R Fekih-Salem 
  
-T Sari 
  
Operating diagram of a flocculation model in the chemostat

Keywords: Bi-stability, Chemostat, Flocculation, Limit cycles, Operating diagram MOTS-CLÉS : Bi-stabilité, Chémostat, Floculation, Cycles limites, Diagramme opératoire

The objective of this study is to analyze a model of the chemostat involving the attachment and detachment dynamics of planktonic and aggregated biomass in the presence of a single resource. Considering the mortality of species, we give a complete analysis for the existence and local stability of all steady states for general monotonic growth rates. Moreover, we determine the operating diagram which depicts the asymptotic behavior of the system with respect to control parameters. We show that the model exhibits a rich set of behaviors with a multiplicity of coexistence steady states, bi-stability, and occurrence of stable limit cycles.

RÉSUMÉ. L'objectif de cette étude est d'analyser un modèle du chémostat impliquant la dynamique d'attachement et de détachement de la biomasse planctonique et agrégée en présence d'une seule ressource. En considérant la mortalité des espèces, nous donnons une analyse complète de l'existence et de la stabilité locale de tous les équilibres pour des taux de croissance monotones. De plus, nous déterminons le diagramme opératoire qui décrit le comportement asymptotique du système par rapport aux paramètres de contrôle. Nous montrons que le modèle présente un ensemble riche de comportements avec multiplicité d'équilibres de coexistence, bi-stabilité et apparition des cycles limites stables.

Introduction

In the culture of microorganisms, the processes of attachment and detachment of bacteria are well known and frequently observed. This phenomenon is manifested either by a fixation of microorganisms on a support as in the growth of biofilms or simply by an aggregation such as the formation of flocs or granules [START_REF]Mathematical modeling of biofilms[END_REF][START_REF] Thomas | Flocculation modelling: a review[END_REF]. In fact, the formation of flocs has a direct impact on growth dynamics, since the access to the substrate is limited for microorganisms within such structures. Nevertheless, it is only recently that they have been explicitly taken into account in mathematical models based on the chemostat (see the monograph [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF]).

This flocculation mechanism may explain the coexistence of microbial species when the most competitive species inhibits its own growth by the formation of flocs [START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF]. In fact, these bacteria in flocs consume less substrate than planktonic bacteria since the attached bacteria have less access to the substrate, given that this access to the substrate is proportional to the outside surface of flocs. An extension of the model [START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF] has been studied in [START_REF] Fekih-Salem | Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses[END_REF] when the growth rate of isolated bacteria of the most competitive species exhibits an inhibition. In this case, there may be coexistence around a stable limit cycle. The interested reader can refer to [START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF][START_REF] Fekih-Salem | Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses[END_REF] for a review of the different specific attachment and detachment rates used in the literature.

In this work, we consider the flocculation model of one species introduced in [START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF]. This model, which has been studied also in [START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF][START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF][START_REF] Rapaport | Properties of the chemostat model with aggregated biomass[END_REF][START_REF] Sari | Analysis of a model of flocculation in the chemostatguilf[END_REF], is written as follows: 8 > < > :

Ṡ = D(S in S) f (S)u g(S)v u = [f (S) D u ]u a(u + v)u + bv v = [g(S) D v ]v + a(u + v)u bv (1) 
where S(t) is the concentration of the substrate at time t; u(t) and v(t) are, respectively, the concentrations of planktonic and attached bacteria at time t; f (S) and g(S) represent, respectively, the growth rates of isolated and attached bacteria; D and S in are, respectively, the dilution rate and the concentration of the substrate in the feed device; D u and D v represent, respectively, the disappearance rates of planktonic and attached bacteria.

We assume that isolated bacteria can aggregate with isolated bacteria or flocs to form new flocs with a rate a(u + v)u, where a is a positive constant, proportional to both the density of isolated bacteria u and the total biomass density u + v. Furthermore, the flocs can split and liberate isolated bacteria with rate bv, where b is a positive constant, proportional to their density v.

The study of this model [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] has been limited to the biologically interesting case D v  D u  D, where D u = ↵D and D v = D, ↵ and belong to [0, 1] and represent, respectively, the fraction of planktonic and attached bacteria leaving the reactor. This case was proposed by [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] to model a reactor with biomass attached to the support or to decouple the residence time of solids and the hydraulic residence time (1/D).

In this work, we study the model [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] where D u and D v can be modeled as in [START_REF] Marsili-Libelli | Shock load modelling in the anaerobic digestion process[END_REF][START_REF] Shen | Bifurcation and stability analysis of an anaerobic digestion model[END_REF] by:

D u = ↵D + m u , D v = D + m v
where the non-negative parameters m u and m v representing mortality (or maintenance) rate are taken into consideration. Therefore, our study will not be restricted to the cases [START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF][START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF][START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF][START_REF] Rapaport | Properties of the chemostat model with aggregated biomass[END_REF][START_REF] Sari | Analysis of a model of flocculation in the chemostatguilf[END_REF], and the cases D < D u , D < D v or D u < D v , which are also of biological interest, will be investigated. Thus, our main objective in this article is to give a complete analysis of model ( 1) and to study its operating diagram in order to illustrate the behavior of the system according to the control parameters D and S in .

D v  D u  D, as in
This paper is organized as follows. First, we present in Section 2 some general hypotheses about the growth functions of flocculation model [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF]. Then, we analyze the existence and the local stability of steady states according to the dilution rate and the disappearance rates of planktonic and attached bacteria. In Section 3, we present the operating diagram in order to show the regions of emergence of multiplicity of positive equilibria according to the control parameters. Finally, conclusions are drawn in the last Section 4.

Hypotheses and model analysis

We use the following general hypotheses for growth functions f (S) and g(S):

(H1) f (0) = g(0) = 0 and f 0 (S) > 0 and g 0 (S) > 0 for all S > 0.

(H1) f (S) > g(S) for all S > 0.

Assumption (H1) means that the growth can take place if and only if the substrate is present. In addition, the growth rates of isolated and attached bacteria increase with the concentration of substrate. Assumption (H2) means that bacteria in flocs consume less substrate than isolated bacteria.

The following result shows that our model (1) preserves the biological meaning.

Proposition 2.1 For any non-negative initial condition, the solutions of system (1) remain non-negative and positively bounded. In addition, the set

⌦ = ⇢ (S, u, v) 2 R 3 + : S + u + v  D D min S in , where D min = min(D, D u , D v ),
is positively invariant and is a global attractor for the dynamics [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF].

The proofs of all results of this section are detailed in [START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct dilution rates[END_REF]. In the following, we use the following notations:

'(S) = f (S) D u and (S) = g(S) D v , (2) 
U (S) := '(S) ( (S) b) a [ (S) '(S)] and V (S) := ' 2 (S) ( (S) b) a [ (S) '(S)] (S) , (3) 
H(S) := f (S)U (S) + g(S)V (S). (4) 
From (H1), when equations f (S) = D u , g(S) = D v and (S) = b have solutions, they are unique and we define the usual break-even concentrations

u = f 1 (D u ), v = g 1 (D v ) and b = 1 (b). From (H2), if in addition D v D u , then v > u . When equations f (S) = D u or g(S) = D v or (S) = b have no solution, we put u = 1 or v = 1 or b = 1.

Existence of steady states

In order to study the existence of equilibria of model ( 1), we define the interval I by:

I = ( ] u , v [ if u < v ] v , min( u , b )[ if u > v .
(

) 5 
We can state the following result:

Lemme 2.1 Under the assumptions (H1-H2), system (1) has the following steady states:

1) the washout E 0 = (S in , 0, 0), that always exists, 2) a positive steady state,

E 1 = (S ⇤ , u ⇤ , v ⇤ ) with S ⇤ solution of equation D(S in S ⇤ ) = H(S ⇤ ) (6) 
where H is given by ( 4), u ⇤ = U (S ⇤ ) and v ⇤ = V (S ⇤ ), where U and V are given by ( 3). This coexistence steady state exists if and only if S ⇤ 2 I where I is defined by [START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct dilution rates[END_REF].

The following proposition presents the number of positive steady states of (1).

Proposition 2.2 -When D u  D v , then the positive steady state E 1 = (S ⇤ , u ⇤ , v ⇤ ) exists if and only if S in > u . If it exists, it is unique.
-When D u > D v , then there exists at least one positive steady state in the case u < min( v , S in ) or v < min( u , b ) < S in . Generically, the system can have generically an odd number of positive steady states. When S in < min( u , b ) and v < u , then generically the system has no positive steady state or an even number of positive steady states.

Stability of steady states

In this section, we study the local asymptotic stability of each steady state of system (1). Let J be the Jacobian matrix of (1) at (S, u, v), that is given by

J = 2 4 D f 0 (S)u g 0 (S)v f (S) g(S) f 0 (S)u ' (S) a(2u + v) au + b g 0 (S)v a(2u + v) (S) + au b 3 5 . ( 7 
)
The stability of the washout steady state is given as follows:

Proposition 2.3 E 0 is Locally Exponentially Stable (LES) if and only if S in < u and S in < b .
In the following, we analyze the stability of positive steady states. At E 1 = (S ⇤ , u ⇤ , v ⇤ ), the Jacobian matrix is given by 

J 1 =
m 11 = D + f 0 (S ⇤ )u ⇤ + g 0 (S ⇤ )v ⇤ , m 12 = f (S ⇤ ), m 13 = g(S ⇤ ), m 21 = f 0 (S ⇤ )u ⇤ , m 22 = a(2u ⇤ + v ⇤ ) '(S ⇤ ), a 23 = b au ⇤ , m 31 = g 0 (S ⇤ )v ⇤ , m 32 = a(2u ⇤ + v ⇤ ) and m 33 = b au ⇤ (S ⇤ ). (8) 
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The characteristic polynomial is given by (9) According to Routh-Hurwitz criterion, E 1 is LES if and only if

P ( ) = 3 + c 1 2 + c 2 + c 3 , c 1 = m 11 + m 22 + m
c 1 > 0, c 3 > 0 and c 4 = c 1 c 2 c 3 > 0. ( 10 
)
We have the following results:

Lemme 2.2 All m ij are positive for all i, j = 1, . . . , 3 with (i, j) 6 = (2, 3) and we have

c 1 > 0.
The next lemma shows that the sign of c 3 is given by the position of the curve of the function H(•) with respect to the line of equation y = D(S in S). More precisely, we give the link between the determinant of the Jacobian matrix J 1 at E 1 = (S ⇤ , u ⇤ , v ⇤ ) and D + H 0 (S ⇤ ). Proposition 2.4 One has c 3 = det(J 1 ) = '(S ⇤ )( (S ⇤ ) b)(D + H 0 (S ⇤ )).

Since the condition c 4 > 0 of the Routh-Hurwitz criterion (10) could be unfulfilled, we will study the behavior of flocculation model (1) according to the dilution rate and the disappearance rates of planktonic and attached bacteria. In fact, there exist four cases that must be distinguished:

Case 1: D u  D v  D, Case 2: D v < D u  D, Case 3: D v < D u and D < D u , Case 4: D u  D v and D < D v . (11) 
To determine the local stability of the positive steady state in the first and second cases of (11), we will have need of the following. It was shown in [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF], see also [START_REF] Rapaport | Properties of the chemostat model with aggregated biomass[END_REF][START_REF] Sari | Analysis of a model of flocculation in the chemostatguilf[END_REF] that if D u = D v = D then the positive steady E 1 exists and is unique and LES if and only if S in > u . Actually, this result holds in case 1.

Proposition 2.6 In the case 1 (D u  D v  D), the positive steady state E 1 = (S ⇤ , u ⇤ , v ⇤ ) exists if and only if S in > u . If it exists, it is unique and LES.

The case 2 was solved in [START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF] where it was shown that the stability depends only on the relative position of the curve of function y = H(S) and the straight line of equation y = D(S in S) that is to say, on the sign of D + H 0 (S ⇤ ). More precisely, we have:

Proposition 2.7 Let E 1 = (S ⇤
, u ⇤ , v ⇤ ) be a positive steady state. Assume that case 2 holds.

1

) If u < v : E 1 is LES if H 0 (S ⇤ ) > D and is unstable if H 0 (S ⇤ ) < D. 2) If u > v : E 1 is LES if H 0 (S ⇤ ) < D and is unstable if H 0 (S ⇤ ) > D.
In the case 3 of ( 11), when

D < D v  D u or D v < D  D u
c 4 can change sign by varying the control parameter S in such that the positive steady state E 1 could change its behavior without any collision with another steady state [START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct dilution rates[END_REF]. In fact, numerical simulations show the emergence of stable limit cycles by Hopf bifurcations.

In the case 4 of ( 11), we always have u < v and H 0 (S) > 0. Therefore, from Prop. 2.4, it is deduced that in the case 4 of ( 11) we always have c 3 > 0. We were not able to find a set of parameters for which c 4 < 0, as in the case 3 of ( 11) and we conjecture that in this case the positive steady state E 1 which is unique as soon as it exists, is also LES as soon as it exists.

Operating diagram

The operating diagram shows how the system behaves when we vary the two control parameters S in and D in [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF]. All other parameters in (1) are fixed, such as growth functions and specific attachment and detachment velocities. In fact, they depend on the nature of the organisms and the substrate introduced into the chemostat. Note that this operating diagram has not been studied in the existing literature in the generic case where the disappearance rates are distinct.

If m u f (+1) then equation

f (S) = ↵D + m u (12) 
has no solution. We assume that m u < f(+1). The equation ( 12) is equivalent to

D = f (S) := f (S) mu ↵
. Since f is increasing, then there exists a unique increasing function

F 0 : [0, Du [ ! [f 1 (m u ), +1[ D ! F 0 (D) = f 1 (D)
solution of equation [START_REF] Sari | Analysis of a model of flocculation in the chemostatguilf[END_REF] where Du = f (+1) mu ↵ . Note that if D Du , then equation ( 12) has no solution and we put F 0 (D) = +1. If m v g(+1) then equation

g(S) = D + m v (13) 
has no solution. We assume that m v < g(+1). The equation ( 13) is equivalent to D = g(S) := g(S) mv . Since g is increasing, then there exists a unique increasing function

F 1 : [0, Dv [ ! [g 1 (m v ), +1[ D ! F 1 (D) = g 1 (D)
solution of equation [START_REF] Shen | Bifurcation and stability analysis of an anaerobic digestion model[END_REF] where Dv = g(+1) mv . Note that if D Dv , then equation [START_REF] Shen | Bifurcation and stability analysis of an anaerobic digestion model[END_REF] has no solution and we put

F 1 (D) = +1. If m v + b g(+1) then equation g(S) = D + m v + b (14) 
has no solution. We assume that m v + b < g(+1). The equation ( 14) is equivalent to D = gb (S) := g(S) mv b . Since g is increasing, then there exists a unique increasing function

F 2 : [0, Db [ ! [g 1 (m v + b), +1[ D ! F 2 (D) = g 1 b (D)
solution of equation ( 14) where Db = g(+1) mv b . Note that if D Db , then equation [START_REF] Smith | The Theory of the Chemostat: Dynamics of Microbial Competition[END_REF] has no solution and we put F 2 (D) = +1.

In the following, we show the emergence of the bi-stability region with multiplicity of positive steady states in the case which corresponds to the saddle-node bifurcation with the appearance of two positive steady states. In order to illustrate the operating diagram, we considered the parameter values provided in Table 2 with the growth rates f and g of Monod-type:

f (S) = m 1 S k 1 + S and g(S) = m 2 S k 2 + S , (15) 
where m i denotes the maximum growth rate and k i the Michaelis-Menten constant, i = 1, 2. Table 1 shows the existence and local stability of steady states E 0 , E 1 and E 2 in the regions I k , k = 0, 1, 2, of the operating diagram shown in figure 1 (b). The letter S (resp. U) means stable (resp. unstable). Absence of letter means that the corresponding steady state does not exist. Let i , i = 0, . . . , 3, be the respective curves of equations S in = F i (D) (see Fig. 1(a)). 0 and 3 separate the operative plan (D, S in ) at most in three regions, denoted I k , k = 0, 1, 2 (see Fig. 1(b)). The transition from the region I 0 to the region I 1 by the curve 3 (in magenta) corresponds to a saddle-node bifurcation with the appearance of two positive equilibria E 1 which is LES and E 2 which is unstable. The transition from the region I 1 to the region I 2 by the curve 0 (in red) corresponds to a transcritical bifurcation when the unstable steady state E 2 disappears and E 0 becomes unstable. For this set of parameters mentioned in Table 2, the numerical simulations show that the condition c 4 > 0 of the Routh-Hurwitz criterion is satisfied in the region I 1 , that is, the steady state E 1 is LES as long as it exists. However, this condition may not be satisfied for another set of parameters where the positive steady state can change behavior by a Hopf bifurcation with the emergence of stable limit cycle. In this case, the analysis of the operating diagram is the subject of on-going investigations.

Condition Region E 0 E 1 E 2 S in < F 3 (D) (Sin, D) 2 I0 S F 3 (D) < S in < F 0 (D) (Sin, D) 2 I1 S S I F 0 (D) < S in (Sin, D) 2 I2 I S

Conclusion

In this work, we have analyzed mathematically and through numerical simulations a model of the chemostat where one species is present in two forms, isolated and attached with the presence of a single resource. The new feature was that maintenance terms are added to removal rates in order to give a complete analysis of the flocculation model [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF]. The operating diagram shows the occurrence of the bi-stability region with multiplicity of coexistence steady states that can bifurcate through saddle-node bifurcations or transcritical bifurcations. However, the bi-stability could occur in the classic chemostat model [START_REF] Smith | The Theory of the Chemostat: Dynamics of Microbial Competition[END_REF] only when the growth rate is non-monotonic.

  33 , c 2 = m 12 m 21 + m 13 m 31 m 32 a 23 + m 11 m 22 + m 11 m 33 + m 22 m 33 , c 3 = m 11 (m 22 m 33 m 32 a 23 ) + m 21 (m 12 m 33 + m 32 m 13 ) + m 31 (m 12 a 23 + m 13 m 22 ).

Proposition 2 . 5

 25 In the cases 1 and 2 (D u  D and D v  D), we have c 4 > 0.

F 1 ( 1 DH

 11 D) < F 0 (D) < F 2 (D) for all D 2 [0, min( Du , Dv , Db )[. In this case, the function H is defined and decreasing on the interval I =] v , u [. It vanishes at u and tends to infinity as S tends to v (see Fig. 1(c)). Assume that H is convex. Thus, equation H 0 (S) = D has a unique solution S(D) 2 I =] v , u [ if and only if H 0 ( u )+D > 0, or also D > D with D solution of equation H 0 (F 0 (D))+D = 0. More precisely, since the function H 0 is increasing, then there exists a unique decreasing function S : [ D, Dv [ ! ] v , u [ D ! S(D) = H 1 (D) solution of equation H 0 (S) = D with H(S) = H 0 (S). Thus, we define the curve 3 of equation S in = F 3 (D) := ( S(D)) + S(D)

Figure 1 .

 1 Figure 1. (a) The case F1(D) < F0(D) < F2(D). (b) Operating diagram of (15). (c) Bi-stability and multiplicity of positive steady states when (D, Sin) = (2, 6) 2 I1.

Table 1 .

 1 Existence and local stability of steady states according to the regions in the operating diagram of figure 1.
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A. Parameters used in numerical simulations

Table 2. Parameter values used for (1) when the growth rates f and g are given by [START_REF] Thomas | Flocculation modelling: a review[END_REF].
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