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ABSTRACT. In this work, we consider an inter-specific density-dependent model of two species com-
peting on a single nutrient in a chemostat, taking into account the prey-predator relationship. With
different dilution rates, we give a complete analysis of the existence and local stability of all the steady
states. Indeed, under the joint effect of competition with the prey-predator relationship and mortality,
we show that the positive steady state can be destabilized by a supercritical Hopf bifurcation with the
appearance of a stable limit cycle. However, without mortality, there is a stable persistence of the
coexistence steady state where there cannot be periodic orbits.

RÉSUMÉ. Dans ce travail, nous considérons un modèle densité-dépendant inter-spécifique de deux
espèces en compétition sur un seul nutriment dans un chémostat, en tenant compte de la rela-
tion proie-prédateur. Avec des taux de dilution différents, nous donnons une analyse complète de
l’existence et de la stabilité locale de tous les points d’équilibre. En effet, sous l’effet joint de la com-
pétition avec la relation proie-prédateur et de la mortalité, nous montrons que l’équilibre positif peut
se déstabiliser par une bifurcation de Hopf supercritiques avec l’apparition d’un cycle limite stable.
Cependant, sans mortalité, il y a persistance stable de l’équilibre de coexistence où il ne peut pas y
avoir des orbites périodiques.
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1. Introduction
In the chemostat, the coexistence of species could be explained through several mech-

anisms, such as the intra and interspecific competition between the species [2, 7], the
flocculation of the species [5, 6], and the density-dependence of the growth functions
[4, 9]. Also, predator-prey interaction can prove that species can coexist in the chemostat,
see [1, 10]. Here, we will focus on the predator-prey relationship which is character-
ized by the fact that the one species (the prey) promotes the growth of the other species
(the predator) which in turn inhibits the growth of the prey species. In this context, in
[3, 11], it was considered an interspecific density-dependent model in the chemostat with
the same dilution rate, taking into account the predator-prey relationship, when it was
proved that the system may exhibit the coexistence and the bistability with a multiplicity
of positive steady states. Moreover, in [11], the operating diagram according to the control
parameters Sin and D shows all steady states that can appear or disappear only through
saddle-node or transcritical bifurcations. In the present work, we proposed to study an
extension of the model studied in [3, 11], considering the predator-prey relationship and
distinct dilution rates. The model takes the form Ṡ = D(Sin − S)− f1(S, x2)x1 − f2(S, x1)x2,

ẋ1 = (f1(S, x2)−D1)x1,
ẋ2 = (f2(S, x1)−D2)x2,

(1)

where S(t) is the concentration of the substrate at time t; x1(t) and x2(t) are, respectively,
the concentrations of prey and predator at time t; D and Sin are, respectively, the dilution
rate and the concentration of the substrate in the feed device; f1 represents the growth
rate of the prey which depends only on S and x2 and f2 represents the growth rate of the
predator which depends only on S and x1; Di represents the removal rate of the species
xi and can be modeled by

Di = D + ai, i = 1, 2

where ai represents the nonnegative mortality rate parameter of species xi. In the existing
literature, it is well known that the addition of mortality terms of the species in a predator-
prey model in the chemostat can cause destabilization of the system where stable limit
cycles [1, 8] and multiple chaotic attractors [8] are found.

In our knowledge, model (1) has not yet been studied in the literature. Thus, our study,
in this paper, is the first attempt to analyze the effect of the mortality on the behavior of a
predator-prey model in the chemostat with interspecific density-dependent growth rates.
Using the nullcline method, we present a geometric characterization that describes all
steady states of the model (1) and shows the multiplicity of positive steady states. Con-
sidering specific growth rates, we succeeded in finding a set of parameters such that the
coexistence can hold around a stable limit cycle, in contrast to the case without mortality
where the coexistence may occur only around a positive steady state (see [3, 11]).

This paper is organized as follows. The next section presents general assumptions for
the growth functions of the model (1) and the analysis of the existence of steady states. In
Section 3, the asymptotic behavior analysis of model (1) was done. Considering specific
growth rates, numerical simulations are presented in Section 4 to show the emergence
of a limit cycle through a supercritical Hopf bifurcation. Finally, conclusion is drawn in
Section 5. Most of the proofs are reported in Appendix A and the maximal number of
solutions of an equation to determine the nullcline in this particular case with specific



growth rates is given in Appendix B. Finally, all the parameter values used in simulations
are provided in Appendix C.

2. Assumptions on the model and steady states
In what follows, we study model (1) using the following general assumptions on the

growth rates fi, for i = 1, 2, j = 1, 2, i 6= j :
(H0) fi : R2

+ −→ R+ is continuously differentiable.
(H1) fi(0, xj) = 0, for all xj ≥ 0.

(H2)
∂fi
∂S

(S, xj) > 0, for all S ≥ 0, x1 > 0 and x2 ≥ 0.

(H3)
∂f1

∂x2
(S, x2) < 0 and

∂f2

∂x1
(S, x1) > 0, for all S > 0, x1 ≥ 0 and x2 ≥ 0.

(H4) f2(S, 0) = 0, for all S > 0.
Assumption (H1) means that the substrate is necessary for the growth of the two species.
Assumption (H2) means that the growth rate of each species increases with the concen-
tration of the substrate. Assumption (H3) means that the growth of the first species x1

is inhibited by the second species x2, while the growth of second species x2 increases
with the presence of first species x1. Assumption (H4) means that the prey species x1 is
necessary for the growth of the predator species x2. One has the following preliminary
result on positivity and boundedness of solutions.

Proposition 2.1 For any non-negative initial condition, the solutions of system (1) remain
non-negative and positively bounded. In addition, the set

Ω =
{

(S, x1, x2) ∈ R3
+ : S + x1 + x2 ≤ Sin

}
is positively invariant and is a global attractor for the dynamics (1).

The first step is to determine the steady states of (1). A steady state of (1) must be a
solution of the system

0 = D(Sin − S)− f1(S, x2)x1 − f2(S, x1)x2,

0 = (f1(S, x2)−D1)x1,

0 = (f2(S, x1)−D2)x2.

(2)

By (H4) and from the third equation of (2), when x1 = 0, it follows that x2 = 0, that is,
system 1 cannot have a steady state where only the predator exists. Therefore, system (1)
has the following types of steady states:
• the washout E0 = (Sin, 0, 0), that always exists, where both populations are extinct.
• the extinction of the predator E1 = (S̃, x̃1, 0), where second population x2 is extinct.
• the coexistence steady state E∗ = (S∗, x∗1, x

∗
2), where both populations survive.

The components S = S̃ and x1 = x̃1 of a boundary steady state E1 are the solutions
of (2) with x1 > 0 and x2 = 0. Therefore, S̃ and x̃1 are the solutions of equations

D(Sin − S̃) = D1x̃1, (3)
f1(S̃, 0) = D1. (4)



From (3), we obtain

S̃ = Sin −
D1

D
x̃1. (5)

Replacing S̃ by this expression in (4), we see that x1 = x̃1 must be a solution of

f1

(
Sin −

D1

D
x1, 0

)
= D1. (6)

S̃ is positive if, and only if, x̃1 < DSin/D1, that is to say, (6) has a solution in the
interval ]0, DSin/D1[. The function x1 7→ f1 (Sin −D1x1/D, 0) is decreasing from
f1 (Sin, 0) for x1 = 0 to 0 for x1 = DSin/D1. Thus, there exists a solution x1 = x̃1 ∈
]0, DSin/D1[ satisfying (6) if, and only if,

f1(Sin, 0) > D1. (7)

If such an x̃1 exists then it is unique. Therefore, we can state the following result:

Proposition 2.2 Under assumptions (H0)-(H3), the boundary steady state E1 of (1) with
x̃1 > 0 and x2 = 0 exists if, and only if, condition (7) holds where x̃1 is the solution of
(6) and S̃ is given by (5). If it exists, then it is unique.

The components S = S∗, x1 = x∗1 and x2 = x∗2 of a positive steady state E∗ must be
the solutions of (2) with x1 > 0 and x2 > 0, that is, S∗, x∗1 and x∗2 are the solutions of
the set of equations

D(Sin − S) = D1x1 +D2x2, (8)
f1(S, x2) = D1, (9)
f2(S, x1) = D2. (10)

From (8), it follows that S∗ is given by

S∗ = Sin −
D1

D
x1 −

D2

D
x2. (11)

Replacing S∗ by this expression in equations (9) and (10), we see that (x1 = x∗1, x2 = x∗2)
must be a solution of {

f̃1(x1, x2) = 0,

f̃2(x1, x2) = 0,
(12)

where

f̃i(x1, x2) := fi(Sin −
D1

D
x1 −

D2

D
x2, xj)−Di, i = 1, 2, j = 1, 2, i 6= j. (13)

One see that S∗ is positive if, and only if, D1x
∗
1/D+D2x

∗
2/D < Sin, that is to say, (12)

has a positive solution in the set

M :=

{
(x1, x2) ∈ R2

+ :
D1

D
x1 +

D2

D
x2 < Sin

}
.

To solve (12) in M , we need the following results:



Lemma 2.1 Assume that (7) holds. The equation f̃1(x1, x2) = 0 defines a smooth de-
creasing function

F1 : [0, x̃1] −→ [0, x̃2]
x1 7−→ F1(x1) = x2,

such that F1(x̃1) = 0, F1(0) = x̃2 and −D1/D2 < F ′1(x1) < 0 for all x1 ∈ [0, x̃1],
where x̃1 is the solution of (6) defined by f̃1(x1, 0) = 0 and x̃2 is the solution of the
equation f̃1(0, x2) = 0. Furthermore, the graph γ1 of F1 lies in M (see Fig. 1(b)). More
precisely, (x1, F1(x1)) ∈M for all x1 ∈ [0, x̃1].
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Figure 1. With the specific growth functions (21): (a) Number of solutions of equation
f̃2(x1, 0) = 0, (b) definition of F1, (c) definition of F2.

To determine the function defined by the equation f̃2(x1, x2) = 0, we will see the
number of solutions of the equation f̃2(x1, 0) = 0 in the following result.

Lemma 2.2 The equation f̃2(x1, 0) = 0 has a solution in [0, DSin/D1] if, and only if,

max
x1∈[0,DSin/D1]

f2

(
Sin −

D1

D
x1, x1

)
≥ D2. (14)

Generically, this equation admits an even number of solutions in [0, DSin/D1].

In what follows, without loss of generality, we can assume that the equation f̃2(x1, 0) =
0 admits two solutions x1

1 and x2
1 in [0, DSin/D1] (see Fig. 1(a,c)). Appendix B shows

that this property is fulfilled when the function x1 7→ f̃2(x1, 0) is deduced from the spe-
cific growth rate (21) satisfying our hypotheses. For more general multimodal functions,
the study can be treated similarly. Then, we can state the following result:

Lemma 2.3 Under condition (14), the equation f̃2(x1, x2) = 0 defines a function

F2 : [x1
1, x

2
1] −→ [0, DSin/D2[

x1 7−→ F2(x1) = x2,

such that F2(x1
1) = F2(x2

1) = 0 and −D1/D2 < F ′2(x1) for all x1 ∈ [x1
1, x

2
1], where x1

1

and x2
1 are the solutions of the equation f̃2(x1, 0) = 0. Moreover, the graph γ2 of F2 lies

in M and (x1, F2(x1)) ∈M for all x1 ∈ [x1
1, x

2
1] (see Fig. 1(c)).

The following result is a consequence of the previous lemmas.

Proposition 2.3 A positive steady state E∗ = (S∗, x∗1, x
∗
2) of (1) exists if, and only if, the

curves γ1 and γ2 have a positive intersection, where S∗ is given by (11) and (x∗1, x
∗
2) is a

positive solution of equations

x2 = F1(x1) and x2 = F2(x1). (15)



Note that x̃1, x1
1 and x2

1 represent the coordinates of the intersections of the curves γ1 and
γ2 with the axis x2 = 0. To determine the number of positive steady states, three cases
must be distinguished according to their relative positions:

Case 1 : x̃1 < x1
1 < x2

1, Case 2 : x1
1 < x̃1 < x2

1, Case 3 : x1
1 < x2

1 < x̃1. (16)

Note that Case 1 or Case 3 is equivalent to the condition f̃2(x̃1, 0) < 0, while Case 2 is
equivalent to f̃2(x̃1, 0) > 0 (see Fig. 1(a)). The number of positive steady states of (1) is
given by the following proposition.

Proposition 2.4 Assume that (7) and (14) hold.

• If Case 1 holds, then the system (1) can have no positive steady state.

• If Case 2 holds, then there exists at least one positive steady state. Generically, there
is an odd number of positive steady states.

• If Case 3 holds, then the system can have no positive steady state or generically an
even number of positive steady states.

3. Local stability of steady states
In this section, we focus on the study of local asymptotic stability of each steady

state of system (1). For convenience, we shall use the abbreviation LES for Locally
Exponentially Stable steady state. It is useful to use the change of variables z = S+x1 +
x2. Using the variables (z, x1, x2), system (1) can be written ż = D(Sin − z)− a1x1 − a2x2,

ẋ1 = (f1(z − x1 − x2, x2)−D1)x1,
ẋ2 = (f2(z − x1 − x2, x1)−D2)x2.

(17)

Let J denote the Jacobian matrix of (17) evaluated at (z, x1, x2):

J =

−D −a1 −a2

Ex1 f1 −D1 − Ex1 −(E +G)x1

Fx2 (H − F )x2 f2 −D2 − Fx2

 (18)

where
E =

∂f1

∂S
, F =

∂f2

∂S
, G = − ∂f1

∂x2
, H =

∂f2

∂x1
. (19)

which are nonnegative. The stability of the boundary steady states E0 and E1 is given as
follows.

Proposition 3.1
• E0 is LES if, and only if, f1(Sin, 0) < D1.

• E1 is LES if, and only if, f2

(
Sin − D1

D x̃1, x̃1

)
< D2, that is, Case 1 or Case 3 holds.

In what follows, we analyze the stability of positive steady state E∗. The Jacobian matrix
at E∗ = (S∗, x∗1, x

∗
2) is given by

J∗ =

−D −a1 −a2

Ex∗1 −Ex∗1 −(E +G)x∗1
Fx∗2 (H − F )x∗2 −Fx∗2





where E, F , G and H are given by (19) and evaluated at E∗. The characteristic polyno-
mial is given by:

P (λ) = −λ3 + c1λ
2 + c2λ+ c3,

where

c1 = −(D + Ex∗1 + Fx∗2), c2 = −D1Ex
∗
1 −D2Fx

∗
2 + (FG−GH − EH)x∗1x

∗
2,

c3 = (D1GF −DGH −D2EH)x∗1x
∗
2.

Since c1 < 0, according to the Routh-Hurwitz criterion, E∗ is LES if, and only if,

c3 < 0 and c4 = c1c2 + c3 > 0. (20)

In the next proposition, we will show that the sign of c3 is given by the position of curves
of functions F1(·) and F2(·).

Proposition 3.2 One has c3 = D2F
(
D2

D E +G
)

(F ′1(x∗1)− F ′2(x∗1))x∗1x
∗
2.

Since the condition c4 > 0 of the Routh-Hurwitz criterion (20) could be unfulfilled where
c4 can change its sign by varying the control parameter Sin, the next section is devoted to
show numerically how the positive steady state E∗ could be destabilized with the emer-
gence of stable limit cycles.

4. Numerical simulations
In order to show that the condition c4 > 0 evaluated at E∗ = (S∗, x∗1, x

∗
2) could be

unfulfilled, all biological parameters were fixed. Then, the control parameter Sin was
varied. To see the change of sign of the function Sin 7→ c4(Sin) evaluated at E∗, it is
useful to illustrate the curve of this function. To this end, we assumed that the growth
functions satisfying the assumptions (H0)-(H4) are given by :

f1(S, x2) =
m1S

K1 + S

1

1 + x2

Ki

, f2(S, x1) =
m2S

K2 + S

x1

L2 + x1
, (21)

where mi, Ki, i = 1, 2, and L2 are the maximum growth rates and the Michaelis-Menten
constants, respectively, while Ki is the inhibition factor due to x2 for the growth of the
species x1. Indeed, we succeeded in finding a set of parameters (see Table 1) such that
c4 can change its sign as Sin increases (see Fig. 2(a)). In fact, the solution Scrin ' 6.265
of equation c4(Sin) = 0 represents the critical value of Sin for which the positive steady
state loses its stability.

To understand and analyze this change of local behavior of E∗ in Scrin without any
bifurcation with other steady states, we determine numerically the eigenvalues of the Ja-
cobian matrix J∗ at the positive steady state E∗. Indeed, this Jacobian matrix J∗ has one
negative eigenvalue and one pair of complex-conjugate eigenvalues :

λ̄j = µ(Sin)± iν(Sin), j = 1, 2.

Increasing the control parameter Sin, Fig. 2(b) shows that this pair crosses the imagi-
nary axis at the critical value Sin = Scrin from negative half plane to positive half plane,
that is, it becomes purely imaginary for Scrin such that µ(Scrin) = 0, with ν(Scrin) 6= 0.
Thus, E∗ becomes unstable with occurrence of stable limit cycle via a supercritical Hopf
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Figure 2. (a) Change of sign of c4(Sin). (b) Variation of a pair of complex-conjugate eigen-
values as Sin increases. (c) Stable limit cycle when the oscillations are sustained.

bifurcation. For Sin ' 6.27 > Scrin , the numerical simulations (see Fig. 2(c)) show the
occurrence of limit cycle when the oscillations are sustained.

5. Conclusion
In this work, we have analyzed the effect of the mortality of species on the behavior

of an interspecific density-dependent model with a predator-prey relationship. We give a
complete analysis of the existence and local stability of all steady states where we have
shown the multiplicity of positive steady states by using the nullcline method. Consider-
ing specific growth rates, we succeeded in finding a set of parameters such that a condition
of the Routh Hurwitz criterion (20) can change its sign as Sin increases. More precisely,
the positive steady state E∗ can destabilize through a supercritical Hopf bifurcation with
the occurrence of a stable limit cycle. This feature cannot occur without mortality, where
generically the coexistence can be only around a positive steady state.
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A. Proofs
Proof of Proposition 2.1. If S = 0 then Ṡ = DSin > 0. Thus no trajectory can leave
the positive octant R3

+ by crossing the boundary face S = 0. In addition, if x1 = 0 and
x2 = 0 then ẋ1 = 0 and ẋ2 = 0 and the set

Γ0 =
{

(S, x1, x2) ∈ R3
+ : S > 0, x1 = 0, x2 = 0

}
is invariant under the system (1) because the function

t 7−→ (S(t), x1(t), x2(t)) =
(
Sin + (S(0)− Sin)e−Dt, 0, 0

)



is a solution (1). By uniqueness of solutions, the set Γ0 cannot be reached in finite time
by trajectories for which x1(0) > 0 or x2(0) > 0. Furthermore, for i = 1, 2, if xi = 0
then ẋi = 0 and the set

Γi =
{

(S, x1, x2) ∈ R3
+ : S ≥ 0, xi = 0, xj ≥ 0

}
, j = 1, 2, i 6= j

is invariant under the system (1) because the function

t 7−→
(
Sin + (S(0)− Sin)e−Dt, 0, x2(0)e−D2t

)
(resp. t 7−→ (S(t), x1(t), 0))

is a solution of (1). By uniqueness of solutions, the set Γi cannot be reached in finite
time by trajectories for xi(0) > 0. Therefore, the solutions remain non-negative. Let
z = S + x1 + x2. From system (1), we have

ż = D(Sin − z)− a1x1 − a2x2.

Consequently,
ż ≤ D(Sin − z).

Using Gronwall’s lemma, we obtain

z(t) ≤ Sin + (z(0)− Sin)e−Dt for all t ≥ 0. (22)

We deduce that
z(t) ≤ max(z(0), Sin) for all t ≥ 0.

Therefore, the solutions of (1) are positively bounded and are defined for all t ≥ 0. From
(22), we deduce that the set Ω is positively invariant and is a global attractor for (1). �

Proof of Lemma 2.1. Let l1 be a fixed line defined by x1 = b1 that intersects the line δ
defined by

D1

D
x1 +

D2

D
x2 = Sin, at point x2 = c2 =

D

D2
Sin −

D1

D2
b1,

(see Fig. 1(b)). From hypotheses (H1)-(H3), it follows that the function x2 7→ f̃1(b1, x2)
is decreasing from f1(Sin−D1b1/D, 0)−D1 for x2 = 0 to−D1 for x2 = c2. Therefore,
there exists a unique b2 ∈ [0, c2[ such that f̃1(b1, b2) = 0 if, and only if,

f1

(
Sin −

D1

D
b1, 0

)
≥ D1,

which is equivalent to b1 ≤ x̃1 since the function x1 7→ f1 (Sin −D1x1/D, 0) is de-
creasing and x̃1 is a solution of (6). Thus, we have shown that for all b1 ∈ [0, x̃1] there
exists a unique b2 ∈ [0, c2[ such that f̃1(b1, b2) = 0, that is, each line l1 meets the set
f̃1(x1, x2) = 0 exactly once if 0 6 b1 6 x̃1. Thus, we define the function F1 by
b2 = F1(b1). The graph γ1 of this function lies in M (see Fig. 1(b)). Using the implicit
function theorem and from (H2)-(H3), the function F1 is smooth and decreasing since

−D1

D2
< F ′1(x1) = −

∂f̃1
∂x1

∂f̃1
∂x2

=
D1

D
∂f1
∂S

−D2

D
∂f1
∂S + ∂f1

∂x2

< 0. (23)



If x2 = 0, then the equation F1(x1) = 0 is equivalent to f̃1(x1, 0) = 0 which has a unique
solution x1 = x̃1 using Proposition 2.2 when condition (7) holds. Similarly, if x1 = 0,
then the equation F1(0) = x2 is equivalent to f̃1(0, x2) = 0 which has a unique solution
x2 = x̃2 ∈]0, DSin/D2[ when condition (7) holds, since the function x2 7→ f̃1(0, x2) is
decreasing from f1(Sin, 0)−D1 for x2 = 0 to −D1 for x2 = DSin/D2. �

Proof of Lemma 2.2. Under hypothesis (H0), the function x1 7→ f̃2(x1, 0) is contin-
uous on [0, DSin/D1] with f̃2(0, 0) = f̃2(DSin/D1, 0) = −D2. Then, the equation
f̃2(x1, 0) = 0 has a solution in [0, DSin/D1] if, and only if,

max
x1∈[0,DSin/D1]

f̃2(x1, 0) ≥ 0,

that is, condition (14) holds. �

Proof of Lemma 2.3. Let l1 be a fixed line defined by x1 = b1 that intersects the line δ
defined by

D1

D
x1 +

D2

D
x2 = Sin, at point x2 = c2 =

D

D2
Sin −

D1

D2
b1,

(see Fig. 1(c)). From hypotheses (H1)-(H2), the function x2 7→ f̃2(b1, x2) is decreasing
from f2(Sin −D1b1/D, b1)−D2 for x2 = 0 to −D2 for x2 = c2. Hence, there exists a
unique b2 ∈ [0, c2[ such that f̃2(b1, b2) = 0 if, and only if,

f2

(
Sin −

D1

D
b1, b1

)
≥ D2,

which is equivalent to b1 ∈ [x1
1, x

2
1] in the particular case where the equation f̃2(x1, 0) =

0 admits only two solutions x1
1 and x2

1 (see Fig. 1(a,c)). Thus, we have shown that for all
b1 ∈ [x1

1, x
2
1] there exists a unique b2 ∈ [0, c2[ such that f̃2(b1, b2) = 0. Hence, we define

the function F2 by b2 = F2(b1) where the graph γ2 of this function lies in M . Using the
implicit function theorem and assumptions (H2)-(H3), we obtain

−D1

D2
< F ′2(x1) = −

∂f̃2
∂x1

∂f̃2
∂x2

= −D1

D2
+

D

D2

∂f2
∂x1

∂f2
∂S

. (24)

When x2 = 0, we have F2(x1) = 0, that is, f̃2(x1, 0) = 0. From Lemma 2.2, this
equation has two solutions x1

1 and x2
1 in [0, DSin/D1] since condition (14) holds. �

Proof of Proposition 3.1. At E0, the Jacobian matrix J defined by (18) is written as
follows:

J0 =

−D −a1 −a2

0 f1(Sin, 0)−D1 0
0 0 −D2

 .
The eigenvalues are negative if, and only if, f1(Sin, 0) < D1. The Jacobian matrix at E1
is given by

J1 =

−D −a1 −a2

Ex̃1 −Ex̃1 −(E +G)x̃1

0 0 f2(Sin − D1

D x̃1, x̃1)−D2





where E and G are evaluated at E1. The eigenvalues are

f2

(
Sin −

D1

D
x̃1, x̃1

)
−D2

which is negative if, and only if, x̃1 < x1
1 or x̃1 > x2

1, together with the eigenvalues of
the upper left square matrix

A =

[
−D −a1

Ex̃1 −Ex̃1

]
.

Since
tr A = −(D + Ex̃1) < 0 and detA = DEx̃1 + a1Ex̃1 > 0,

the real part of the eigenvalues of A are negative. Therefore, E1 is LES if, and only if,
Case 1 or Case 3 holds. �

Proof of Lemma 3.2. Using definition (19) and the expressions of F ′1(x1) and F ′2(x1) in
(23) and (24), it follows that

F ′1(x1) =
D1

D E

−D2

D E −G
and F ′2(x1) = −D1

D2
+

D

D2

H

F
.

Then, we obtain

F ′1(x1)− F ′2(x1) =
D1FG−D2EH −DGH

D2F
(
D2

D E +G
) .

Consequently, at E∗, we have

c3 = D2F

(
D2

D
E +G

)
(F ′1(x∗1)− F ′2(x∗1))x∗1x

∗
2.

�

B. The particular case for growth functions (21)
In this particular case with the specific growth rates (21), we determine the maximal

number of solutions of the equation f̃2(x1, 0) = 0 in the following lemma :

Lemma B.1 Consider the specific growth functions (21) and assume that (14) holds.
Then, the equation f̃2(x1, 0) = 0 has exactly two solutions x1

1 and x2
1 on [0, DSin/D1].

Proof of Lemma B.1. Assume that the growth functions are given by (21). Let φ be the
function defined by

φ(x1) := f2

(
Sin −

D1

D
x1, x1

)
. (25)

Straightforward calculation shows that

φ′(x1) =
m2(−DD1K2 +D2

1L2)x2
1 − 2DD1L2m2(Sin +K2)x1

(K2D + SinD −D1x1)2(x1 + L2)2

+
m2D

2L2Sin(Sin +K2)

(K2D + SinD −D1x1)2(x1 + L2)2
.



Hence, the solutions of φ′(x1) = 0 are given by those of the following equation

m2(−DD1K2 +D2
1L2)x2

1− 2DD1L2m2(Sin +K2)x1 +m2D
2L2Sin(Sin +K2) = 0

which has at most two solutions on ]0, DSin/D1[ since it is an algebraic equation of
degree two in x1. Moreover, under (H0)-(H4), φ is positive, continuous and φ(0) =
φ(DSin/D1) = 0. Consequently, φmust has a unique positive extremum on ]0, DSin/D1[.
Therefore, when (14) holds, the equation f̃2(x1, 0) = 0 has exactly two solutions x1

1 and
x2

1 on [0, DSin/D1] (see Fig. 1(a)). �

C. Parameters used in numerical simulations

Table 1. Parameter values used for (1) when the growth rates f1 and f2 are given by (21).

Parameter m1 K1 Ki m2 K2 L2 a1 a2 D Sin

Figure 1 4 2 3 8 1.8 1 0.3 0.2 1 3
Figure 2(a,b) 4 2 3 8 0.1 0.2 0.3 0.2 1 variable
Figure 2(c) 4 2 3 8 0.1 0.2 0.3 0.2 1 6.27
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