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In this study, a mathematical model for the production of Fructo-oligosaccharides (FOS) by Aureobasidium pullulans is developed. This model contains a relatively large set of unknown parameters, and the identification problem is analyzed using simulation data, as well as experimental data. Batch experiments were not sufficiently informative to uniquely estimate all the unknown parameters, thus, additional experiments have to be achieved in fed-batch mode to supplement the missing information.

I. INTRODUCTION

Human health and well-being are mainly preserved by the metabolic activity of the bacterial community present in the gastrointestinal tract. Pre-, pro-and synbiotics can be used to control the intestinal function through modulation of microbiota composition and activity [START_REF] Preter | The impact of pre-and/or probiotics on human colonic metabolism: Does it affect human health?[END_REF]. Because of their bifidogenic nature and their health-promoting properties, fructo-oligosaccharides (FOS), are classified as prebiotics. Functional properties as well as the technological potential of FOS make them widely attractive for food and pharmaceutical applications [START_REF] Mutanda | Microbial enzymatic production and applications of shortchain fructooligosaccharides and inulooligosaccharides: recent advances and current perspectives[END_REF], [START_REF] Guio | Kinetic modeling of fructooligosaccharide production using Aspergillus oryzae N74[END_REF], [START_REF] Alvarado-Huallanco | Kinetics and modeling of fructooligosaccharide synthesis by immobilized fructosyltransferase from Rhodotorula sp[END_REF], [START_REF] Nishizawa | Kinetic study on transfructosylation by b-fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membrane reactor for fructooligosaccharide production[END_REF].

Principal FOS include 1-kestose (GF 2 ), nystose (GF 3 ) and fructofuranosylnystose (GF 4 ) and can be naturally found in trace amounts in fruits, vegetables and honey [START_REF] Gibson | Dietary modulation of the human gut microflora using prebiotics[END_REF]. Industrially, FOS can be produced from sucrose by β-fructofuranosidase enzymes with transfructosylating and hydrolytic activity, provided by fungi, such as Aureobasidium pullulans [START_REF] Duan | Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose[END_REF], [START_REF] Sangeetha | Recent trends in the microbial production, analysis and application of fructooligosaccharides[END_REF], [START_REF] Yun | The production of high-content fructooligosaccharides from sucrose by the mixed-enzyme system of fructosyltransferase and glucose-oxidase[END_REF], [START_REF] Dominguez | New improved method for fructooligosaccharides production by Aureobasidium pullulans[END_REF]. FOS production yields can be affected by sucrose concentration in the medium as well as the amounts of small saccharides, such as glucose and fructose that can inhibit the fructosyltransferase enzymes and trigger FOS hydrolysis.

The maximization of the productivity, as well as the minimization of the small monosaccharides in the medium can be achieved by a tight process control. To this end, a dynamic model of the FOS production process is needed. The objective of the present study is to propose a macroscopic model of the bioprocess and to estimate the unknown parameters from experimental data. The parameter identification problem is however particularly challenging with regard to the large number of parameters. It is therefore required to collect data from dedicated experiments, achieved in batch and fedbatch mode, and carrying enough information on the reaction kinetics.

The paper is organized as follows. The FOS production process is modeled in section III. In Section IV, the methodology used for parameter identification is presented. Parameter estimation and model validation based on simulation data, as well as experimental data, are discussed in Section V. Finally, we draw conclusions in the last Section VI.

II. MATERIALS AND METHODS

A. Bioreactor fermentations for FOS production

An inoculum of Aureobasidium pullulans was prepared by transferring 1 mL of spores suspension with 9 10 7 spores.mL -1 to a 500 mL Erlenmeyer flask with 100 mL of medium (100 g.L -1 sucrose, 0.5 g.L -1 KCl, 0.35 g.L -1 K 2 SO 4 , 0.5 g.L -1 M gSO 4 .7H 2 O, 0.01 g.L -1 F eSO 4 .7H 2 O, 5 g.L -1 N aN O 3 and 4 g.L -1 KH 2 P O 4 ). The inoculum was grown at 28˚C and 150 rpm and transferred after 3 days to a 5 L bioreactor -BIOSTAT B module (Sartorius, Germany), with a working volume of 3 L of culture medium (200 g.L -1 sucrose and the same salt concentrations as the ones used in the inoculum). Bioreactor fermentations were carried out at 32˚C and 385 rpm with a fixed pH of 5.5 .

B. Sugar analysis

The sugar analysis was performed according to [START_REF] Dias | UV spectrophotometry method for the monitoring of galacto-oligosaccharides production[END_REF], [START_REF] Nobre | Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins[END_REF]. A HPLC (Jasco) equipped with a refractive index detector working at 30 o C and a Prevail Carbohydrate ES 5u column (5 µm, 25 x 0.46 cm length x diameter) (Alltech) was used to analyze samples. The mobile phase consisted in a mixture of acetonitrile (HPLC Grade, Carlo Erba, France) in pure-water (70:30 v/v) with 0.04% of ammonium hydroxide in water (HPLC Grade from Sigma, Germany). Samples were eluted at 1 mL.min -1 flow-rate at room temperature. Chromatograms were further integrated using a Star Workstation software (Varian, USA). All the chemical standards used were of analytical grade.

III. MATHEMATICAL MODEL

The FOS fermentative production model from Rocha et al. [START_REF] Rocha | A dynamical model for the fermentative production of fructooligosaccharides[END_REF] is considered in the present study. The model includes the biomass growth rate equations and the enzymatic reactions. The enzymatic reactions are divided in hydrolysis reactions, representing FOS and sucrose degradation, and the transfructosylation reactions that describe FOS synthesis. The hydrolysis reactions of sucrose and FOS by the action of the enzyme are described by the following equations:

GF r1 -----→ k 1 G + k 2 F GF 2 r2 -----→ k 3 GF + k 4 F GF 3 r3 -----→ k 5 GF 2 + k 6 F GF 4 r4 -----→ k 7 GF 3 + k 8 F (1) 
where GF , G, F and GF i , i = 2, 3, 4, represent sucrose, glucose, fructose, 1-kestose, nystose and 1-fructofuranosyl nystose concentrations, respectively (gL -1 ); r i , i = 1, . . . , 4, represents the hydrolysis rate (gL -1 h -1 ) and k i , i = 1, . . . , 8, represents the pseudo-stoichiometric coefficient. For exemples, the pseudo-stoichiometric coefficient

k 1 = Molecular weight of glucose Molecular weight of sucrose = 180 342 (2) 
is the conversion factor for grams of glucose produced from grams of sucrose consumed. All the other pseudostoichiometric coefficients were obtained using the same approach (see Appendix A). Note that Duan et al. [START_REF] Duan | Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose[END_REF] have considered the hydrolysis reaction of nystose GF 3 only. The Transfructosylation reactions are given by

2GF r5 -----→ k 9 GF 2 + k 10 G 2GF 2 r6 -----→ k 11 GF 3 + k 12 GF 2GF 3 r7 -----→ k 13 GF 4 + k 14 GF 2 (3) 
The biomass production reactions are given by

Y G G r8 -----→ X Y F F r9 -----→ X ( 4 
)
where X is the biomass concentration (gL -1 ); Y G and Y F represent the biomass yield coefficient from glucose and fructose, respectively. Note that these yields are unknown since the molecular weight of X is unknown. The model, which involves 7 state variables (concentrations) and 27 parameters, can be written as (in chemostat mode):

                               ĠF = D(GF in -GF ) -r 1 + k 3 r 2 -r 5 + k12 2 r 6 Ġ F 2 = -r 2 + k 5 r 3 + k9 2 r 5 -r 6 + k14 2 r 7 -D.GF 2 Ġ F 3 = -r 3 + k 7 r 4 + k11 2 r 6 -r 7 -D.GF 3 Ġ F 4 = -r 4 + k13 2 r 7 -D.GF 4 Ġ = k 1 r 1 + k10 2 r 5 -Y G r 8 -D.G Ḟ = k 2 r 1 + k 4 r 2 + k 6 r 3 + k 8 r 4 -Y F r 9 -D.F Ẋ = r 8 + r 9 -D.X (5) 
where GF in and D represent the initial sucrose concentration (g.L -1 ) and the dilution rate, respectively. The latter is given by D = Q in /V where Q in and V represent the volumetric flow rate of sucrose feeding solution (L.h -1 ) and the total volume of liquid inside reactor, respectively. The dynamical model of FOS production process (5) belongs to a large class of nonlinear bioprocess models and is referred as general dynamical state-space model of this class of bioprocesses [START_REF] Duan | Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose[END_REF], [START_REF] Rocha | A dynamical model for the fermentative production of fructooligosaccharides[END_REF], [START_REF] Alvarado-Huallanco | Kinetics and modeling of fructooligosaccharide synthesis by immobilized fructosyltransferase from Rhodotorula sp[END_REF], [START_REF] Guio | Kinetic modeling of fructooligosaccharide production using Aspergillus oryzae N74[END_REF].

A possible structure of sucrose hydrolysis reaction rate is given in [START_REF] Duan | Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose[END_REF], [START_REF] Rocha | A dynamical model for the fermentative production of fructooligosaccharides[END_REF] by the following Michaelis-Menten law:

r 1 = V mh GF GF Kmh GF + GF .
where V mh GF represents the maximum hydrolysis rate (g.L -1 .h -1 ) and Kmh GF represents the Michaelis-Menten constant for sucrose (g.L -1 ).

The FOS hydrolysis kinetic equation is given by a modified Michaelis-Menten law describing the inhibition in enzymesubstrate reactions

r i = V mh GFi GF i GF i (1 + GFi Kih GF i ) + Kmh GFi , i = 2, 3, 4,
where V mh GFi represents the maximum hydrolysis rate (g.L -1 .h -1 ), Kih GFi represents the substrate inhibition constant (g.L -1 ), and Kmh GFi is the Michaelis-Menten constant (g.L -1 ) for GF i . The sucrose transfructosylation kinetic equation is given by a modified Michaelis-Menten law describing the substrate inhibition and competitive glucose inhibition

r 5 = V mT GF GF GF (1 + GF Ksts ) + Kmst(1 + G Kgst )
.

where V mT GF is the maximum transfructosylation rate (g.L -1 .h -1 ), Ksts is the substrate inhibition constant (g.L -1 ) for sucrose as a substrate, Kgst is the competitive inhibition constant (g.L -1 ) for glucose and Kmst is the Michaelis-Menten constant (g.L -1 ) for sucrose.

The modified Michaelis-Menten laws with competitive glucose inhibition for 1-kestose and nystose are given by

r j = V mT GFi GF i GF i + Kmt GFi (1 + G Kit GF i ) , j = 6, 7; i = 2, 3.
where V mT GFi is the maximum transfructosylation rate (g.L -1 .h -1 ), Kmt GFi is the Michaelis-Menten constant (g.L -1 ) for the GF i oligosaccharide and Kit GFi is the competitive inhibition constant (g.L -1 ) for glucose. The Monod laws are given by

r j = µ mj S j X S j + K Sj j = 8, 9
where S j (j = 8, 9) are the glucose and fructose concentration (g.L -1 ), respectively; µ mj is the maximum specific growth rate (h -1 ) for glucose and fructose; K Sj is the affinity constant for the substrate (g.L -1 ).

IV. PARAMETER IDENTIFICATION The solution of model ( 5) can be obtained through numerical integration (for instance using a ODE solver from Matlab) and depends on the parameter set θ

y m (t, θ) = f (ξ, θ, t)
where y m (t, θ) : R + × R np → R ny is the measurement vector (at first we assume that the full state vector is measured). The vector of data collected at time t i is given by:

y(t i ) = y m (t i , θ * ) + η i , i = 1, . . . , n t
where θ * represents the true value of the parameter vector; n t represents the number of observation times. In addition, the measurement errors η i → N (0, Σ), i = 1, . . . , n t are assumed to be independent, zero mean and Gaussian. In practice, in the absence of a priori knowledge on the measurement error statistics, a pragmatic approach consists in using the Weighted Least Squares (WLS) criterion, where the cost function J(θ) is given by

J(θ) = nt i=1 [y(t i ) -y m (t i , θ)] T W -1 [y(t i ) -y m (t i , θ)] and W =      max(y 1 m ) 2 0 • • • 0 0 max(y 2 m ) 2 . . . 0 . . . . . . . . . . . . 0 0 • • • max(y ny m ) 2     
.

The covariance matrix of the measurement noise could be roughly estimated by Σ = ˆ 2 W where

ˆ 2 = J( θ) n y n t -n p ,
and the WLS estimator

θ = arg min θ J(θ)
is obtained using a combined procedure with the Quasi-Newton and Nelder-Mead methods (e.g. fminunc and fminsearch in MATLAB, respectively). The Fisher Information Matrix is determined by the following equation:

F IM = nt i=1 [ ∂y m ∂θ ] T (ti,θ) Σ-1 [ ∂y m ∂θ ] (ti,θ) .
Assuming that the estimator is unbiased [START_REF] Walter | Identification of parametric models from experimental data[END_REF], the parameter covariance matrix can be approximated by

C θ ≈ F IM -1 ( θ, Σ).
Moreover, the standard deviation σ j of the parameter estimates θj can be obtained from the square root of the j th diagonal element of

C θ σ j = C θjj .
Finally, it is possible to estimate the confidence intervals for a given confidence level. In this work, 95% confidence level with a Gaussian distribution, was considered:

[ θj -2σ j , θj + 2σ j ].

V. NUMERICAL RESULTS

In this section, the parameter estimation problem is first explored in simulation. Batch and fed-batch experiments with different initial conditions and dilution rates are considered in order to collect enough informative data. Then, real-life experimental data are analyzed in the light of the previous results.

A. Simulation study

Since fungi grow in a heterogeneous form, it is difficult to measure biomass, and in the following it is therefore assumed that this information is not available. The following experimental field is chosen: three batch experiments (3B), three fed-batch (3FB), a combination of two experiments in batch and one in fed-batch (2B-FB), and a combination of two experiments in batch and two in fed-batch (2B-2FB).

The several experiments are carried out with different initial conditions of sucrose concentration, expressed in g.L -1 (see Tab. I). The reference parameter vector θ used to generate the synthetic data are taken from the literature [START_REF] Duan | Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose[END_REF], [START_REF] Rocha | A dynamical model for the fermentative production of fructooligosaccharides[END_REF] and is given in Table II. The measurement data is corrupted by additive Gaussian white noise with 5% relative error. To minimize the WLS criterion, a combination of algorithms are used, e.g., a Nelder-Mead method as implemented in the MATLAB function fminsearch is first used to approach the optimum, then a quasi-Newton algorithm as implemented in fminunc is used to refine the result.

The parameter estimation results are presented in Table II. Fig. 1 illustrates the good agreement between simulation data and the mathematical prediction in two batch and two fedbatch culture mode (2B-2FB). An independent batch experiment with different initial conditions (in this case an initial sucrose concentration of 250 g/L) can be used for cross validation, showing satisfactory results (see Fig. 2 and Table II). 

B. Experimental study

In real-life experiments, only batch experiments could be performed, and it is therefore priori expected that the information content will not be enough to get accurate estimates.

First, only the data from 1 batch culture (called fermentation 1) is considered. In practice, not only the 27 kinetic parameters have to be considered, but also the initial concentrations, which are measured and are therefore uncertain. This leads to an identification problem with 34 parameters.

The direct validation checks that the model prediction is in agreement with the data used for identification and the cross validation checks that the model can reproduce previously unseen data, i.e., data that have not been used for identification. The direct validation results are shown in Fig. 3, and are quite satisfactory. However the confidence associated with the parameters is quite low.

In a next step, the data from 3 batch experiments (called fermentation 2, 3 and 4) are considered for parameter estimation and direct validation is shown in Fig. 4, while cross-validation (with an independent fermentation 5) is shown in Fig. 5, and Table IV.

The results are improved, but fed-batch experiments, as demonstrated in simulation, would be necessary to more significantly improve the estimates. 

VI. DISCUSSION AND CONCLUSION

A dynamic model of FOS production is presented from the cultivation of Aureobasidium pullulans fungi. The large number of parameters is a challenge for the identifiability analysis, and the experiment design. To tackle the identification problem, a parameter estimation code has been developed, based on the software IDEAS [START_REF] Tamayo | IDEAS: a parameter identification toolbox with symbolic analysis of uncertainty and its application to biological modelling[END_REF], including some extensions such as the possibility of handling data from several experiments at once. The numerical optimization procedure of the cost function is achieved using the Quasi-Newton and Nelder Mead methods. Parameter estimation results obtained from experimental data collected in batch experiments are discussed.

The uncertainty of some parameters can be reduced by optimal experimental design. Our simulation study shows that the precision and accuracy of the parameter estimates can be improved by considering data collected in fed-batch experiments, and we therefore suggest a combination of experiments in batch and fed-batch culture modes.

Figure 1 .

 1 Figure 1. Direct Validation: Simulation data and the mathematical prediction in two batch and two fed-batch culture mode (2B-2FB).

Figure 2 .

 2 Figure 2. Cross validation with an independent batch experiment.

Figure 3 .

 3 Figure 3. WLS method: Experimental data of the fermentation 1 and mathematical prediction.

Figure 4 .

 4 Figure 4. Direct Validation: Experimental data of three fermentations (2, 3 and 4).

Figure 5 .

 5 Figure 5. Cross Validation: Experimental data from fermentation 5 and mathematical prediction.
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APPENDIX

The pseudo-stoichiometric coefficients can be calculated from the molecular weight of each state variable as [START_REF] Dias | UV spectrophotometry method for the monitoring of galacto-oligosaccharides production[END_REF]: 

NOMENCLATURE

GF

Sucrose concentration (gL -1 ) GF 2

1-kestose concentration (gL -1 ) GF 3

Nystose concentration (gL -1 ) GF 4

Fructofuranosylnystose concentration (gL -1 ) F

Fructose concentration (gL -1 ) G Glucose concentration (gL -1 ) X Biomass concentration (gL -1 ) Y G Biomass yield coefficient from glucose (gL -1 ) Y F Biomass yield coefficient from fructose (gL -1 ) V mh GF Maximum hydrolysis rate for sucrose (gL -1 h -1 ) Kmh GF Michaelis-Menten constant for sucrose (gL -1 ) V mh GFi Maximum hydrolysis rate for GF i (g.L -1 h -1 ) Kih GFi Substrate inhibition constant for GF i (gL -1 ) Kmh GFi Michaelis-Menten constant for GF i (gL -1 ) V mT GF Maximum transfructosylation rate (gL -1 h -1 ) Ksts Substrate inhibition constant for sucrose (gL -1 ) Kgst

Competitive inhibition constant for glucose (gL -1 ) Kmst Michaelis-Menten constant for sucrose (g.L -1 ) V mT GFi Maximum transfructosylation rate (gL -1 h -1 ) Kmt GFi Michaelis-Menten constant for GF i (gL -1 ) Kit GFi Competitive inhibition constant for glucose (gL -1 ) µ mG Maximum specific growth rate for glucose (h -1 ) K G Affinity constant for glucose (gL -1 ) µ mF Maximum specific growth rate for fructose (h -1 ) K F Affinity constant for fructose (gL -1 )