objective
of the present study is to propose a macroscopic model of
the bioprocess and to estimate the unknown parameters from
experimental data. The parameter identification problem is
however particularly challenging with regard to the large
number of parameters. It is therefore required to collect
data from dedicated experiments, achieved in batch and fed-
batch mode, and carrying enough information on the reaction
kinetics.

The paper is organized as follows. The FOS production
process is modeled in section III. In Section IV, the method-
ology used for parameter identification is presented. Parameter
estimation and model validation based on simulation data, as
well as experimental data, are discussed in Section V. Finally,
we draw conclusions in the last Section VI.
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II. MATERIALS AND METHODS

A. Bioreactor fermentations for FOS production

An inoculum of Aureobasidium pullulans was prepared
by transferring 1 mL of spores suspension with 9 107

spores.mL−1 to a 500 mL Erlenmeyer flask with 100
mL of medium (100 g.L−1 sucrose, 0.5 g.L−1 KCl, 0.35
g.L−1 K2SO4, 0.5 g.L−1 MgSO4.7H2O, 0.01 g.L−1

FeSO4.7H2O, 5 g.L−1 NaNO3 and 4 g.L−1 KH2PO4).
The inoculum was grown at 28˚C and 150 rpm and transferred
after 3 days to a 5 L bioreactor - BIOSTATr B module
(Sartorius, Germany), with a working volume of 3 L of culture
medium (200 g.L−1 sucrose and the same salt concentrations
as the ones used in the inoculum). Bioreactor fermentations
were carried out at 32˚C and 385 rpm with a fixed pH of 5.5
.

B. Sugar analysis

The sugar analysis was performed according to [2], [9].
A HPLC (Jasco) equipped with a refractive index detector
working at 30oC and a Prevail Carbohydrate ES 5u column (5
µm, 25 x 0.46 cm length x diameter) (Alltech) was used to
analyze samples. The mobile phase consisted in a mixture of
acetonitrile (HPLC Grade, Carlo Erba, France) in pure-water
(70:30 v/v) with 0.04% of ammonium hydroxide in water
(HPLC Grade from Sigma, Germany). Samples were eluted at
1 mL.min−1 flow-rate at room temperature. Chromatograms
were further integrated using a Star Workstation software
(Varian, USA). All the chemical standards used were of
analytical grade.

III. MATHEMATICAL MODEL

The FOS fermentative production model from Rocha et
al. [11] is considered in the present study. The model
includes the biomass growth rate equations and the enzymatic
reactions. The enzymatic reactions are divided in hydrolysis
reactions, representing FOS and sucrose degradation, and the
transfructosylation reactions that describe FOS synthesis. The
hydrolysis reactions of sucrose and FOS by the action of the
enzyme are described by the following equations:

GF
r1−−−−−→ k1G+ k2F

GF2
r2−−−−−→ k3GF + k4F

GF3
r3−−−−−→ k5GF2 + k6F

GF4
r4−−−−−→ k7GF3 + k8F

(1)

where GF , G, F and GFi, i = 2, 3, 4, represent sucrose,
glucose, fructose, 1-kestose, nystose and 1-fructofuranosyl
nystose concentrations, respectively (gL−1); ri, i = 1, . . . , 4,
represents the hydrolysis rate (gL−1h−1) and ki, i = 1, . . . , 8,
represents the pseudo-stoichiometric coefficient. For exem-
ples, the pseudo-stoichiometric coefficient

k1 =
Molecular weight of glucose
Molecular weight of sucrose

=
180

342
(2)

is the conversion factor for grams of glucose produced
from grams of sucrose consumed. All the other pseudo-
stoichiometric coefficients were obtained using the same ap-
proach (see Appendix A). Note that Duan et al. [4] have
considered the hydrolysis reaction of nystose GF3 only.

The Transfructosylation reactions are given by

2GF
r5−−−−−→ k9GF2 + k10G

2GF2
r6−−−−−→ k11GF3 + k12GF

2GF3
r7−−−−−→ k13GF4 + k14GF2

(3)

The biomass production reactions are given by

YGG
r8−−−−−→ X

YFF
r9−−−−−→ X

(4)

where X is the biomass concentration (gL−1); YG and YF
represent the biomass yield coefficient from glucose and
fructose, respectively. Note that these yields are unknown
since the molecular weight of X is unknown.

The model, which involves 7 state variables (concentrations)
and 27 parameters, can be written as (in chemostat mode):

ĠF = D(GFin −GF )− r1 + k3r2 − r5 + k12
2 r6

˙GF2 = −r2 + k5r3 + k9
2 r5 − r6 + k14

2 r7 −D.GF2

˙GF3 = −r3 + k7r4 + k11
2 r6 − r7 −D.GF3

˙GF4 = −r4 + k13
2 r7 −D.GF4

Ġ = k1r1 + k10
2 r5 − YGr8 −D.G

Ḟ = k2r1 + k4r2 + k6r3 + k8r4 − YF r9 −D.F

Ẋ = r8 + r9 −D.X

(5)

where GFin and D represent the initial sucrose concentration
(g.L−1) and the dilution rate, respectively. The latter is given
by D = Qin/V where Qin and V represent the volumetric
flow rate of sucrose feeding solution (L.h−1) and the total
volume of liquid inside reactor, respectively. The dynamical
model of FOS production process (5) belongs to a large class
of nonlinear bioprocess models and is referred as general
dynamical state-space model of this class of bioprocesses [4],
[11], [1], [6].

A possible structure of sucrose hydrolysis reaction rate is
given in [4], [11] by the following Michaelis-Menten law:

r1 =
V mhGF GF

KmhGF +GF
.

where V mhGF represents the maximum hydrolysis rate
(g.L−1.h−1) and KmhGF represents the Michaelis-Menten
constant for sucrose (g.L−1).

The FOS hydrolysis kinetic equation is given by a modified
Michaelis-Menten law describing the inhibition in enzyme-
substrate reactions

ri =
V mhGFi GFi

GFi(1 + GFi
KihGFi

) +KmhGFi
, i = 2, 3, 4,
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where V mhGFi represents the maximum hydrolysis rate
(g.L−1.h−1), KihGFi represents the substrate inhibition con-
stant (g.L−1), and KmhGFi is the Michaelis-Menten constant
(g.L−1) for GFi.

The sucrose transfructosylation kinetic equation is given
by a modified Michaelis-Menten law describing the substrate
inhibition and competitive glucose inhibition

r5 =
V mTGF GF

GF (1 + GF
Ksts ) +Kmst(1 + G

Kgst )
.

where V mTGF is the maximum transfructosylation rate
(g.L−1.h−1), Ksts is the substrate inhibition constant (g.L−1)
for sucrose as a substrate, Kgst is the competitive inhibition
constant (g.L−1) for glucose and Kmst is the Michaelis-
Menten constant (g.L−1) for sucrose.

The modified Michaelis-Menten laws with competitive glu-
cose inhibition for 1-kestose and nystose are given by

rj =
V mTGFi GFi

GFi +KmtGFi(1 + G
KitGFi

)
, j = 6, 7; i = 2, 3.

where V mTGFi is the maximum transfructosylation rate
(g.L−1.h−1), KmtGFi is the Michaelis-Menten constant
(g.L−1) for the GFi oligosaccharide and KitGFi is the com-
petitive inhibition constant (g.L−1) for glucose. The Monod
laws are given by

rj =
µmj Sj X

Sj +KSj

j = 8, 9

where Sj (j = 8, 9) are the glucose and fructose concentration
(g.L−1), respectively; µmj is the maximum specific growth
rate (h−1) for glucose and fructose; KSj is the affinity constant
for the substrate (g.L−1).

IV. PARAMETER IDENTIFICATION

The solution of model (5) can be obtained through numeri-
cal integration (for instance using a ODE solver from Matlab)
and depends on the parameter set θ

ym(t, θ) = f(ξ, θ, t)

where ym(t, θ) : R+×Rnp → Rny is the measurement vector
(at first we assume that the full state vector is measured). The
vector of data collected at time ti is given by:

y(ti) = ym(ti, θ
∗) + ηi, i = 1, . . . , nt

where θ∗ represents the true value of the parameter vector; nt
represents the number of observation times. In addition, the
measurement errors

ηi ↪→ N(0,Σ), i = 1, . . . , nt

are assumed to be independent, zero mean and Gaussian.
In practice, in the absence of a priori knowledge on the
measurement error statistics, a pragmatic approach consists
in using the Weighted Least Squares (WLS) criterion, where
the cost function J(θ) is given by

J(θ) =

nt∑
i=1

[y(ti)− ym(ti, θ)]
TW−1[y(ti)− ym(ti, θ)]

and

W =


max(y1m)2 0 · · · 0

0 max(y2m)2 . . . 0
...

...
. . .

...
0 0 · · · max(y

ny
m )2

 .
The covariance matrix of the measurement noise could be
roughly estimated by Σ̂ = ε̂2W where

ε̂2 =
J(θ̂)

nynt − np
,

and the WLS estimator

θ̂ = arg min
θ
J(θ)

is obtained using a combined procedure with the Quasi-
Newton and Nelder-Mead methods (e.g. fminunc and fmin-
search in MATLAB, respectively). The Fisher Information
Matrix is determined by the following equation:

FIM =

nt∑
i=1

[
∂ym
∂θ

]T(ti,θ)Σ̂
−1[

∂ym
∂θ

](ti,θ).

Assuming that the estimator is unbiased [14], the parameter
covariance matrix can be approximated by

Cθ ≈ FIM−1(θ̂, Σ̂).

Moreover, the standard deviation σj of the parameter estimates
θ̂j can be obtained from the square root of the jth diagonal
element of Cθ

σj =
√
Cθjj .

Finally, it is possible to estimate the confidence intervals for
a given confidence level. In this work, 95% confidence level
with a Gaussian distribution, was considered:

[θ̂j − 2σj , θ̂j + 2σj ].

V. NUMERICAL RESULTS

In this section, the parameter estimation problem is first
explored in simulation. Batch and fed-batch experiments with
different initial conditions and dilution rates are considered
in order to collect enough informative data. Then, real-life
experimental data are analyzed in the light of the previous
results.

A. Simulation study

Since fungi grow in a heterogeneous form, it is difficult
to measure biomass, and in the following it is therefore
assumed that this information is not available. The following
experimental field is chosen: three batch experiments (3B),
three fed-batch (3FB), a combination of two experiments in
batch and one in fed-batch (2B-FB), and a combination of two
experiments in batch and two in fed-batch (2B-2FB).

The several experiments are carried out with different initial
conditions of sucrose concentration, expressed in g.L−1 (see
Tab. I). The reference parameter vector θ̂ used to generate
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the synthetic data are taken from the literature [4], [11] and
is given in Table II. The measurement data is corrupted by
additive Gaussian white noise with 5% relative error. To
minimize the WLS criterion, a combination of algorithms
are used, e.g., a Nelder-Mead method as implemented in the
MATLAB function fminsearch is first used to approach the
optimum, then a quasi-Newton algorithm as implemented in
fminunc is used to refine the result.

The parameter estimation results are presented in Table II.
Fig. 1 illustrates the good agreement between simulation data
and the mathematical prediction in two batch and two fed-
batch culture mode (2B-2FB).
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Figure 1. Direct Validation: Simulation data and the mathematical prediction
in two batch and two fed-batch culture mode (2B-2FB).

An independent batch experiment with different initial con-
ditions (in this case an initial sucrose concentration of 250 g/L)
can be used for cross validation, showing satisfactory results
(see Fig. 2 and Table II).
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Figure 2. Cross validation with an independent batch experiment.

B. Experimental study

In real-life experiments, only batch experiments could be
performed, and it is therefore a priori expected that the infor-
mation content will not be enough to get accurate estimates.

First, only the data from 1 batch culture (called fermentation
1) is considered. In practice, not only the 27 kinetic parameters
have to be considered, but also the initial concentrations,
which are measured and are therefore uncertain. This leads
to an identification problem with 34 parameters.

The direct validation checks that the model prediction is in
agreement with the data used for identification and the cross
validation checks that the model can reproduce previously un-
seen data, i.e., data that have not been used for identification.
The direct validation results are shown in Fig. 3, and are
quite satisfactory. However the confidence associated with the
parameters is quite low.

In a next step, the data from 3 batch experiments (called fer-
mentation 2, 3 and 4) are considered for parameter estimation
and direct validation is shown in Fig. 4, while cross-validation
(with an independent fermentation 5) is shown in Fig. 5, and
Table IV.

The results are improved, but fed-batch experiments, as
demonstrated in simulation, would be necessary to more
significantly improve the estimates.
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Figure 3. WLS method: Experimental data of the fermentation 1 and
mathematical prediction.

VI. DISCUSSION AND CONCLUSION

A dynamic model of FOS production is presented from
the cultivation of Aureobasidium pullulans fungi. The large
number of parameters is a challenge for the identifiability
analysis, and the experiment design. To tackle the iden-
tification problem, a parameter estimation code has been
developed, based on the software IDEAS [13], including some
extensions such as the possibility of handling data from several
experiments at once. The numerical optimization procedure
of the cost function is achieved using the Quasi-Newton and
Nelder Mead methods. Parameter estimation results obtained
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Figure 4. Direct Validation: Experimental data of three fermentations (2, 3
and 4).
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Figure 5. Cross Validation: Experimental data from fermentation 5 and
mathematical prediction.

from experimental data collected in batch experiments are
discussed.

The uncertainty of some parameters can be reduced by
optimal experimental design. Our simulation study shows that
the precision and accuracy of the parameter estimates can be
improved by considering data collected in fed-batch experi-
ments, and we therefore suggest a combination of experiments
in batch and fed-batch culture modes.
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APPENDIX

The pseudo-stoichiometric coefficients can be calculated from
the molecular weight of each state variable as (2):

k1 = k2 = k10 = 180
342 , k3 = k12 = 1

k9
= 342

504 , k4 = 180
504 ,

k5 = k14 = 1
k11

= 504
666 , k6 = 180

666 , k7 = 1
k13

= 666
828 , k8 = 180

828 .
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Batch B1 Batch B2 Batch B3 Fed-batch FB1 Fed-batch FB2 Fed-batch FB3

3B 400 300 200

3FB 200 100 50

2B-FB 500 300 100

2B-2FB 500 300 200 100

Table I
INITIAL CONDITION OF SIMULATION DATA OF EACH EXPERIENCE IN

DIFFERENT CULTURE MODE.

θ VmhGF KmhGF VmhGF2
KihGF2

KmhGF2
VmhGF3

θ̂ 1.43 111.57 7.58 2.72 0.61 7.97

3B 1.73±0.4 164.9 ± 79 6.3 ± 2.8 3.5 ± 1.9 0.68 ± 1.5 6.9 ± 4.4

3FB 1.72±1.1 173.6 ± 168 7.2 ± 2.1 3 ± 1 0.7 ± 0.9 9 ± 10

2B-FB 1.79±0.27 171 ± 49 7.4 ± 4.3 3 ± 2 0.7 ± 2.4 8.6 ± 8.6

2B-2FB 1.52±0.1 121.5 ±13.6 7.58 ± 4.1 2.8 ± 1.7 0.63 ± 2.2 8.7 ± 7.9

θ KihGF3
KmhGF3

VmhGF4
KihGF4

KmhGF4
VmtGF

θ̂ 10.52 177.41 7.35 6.21 724.07 49.99

3B 12 ± 8.9 147.4 ± 108 8.8 ± 54 6.1± 40 899 ± 5637 59 ± 14

3FB 10.2 ± 13 211.5 ± 263 9 ± 79 6.3± 59 898 ± 7875 55 ± 16

2B-FB 9.3 ± 10.2 203 ± 226 8.4 ± 53 6.5± 44 870 ± 5688 52 ± 6.4

2B-2FB 9± 8.8 206.9 ± 205 9.4 ± 43.7 5.6± 28 982 ± 4625 64.7± 9

θ Ksts Kmst Kgst VmtGF2
KmtGF2

KitGF2

θ̂ 911.16 70.22 24.57 41.63 239.88 49.96

3B 593 ± 372 110 ± 48 35±9 50.7 ± 13.8 307 ± 96 52 ± 3

3FB 537 ± 682 84 ± 32 28±3.1 62.8 ± 29 397.8 ± 200 58 ± 5.2

2B-FB 891 ± 359 86 ± 19 30.6±4.2 58 ± 13 359 ± 91 51.5 ± 2

2B-2FB 482 ± 150 118 ± 27 33.1±3.7 69.2 ± 12.4 455 ± 90 55.8 ± 2.1

θ VmtGF3
KmtGF3

KitGF3
µmG KG µmF

θ̂ 11.53 333.07 49.95 2.9e−5 397.98 0.0097

3B 13.8± 24 450 ± 746 59 ± 23 3e−7 ± 126 4e4 ±22e12 0.01± e−3

3FB 14 ± 22 439 ± 667 56 ± 20 4e−6 ± 7e−3 1368 ± 2e6 0.01± 4e−4

2B-FB 12.7 ± 16 442 ± 565 64.8±16 6e−11 ± 4e−3 258 ± 4e10 0.01± e−3

2B-2FB 16 ± 13 536 ± 444 58 ±8.5 4e−8 ± 0.3 3e3 ± 3e10 e−3 ± 5e−4

θ KF YG YF

θ̂ 11.45 29.23 79.34

3B 12.5 ±1.7 5.6 ± 6e6 78.9 ± 9.8

3FB 14.3 ± 1 104 ± 5e4 79.7 ± 3.8

2B-FB 12.3 ± 1.6 4.3 ± 2e8 76.7 ± 8.6

2B-2FB 11.4 ± 1.3 11 ± 2e6 77.4 ± 4.7

Table II
PARAMETER ESTIMATION FROM SIMULATION DATA IN BATCH AND

FED-BATCH CULTURE MODE, WITH RELATIVE ERROR OF 5%.

Fermentation 1 2 3 4 5
GF (0) 250.29 197.51 206.59 205.94 173.96

Table III
INITIAL CONDITION OF GF (0) FOR EXPERIMENTAL DATA OF EACH

FERMENTATION IN BATCH CULTURE MODE.

VmhGF KmhGF VmhGF2
KihGF2

KmhGF2
VmhGF3

KihGF3

1.3±16 234 ± 4812 2.3 ± 107 3.4 ± 196 0.6 ±113 9.6 ± 127 13.5 ± 228

KmhGF3
VmhGF4

KihGF4
KmhGF4

VmtGF Ksts Kmst

72.3 ± 1127 11 ± 43100 9.8±53965 943 ± 3.4e6 39 ± 9 48 ± 50 38 ± 473

Kgst VmtGF2
KmtGF2

KitGF2
VmtGF3

KmtGF3
KitGF3

13.9±213 85 ± 1556 483 ± 9379 65 ± 132 23± 12888 854 ± 458706 49 ± 1729

µmG KG µmF KF YG YF

3e−4± 1.3 22± 1341 0.004±1.3 8 ±240 363 ±1.2e6 153 ± 42781

Table IV
PARAMETER ESTIMATION FROM EXPERIMENTAL DATA OF THREE

FERMENTATIONS (2, 3 AND 4) IN BATCH CULTURE MODE.

NOMENCLATURE

GF Sucrose concentration (gL−1)
GF2 1-kestose concentration (gL−1)
GF3 Nystose concentration (gL−1)
GF4 Fructofuranosylnystose concentration (gL−1)
F Fructose concentration (gL−1)
G Glucose concentration (gL−1)
X Biomass concentration (gL−1)
YG Biomass yield coefficient from glucose (gL−1)
YF Biomass yield coefficient from fructose (gL−1)
V mhGF Maximum hydrolysis rate for sucrose (gL−1h−1)
KmhGF Michaelis-Menten constant for sucrose (gL−1)
V mhGFi Maximum hydrolysis rate for GFi (g.L−1h−1)
KihGFi Substrate inhibition constant for GFi (gL−1)
KmhGFi Michaelis-Menten constant for GFi (gL−1)
V mTGF Maximum transfructosylation rate (gL−1h−1)
Ksts Substrate inhibition constant for sucrose (gL−1)
Kgst Competitive inhibition constant for glucose (gL−1)
Kmst Michaelis-Menten constant for sucrose (g.L−1)
V mTGFi Maximum transfructosylation rate (gL−1h−1)
KmtGFi Michaelis-Menten constant for GFi (gL−1)
KitGFi Competitive inhibition constant for glucose (gL−1)
µmG Maximum specific growth rate for glucose (h−1)
KG Affinity constant for glucose (gL−1)
µmF Maximum specific growth rate for fructose (h−1)
KF Affinity constant for fructose (gL−1)
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