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Abstract

We investigate a control problem leading to the optimal payment of dividends in a Cramér-
Lundberg-type insurance model in which capital injections are allowed at a certain cost. For
general claims, we provide verification results arguing on absolutely continuous super-solutions
of a convenient Hamilton-Jacobi variational inequality. As a by-product, for exponential claims,
we prove the optimality of bounded buffer capital injections (−a, 0, b) policies. These policies
consist in stopping at the first time when the size of the overshoot below 0 exceeds a certain
limit a and only pay dividends when the reserve reaches an upper barrier b. An exhaustive and
explicit characterization of optimal couples buffer/barrier is given via comprehensive structure
equations. The optimal buffer is shown never to be of de Finetti (a = 0) or Shreve-Lehoczy-
Gaver (a = ∞) type. The study results in a dichotomy between cheap and expensive equity,
based on the cost-of-borrowing parameter, thus providing a non-trivial generalization of the
Lokka-Zervos phase-transition [LZ08]. In the first case companies start paying dividends at
the barrier b∗ = 0, while in the second they must wait for reserves to build up to some (fully
determined) b∗ > 0 before paying dividends.

Keywords: Lokka-Zervos-type Alternative; Optimal Dividends; Capital Injections; Buffered
Reflection; Cramér-Lundberg model; Absolutely Continuous Supersolutions; Scale Functions

1 Introduction

Motivation. Keeping shareholders satisfied while maintaining the company liquid enough
constitutes the core of the control activity of reserves/risk processes. The rough idea is that one
should intelligently balance return over invested capital (dividends) and replenishment by capital
injections to insure the company’s robustness against claims. The easiest way to conceive such
balance can roughly be stated as follows: when below low levels −a ≤ 0 (a acting as a maximally-
admitted severity of ruin), reserve processes should be replenished by capital injections at some cost
(hereafter, the unitary cost is denoted by k ≥ 1), and when above high levels b > 0, they should
be taken out of the reserves as dividends–see for example [Sch07, AGVA19] and the comprehensive
book [AA10].

Historical overview. The first results tackling a related problem, due to de Finetti [DF57],
concerned maximizing the expected value of the discounted cumulative dividends until the
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time of passage below a given level, called ruin. This can be seen as a particular case of
the above-mentioned setting in which the cost of "borrowing" money is k = ∞ (or, equivalently, in
which the maximal-targeted severity of ruin is a = 0.

Next, Shreve, Lehoczky and Gaver (1984) [SLG84] (with extra help from Coffman and Karatzas),
introduced, for a state-dependent diffusion process, the dividends problem for the reflected
process (RP). This consists in maximizing the functional

{

J(x, π) := Ex

[

∫∞

0 e−qt(dLt − kdIt)
]

, k ≥ 1,

under the state constraint Xt ≥ 0
(1)

where

1. Lt are the cumulative dividends;

2. It are the cumulative forced capital injections each time the process attempts to cross into
(−∞, 0), and k > 1 is a proportional cost for injecting capital;

3. Xt is the process modified by capital injections and dividends, and π = (Lt, It).

They studied this objective (roughly corresponding to unrestricted maximal severity of ruin a = ∞),
as well as the classic de Finetti dividends with absorption problem (AP), separately (and left many
outstanding open problems behind). A complete solution for both of these problems (AP) and (RP)
for spectrally negative Lévy processes was given in [APP07] – see also [KS08, ES11a, ES11b, PYY18,
NPY20] for further developments. Note though that all these papers deal with forced bailouts.
To our best knowledge, our paper hereafter seems to be the first to quantify the optimal buffer
(severity of ruin) when bankruptcy should replace individual bailouts (to be fair, this possibility
has been considered before, but without studying optimality – see for example [APY18]). For a
different approach, quantifying the optimal policy under an expected total bailouts constraint, see
[JMFP19].

The next important step was taken in [LZ08] who compared the problems (AP), (RP) in a
Brownian setting. The first was incorporated into the latter by adding the possibility of bankruptcy
at ruin, i.e. of not systematically using capital injections. Their objective is to maximize, under
the state constraint Xt ≥ 0,

J(x, π) := Ex

[

∫ τπ0−

0
e−qt(dLt − kdIt)

]

, (2)

where τπ0− denotes a policy-dependent random time (which may be ∞) when the controlled process
goes below the ruin threshold. This objective is fundamentally different from that adopted in the
“Shreve, Lehoczky and Gaver literature" cited before. Now, capital injections will not only modify
the dividend barrier level, but may also provoke bankruptcy; this happens only when k is big enough
–the so called Lokka-Zervos alternative.

More precisely, let VD(x), Vk(x), denote the value functions of the (AP) and (RP) problems.
[LZ08] showed, by analyzing the corresponding HJB equation, that for Brownian motion surpluses
there exists a critical cost kc such that one of the following strategies is optimal:

1. k < kc =⇒ VD(x) < Vk(x); the optimal policy is (RP), i.e. pay dividends at an upper barrier
bk and always inject capital at 0, implying that bankruptcy never occurs;

2. k ≥ kc =⇒ VD(x) ≥ Vk(x); the optimal policy is (AP), i.e. pay dividends in order to reflect
the surplus process at some upper barrier b∗ ≥ 0, and never inject capital.
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We wish to emphasize that the analysis conducted strongly relies on an heuristic step in [LZ08] (first
paragraph on page 959 leading to the boundary condition [LZ08, (5.2)]) , used when formulating
the HJB. Roughly speaking, by invoking the Markovian structure at x = 0, it is argued that the
value functions must either be 0, or have a derivative equal to k. Both these conditions fail to
hold when one deals with exponential jumps– see Remark 13; this means that the Lokka-Zervos
alternative holds for Brownian motion only because of the absence of jumps. Note that subsequently,
[AGR19] showed that a similar Lokka-Zervos alternative holds for the Cramér-Lundberg process
with exponential jumps, provided that one restricts from the start to either de Finetti or Shreve,
Lehoczky and Gaver policies; as we know now, these are locally the worst possible policies.

Aim. Our paper focuses on the optimization of a criterion of type (2) in a Cramér-Lundberg
framework without further assumptions on behavior of the value function at x = 0. We seek a
related dichotomy (hereafter referred to as Lokka-Zervos alternative) of optimal policies following
the expensiveness of capital injections. Three points are of particular interest

1. we prove the optimality of policies such as those described at the very beginning for which,
in general, a /∈ {0,∞} (i.e. de Finetti and Shreve, Lehoczky and Gaver policies fail to be
optimal);

2. the resulting value function is not of class C1 at 0 (in the sense that its derivative does not
exist at x = 0 and, more, the right-hand derivative at 0 is not k as assumed, for Brownian
claims, in [LZ08, (5.2)]). This can be found in Remark 13 and it implies, in particular, that
the verification Theorem 3 has to be given for absolutely-continuous functions. Working
with super-solutions also explains the particular form of the equation (8) on R−.

3. the optimal parameters a∗ and b∗ are completely characterized by non-trivial equations
and so is the alternative-inducing cost k∗.

Method. We have organized our paper around the classical guess and verify procedure for
solving stochastic control problems:

1. Guess a family of policies which yields the optimum for all possible values of the parameters,
and compute its expected net present value (EPV) in terms of the W,Z scale functions.

Our paper shows that optimality is achieved here via “bounded buffer capital injections"
(−a, 0, b) policies, consisting in stopping at the first time when the size of the overshoot
below 0 exceeds a certain limit a. These policies turn out to work better than both the de
Finetti and the Shreve, Lehoczky and Gaver policies, which are locally the worst possible
choices!

For example –see Figure 1, with a special choice k = kf (b
∗) (see [AGR19]) which ensures that

the Shreve, Lehoczky and Gaver and de Finetti values coincide (with exponential jumps), the
de Finetti and Shreve, Lehoczky and Gaver values are equal and globally the worst ones

Ja,b∗

0 > VD(0) = Vk(0),∀a > 0.

This illustrates the fact that the critical feature of our control problem is that capital injections
should be allowed only when they are smaller than a critical size.

2. Identify the optimal arguments with respect to the parameters of our policies.

This step forced us to restrict to the case of exponential jumps, where the independence of
ruin and ruin overshoots leads to certain simplifying factorizations.
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Figure 1: Value function Ja,b∗
0 as a function of a, with b∗ = 6.91 fixed to the optimal de Finetti

barrier, and k = 1.9488 chosen so that b∗ is also the optimal Shreve, Lehoczky and Gaver barrier.
The parameters are p = 4, λ = 1, q = 1/10, µ = 2/5. The optimal a for b∗ fixed is 3.7353375 and

the value is Ja,b∗
0 = 7.2794258. Even so, the guess is below the optimum obtained for (a∗, b∗) :=

(3.8473818, 4.7859775) and leading to Ja∗,b∗

0 = 7.4977776.

3. In the final step, confirm the optimality of the selected candidate optimal policy via a veri-
fication theorem (sufficient condition for optimality). If the conjectured value function were
sufficiently smooth (this means C(1) in our problem), this would require only verifying that it
satisfies an associated HJB equation (system of variational inequalities).

This is however not the case in our problem – see Remark 13 showing the value function to
have a discontinuous derivative at 0– and made us turn to the minimality of the value functions
among absolutely continuous super-solutions –see also the book [AM14] for a similar study
(of the Cramér-Lundberg process without injections).

The model. For now, we are only able to solve our control problem under the classic Cramér-
Lundberg model

Xt = x+ pt−
Nt
∑

i=1

Ci, p ≥ 0, (3)

with (Ci)i≥1 being a family of i.i.d.r.v. distributed according to a distribution function F , and N
being an independent Poisson process of intensity λ > 0.

For optimization reasons, in the computations starting from Section 4 onward, F will be cor-
responding to the exponential law Exp(µ), for some µ > 0. We restrict to this process since the
independence of ruin and ruin overshoots leads to simpler formulae. Also, we take advantage of
explicit computations involving the roots of the Cramér-Lundberg equation κ(s) − q = 0, where
κ(s) is the Laplace exponent .

Related literature. We end this literature review by mentioning a few related works on the
dual spectrally positive Lévy model, where the situation is however much simpler, since capital
injections occur without overshoot. A Lokka-Zervos alternative for the compound Poison model
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with exponential jumps and mixtures of exponential jumps was established in [ASW11], and the
first works on the general spectrally positive Lévy model were due to [BKY13, YW13, BKY14].Note
that in all these works the “overshoot dilemma" is absent: the dividends barrier may be overshot,
but since we want to maximize dividends, in this case we do not need to distinguish between small
and large overshoots.

Finally, we draw the attention to recent works concerning the diffusion approximation of the
Cramér-Lundberg process, which further incorporate more sophisticated features like reinsurance
[YYW14, YYW16, YWX+17]. It would be very interesting to investigate whether such sophisticated
results can still be obtained while keeping the jumps.

Contents. The paper is organized as follows. Section 2 gives some routine elements neces-
sary to establish the setting and mathematically formulate the admissible policies, the targeted
cost and the value function. Section 3 turns to a structural study of the value function for arbi-
trarily distributed claims. This is achieved by making precise the regularity of the value function
(Lispchitz-conitnuity, upper and lower-bounds in Proposition 1). Furthermore, the value function
is characterized, among a class of linear-growth functions, as the smallest absolutely-continuous
super-solution of the associated variational inequality of Hamilton-Jacobi integro-differential type.
As it is by now standard, this characterization implies a verification result as to the optimality of
policies (cf. Theorem 3). The second part of the paper is devoted to specifying the optimal policies
in the exponential setting. We consider the costs associated to severity-constrained double barrier
policies in Section 4. The explicit dependency on severity and upper barrier is made explicit in
Proposiiton 6. The rigorous optimization on the two parameters is pursued in Section 5. The main
result detailing the regions of optimality of the underlying parameters (cost of capital injections,
severity of ruin and upper barrier) make the object of the main result Theorem 11. Finally, all the
proofs are relegated to Section 7.

2 Optimizing dividends and capital injections with proportional

costs

We will work with the process (3), living on a probability space (Ω,F ,P) rich enough to support
the family of i.i.d.r.v. (Ci)i≥1 and the independent Poisson process N . The space is then endowed
with the natural right-continuous, completed filtration F. The surplus process will be modified by
dividendsand capital injections (equity issuance), which are intended to maintain Xt nonnegative.

1. given a couple π := (L, I) describing dividends and capital injection, the modified surplus
process is defined (under the Px) by setting

Xπ
t := Xt − Lt + It; (4)

2. the cumulative dividend strategy L is adapted, non-decreasing and càdlàg (right-continuous,
left-limits), L0− = 0;

3. the cumulative capital injection process I is adapted, non-decreasing and càdlàg, I0− = 0;

4. the triplet π := (L, I) satisfying the previous conditions is referred to as (general) strategy
and the family of all such strategies is denoted by Π+.

5. • (prior to ruin) for every t ≥ 0, the dividends should satisfy

△Lt := Lt − Lt− ≤ Xπ
t− −△N̄t +△It, where N̄t :=

Nt
∑

i=1

Ci. (5)
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• (after the ruin time Xπ
t− −△N̄t +△It < 0), we set Is = It−, Ls = Lt−, ∀s ≥ t.1

6. the π ∈ Π+ satisfying the dividends restriction is called an admissible strategy and the family
of all such strategies is denoted by Π̃(x).

7. for an admissible strategy π,

(a) we consider the ruin time σx,π
0− := inf

{

t > 0 : Xπ
t− −△N̄t +△It < 0

}

(if a "very large"
claim occurs, bankruptcy is declared; as we will see in the main result, it is never optimal
to take σx,π

0− = ∞ and modify the equity I accordingly).

(b) the associated cost is

J̃ (x, π) := Ex

[

∫

[0,σx,π
0− ]

e−qt (dLs − kdIs)

]

, (6)

(c) Every strategy π can be replaced with π̃ by modifying △Ĩt := 0 if Xπ
t−−△N̄t+△It < 0

such that σx,π
0− = σx,π̃

0− and improving the associated cost J̃ (x, π). From now on, whenever
a policy π is considered, we identify it with π̃ and reason accordingly.

(d) In connection to this type of policies and the related cost, we set

Ṽ (x) := sup
π∈Π̃(x)

J̃ (x, π) , x ∈ R. (7)

3 The Value Function for the Cramér-Lundberg Model

We turn now to establishing a verification-type result for the stochastic control problem (7).
Roughly speaking, we present the following program:

1. First, we focus on the regularity properties of the value function Ṽ (lower and upper-bound
and Lipschitz-continuity) in Proposition 1.

2. Second, we prove the connection between this value function and the associated partial-
integral differential system (of HJB-type) in Proposition 2.

3. Third, we show in Theorem 3 that the value function Ṽ is the lowest absolutely-continuous
super-solution of the associated equation and, as a verification result, give the optimality
condition for candidate policies.

All the results in this section are valid for general laws of the claims C. To emphasize this, we
consider that this law of C is given by its distribution function denoted by F .

3.1 Some Elementary Properties of the Value Function

We start with gathering some elementary properties of the value function

PROPOSITION 1. 1. For every x ∈ R+, the set of admissible strategies Π̃(x) is non-empty.

If x, x′ ∈ R+, then Π̃(x) ⊂ Π̃ (x′) and, for every π ∈ Π̃(x), σx,π
0− ≤ σx′,π

0− , P− a.s..

2. For every x ≥ 0 and every π ∈ Π̃(x), one has Ṽ (x) ≥ x+ p
λ+q

.

1The reader is invited to note that in this case t = τi one of the jumping times for N such that I, L remain
adapted, non-decreasing and càdlàg.
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3. If q > 0, then, for every x ≥ 0 and every policy π ∈ Π̃(x), one has J̃(x, π) ≤ x+ p
q
.

4. For every x ≥ 0 and every ε > 0, Ṽ (x) + ε ≤ Ṽ (x+ ε) ≤ Ṽ (x) + kε.

The proof, relying on rather standard arguments, will be postponed to Section 7.

3.2 The HJB System

In connection to the value function Ṽ , we consider the following equation







max
{

H̃
(

x, Ṽ , Ṽ ′(x)
)

, 1− Ṽ ′(x), Ṽ ′(x)− k
}

= 0, ∀x ∈ R+

min
{

max
{

1− Ṽ ′(x), Ṽ ′(x)− k
}

, Ṽ (x)
}

= 0, ∀x ∈ R−

, (8)

where the Hamiltonian H̃ is given by

H̃ (x, φ, a) := pa+ λ

∫

R

φ(x− y)dF (y)− (q + λ)φ(x). (9)

On R+, it is expected that the value function satisfy the first equation. The lower bound on the
derivative (1) is linked to the possibility of lump-sum dividend payments, and the k upper bound
is linked to the possibility of lump-sum, instant reserves replenishment. The second equation is
written in prevision of a super-solution formulation. Indeed, a (non-negative) super-solution is
expected to comply to the inequality ≤. In particular, either the derivative belongs to [1, k], or
the sub-solution has reached 0. As anticipated, here is the simplest link to our stochastic control
problem:

PROPOSITION 2. The value function Ṽ in (7) is an AC super-solution of (8).

The proof - postponed to Section 7 - relies, as it usually does, on the dynamic programming
principle. The absolute continuity of Ṽ allows to obtain the desired properties on the derivative
almost surely.

3.3 The Value Function As Smallest AC Super-solution

In this section, we strive to characterize the value function Ṽ as the smallest super-solution in the
class of regular (AC i.e. absolutely continuous) functions with linear growth. We begin with the
following (standard) approximating result. Let us point out that whenever φ is a non-negative AC
super-solution of (8), there exists a (unique) point aφ ≤ 0 such that

φ(x) = 0, ∀x ≤ aφ, φ(x) > 0, ∀x > aφ, φ′(x) ∈ [1, k] , Leb-a.s. on [aφ,∞) . (10)

As a consequence, we get the following result.

THEOREM 3. 1. The value function Ṽ is non-negative, x + p
λ+q

≤ Ṽ (x) ≤ x + p
q
, for x ≥ 0

and Ṽ (x) = max
{

Ṽ (0) + kx, 0
}

, ∀x ≤ 0.

2. Every non-negative AC-regular of growth φ(x) ≤ max {x+ α, 0} viscosity super-solution of
(8) is greater than or equal to Ṽ on R+.

3. If π∗ :=
(

πx = (L, I)x ∈ Π̃(x), x ≥ 0
)

is a family of admissible strategies such that the

associated costs J̃(·, π∗) is an AC super-solution for (8), then π∗ is optimal and Ṽ (x) =
J̃(x, π∗), ∀x ∈ R+.
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The proof, again postponed to Section 7, is obtained in two steps. First, in order to prove
the second assertion, we provide convenient approximations of φ by a sequence φn of convoluted
(mollified) functions. Second, we conclude by proving that φn are, up to an n−1-controlled error,
super-solutions of Lφn ≤ 0. The verification part (assertion 3) is a mere consequence of the previous
comparison and the definition of Ṽ .

REMARK 4. Without any changes it can be shown that if φ is an AC super-solution of (8) on
(0, a), then, for every x < a and every admissible policy π keeping Xπ < a, the associated cost
J (x, π) ≤ φ(x).

4 The guess step: severity-Constrained Double Barrier Policies, for

the Cramér-Lundberg process with exponential jumps

Now, we turn to the guess step of the "guess-and-verify" method, by computing the value function
associated to (a, b) policies consisting in injecting capital up till the level 0, provided that the
severity of ruin does not exceed a ≥ 0 and paying dividends as soon as the process reaches some
upper level b ≥ 0.

We recall that the modern control theory of spectrally negative Lévy processes uses intensively
the so-called Wq and Zq scale functions, defined respectively for x ≥ 0, q ≥ 0 as:

1. the inverse Laplace transform of 1
κ(s)−q

, where κ(s) is the Laplace exponent , and

2. Zq(x) = 1 + q
∫ x

0 Wq(y)dy.

The reader is referred to the papers [Sup76, Ber98, AKP04] for the first appearance of these func-
tions, and to [Kyp14, KKR13, AGVA19] for extensive reviews. A further important role in the
results below will be played by the functions

Cq(x) = pWq(x)− Zq(x), ∀x ≥ 0 (11)

and
{

S(s, x) = e−µsCq(x) + Zq(x)

G(s, x) = m(s)Cq(x)
, ∀s ≥ 0, x ≥ 0. (12)

Here,

m(s) =

∫ s

0
y µe−µydy =

1− e−µs(µs+ 1)

µ
, (13)

denotes the mean function of our claims cut at level s ≥ 0.
The reader is invited to note that

S(s, 0) = 1, Cq(0) = 0 = G(s, 0), C ′
q(0+) =

λ

p
, ∀s ≥ 0,

and that x 7→ Cq(x), x 7→ G(s, x), x 7→ S(s, x) are non-decreasing functions (for all s ≥ 0).
The Laplace exponent of the Cramér-Lundberg process with exponential jumps is κ(s) =

s
(

p− λ
µ+s

)

, and

Wq(x) =
(Φq + µ) eΦqx − (ρ− + µ) eρ−x

p (Φq − ρ−)
, x ≥ 0, (14)
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where Φq > 0 > ρ− are the two roots of the second-order equation

pρ2 + (pµ− λ− q) ρ− µq = 0.

The following proposition gathers a few results useful for explicit root computations (when
σ = 0).

PROPOSITION 5. The following assertions hold true simultaneously.

1. Φq + ρ− = −pµ−λ−q
p

; Φqρ− = −µq
p

;

2. pρ (ρ+ µ) = (λ+ q) ρ+ µq, ρ ∈ {Φq, ρ−};

3. ρ− + µ ≥ 0, and p (Φq + µ) (ρ− + µ) = λµ;

4. pWq(x)− Zq(x) =
λ

p(Φq−ρ−)

(

eΦqx − eρ−x
)

≥ 0, for all x ≥ 0;

5. For all b ≥ 0, Wq and Zq (extended by Wq(x) = 0, Zq(x) = 1, ∀x < 0) satisfy the equation
Lφ(b) = 0, where L is given by (41). More precisely,

pW ′
q(b+) + λ

∫ b

0 Wq(y)µe
−µ(b−y)dy − (λ+ q)Wq(b) = 0;

pZ ′
q(b+) + λ

∫ b

−∞
Zq(y)µe

−µ(b−y)dy − (λ+ q)Zq(b) = 0.

Again, the essential elements of the (rather immediate) proof are postponed to Section 7.

PROPOSITION 6. For a perturbed Cramér-Lundberg process with exponential jumps, we let

Jx := Ja,b(x) := Ex





∫ σ
x,πa,b

0−

0
e−qt (dLt − k dIt)



 (15)

denote the expected discounted dividends and capital injections associated to policies πa,b consisting
in capital injections with proportionality cost k ≥ 1, provided that the severity of ruin is smaller
than a > 0 (and declaring bankruptcy for larger severity), and paying dividends as soon as the
process reaches some upper level b. We set

z(a, J0) :=

∫ a

0
(J0 − k y)µe−µydy = J0(1− e−µa)− km(a). (16)

1. The cost function satisfies, for 0 ≤ x ≤ b,

Jx =
Wq(x)

Wq(b)
Jb +

(

Zq(x)−
Wq(x)

Wq(b)
Zq(b)

)

z (a, J0) . (17)

In particular, if we set
jx := Jx − z(a, J0)Zq(x), (18)

then

jx =
Wq(x)

Wq(b)
jb, 0 ≤ x ≤ b. (19)
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2. Moreover, the cost can be explicitly written as

Jx =











0 , x < −a

kx+ J0, , x ∈ [−a, 0]

kG(a, x) + J0S(a, x) = kG(a, x) + 1−k ∂bG(a,b+)
∂bS(a,b+) S(a, x) , x ∈ [0, b]

, (20)

and

J0 =
1− k ∂bG(a, b+)

∂bS(a, b+)
=

1− k
[

m(a)C ′
q(b+)

]

e−µaC ′
q(b+) + qWq(b)

. (21)

The proof is postponed to Section 7. The first assertion follows by applying, to the reserve
process starting at x ≥ 0, the strong Markov property at the time the process reaches either 0 or
the upper barrier b. A second expression for Ja,b

b can be obtained by looking at the behavior at the

time of the first claim. As a consequence, we get the dependency (a, b) → Ja,b
0 .

REMARK 7. 1. The first step of the previous proposition applies also to the perturbed Cramér-
Lundberg process obtained by adding a Brownian term σBt to (3). The second and third
however use specific features available only if σ = 0 (in particular that Wq(0) =

1
p
> 0).

2. Note that

(S(x), G(x)) =

{

(pWq(x), 0) , a = 0

(Zq(x),
Cq(x)

µ
) = (Zq(x), Zq,1(x)) , a = ∞

, (22)

where the last identity
Cq(x)

µ
= Zq,1(x) as well as the notation Zq,1 appear in [AGR19]. Our

formula interpolates between the de Finetti and Shreve, Lehoczky and Gaver cases:

Ja,b
x =







V b](x) :=
Wq(x)
W ′

q(b+) , a = 0

V
b]
k (x) := kZq,1(x) + Zq(x)

1−kZ′

q,1(b)

qWq(b)
, a = ∞

. (23)

(Again, for details, the reader is guided to [AGR19] and references therein).

3. The equation (20) may also be expressed as

Ja,b
x =

S(a, x)

∂bS(a, b+)
− k

[

∂bG(a, b+)
S(a, x)

∂bS(a, b+)
−G(a, x)

]

, (24)

and making k = 0 shows that the expected discounted dividends are S(a,x)
∂bS(a,b+) . It follows that

the expected capital injections when k = 1 are ∂bG(a, b+) S(a,x)
∂bS(a,b)

− ∂bG(a, x+).

REMARK 8. Looking at the last case of the result (20) for our functional Jx, we notice formal
similarities with the known particular cases a = 0, a = ∞ (recalled in Remark 7).

To explain this, and to relate to other similar “case by case observations", note first that our
functional could be studied at three related levels: A) stopping at T = T−

−a ∧ T+
b ; B) computing

expected capital injections with reflection at T ; C) reflecting and getting dividends at T . The corre-
sponding boundary conditions are Jb = 0, J ′

b = 0, J ′
b = 1, and they will yield different formulas for

J0. We recall that the final corresponding results when s = ∞ are

k

(

Zq,1(x)− Zq(x)
Zq,1(b)

Zq(b)

)

, k

(

Zq,1(x)− Zq(x)
Z ′
q,1(b)

Z ′
q(b)

)

, k

(

Zq,1(x)− Zq(x)
Z ′
q,1(b)

Z ′
q(b)

)

+
Zq(x)

Z ′
q(b)

.

Notice they are all decompositions into

10



1. a term depending on b, which is multiplied by the scale function Zq(x), and

2. a term independent of b, Zq,1(x), which has been called sometimes “smooth Gerber-Shiu func-
tion" – see for example [APP15], and also “smooth harmonic extension of w(x) = x, x ≤ 0,
see [AGVA19]. It is striking that the scale function and the Gerber-Shiu function are the
same for these three problems. This begs for a formula for the Gerber-Shiu function which
does not depend on the problem, and such a candidate is offered by the “LRZ harmonic exten-
sion" obtained in [LRZ14, Loe14]. However, this has only been rigorously proved in particular
examples – see for example [APY18].

This informal discussion motivates us to call the functions S,G the scale function and Gerber-
Shiu function for our problem. For a more down to earth reason for this name, recall that S,G
interpolate between the de Finetti and Shreve, Lehoczky and Gaver scale function and Gerber-Shiu
function, cf. (23).

5 The optimal a∗, b∗ for the Cramér-Lundberg Model with Expo-

nential Claims

In the previous arguments, we found it convenient to express the cost Ja,b(x) in terms of the
functions S and G to illustrate computations starting from the fundamental scale functions Zq

and Wq. From now on, however, instead of using this basis, we will switch to the fundamental
exponentials eΦqx, ǫρ−x (see Proposition 5). With the notations

γ(x) :=
(Φq − ρ−)

ΦqeΦqx − ρ−eρ−x
and θ(x) :=

(

eΦqx − eρ−x
)

ΦqeΦqx − ρ−eρ−x
,∀x ≥ 0, (25)

(which lead to a separation of the variables a, b), the initial datum satisfies

Ja,b
0 =

pγ(b)− λk m(a)

q + µqθ(b) + λe−µa
. (26)

5.1 Preliminary remarks

We note first that Ja,∞
0 ≤ 0, and, thus, b∗ = ∞ can never be optimal. For this purpose, one notes

that limx→∞ γ(x) = 0. It follows that either b∗ = 0 or it is a critical point of (0,∞) ∋ b 7→ Ja,b
0 .

We start with a preparatory result, obtained by differentiating (21) with respect to a. For the
complete proof, the reader is referred to Section 7.

Lemma 9. The partial derivative of Ja,b
0 with respect to a (on (0,∞)) is given by

∂

∂a
Ja,b
0 = λµe−µa

−ak (q + µqθ(b)) + pγ(b) + λk e−µa−1
µ

(q + µqθ(b) + λe−µa)2
.

1. As a consequence, picking a ∈ {0,∞} can never be optimal.

2. For fixed k ≥ 1 and b ≥ 0, there exists a unique critical point ak,b 6= 0 satisfying ∂
∂a
J
ak,b,b

0 = 0.
This is equivalent to

0 = −kak,b (q + µqθ(b)) + pγ(b) + λk
−1 + e−µak,b

µ
. (27)

11



Furthermore, (27) implies that at ak,b our objective simplifies to

J
ak,b,b

0 = kak,b.

Thus, the optimal policy can neither be of Shreve-Lehoczky-Gaver type (i.e. systematic injection
to keep the reserve positive independently of the severity of the ruin), nor of De Finetti type.

We discover thus that our solution of the Lokka-Zervos problem provided in [AGR19],
where we restricted to these two types of policies, is irrelevant to the global optimiza-
tion problem!

5.2 Determining the Candidate Maximal Arguments

Relying on the previous Lemma 9, we prove (see Section 7) the following characterization of overall
optimal buffer and barrier.

PROPOSITION 10. If (a∗, b∗) realizes the maximum of the quantity Ja,b
0 , then

1. either b∗ = 0, in which case (27) implies that a∗ = ak := ak,0 satisfies

−kqak + p+ λk
−1 + e−µak

µ
= 0; (28)

2. or b∗ ∈ (0,∞) satisfies

−
pγ′(b)

µqθ′(b)
(q + µqθ(b)) + pγ(b) + λk

−1 + e
−

pγ′(b)

kqθ′(b)

µ
= 0, γ′′(b)−

γ′(b)

θ′(b)
θ′′(b) ≤ 0,

pγ′(b)

µqθ′(b)
> 0,

(29)
and

a∗ =
pγ′(b∗)

kµqθ′(b∗)
. (30)

6 From Guess to Optimality Using the Verification Theorem 3

The main result in this paper is based on the verification Theorem 3. Using the guess step developed
in the previous sections, we completely characterize the parameters k for which b∗ = 0, leading to
a "take the money and run" behavior at 0 and the remaining configurations, for which b∗ > 0.
For each case, we show that the (a∗, b∗)-policies (described in the guess step) induce an absolutely-
continuous cost that is a super-solution of (8), thus being optimal.

THEOREM 11. A. If (λ+ q)2 < λpµ, then, we have the following dichotomy.

A1. The "cheap" equity regime, with b∗ = 0, holds for 1 ≤ k ≤ k∗, where k∗ is the unique
solution of

δ(k) = 0, with [1,∞) ∋ k 7→ δ(k) :=
λ+ q

µ
+ λk

−1 + e
−

pµ−λ−q
qk

µ
. (31)

Here the strategy consists in injecting capital to take reserve to 0 (for levels above −ak
satisfying (28)) and paying dividends with the barrier 0 (i.e. "take the money and run")
is optimal, and the optimal value function is

Ṽ (x) = k (ak + x)+ 1x≤0 + (x+ kak)1x>0.

12



A2. For "expensive" equity i.e. k > k∗,

i. The structure equation

−
pγ′(b)

µqθ′(b)
(q + µqθ(b)) + pγ(b) + λk

−1 + e
−

pγ′(b)

kqθ′(b)

µ
= 0 (32)

admits at least one solution. Denote by b∗ the smallest solution of (32). Then, it
holds that

a∗ =
pγ′ (b∗)

kµqθ′ (b∗)
. (33)

ii. If am designate the solutions of (28) (for k = m), then ak < a∗ < a1.

iii. The strategy consisting in injecting capital to take reserve to 0 (for levels above −a∗

satisfying (33)) and paying dividends with the barrier b∗ is optimal. The optimal
function is

Ṽ (x) =











k (a∗ + x)+ , if x < 0,

kG(a∗, x) + ka∗S(a∗, x), if x ∈ [0, b∗] ,

Ṽ (b∗) + x− b∗, if x > b∗,

(34)

B. In the remaining case (λ+ q)2 ≥ λpµ, independently of k ≥ 1, b∗ = 0 and the value function
is got as in A1:

Ṽ (x) = k (ak + x)+ 1x≤0 + (x+ kak)1x>0,

with ak given by the equation (28).

REMARK 12. In preparation of the proof, the reader may want to note that (34) (coming from
(46)) can be rewritten with the use of Proposition 5 (fourth assertion) as

kG(a∗, x) + ka∗S(a∗, x) = fk (a
∗, a∗k,Φq) e

Φqx − fk (a
∗, a∗k, ρ−) e

ρ−x,

where














m(r) :=
1− (rµ+ 1) e−µr

µ
; gk(r, J0) := −J0

(

1− e−µr
)

+ km(r);

fk(r, J0, θ) :=
λgk(r, J0) + pJ0 (θ + µ)

p (Φq − ρ−)
= J0

p (θ + µ)− λ (1− e−µr)

p (Φq − ρ−)
+

λkm(r)

p (Φq − ρ−)
.

As before, the proof is postponed to Section 7.

REMARK 13. 1. A careful look at the upper-bound in 2.2.2 (in the proof) shows that Ṽ ′(0+) <
k = Ṽ ′(0−). As a consequence:

• the heuristic intuition in [LZ08, (5.2)] no longer holds true for our case (Ṽ (0) > 0 and
Ṽ ′(0) = k fails to hold true);

• Ṽ is only absolutely continuous (but not C1) such that the comparison in Theorem 3
must be given among absolutely continuous super-solutions.

2. The equality in (50) gives a way to characterize b∗ when Ṽ is known.

We illustrate the dependency of the discriminating equity level k∗ of µ and q in Figure 2.
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(a) High-impact claims µ → 0.
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(c) Normal claims µ = 1.
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(d) Normal inflation q = 1.
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(e) Absence of claims µ → ∞.
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(f) High inflation q → ∞.

Figure 2: Impact of inflation q and claim average 1
µ

on equity expensiveness.

• As µ → 0, the claims approach ∞ average. In a highly impacted market, the notion of equity
expensiveness vanishes and it is not optimal to wait for any amount of time b > 0 (Figure
2a).

• At the other end, as µ is large enough (Figure 2e), we are in a deterministic market which
reaches an equilibrium separation of equities at k∗ = λ+q

λ
. A glance at (33) shows that, for

expensive equity, there should be no capital injection.

• In between (Figure 2c), k∗ stabilizes to the equilibrium λ+q
λ

with large values of p. This is to
be put in relation with the result in [KS08, Lemma 7] giving a condition for b∗ = 0 (although
the cited result does not consider buffered strategies).

• On the other hand (Figure 2b), as the discount parameter q → 0+, for all p that may give a
dichotomy (cf. A), pµ − λ > 0 such that the equation (31) leads to k∗ = 1. In other words,
absence of inflation makes every equity k > 1 expensive. Conversely (Figure 2f), high inflation
(large q) makes the notion of equity expensiveness vanish.

We end the section with a numerical illustration of the surface (a∗, b∗) as the equity cost evolves
in a compact interval in Figure 3. A glance at the first point of view shows that b∗ = 0 until
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Figure 3: The optimal surface (a∗, b∗) as function of equity k for λ = q = µ = 1 and p = 5.

the critical value k∗ and then it increases with k ≥ k∗. The second point of view shows a to be
decreasing with the equity cost k ≤ k∗. Then, it continues decreasing, although somewhat slower
with k ≥ k∗.

7 Proofs of the Results

7.1 Proofs for Section 3

Although following rather classical arguments, for our readers’ sake, we provide the proof of the
basic properties of the value function Ṽ .

Proof of Proposition 1. 1. The classical (no dividend, no injection) (0, 0) policy is an admissible
strategy. The second result is a mere consequence of the definition of Xπ.
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2. For x ≥ 0, we consider the strategy consisting in no capital injection (I = 0), then paying
L0 = x and (continuously) the premium and declare bankruptcy at the first (positive) claim.

For this admissible strategy π0, the ruin time σx,π0

0− = τ1, P − a.s. (the first jumping time
except on the 0-probability event C1 = 0). We have

Ṽ (x) ≥ J̃
(

x, π0
)

= x+ pE

[
∫ τ1

0
e−qtdt

]

= x+
p

λ+ q
.

3. One merely notes that, for every π ∈ Π̃(x),


















max
{

Xπ
t−, 0

}

≤ x+ pt+

∫

[0,t)
(dIs − dLs)

max {Xπ
t , 0} ≤ x+ pt+

∫

[0,t]
(dIs − dLs)

, ∀t ∈
[

0, σx,π
0−

]

, P− a.s., (35)

on
{

σx,π
0− < ∞

}

. Then,
∫

[0,σx,π
0− ]

e−qs (dLs − kdIs) ≤

∫

[0,σx,π
0− ]

e−qs (dLs − dIs) ≤ x+
p

q
, Px − a.s. (36)

The conclusion follows by computing the average under Px.

4. The first inequality follows by modifying an arbitrary strategy π ∈ Π̃(x) into πε := (L+ ε, I)
on R+ to get πε ∈ Π̃ (x+ ε). For the last inequality, one modifies (on R+) an admissible
strategy π ∈ Π̃ (x+ ε) into πε := (L, I + ε) ∈ Π̃(x).

Let us now turn to the proof of the super-solution behavior of Ṽ .

Proof of Proposition 2. Let x ∈ (0,∞).
As it is by now standard, the arguments rely on the dynamic programming principle2 stating that,
given a stopping time τ ,

Ṽ (x) = sup
π∈Π̃(x)

Ex

[

∫

[0,τ∧σx,π
0− ]

e−qs (dLs − kdIs) + e−q(τ∧σx,π
0− )Ṽ

(

Xτ∧σ
x,π
0−

)

]

.

We consider the admissible strategy π := (0, 0) (no dividends, no capital injection). We begin with
the remark that, in this case,

Xπ
s ≤ x+ ps has an explicit upper bound. (37)

The dynamic programming principle (using the time of the first claim τ1 ≤ σx,π
0− and t > 0 i.e.

τ := τ1 ∧ t) with the particular choice of π = (0, 0) yields

Ṽ (x) ≥ Ex

[

e−q(t∧τ1)Ṽ
(

Xπ
t∧τ1

)

]

= e−qtṼ (x+ pt)Px (τ1 > t) + Ex

[

1τ1≤te
−qτ1 Ṽ

(

Xπ
τ1

)

]

≥ e−qtṼ (x+ pt)Px (τ1 > t) + Ex

[

1τ1≤te
−qτ1

]

∫

R+

Ṽ (x− y)dF (y).

(38)

2The proof of this principle is skipped in this paper. It is quite similar to the one without injections, e.g. in
[AM14] with the only supplementary difficulty that Xπ is not bounded, due to the presence of the injection term I .
However, this is overcome by restricting to 1-optimal policies as we did in the proof of Theorem 3 in order to obtain
convenient bounds on the expected value of injections, hence of reserves. A paper on level-depending premiums and
reinsurance is ongoing and the DPP is proven in this much more general framework.
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by passing Ṽ (x) on the right and dividing by t, it follows that

0 ≥
e−qtṼ (x+ pt)Px (τ1 > t)− Ṽ (x)

t
+

λ

λ+ q

1− e−(λ+q)t

t

∫

R+

Ṽ (x− y) dF (y)

=

∫ t

0

(

−(q + λ)e−(q+λ)sṼ (x+ ps) + e−(q+λ)spṼ ′(x+ ps)
)

ds

t

+
λ

λ+ q

1− e−(λ+q)t

t

∫

R+

Ṽ (x− y) dF (y).

(39)

Passing t ↓ 0, one gets

0 ≥ pṼ ′(x) + λ

∫

R+

Ṽ (x− y)dF (y) − (λ+ q)Ṽ (x).

The Lipschitz estimates on Ṽ take care of the bounds on the derivative.
For negative reserves x < 0, only two strategies are possible: either declare immediate bankruptcy

s.t. J̃(x, π) = 0 or inject capital at unitary cost k leading to Ṽ (x) =
(

Ṽ (0) + kx
)+

. The super-

solution condition follows.

Before providing the proof of Theorem 3, we need the following approximation result.

PROPOSITION 14. Let φ be a non-negative AC super-solution of (8) s.t. φ(y) ≤ y + α, for all
y ≥ 0 and some α ∈ R. Then, there exists a sequence of C1 functions φn s.t.

• φ(x) ≤ φn(x) ≤ φ(x) + k
n

on R;

• φ′
n ∈ [1, k] on [aφ,∞);

• lim
n→∞

φ′
n = φ′ (pointwise a.e. on R).

Proof. The proof is a mere modification of [AM14, Lemma 4.1]. Let us consider, for a sequence
of standard mollifiers based on a non-negative continuously differentiable function ρ supported on
(0, 1) i.e, by setting ρn(x) := nρ (nx), the convoluted function

φn(x) :=

∫

(0, 1n)
φ(x+ s)nρ(ns)ds, ∀n ≥ 1.

It is clear that φn are of class C1, as are the convergence assertions. Since φ is AC, φ′ ∈ [1, k] , a.e.
on [aφ,∞) which implies the same bounds on the φ′

n.

We proceed with the proof of the minimality of Ṽ and the verification result for policies.

Proof of Theorem 3. We fix x ≥ 0. If φ is a non-negative, AC super-solution of (8), then, using φn

introduced before and Itô’s formula, we get

Ex

[

e−q(t∧σx,π
0− )φn

(

Xπ
t∧σ

x,π
0−

)]

− φn(x)

≤Ex

[

∫

[0,t∧σx,π
0− ]

{

e−qs (kdIs − dLs) + e−qsLφn

(

Xπ
s−

)

ds
}

]

,
(40)
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where

Lφn(y) := pφ′
n(y) + λ

∫

R+

(φn(y − z)− φn(y)) dF (z)− qφn(y). (41)

If the strategy π = (L, I) is 1-optimal for Ṽ (x), then, owing to (35), one has

Ṽ (x)− 1 ≤ J̃(x, π) ≤Ex

[

∫

[0,t∧σx,π
0− ]

e−qs (dLs − kdIs) + e−q(t∧σx,π
0− )Ṽ

(

Xπ
t∧σ

x,π
0−

)

]

≤Ex

[

∫

[0,t∧σx,π
0− ]

e−qs (dLs − dIs) + e−q(t∧σx,π
0− )

(

max
{

Xπ
t∧σ

x,π
0−

, 0
}

+
p

q

)

]

− (k − 1)Ex

[

∫

[0,t∧σx,π
0− ]

e−qsdIs

]

≤x+
2p

q
− (k − 1)Ex

[

∫

[0,t∧σx,π
0− ]

e−qsdIs

]

.

(42)

It follows that

Ex

[

∫

[0,σx,π
0− ]

e−qsdIs

]

≤
1

k − 1

(

x+
2p

q
+ 1− Ṽ (x)

)

≤
1

k − 1

(

2p

q
+ 1−

p

λ+ q

)

.

To pass t → ∞ and/or n → ∞ in (40), one has to guarantee that the integrands are dominated (then
apply Lebesgue dominated convergence). This follows from the previous inequality, the estimates
on the trajectory (cf. Proposition 1 3.), the growth condition 0 ≤ φn(y) ≤ y + α + kn−1 and by
noting that

− (λ+ q)φn(y) ≤ Lφn(y) ≤ kp.

This bounds are also valid for φ = φ∞. By passing t → ∞ in (40) and recalling that φn is
non-negative, we get

Ex

[

∫

[0,σx,π
0− ]

e−qs (−kdIs + dLs)

]

≤ φn(x) + Ex

[

∫

[0,σx,π
0− ]

e−qsLφn

(

Xπ
s−

)

ds

]

. (43)

Let us set

δn := sup

{

φ′(y) : y ∈

[

x, x+
1

n

]

∩ D(φ)

}

,

where D(φ) is the domain of differentiability of φ. Due to the convolution definition of φn, it follows
that φ′

n(x) ≤ δ2n. Moreover, since δn ∈ [1, k], we are able to find some point xn ∈
[

x, x+ 2
n

]

∩D(φ)
such that φ′ (xn) ≥ δ2n − 1

n
. Using the mononicity of φ, φn as well as the choice of xn ∈

[

x, x+ 2
n

]

and the super-solution condition for φ at xn, we get

Lφn(x) ≤Lφ (xn) + p
(

φ′
n(x)− φ′ (xn)

)

+ λ

(
∫

R+

φn (x− y) dF (y) −

∫

R+

φ (xn − y) dF (y)

)

+ (λ+ q) (φ (xn)− φn (x))

≤
p

n
+ λ

(
∫

R+

(φn (x− y)− φ (x− y)) dF (y)

)

+ (λ+ q)

(

2k

n
+ φ (x)− φn(x)

)

≤
p

n
+ λ

k

n
+ (λ+ q)

2k

n
.
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Going back to (43), letting n → ∞ and taking the supremum over π, it follows that Ṽ (x) ≤ φ(x)
as claimed.
The third assertion follows from the admissibility of π∗, the definition of Ṽ and the second assertion.

7.2 Proofs for Section 4

We begin with the tools in Proposition 5.

Proof of Proposition 5. The assertions are quite forward. For our readers’ comfort, we hint at the
proof of the fourth assertion. Owing to the first assertion, one gets

pWq(x)− Zq(x)

=
1

p (Φq − ρ−)

(

p (Φq + µ) eΦqx − p (ρ− + µ) eρ−x − q
(Φq + µ)

(

eΦqx − 1
)

Φq
+ q

(ρ− + µ) (eρ−x − 1)

ρ−
− 1

)

=
λ

p (Φq − ρ−)

(

eΦqx − eρ−x
)

.

We now focus on the fifth assertion and write Wq(x) =
Φq+µ

p(Φq−ρ−)e
Φqx − ρ−+µ

p(Φq−ρ−)e
ρ−x. We compute

(using the previous assertions),

pW ′
q(x+) =

p (Φq + µ)Φq

p (Φq − ρ−)
eΦqx −

p (ρ− + µ) ρ−
p (Φq − ρ−)

eρ−x =
(λ+ q)Φq + µq

p (Φq − ρ−)
eΦqx −

(λ+ q) ρ− + µq

p (Φq − ρ−)
eρ−x;

λ

∫ ∞

0
Wq(x− y)µe−µydy = λµe−µx

∫ x

0
Wq(y)e

µydy =
λµ

p (Φq − ρ−)

(

eΦqx − eρ−x
)

,

which implies the desired result. The proof for Zq is quite similar.

Now we are ready to provide the proof of the expression of the cost Ja,b
x .

Proof of Lemma 6. 1. This statement follows by applying the strong Markov property at the stop-
ping time τx := τx0− ∧ τxb+ = inf {t ≥ 0 : Xπ

t < 0} ∧ inf {t ≥ 0 : Xπ
t > b}. It follows that, for

0 ≤ x ≤ b,

Jx =Ex

[

e−qτx
b+1τx

b+<τx0−

]

Jb + Ex

[

e−qτx0−1τx
b+>τx0−

(

J0 + kXτx0−

)

1Xτx0−
≥−a

]

=
Wq(x)

Wq(b)
(Jb − Ib) + Ix,

(44)

where Iy := Ey

[

e−qτ0−
(

J0 + kXτ0−

)

1Xτ0−≥−a

]

(and the random times are understood to be ap-

plied to the controlled reserve starting at y). The term Iy can be explicitly computed (using the
Gerber-Shiu measure).

Iy =λ

∫ a

0
µe−µu (J0 − ku) du×

∫

R+

(

e−(Φq+µ)vWq(y)− e−µvWq(y − v)
)

dv

=λ

{

J0
(

1− e−µa
)

− k
1− (aµ+ 1) e−µa

µ

}(

Wq(y)

Φq + µ
−

∫ y

0
e−µvWq(y − v)dv

)

.

It follows easily that

Iy =

{

J0
(

1− e−µa
)

− k
1− (aµ+ 1) e−µa

µ

}(

Zq(y)−
q

Φq
Wq(y)

)

.
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Our first assertion follows by plugging Iy into (44). The second assertion (19) is a mere consequence
of the first.

2. Putting x = 0 in (18) yields J0 = J0 (1− e−µa)− k m(a) + jb
Wq(b)

Wq(0), such that

jb
Wq(b)

Wq(0) = k m(a) + J0e
−µa := w(a, J0). (45)

Using this and Wq(0) =
1
p
6= 0 together with (19) simplifies (18) to

Jx =z(a, J0)Zq(x) + jx = z(a, J0)Zq(x) + pw(a, J0)Wq(x)

=
(

J0
(

1− e−µa
)

− km(a)
)

Zq(x) + p
(

J0e
−µa + km(a)

)

Wq(x) = J0S(a, x) + kG(a, x),
(46)

for all x ∈ [0, b]. We will use a third equation for Jb, obtained by conditioning at the time of the
first claim when starting from b, and applying the first equation (18), with jb eliminated using (45):

Jb =Eb

[
∫ τ1

0
e−qtpdt+ e−qτ1

∫ b+a

0
Jb−yµe

−µydy

]

=
p

λ+ q
+

λ

λ+ q

(
∫ a+b

b

(J0 + k(b− z))µe−µzdz +

∫ b

0
[Zq(y)z(a, J0) +Wq(y)pw(a, J0)]µe

−µ(b−y)dy

)

=
p

λ+ q
+

λ

λ+ q

[

J0(e
−µb − e−µ(a+b))− ke−µbm(a)

]

+
1

λ+ q

{

z(a, J0)
(

(λ+ q)Zq(b)− pZ ′
q(b+)− λe−µb

)

+ pw(a, J0)
(

(λ+ q)Wq(b)− pW ′
q(b+)

)

}

where the convolution terms were computed using the last assertion in Proposition 5. As a conse-
quence, by recalling that Jb = z(a, J0)Zq(b) + pw(a, J0)Wq(b) as well as the definitions of w and z,
it follows that we can isolate the terms containing J0

J0p
(

(1− e−µa)Z ′
q(b+) + e−µapW ′

q(b+))
)

=p− λke−µbm(a) + km(a)
(

pZ ′
q(b+) + λe−µb

)

− p2km(a)W ′
q(b+)

=p+ pkm(a)Z ′
q(b+)− p2km(a)W ′

q(b+),

or, again,

pJ0 ∂bS(a, b+) = p
[

1− km(a)
(

pW ′
q(b+)− Z ′

q(b+)
)]

= p(1− k∂bG(a, b+)).

The equality (21) follows. By plugging this into (46), our proof is complete.

7.3 Proofs for Section 5

We proceed with the proof of Lemma 9 showing that the optimal parameter a should be a critical
one and the uniqueness of such maximizers for a fixed upper barrier

Proof of Lemma 9. The first assertion is a mere computation starting from (26).

1. To see that a = 0 cannot provide the maximal value for Ja,b
0 , one notes that lima→0+ ∂aJ

a,b
0 =

λµ pγ(b)

(q+λ+µqθ(b))2
> 0,∀b ≥ 0. Similar, for every b ≥ 0 as a is large enough, ∂aJ

a,b
0 < 0, thus proving
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that the supremum (w.r.t a, hence, due to the considerations in the beginning of the subsection,
w.r.t (a, b)) is a maximum (attained for some a∗ < ∞).
2. Having fixed k ≥ 1, β ≥ 0, one considers the increasing function R

∗
+ ∋ a 7→ ϕk,b(a) :=

−ka (q + µqθ(b)) + pγ(b) + λk−1+e−µa

µ
. One easily gets lima→0+ ϕk,b(a) = pγ(b) > 0 > −∞ =

lima→∞ ϕk,b(a) (note that q+µqθ(b) > q) and the first assertion follows easily. To get the expression

of J
ak,b,b

0 one simply notes that (27) can be written in the equivalent form −kak,b (q + µqθ(b) + λe−µak,b)+
pγ(b)− λkm(a) = 0 such that

k ak,b =
pγ(b)− km(a)

q + µqθ(b) + λe−µak,b
= J

ak,b,b

0 .

To end the proofs of the section, we give the following.

Proof of 10. The assertion in the first case b∗ = 0 is a direct consequence of Lemma 9.
In the case when b∗ > 0, the pair (a∗ := ak,b∗ , b

∗) should be a critical point. We write the first-order
condition for b.

0 = ∂bJ
a,b
0 =

pγ′(b) (q + µqθ(b) + λe−µa)− µqθ′(b) (pγ(b)− λkm(a))

(q + µqθ(b) + λe−µa)2
,

such that J∗
0 := Ja∗,b∗

0 = pγ′(b∗)
µqθ′(b∗) . In particular, using Lemma 9, we get a∗ = pγ′(b∗)

kµqθ′(b∗) . By plugging

this into (27), one gets the first assertion in (29).
Second, we make some remarks on the Hessian matrix at a critical point (a, b).

∂a,aJ
a,b
a = λµe−µa−k (q + µqθ(b))− λke−µa

(q + µqθ(b) + λe−µa)2
< 0;

∂a,bJ
a,b
0 = ∂b,aJ

a,b
b = 0; ∂b,bJ

a,b
0 =

pγ”(b)− akµqθ”(b)

q + µqθ(b) + λe−µa
.

As a consequence, all critical points are either inflexion or (local) maximum points. The maximality

condition ∂b,bJ
a∗,b∗

0 ≤ 0 amounts (again by recalling (30)) to the second inequality in (29). Finally,
since a∗ > 0, we get (again by recalling (30)) the third inequality in (29)
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7.4 Proof of the Main Theorem 11

Proof of Theorem 11. A1. We compute, for x ≥ 0:

pṼ ′(x) + λ

∫

R+

Ṽ (x− y)µe−µydy − (λ+ q) Ṽ (x)

=p+ λe−µx

(
∫ 0

−ak

(k ak + kz)µeµzdz +

∫ x

0
(k ak + z)µeµzdz

)

− (λ+ q) (k ak + x)

=p+ λe−µx

(

k ak
(

eµx − e−µak
)

+ k

(

zeµz −
eµz

µ

)0

−ak

+

(

zeµz −
eµz

µ

)x

0

)

− (λ+ q) (k ak + x)

=p+ λe−µx

(

k ak
(

eµx − e−µak
)

− k
1

µ
+ k ake

−µak + k
e−µak

µ
+

1

µ
+ xeµx −

eµx

µ

)

− (λ+ q) (k ak + x)

=p− qk ak − qx+ λe−µx

(

k
−1 + e−µak

µ
+

1

µ
−

eµx

µ

)

=p− qk ak − qx+ e−µx(qakk − p) +
λ

µ

(

e−µx − 1
)

=

(

p− qk ak −
λ

µ

)

(

1− e−µx
)

− qx.

(47)

If p− qk ak −
λ
µ
< 0, we have finished our proof. Otherwise, we get

pṼ ′(x) + λ

∫

R+

Ṽ (x− y)µe−µydy − (λ+ q) Ṽ (x) ≤

(

p− qk ak −
λ+ q

µ

)

µx.

We claim that the last expression is non-positive which amounts to claiming

kak ≥
pµ− λ− q

µq
, (48)

or, again,

0 ≤ −q
pµ− λ− q

µq
+ p+ kλ

−1 + e−
pµ−λ−q

qk

µ
=

λ+ q

µ
+ kλ

−1 + e−
pµ−λ−q

qk

µ
:= δ(k).

Owing to the fact that pµλ > (λ+ q)2, it follows that pµ−λ− q > 0 such that [1,∞) ∋ k 7→ δ(k) is

decreasing. Moreover, δ(1) ≥ λ+q
µ

− λ
µ
> 0 and lim

k→∞
δ(k) = λ+q

µ
− λpµ−λ−q

qµ
= (λ+q)2−pλµ

µq
< 0 which

shows the existence and uniqueness of k∗ satisfying δ (k∗) = 0 (i.e. equation (31)). Moreover, it
follows that, for every k ≤ k∗,

pṼ ′(x) + λ

∫

R+

Ṽ (x− y)µe−µydy − (λ+ q) Ṽ (x) ≤ 0, ∀x ≥ 0.

The proof is completed owing to the last assertion in Theorem 3 (note that, in this framework, by
definition, Ṽ ′ ∈ [1, k]).

A2. We now consider the case when b∗ 6= 0. We begin with noting that, in this case,

• γ′(b)
θ′(b) = −

Φ2
qe

Φqb−ρ2
−
eρ−b

(Φq−ρ−)e(Φq+ρ
−)b > 0 if and only if b < b̄ := 1

Φq−ρ−
log
(

ρ2
−

Φ2
q

)

;
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• ∂b
γ′

θ′
(b) = −1

Φq−ρ−

(

−ρ−Φ
2
qe

−ρ−b + ρ2−Φqe
−Φqb

)

< 0, for all b ∈
[

0, b̄
)

.

• The continuous function
[

0, b̄
]

∋ b 7→ η(b) := − pγ′(b)
µqθ′(b) (q + µqθ(b)) + pγ(b) + λk−1+e

−
pγ′(b)
kqθ′(b)

µ

satisfies η(0) = δ(k) < 0,∀k > k∗ and η
(

b̄
)

= pγ
(

b̄
)

> 0. We let b∗ denote the first solution
of η(b) = 0.

• We consider
[

0, b̄
]

∋ b 7→ η(b, a) := −qka− pγ′(b)
µqθ′(b)µqθ(b)+pγ(b)+λk−1+e−µa

µ
. One notes that

η (b, ak) = −p+ pγ(b)− pγ′(b)
θ′(b) θ(b). Moreover, ∂bη (b, ak) = −∂b

pγ′(b)
θ′(b) θ(b) > 0,∀0 ≤ x < b̄ such

that η (b, ak) > η (0, ak) = 0, for all b̄ > b > 0. In particular, η (b∗, ak) > 0. Owing to the
monotonicity of a 7→ η (b∗, a), one deduces that a∗ > ak.

It follows that, provided that k > k∗, the structure equation admits a solution; the first solution b∗

is a maximal argument and it gives a better value than k ak. We have proved assertion 2, points
(a) and (b).

To complete the assertion (c), one notes that Ja,b
0 is decreasing in k. It follows that ka∗ ≤ k∗ak∗ < a1

(since mam is optimal for m ≤ k∗ as we have seen at point 1.), for every k ≥ k∗ ≥ 1.
We now prove the remaining assertion (d). As for the assertion 1, we only have to check that the
candidate Ṽ is an AC super-solution of (8). For later purposes, we note that p (Φq + µ) (ρ− + µ) =
λµ.
2.1. For x ∈ (0, b∗], we write down:

pṼ ′(x) + λ

∫

R+

Ṽ (x− y)µe−µydy − (λ+ q) Ṽ (x)

=pṼ ′(x)− (λ+ q) Ṽ (x)

+ λe−µx

(
∫ 0

−a∗
k (a∗ + z)µeµzdz + µ

∫ x

0

{

fk (a
∗, a∗k,Φq) e

(Φq+µ)z − fk (a
∗, a∗k, ρ−) e

(ρ−+µ)z
}

dz

)

=pṼ ′(x)− (λ+ q) Ṽ (x)

+ λe−µx

(

−gk (a
∗, a∗k) +

µfk (a
∗, a∗k,Φq)

Φq + µ
e(Φq+µ)x −

µfk (a
∗, a∗k, ρ−)

ρ− + µ
e(ρ−+µ)x +

µλgk (a
∗, a∗k)

p (Φq + µ) (ρ− + µ)

)

=fk (a
∗, a∗k,Φq) e

Φqx

(

pΦq − (λ+ q) +
λµ

Φq + µ

)

− fk (a
∗, a∗k, ρ−) e

ρ−x

(

pρ− − (λ+ q) +
λµ

ρ+ µ

)

=fk (a
∗, a∗k,Φq) e

Φqx (pΦq − (λ+ q) + p (ρ− + µ))

− fk (a
∗, a∗k, ρ−) e

ρ−x (pρ− − (λ+ q) + p (Φq + µ)) = 0.

The last equality follows from Φq + ρ− = λ+q−pµ
p

.
2.2. The derivative is explicitly given by

Ṽ ′(x) =Φqfk (a
∗, a∗k,Φq) e

Φqx − ρ−fk (a
∗, a∗k, ρ−) e

ρ−x

=
a∗kpΦq (Φq + µ) + λk 1−µa∗−e−µa∗

µ
Φq

p (Φq − ρ−)
eΦqx −

a∗kpρ− (ρ− + µ) + λk 1−µa∗−e−µa∗

µ
ρ−

p (Φq − ρ−)
eρ−x

=
a∗k (q + µqθ(x)) + λk 1−e−µa∗

µ

pγ(x)
.
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2.2.1. To prove that Ṽ ′ ≥ 1, one can, alternatively show that l1(x) := a∗k (q + µqθ(x))+λk 1−e−µa∗

µ
−

pγ(x) ≥ 0. The derivative l′1(x) = a∗kµqθ′(x) − pγ′(x) = pθ′(x)
(

γ′(b∗)
θ′(b∗) −

γ′(x)
θ′(x)

)

< 0 for all x ≤ b∗

(recall the monotonicity of γ′(·)
θ′(·) ). One concludes by recalling that l1(b

∗) = 0 owing to the equation

(32).
2.2.2. We still have to prove that Ṽ ′ ≤ k. To this purpose, we consider

[0, b∗] ∋ x 7→ l2(x) := a∗ (q + µqθ(x)) + λ
1− e−µa∗

µ
− pγ(x),

and show that l2(x) ≤ 0. As for the previous argument, l2 is non-increasing such that we only need

to show that l2(0) = a∗q+λ1−e−µa∗

µ
−p ≤ 0. Using (c), it follows that l2(0) < a1q+λ1−e−µa1

µ
−p = 0.

2.3 For x > b∗, noting that Ṽ ′(b∗) = 1 and using the same computations as in A1 (at b∗), we have

pṼ ′(x) + λ

∫

R+

Ṽ (x− y)µe−µydy − (λ+ q) Ṽ (x)

=p+ e−µ(x−b∗)λe−µb∗
∫ b∗

−a

Ṽ (z)µeµzds+ λe−µx

(
∫ x

b∗

(

Ṽ (b∗) + z − b∗
)

µeµzdz

)

− (λ+ q)
(

Ṽ (b∗) + x− b∗
)

=p+ e−µ(x−b∗)
(

−p+ (λ+ q) Ṽ (b∗)
)

+ λ
(

Ṽ (b∗)− b∗
)(

1− e−µ(x−b∗)
)

+ λ

(

x−
1

µ
− b∗e−µ(x−b∗) +

e−µ(x−b∗)

µ

)

− (λ+ q)
(

Ṽ (b∗) + x− b∗
)

=

(

p− qṼ (b∗)−
λ

µ

)

(

1− e−µ(x−b∗)
)

− q (x− b∗) ≤ 0.

To conclude, we only need to show that

Ṽ (b∗) ≥
pµ− λ− q

µq
. (49)

We consider the expression of

Ṽ (b∗) =
1

p (Φq − ρ−)

(

a∗k (pΦq + pµ− λ− q) + a∗kq + λk
1− e−µa∗

µ

)

eΦqb
∗

−
1

p (Φq − ρ−)

(

a∗k (pρ− + pµ− λ− q) + a∗kq + λk
1− e−µa∗

µ

)

eρ−b∗

=
a∗kp

(

Φqe
Φqb

∗

− ρ−e
ρ−b∗

)

p (Φq − ρ−)
+

(

a∗k (pµ− λ− q) + a∗kq + λk
1− e−µa∗

µ

)

eΦqb
∗

− eρ−b∗

p (Φq − ρ−)

=a∗k
1

γ (b∗)
+ (a∗k (pµ− λ− q) + pγ(b∗)− a∗kµqθ(b∗))

θ(b∗)

pγ(b∗)

=
pγ′ (b∗)

µqθ′ (b∗)

1

γ (b∗)
+

(

pγ′ (b∗)

µqθ′ (b∗)
(pµ− λ− q) + pγ(b∗)−

pγ′ (b∗)

µqθ′ (b∗)
µqθ(b∗)

)

θ(b∗)

pγ(b∗)

Then, proving (49) is equivalent to proving

0 ≤
pγ′ (b∗)

µqθ′ (b∗)

1

γ (b∗)
+

(

pγ′ (b∗)

µqθ′ (b∗)
(pµ− λ− q) + pγ(b∗)−

pγ′ (b∗)

µqθ′ (b∗)
µqθ(b∗)

)

θ(b∗)

pγ(b∗)
−

pµ− λ− q

µq

=
pγ′ (b∗)

µqθ′ (b∗)

1

γ (b∗)
+

1

γ(b∗)

(

γ(b∗)−
γ′(b∗)

θ′(b∗)
θ(b∗)

)(

θ(b∗)−
pµ− λ− q

µq

)

,
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or, again, by recalling that θ and γ are non-negative and increasing,

0 ≤
p

µq
+

(

γ(b∗)
θ′(b∗)

γ′(b∗)
− θ(b∗)

)(

θ(b∗)−
pµ− λ− q

µq

)

, (50)

We now explicitly compute γ(b)θ′(b)−γ′(b)θ(b)
γ′(b) = −

Φqe
Φqb−ρ−eρ−b

Φ2
qe

Φqb−ρ2
−
eρ−b > 0, ∀b ∈

[

0, b̄
)

and recall that Φq

and ρ− satisfy the equation px2 − µq = − (pµ− λ− q)x to deduce

p

µq

γ′(b)

γ(b)θ′(b)− γ′(b)θ(b)
+ θ(b)−

pµ− λ− q

µq

=−
1

µq
(

ΦqeΦqb − ρ−eρ−b
)

(

(

pΦ2
q − µq

)

eΦqb −
(

pρ2− − µq
)

eρ−b
)

−
pµ− λ− q

µq

=
1

µq
(

ΦqeΦqb − ρ−eρ−b
) (pµ− λ− q)

(

Φqe
Φqb − ρ−e

ρ−b
)

−
pµ− λ− q

µq
= 0.

It follows that (50) holds (with equality) and, thus, so does (49). The proof of A is now complete.
B. One follows the same proof as we did for A1, but (48) is always satisfied. Indeed, as before, this
is equivalent to proving

0 ≤
λ+ q

µ
+ kλ

−1 + e−
pµ−λ−q

qk

µ
.

To see this, one writes

−1 + e−
pµ−λ−q

qk ≥ −
pµ− λ− q

qk
≥ −

(λ+q)2

λ
− λ− q

qk
= −

λ+ q

λk
,

and the inequality follows. The proof is now complete.
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