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Abstract Image indexing for lifelong localization is a

key component for a large panel of applications, in-

cluding robot navigation, autonomous driving or cul-

tural heritage valorization. The principal difficulty in

long-term localization arises from the dynamic changes

that affect outdoor environments. In this work, we pro-

pose a new approach for outdoor large scale image-

based localization that can deal with challenging sce-

narios like cross-season, cross-weather and day/night

localization. The key component of our method is a

new learned global image descriptor, that can effec-

tively benefit from scene geometry information during

training. At test time, our system is capable of inferring

the depth map related to the query image and use it to

increase localization accuracy.

We show through extensive evaluation that our method

can improve localization performances, especially in chal-

lenging scenarios when the visual appearance of the

scene has changed. Our method is able to leverage both

visual and geometric clues from monocular images to

create discriminative descriptors for cross-season local-

ization and effective matching of images acquired at
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different time periods. Our method can also use weakly

annotated data to localize night images across a refer-

ence dataset of daytime images. Finally we extended

our method to reflectance modality and we compare

multi-modal descriptors respectively based on geome-

try, material reflectance and a combination of both.
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1 Introduction

Visual-Based Localization (VBL) is a central topic in a

large range of domains, from robotics to digital humani-

ties, involving advanced computer vision techniques [57].
It consists in retrieving the location of a visual input

according to a known absolute reference. VBL is ex-

ploited in various applications such as autonomous driv-

ing [48], robot navigation or SLAM loop closing [45],

augmented reality [75], navigation in cultural heritage

collections [6, 66, 11], etc. In this paper, we address

VBL as a content-based image retrieval (CBIR) prob-

lem where an input image is compared to a referenced

pool of localized images. This image-retrieval-like prob-

lem is two-step: descriptor computation for both the

query (online) and the reference images (offline) and

similarity association across the descriptors. Since the

reference images are associated to a location, by rank-

ing images according to their similarity scores, we can

deduce an approximate location for the query. Numer-

ous works have introduced image descriptors well suited

for image retrieval for localization [3, 39, 28, 65, 42]; we

present in figure 1 our learned descriptor and the entire

image localization pipeline. The final localization ob-

tained by such a system can be used as it or as initializa-
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Fig. 1 Our method at test time: we rely only on radio-
metric data (= monocular images) to build low dimensional
global image features used for localization. The reconstructed
depth map used for image description makes our method
more robust to visual changes that may occur in long-term
localization scenarios.

tion for pose refinement method [70, 67, 58, 25]. In this

paper, we focus on building a discriminative image de-

scriptor for initial pose localization by image retrieval,

so we do not investigate pose refinement methods.

One of the main challenges of outdoor image-based

localization remains the mapping of images acquired

under changing conditions: cross-season images match-

ing [53], comparison of recent images with reference

data collected a long time ago [80], day to night place

recognition [81], etc. Recent approaches use comple-

mentary information in order to address these visually

challenging localization scenarios: geometric informa-

tion through point cloud [71, 72] or depth maps [16]

and semantic information [5, 16, 53]. However geomet-

ric or semantic information are not always available or

can be costly to obtain, especially in robotics or mobile

applications when the sensor or the computational load

on the system is limited, or in digital humanities when

the data belong to ancient collections.

In this paper, we propose an image descriptor capa-

ble of reproducing the underlying scene geometry from

a monocular image, in order to deal with challenging

outdoor large-scale image-based localization scenarios.

We introduce dense geometric information as side train-

ing objective to make our new descriptor robust to vi-

sual changes that occur between images taken at dif-

ferent times. Once trained, our system can be used on

monocular images only to construct an expressive de-

scriptor for image retrieval. This kind of system design

is also known as side information learning [32], as it uses

geometric and radiometric information only during the

training step and pure radiometric data for the image

localization.

The paper is organized as follows. In section 2, we

first revisit recent works related to our method, includ-

ing: state of the art image descriptors for large scale out-

door localization, method for localization in changing

environment and side information learning approaches.

In section 3, we describe in detail our new image de-

scriptor trained with side depth information. In sec-

tion 4 we give insight on our implementation and the

dataset we used and we illustrate the effectiveness of

the proposed method on six challenging scenarios in

section 5. We discuss in section 6 about the complicated

night to day localization scenario, and in section 7 we

present a variation of our method using dense object re-

flectance map instead of depth maps. Section 8 finally

concludes the paper.

Here, we extend our method presented in [60] with

four original contributions: we report results on three

new challenging scenarios from a dataset different from

the one used to train the system, we investigate the

impact of fine tuning the model for night to day local-

ization, we compare our proposal with a domain adap-

tation method and show that these two approaches can

be successfully combined together. We also extend the

proposed method to another side modality, object re-

flectance, instead of depth map.

2 Related Work

In this section, we briefly discuss the state of the art

for image-based retrieval applied to localization, before

introducing some works that focus on the challenging

outdoor localization scenario and we conclude by an

overview of side-information learning (in our case, the

side information is geometric) methods with deep learn-

ing.

2.1 CBIR for outdoor visual localization

Image descriptor. We tackle the task of localization as

a problem of Content-Based Image Retrieval (CBIR).

Standard image descriptors for image retrieval in the

context of image localization are usually built by com-

bining sparse features with an aggregation method, such

as BoW, VLAD or DenseVLAD [81]. Before pooling the

local features together, we can balance the contribution

of some local clues in the global representation, e.g. to

reduce visual burst [35, 82, 49]. Specific re-weighting

scheme dedicated to image localization have been in-

troduced in [4]. Global hand-crafted descriptors, like

GIST [54], have also been used to perform image re-

trieval for localization [66, 7, 30].
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Learned image descriptor. With the recent progress of

image representation through deep neural network, many

new types of image descriptors and their quantized coun-

terpart have emerged [40, 13, 14]. Arandjelović et al.

[3] introduce NetVLAD, a convolutional neural network

that is trained to learn a well-suited image descriptor

for image localization. Their proposal is trained using a

triplet loss on multi-temporal data extracted from the

Google street view time machine and they introduce a

soft and differentiable VLAD layer for end-to-end opti-

mization. Numerous other CNN image descriptors have

been proposed in the literature: Gordo et al. [28] use a

region proposal network to extract salient regions in

the images and Radenović et al. [65] show that sim-

ple generalized-mean (GeM) pooling with proper train-

ing can produce state-of-the-art image retrieval results.

NetVLAD layers have been improved by adding a self

spatial attention mechanism [39] and advanced train-

ing losses [42]. Learned image descriptors have become

a key component for numerous visual localization meth-

ods [78, 70, 68, 67, 58, 59, 25, 55], therefore we decide

to build on these recent advances and use this learned

image descriptor specially designed to solve the local-

ization task.

Re-ranking candidates. Once the reference images have

been efficiently ranked [51, 38] according to their sim-

ilarity with the image query, re-ranking methods can

be used. In addition to classical re-ranking methods

like query expansion [18, 17] or spatial verification [56],

Sattler et al. [69] introduce a re-ranking routine to im-

prove the localization performances on large-scale out-

door area. They adapt the concept of geometric bursti-

ness in images [35] to burstiness in places, by taking

advantages of the known location of reference images.

In [87, 88] authors use graph reasoning based on the lo-

cation of the retrieved candidates in order to infer the

most likely query position. These different refinement

methods can be easily include in our visual localization

framework as post-processing step.

2.2 Localization in challenging condition

As mentioned in the introduction, the main challenge

in image-based localization is induced by visual changes

due to time. Naseer et al. [52] show that using a combi-

nation of handcrafted and learned descriptors make the

final image descriptor more robust to visual changes in

images taken at different times. [22] introduces tempo-

ral consistency by considering a sequence of images. In

our proposal, we suppose that we have access to only

one image during the localization process.

Domain adaptation. An efficient way to handle visual

changes in VBL is to use domain adaptation meth-

ods [43, 83]. Germain et al. [24] explicitly introduce the

acquisition condition in the training pipeline of their

CNN image descriptor using branching architecture.

With this prior, they are able to create an image rep-

resentation almost domain invariant. In [62, 2], authors

synthesize new images to match the appearance of ref-

erence images, for instance to narrow the gap between

daytime and nighttime images. This domain adapta-

tion method allows to compare data with drastic visual

changes, hence as in [24], we need priors about the na-

ture of the changes that will occur. Using a similar ap-

proach, authors of [61] train a neural network to remove

image noise induced by rain drops over camera lens.

Semantic information. An efficient method to improve

robustness of VBL method in challenging condition is

to rely on additional modalities. Numerous works [77,

80, 53, 73] enhance their visual descriptors by adding

semantic information. For instance, in [53], authors use

only the time-stable region of the scene (e.g. buildings)

before computing their image descriptor. Semantic re-

gion consistency check is used in [23, 80] to reject wrong

correspondences between matched images. In [73], au-

thors design a multi-modal attention model for long-

term image localization. Their system takes as input

the image and its corresponding pixel segmentation and

output a robust image descriptor.

Geometric information. Although semantic representa-

tion is useful for long term localization, it may be costly

to obtain. Therefore, several methods rely on geomet-

ric information like point clouds [71, 72], or 3D struc-

tures [81]. Some methods rely only on geometric infor-

mation, like in [84], where authors fuse PointNet [63]

neural architecture with a NetVLAD [3] layer in or-

der to perform point cloud retrieval. In [72], the pre-

sented method is based on 3D auto-encoder to capture

a discriminative data representation for localization in

challenging condition. Geometric information has the

advantage of remaining more stable across time, com-

pared to visual information but, similarly as semantic

information, is not always available. That is why we

decide to use depth information as side information in

combination with radiometric data to learn a powerful

image descriptor.

2.3 Depth as side information

As mentioned previously, complementary modalities,

like geometry or semantic, may not be always available
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at test time. This could be due to limitation on the com-

putational resources of an embedded system or to the

source of the input (different sensor, old data) during

the localization process. For this reason, we make avail-

able the geometric information used in this work only

during the offline training step and we rely on side infor-

mation learning to benefit from this auxiliary modality

at test time.

Learning using privileged information. The problem we

tackle here is a well studied problem in computer vision

called learning using privileged information [85, 74, 15,

50] or side information learning. Recent work from [41]

casts the side information learning problem as a domain

adaptation problem, where source domain includes mul-

tiple modalities and the target domain is composed of a

single modality. Another successful method has been in-

troduced in [32]: authors train a deep neural network to

hallucinate features from a depth map only presented

during the training process to improve objects detec-

tion in images. The closest work to ours, presented

in [86], uses recreated thermal images to improve pedes-

trian detection on standard images only. Our system,

inspired by [86], learns how to produce depth maps from

images to enhance the description of these images.

Cross-modality retrieval. Even though they share sim-

ilarities, the problems of side-information and cross-

modality are not directly related. Cross-modality re-

trieval is the task of computing a common descrip-

tion of the same scene, measured from different modal-

ities [36, 19]. For instance, recovering the closest im-

age regarding the corresponding depth map (with only

this geometric information as input) is a cross-modality

problem. In our application, we are not interested in

cross-modality retrieval as we determine that the radio-

metric information (e.g. the image) is our main modal-

ity, and is always available. We are trying to use mul-

tiple modalities in a constrained setting (the auxiliary

modality is not always available, only during training)

to build an image descriptor more efficient, because less

restrictive, than cross-modality descriptor [32].

Depth from monocular image for localization. Modern

neural networks architectures can provide reliable es-

timation of the depth associated to monocular image

in a simple and fast manner [20, 26, 47]. This ability

of neural networks has been used in [79] to recover the

absolute scale in a SLAM mapping system. In [58], au-

thors introduce a method that use the generated depth

map to recover the exact pose of an image query by ICP

refinement. An incremental improvement of this work

is presented in [59], where the authors consider a more

generic PnP formulation to refine the camera pose. Loo

et al. [44] use the depth estimation produced by a CNN

to improve a visual odometry algorithm by reducing the

incertitude related to the projected 3D points. In this

work, we use the depth information obtained by a neu-

ral network as stable features across season changes.

3 Method

We use the descriptor architecture introduced in our

previous work [60]. The method, presented in figure 2,

is composed of:

– a CNN image encoder EI linked to a feature ag-

gregation layer dI that produces a compact image

descriptor,

– a CNN image decoder DG used to reconstruct the

corresponding depth map according to the monoc-

ular image,

– a CNN depth map encoder ED linked to a feature

aggregation layer dD that produces a compact depth

map descriptor,

– a fusion module that concatenates the image and

depth map descriptor.

3.1 Training routine

Trainable parameters are θI the weights of image en-

coder and descriptor {EI , dI}, θD the weights of the

depth encoder and descriptor {ED, dD} and θG the

weights of the decoder used for depth map generation.

For training our system, we follow standard pro-

cedure of descriptor learning based on triplet margin

losses [3]. A triplet {x, x+, x−} is composed of an an-

chor image x, a positive example x+ representing the

same scene as the anchor and an unrelated negative

example x−. The first triplet loss acting on {EI , dI} is:

LfθI (x, x+, x−) = max
(
λ+

∥∥fθI (x)− fθI (x+)
∥∥

2

−
∥∥fθI (x)− fθI (x−)

∥∥
2
, 0
)
, (1)

where fθI (x) is the global descriptor of image x and

λ an hyper-parameter controlling the margin between

positive and negative examples. fθI can be written as:

fθI (x) = dI(EI(x)), (2)

where EI(x) represents the deep feature maps extracted

by the encoder and dI the function used to build the

final descriptor from the feature.

We train the depth map encoder and descriptor

{ED, dD} in a same manner, with the triplet loss of

equation (1), LfθD (ẑ, ẑ+, ẑ−), where fθD (z) is the global
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Fig. 2 Image descriptors training with auxiliary
depth data (our work):
two encoders are used for extracting deep features map from

the main image modality and the auxiliary reconstructed
depth map (inferred from our deep decoder). These features
are used to create intermediate descriptors that are finally

concatenated in one final image descriptor.

Image/Depth
paired triplets

EI

Perceptual loss

Triplet Loss

Descriptors
concatenation

dH
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Fig. 3 Hallucination network for image descriptors
learning:
we train an hallucination network, inspired from [32], for the
task of global image description. Unlike the proposed method
(see figure 2), hallucination network reproduces feature maps

that would have been obtained by a network trained with
depth map rather than the depth map itself.

descriptor of depth map z and ẑ is the reconstructed

depth map of image x by the decoder DG:

ẑ = DG(EI(x)). (3)

Decoder DG uses the deep representation of image x

computed by encoder EI in order to reconstruct the

scene geometry. Notice that even if the encoder EI is

not especially trained for depth map reconstruction, its

intern representation is rich enough to be used by the

decoder DG for the task of depth map inference. We

choose to use the features already computed by the first
encoder EI instead of introducing another encoder for

saving computational resources.

The final image descriptor is trained with the triplet

loss LFθI ,θD (x, x+, x−), where FθI ,θD (x) denotes the fu-

sion of image descriptor and depth map descriptor:

FθI ,θD (x) = fuse (fθI (x), fθD (ẑ)) . (4)

In order to train the depth map generator, we use a

L1 loss function:

LθG = ‖z − ẑ‖1 . (5)

We apply L1 penalty to minimize the blur effect on

our reconstructed depth maps [34]. As we use a Sigmoid

activation function at the end of our decoder, limiting

the range of our depth value to 1, we do not need to use

more sophisticated function like hybrid L1/L2 Huber

loss [89] for faster convergence.

The whole system is trained according to the fol-

lowing constraints:

(θI , θD) := arg min
θI ,θD

[
LfθI + LfθD + LFθI ,θD

]
, (6)

(θG) := argmin
θG

[LθG ] . (7)

We use two different optimizers: one updating θI
and θD weights regarding constraint (6) and the other

updating θG weights regarding constraint (7). Because

decoder DG relies on feature maps computed by en-

coder EI (see equation (3)), at each optimization step

on θI we need to update decoder weights θG to take

in account possible changes in the image features. We

finally train our entire system, by alternating between

the optimization of weights {θI , θD} and {θG} until con-

vergence.

3.2 Hard mining and swapping in triplet ranking loss

Hard negative minning policy. Hard mining is a cru-

cial step in metric learning [3, 65, 27, 33]. We con-

struct our triplets like in [3], using the GPS-tag infor-

mation provided with the data. We gather N triplets{
x,
{
x+
i

}
i∈[1,Mp]

,
{
x−i
}
i∈[1,Mn]

}
composed of one an-

chor, Mp positive examples and Mn negative exam-

ples. Negative examples are easy to collect as we only

have to consider all the data located further than a

given distance threshold (according to the GPS infor-

mation), resulting in a large number of negative exam-

ples (Mn ≈ 2000 in our experiment).
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Because Mn is too large, exact hard mining exam-

ples is not tractable. In [3], authors store a fixed repre-

sentation of the negatives examples that is used for neg-

ative mining. They update the representation of all neg-

ative examples as soon as the new representation com-

puted by their model differs to much from the stored

one. We adopt a different approach with a small over-

head in terms of computation but taking into account

model updates directly. At each iteration, we randomly

select a subset of Msub
n negative examples from the en-

tire pool, and compute the true hard negative example

from this subset. This strategy also acts as regulariza-

tion during training as the negative training examples

are different at each epoch.

Our mining is performed according to the final fea-

ture representation FθI ,θD and the image triplet are the

same for the three triplet losses LfθI , LfθD and LfθI ,θD .

Anchor and positive swapping. We also adopt the swap-

ping technique introduced in [8]. It simply consists in

choosing the most confusing pair between {anchor, neg-

ative} and {positive, negative} examples:

Lswap(x, x
+, x−) = max

(
λ+

∥∥f(x)− f(x+)
∥∥

2

−min
(∥∥f(x)− f(x−)

∥∥
2
,
∥∥f(x+)− f(x−)

∥∥
2

)
, 0
)
.

(8)

Multiple examples. Finally, we use all the positive ex-

amples and the mined Mhard
n hard negative examples

from the initial pool of negative examples, to compute

a normalized triplet ranking loss:

Lfinal

(
x,
{
x+
i

}
i∈[1,Mp]

,
{
x−i
}
i∈[1,Msub

n ]

)
=

1

MpMhard
n

Mp∑
i=1

Mhard
n∑
j=1

Lswap
(
x, x+

i , x
−
j

)
. (9)

3.3 Descriptors fusion and dimension reduction

We test several functions for the fusion of the descrip-

tors, the one introduced in equation 4, in order to bene-

fit as much as possible from the complementarity of the

main and the auxiliary modalities. We compare: sim-

ple descriptors concatenation, hand-tuned descriptors

scalar weighting, trained scalar weighting [76], trained

modal attention mechanism at the level of descriptors

and trained spatial and modal attention mechanism at

the level of the deep features [73]. We found that all the

fusion policies perform similarly, so we use the simple

concatenation operator to fuse the descriptors. Indeed,

the modalities fusion are learned by our system through

the triplet loss LFθI ,θD , making the system aware of

what is important and complementary in the radio-

metric and geometric domain, without the need of a

complex fusion method.

We can reduce the dimension of the final descriptor

by applying PCA + whitening [3, 64, 65, 28]. After the

convergence of the whole system we reuse the images

from the training dataset to compute the PCA param-

eters.

3.4 Side information learning with hallucination

We compare our method of side information learning

with a state-of-the-art approach system, named hal-

lucination network [32]. The hallucination network is

originally designed for object detection and classifica-

tion in images. We adapt the work of [32] to create an

image descriptor system that benefits from depth map

side modality during training. The system is presented

in figure 3.

Hallucination descriptor. The key component of Hoff-

man et al. [32] proposal is the hallucination network.

The task of the hallucination branch is, with images as

input, to reproduce feature maps that would have been

obtained by a network trained with depth map rather

than the depth map itself. The hallucination network

shares the same architecture for the principal and the

auxiliary branches. The hallucination descriptor is com-

posed of an encoder EH and a descriptor dH with train-

able weights θh. It is trained with triplet ranking loss

LfθH under the constraint of a perceptual loss [37]:

Lp(x, z) = ‖EH(x)− ED(z)‖2 . (10)

This constraint can be interpreted as knowledge distil-

lation [31]. Final image descriptor FθI ,θH (x) is obtained

by concatenating fθI (x) and fθH (x).

Overall training. Training routine presented in [32] is

two-step: we first optimize weights θD of the auxil-

iary descriptor with loss LfθD (z, z+, z−) and, secondly,

we initialize hallucination weights θH with pre-trained

weights θD and solve the following optimization prob-

lem:

(θI , θH) := arg min
θI ,θH

α
[
LFθI,H (x, x+, x−)

+LfθI (x, x+, x−) + LfθH (x, x+, x−)]
]

+γ
[
Lp(x, z) + Lp(x

+, z+) + Lp(x
−, z−)

]
, (11)

where α and γ are weighting constants, set after hyper-

parameters finetuning to α = and γ =.



Improving Image Description with Auxiliary Modality for Visual Localization in Challenging Conditions 7

In the original paper [32], during this final training

step, all the networks weights were optimized jointly.

However, we have found that freezing the weights θD
of the auxiliary descriptor {ED, dD} in this final train-

ing step leads to better results. Metric learning is a

more complicated optimization problem than fully su-

pervised object detection training (the task targeted

in the original contribution of Hoffman et al. [32]), we

deduce that reducing the number of parameters to opti-

mize for this problem leads to more stable convergence.

We apply the same triplet mining that the one used in

our method during the two steps of training.

Like our proposal, this method requires triplets of

RGB-D data to be trained and, at test time, the prin-

cipal and hallucination descriptors are used on images

only and the auxiliary descriptor {ED, dD} is dropped.

Advantages and drawbacks. One advantage of the hal-

lucination network over our proposal is that it does

not require a decoder network, resulting in a architec-

ture lighter than ours. However, it needs a pre-training

step, where image encoder and depth map encoder are

trained separately from each other before a final opti-

mization step with the hallucination part of the system.

Our system does not need such initialization. Train-

ing the hallucination network requires more complex

data than the proposed method. Indeed, it needs to

gather triplets of images, and depth map pairs, which

require to know the absolute position of the data [3, 42],

or to use costly algorithms like Structure from Motion

(SfM) [26, 65, 39].

One advantage of our method over the hallucination

approach is that we have two unrelated objectives dur-

ing training: learning an efficient image representation

for localization and learning how to reconstruct scene

geometry from an image. It means that we can train

several parts of our system separately, with different

source of data. Especially, we can improve the scene ge-

ometry reconstruction task with non localized {image,

depth map} pairs. These weakly annotated data are eas-

ier to gather than triplet, as we only need calibrated

system capable of sensing radiometric and geometric

modalities at the same time. We will show in prac-

tice how this can be exploited to fine tune the decoder

part to deal with complex localization scenarios in sec-

tion 5.2.

4 Implementation details

This section presents the datasets used for training and

testing our method as well as details about our imple-

mentation and a short presentation of the competitors

compared to our proposal.

4.1 Dataset

We have tested our proposal on the Oxford Robotcar

public dataset [46] and on the CMU Visual localiza-

tion dataset [9] from the city of Pittsburg. These are

common datasets used for image-based localization [71]

and loop closure algorithms involving neural networks

training [62] under challenging conditions.

4.1.1 Training data

We exploit the temporal redundancy present in Oxford

Robotcar dataset to build the images triplets needed to

train our CNN. We build 400 triplets using three runs

acquired at dates: 15-05-19, 15-08-28 and 15-11-10,

and we select an area of the city different from the

one used for training our networks for validation. Our

triplets creation process is explained in section 3.2 and

we fix Msub
n = 20 and Mp = 4 in such a way that one

triplet example is composed of 25 images.

Depth modality is extracted from the lidar point

cloud. When re-projected in the image frame coordi-

nate, it produces a sparse depth map. Since deep con-

volutional neural networks require dense data as input,

we pre-process these sparse modality maps with the in-

painting algorithm from [10] in order to densify them.

We drop depth values larger than 100 meters in order

to produce depth maps with value in [0, 1], consistent

with the sigmoid decoder output.

4.1.2 Testing data

We propose six testing scenarios, 3 on each datasets.

For the Oxford Robotcar dataset, the reference dataset

is composed of 1688 images taken every 5 meters along

a path of 2 km, when the weather was overcast. Query

sets are composed of approximately 1000 images. The

three query sets are:

– Oxford – Long-term (LT): queries have been ac-

quired 7 months after the reference images under

similar weather conditions,

– Oxford – Snow: queries have been acquired during

a snowy day,

– Oxford – Night: queries have been acquired at night,

resulting in radical visual changes compared to the

reference images.

For the CMU Visual localization dataset, the refer-

ence dataset is composed of 1944 images with a sunny

weather and the three query sets are (approximately

1000 images by set):

– CMU – Long-term (LT): queries have been acquired

10 months after the reference images under similar

weather conditions,
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Reference
images

Long-term
queries

Snow
queries

Night
queries

Reference
images

Snow queries Autumn queries Long-term
queries

Fig. 4 Examples of test images : we evaluate our proposal on 6 challenging localization sequences. Query image samples
and the closest reference images in the database are presented from Oxford Robotcar [46] (left) and CMU season dataset [9]
(right).

– CMU – Snow: queries have been acquired during a

snowy day,

– CMU – Autumn: queries have been acquired during

Autumn, featuring warm-coloured foliage and low

sunlight compare to the reference data.

Query examples are presented in figure 4.

4.1.3 Evaluation metric

For a given query, the retrieved reference images are

ranked according to the cosine similarity score com-

puted over their descriptors. To evaluate the localiza-

tion performances, we consider two evaluation metrics:

– Recall @N: we plot the percentage of well localized

queries regarding the number N of returned candi-

dates. A query is considered well localized if one of

the top N retrieved images lies within 25m radius

from the ground truth query position.

– Top-1 recall @D: we compute the distance be-

tween the top ranked returned database image posi-

tion and the query ground truth position, and report

the percentage of queries located under a threshold

D (from 15 to 50 meters), like in [88]. This metric

qualifies the accuracy of the localization system.

4.2 Implementation

Our proposal is implemented using Pytorch as deep

learning framework, ADAM stochastic gradient descent

algorithm for the CNN training with learning rate set

to 1e-4, weight decay to 1e-3 and λ in the triplet loss

of equation 1 equal to 0.1. We use batch size between

10 and 25 triplets depending of the size of the system

to train, convergence occurs rapidly and takes around

30 to 50 epochs. We perform both positive and nega-

tive hard mining, as in [65]. Images and depth maps are

re-sized to 224× 224 pixels before training and testing.

4.2.1 Encoder architectures

We test the fully convolutional part of Alexnet and

Resnet18 architectures for features extraction. As shown

in [58], we use the truncated version of Resnet18 to in-

crease the spatial resolution of the final features block.

Weights are initialized with the pre-trained weights on

ImageNet. We always use Alexnet encoder to extract

features from raw depth map, reconstructed depth map,

or hallucinated depth map. Indeed the quality of our

depth map is usually very low, and we have found that

using deeper network does not significantly improve lo-

calization results. We transform the 1-channel depth

map into 3-channels jet colorization depth map in or-

der to benefit from the convolutional filters learned on

ImageNet. We do not use the 3-channels HHA depth

map representation introduced in [29] as it have been

shown to perform equivalently to jet colorization [21].

4.2.2 Descriptor architectures

We test the two state-of-the-art image descriptors MAC

and NetVLAD. MAC [64] is a simple global pooling

method that takes the maximum of each feature map

from the encoder output. NetVLAD [3] is a trainable

pooling layer that mimics VLAD aggregation method.

For all the experiments, we set the number of NetVLAD

clusters to 64. Finally, both MAC and NetVLAD de-

scriptors are L2 normalized.
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By combining Alexnet or Resnet encoder with MAC

or NetVLAD descriptor pooling, we obtain 4 global im-

age descriptor variants.

4.2.3 Decoder architecture

The decoder used in our proposal is based on Unet ar-

chitecture and inspired by network generator from [34].

Dimension up-sampling is performed through inverse-

convolutions layers. Decoder weights are initialized ran-

domly.

4.3 Competitors

We compare the four following global image descriptors:

1. RGB only (RGB): simple networks composed of

encoder + descriptor trained with images only, with-

out side depth maps information. Networks are trained

on Robotcar dataset following the standard proce-

dure of image descriptor training with triplet loss [3,

65].

2. Our proposal (RGB(D)): network that uses pairs

of aligned image and depth map during training step

and images only at test time. We follow training

procedure as explained in 3.1.

3. Hallucination network (RGB(H)): we compare our

version of hallucination network, trained on aligned

triplets of images and depth maps. We follow train-

ing procedure described in the previous section 3.

4. Oracle descriptor (RGBD): we compare our pro-

posed descriptor with an oracle version of our work,

that has access to the ground truth depth map of

images during testing. We train this descriptor in-

dependently with image and depth map pairs (i.e

we do not reuse our RGB(D) network and substi-

tute the generated depth map by the ground truth

depth maps).

For fair comparison, as RGB(D), RGB(H) and

RGBD image descriptors are obtained by concatenat-

ing two full-size descriptors (see section 3.3), we per-

form PCA to reduce the size of the final descriptor of

all four methods to 2048.

5 Experiments

As a first step, we conduct preliminary experiments to

justify design choices for our method. Then, in the sec-

ond part of this section, we compare the localization

performances of the proposed image descriptors.
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Fig. 5 Comparison of descriptors pooling layer:
NetVLAD [3] pooling layer performs better than MAC [65]
in our preliminary experiment, whatever the tested method.

Table 1 Contribution of the depth side information during
training.

Network Top-1 recall@D Recall@N

Name #Param. @15 @30 @50 @1 @5

RGB + MAC 2.5M 46.7 56.7 60.9 56.3 76.6

RGB+ + MAC 7.9M 51.0 61.0 66.7 60.1 79.3

RGB(D) + MAC 7.9M 55.9 64.4 67.8 64.0 80.5

5.1 Preliminary results

5.1.1 Contribution of the depth information

In this paragraph, we investigate the impact on local-

ization performances provided by the side geometric in-

formation on our method. To ensure a fair comparison

in terms of number of trainable parameters, we intro-

duce RGB+ network that has the same architecture as

our proposed method. We train RGB+ with images only
to compare the localization results against our method

that uses side depth information. For training RGB+,

we simply remove the loss introduced in equation (3),

and make the weights of the decoder trainable when op-

timizing triplets losses constraints. Results on the val-

idation dataset with encoder architecture Alexnet are

presented in table 1.

Increasing the size of the system results in a bet-

ter localization (RGB+ + MAC versus RGB + MAC).

However, our RGB(D) + MAC system always produces

higher localization results facing RGB+ + MAC, which

shows that the side depth information provided during

training is wisely used to describe the image location.

5.1.2 Descriptor comparison

In figure 5, we present the localization scores of the

three different methods on the validation set with Alexnet

as base encoder. It clearly demonstrates the superi-
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ority of the NetVLAD pooling layer compared to the

MAC descriptor. Thus, we only use NetVLAD as pool-

ing layer for the rest of the experiments, in combination

with Alexnet or Resnet encoder architecture. Still, this

preliminary experiment has shown that the proposed

method can be used in combination with various de-

scriptor pooling layers.

5.2 Localization results

Localization results on the six query sets are presented

in figure 6. We also show, in figure 7, some examples

of top-1 returned candidate by the different descrip-

tors. Both methods trained with auxiliary depth infor-

mation (hallucination RGB(H) and our RGB(D)) per-

form on average better than the RGB baseline. This

shows that the geometric clues given during the train-

ing process can be efficiently used for the task of image-

only retrieval for localization. This observation is con-

firmed with the results obtained on the oracle descrip-

tor: RGBD outperforms, by a large margin, all the other

methods. This result also shows that our method could

achieve better performances with a more realistic depth

reconstruction. Compared to hallucination network, our

method shows better results, both in terms of recall and

precision. We report results for the hallucination net-

work only with encoder Alexnet as we were not able to

obtain stable training when using a deeper architecture.

This may due to the limited amount of data we have

for finetuning the method (see section 4.1).

We obtain convincing localization results for the

CMU query sets (figure 6 d-f). It means that our method

is able to generalize well on unseen architectural struc-

tures for the depth map creation and the extraction of

discriminative clue for localization. The RGBD oracle

descriptor cannot be tested on CMU dataset because

there are no depth maps for this dataset.

Our method shows the best localization improve-

ment on the Oxford - Snow query sets (figure 6-b) and

CMU – Snow (for encoder Alexnet, see figure 6-e). Stan-

dard image descriptors are confused by local changes

caused by the snow on the scene whereas our descrip-

tor remains confident by reconstructing the geometric

structure of the scene (see figure 7, CMU-Snow 1st row).

Similar results should be intended regarding Oxford –

Night query set (figure 6-c), however our proposal is not

able to improve localization accuracy for this particu-

lar scenario. We investigate the night to day localization

problem specifically in the following section.

6 Challenging localization scenarios

As mentioned previously, at first glance our method

is not well designed to perform the challenging task

of night to day matching. In this section, we conduct

experiments in order to explain the results previously

obtained and we propose an enhanced version of our

descriptor performing much better on this challenging

scenario.

6.1 Fine tuned descriptor

Night to day localization. Night to day localization is an

extremely challenging problem: our best RGB baseline

achieves a performance less than 13% recall@1. This can

be explained by the huge difference in visual appearance

between night and daytime images, as illustrated in fig-

ure 4. Our system should be able to improve the RGB

baseline relying on the learned scene geometry, which

remains the same during day and night. Unfortunately,

we use training data exclusively composed of daytime

images, thus making the decoder unable to reconstruct

a depth map from an image taken at night. The last

line of figure 8 shows the poor quality of decoder out-

put after initial training. In order to improve the de-

coder’s performances, we propose to use weakly anno-

tated data to fine tune the decoder part of our system.

We collect 1000 pairs of image and depth map acquired

at night and retrain only decoder weights θG using the

loss of equation (5). Figure 8 presents the qualitative

improvement of the inferred depth map after the fine

tuning. Notice that domain adaptation methods [83],

potentially better than our fine tuning routine, could

have been used to improve the quality of our depth

map generated at night. However, for this experiment,

we focus on the potential gain for localization permit-

ted by the design of our system, rather than on finding

the most efficient manner to adapt our method to night

domain.

With the level of data annotation (i.e without ab-

solute pose information) used to fine-tune our method,

such post-processing trick cannot be used to improve

RGB and RGB(H) image descriptors. Indeed, for the

standard image descriptor and the hallucination net-

work training we need to know the location of the night

data to build images triplets with aligned pairs of an-

chors and positive images from the night and day do-

main. We believe that this type of annotated data are

more complicated to gather than the one we use to

finetune our system: we only need a calibrated system

with synchronized acquisition of radiometric and geo-

metric modalities, e.g. a stereovision system. For in-

stance, for finetuning our model, we use a night run



Improving Image Description with Auxiliary Modality for Visual Localization in Challenging Conditions 11

10 20 30 40 50

D - Distance to top 1 candidate (m)

0.7

0.75

0.8

0.85

0.9

0.95

1

R
e
c
a
ll@

D
 (

%
)

0 5 10 15 20 25

N - Number of top database candidates

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

R
e
c
a
ll@

N
 (

%
)

a) Oxford – LT

10 20 30 40 50

D - Distance to top 1 candidate (m)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
c
a
ll@

D
 (

%
)

0 5 10 15 20 25

N - Number of top database candidates

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
e
c
a
ll@

N
 (

%
)

b) Oxford – Snow

10 20 30 40 50

D - Distance to top 1 candidate (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e
c
a
ll@

D
 (

%
)

0 5 10 15 20 25

N - Number of top database candidates

0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll@

N
 (

%
)

c) Oxford – Night

10 20 30 40 50

D - Distance to top 1 candidate (m)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

R
e
c
a
ll@

D
 (

%
)

0 5 10 15 20 25

N - Number of top database candidates

0.4

0.5

0.6

0.7

0.8

0.9

R
e
c
a
ll@

N
 (

%
)

d) CMU – LT

10 20 30 40 50

D - Distance to top 1 candidate (m)

0.15

0.2

0.25

0.3

0.35

0.4

R
e
c
a
ll@

D
 (

%
)

0 5 10 15 20 25

N - Number of top database candidates

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e
c
a
ll@

N
 (

%
)

e) CMU – Snow

10 20 30 40 50

D - Distance to top 1 candidate (m)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

R
e
c
a
ll@

D
 (

%
)

0 5 10 15 20 25

N - Number of top database candidates

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e
c
a
ll@

N
 (

%
)
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Fig. 6 Comparison of our method RGB(D) versus hallucination network RGB(H), networks trained with
only images RGB and oracle descriptor RGBD using both images and depth maps at test time: we report
results for backbone network encoder Resnet (- -) and Alexnet (–). Our method (in blue) is superior in every scenario facing
hallucination network (in magenta). It also beats, with a significant margin, networks trained with only images (in red). All
the methods failed on the very challenging night to day scenario (b). Curves best viewed in color.

from the Robotcar dataset with a low quality GPS sig-

nal, which makes impossible the automatic creation of

triplets.

We show in figure 9-c that we are able to nearly dou-

ble the localization performances by only fine tuning a

small part of our system. Our best network achieves

23% recall@1 against 13% recall@1 for the best RGB

baseline. We present some daylight images returned af-

ter the nearest neighbor search in figure 10. Even with

blurry images, our method is able to extract useful ge-

ometric information to improve the matching (see fig-

ure 10, 3rd row).

Impact of fine tuning on other environments. In this

section, we measure the impact of the fine tuning pro-

cess on other localization scenarios. Performances could

decrease if our system “forgets” how to produce depth

map from daylight images. To prevent that, we inte-

grate half of daylight images with the night images in

the training data used for fine tuning.

We show results of the fine-tuned network on fig-

ure 9. Localization accuracy remains stable after the

fine tuning. We even observe slight increase in the lo-

calization performances for some scenarios (figure 9-b):

thank to the fine tuning with night images, the decoder

has improved the depth map generation of dark im-

ages acquired during daytime. The fact that fine tuning

our system, to deal with hard localization scenarios, do

not negatively impact the performances on other en-

vironment makes our new method well suited for real

applications when we cannot predict what will be the

outdoor conditions.

6.2 Comparison with domain adaptation

Domain adaptation method. Domain adaptation has been

successfully applied to day to night image matching. We

propose in this section to compare our method with the

method proposed in [2]. This method consists in pro-

jecting night query images in the same domain as the

reference data: daytime images. Afterwards, authors

perform local image matching to estimate a precise pose

of the night queries. They use ComboGAN [1], a gener-

ative adversarial network (GAN), to compute the trans-

formation from night domain to day domain. An inter-

esting property of this GAN model is that it does not

need aligned images of the target and the source domain

to be trained (data that could be costly to collect, as

seen previously).

We decide to setup two experiments to compare our

proposal with this domain translation approach:

– one using the night to day domain transformer GAN

trained on Oxford Robotcar dataset provided by the

authors,

– one with a winter to summer domain transformer

GAN trained using the authors’ code on CMU dataset.

For evaluation, we first transform the challenging

domain image query into the source domain, that is

the same as the reference images. Then we compute

the global image descriptors and perform the similarity

comparison. We setup the second experiment, winter

to summer domain adaption, first in order to see how

this method performs on a easier scenario than the day

night localization and second to evaluate the general-
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Fig. 7 Visual inspection of selected examples: we show top-1 retrieved candidate after the nearest neighbor search for
the different descriptor. Red box indicates a wrong match and green box a proper one (i.e. retrieved image lies in 25m radius
from the query ground truth position). RGB([D/R/DR]) are our descritpor trained with, respectively, depth, reflectance, depth
and reflectance auxiliary modality.

ization capability of the GAN. Indeed, with this second

experiment, we can use both the CMU snow and Ox-

ford snow query sets for testing, while the GAN being

trained only on CMU data. We present in figure 11 ex-

amples of images translated from source to target do-

main.

One drawback of domain adaptation methods is that

we have to know in advance the source and target do-

mains to apply the right transformation to the data.

This constraint does not exist with our method as the

depth maps is invariant to the image domain. Addition-

ally, we have shown in section 6.1 that even if the depth

maps cannot be properly recovered because of image

domain shift, finetuning can be applied to improve the

method without impacting other scenario (cf. figure 9).

Results. In figure 12, we show results of domain adapta-

tion experiments. For the very challenging night to day

localization scenario, the method using domain adapta-

tion combined with RGB descriptors achieves very good

results. It performs better than our finetuned method

applied directly on night images, emphasizing the ma-

jor role of the radiometric modality for image descrip-

tion. Furthermore, combining the domain adaptation
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Fig. 8 Effect of fine tuning with night images on
decoder output:. Decoder trained with daylight images is
unable to reconstruct the scene geometry (bottom line). Fine
tuning the network with less than 1000 pairs {image, depth
map} acquired by night highly improves appearance of the
generated depth maps. Maps best viewed in color.

pre-processing with our RGB(D) descriptor leads to the

best localization results on this query set.

For the easier winter-to-summer localization scenario,

despite the visually correct results obtained with the

image translation model (5 last rows of figure 9), lo-

calization results are slightly worst than the one ob-

tained without using domain adaptation. In particu-

lar, the domain adaptation pre-processing has a strong

negative impact on the Snow Robotcar localization sce-

nario. This can be explained by the poor cross dataset

(train on CMU and test on Oxford) capability adapta-

tion of the tested method.

From these experiments, we can draw the conclu-

sion that domain adaption is very effective in extremely

challenging localization scenario but does not handle

more subtle visual changes from season changes. Fur-

thermore, such method seems to be very sensitive to

the data used for training and shows poor generaliza-

tion capabilities. As a comparison, our method permits

consistent improvement for various localization scenar-

ios on different datasets and can be also combined with

a domain adaptation approach.

7 Laser reflectance as side information

In this section we investigate the use of another modal-

ity replacing the depth map in order to evaluate the

generalization capabilities of the proposed framework.

We use lidar reflectance values as auxiliary modality for

these experiments.

7.1 Laser reflectance

Lidar reflectance is defined by the proportion of the

signal returned to the laser sensor after hitting an ob-

ject in the scene. Reflectance characterizes the material

property of an object. We use the reflectance informa-

tion provided in the Robotcar dataset [46]. Reflectance

values range from 0 to 1 indicating if the object has

reflected from 0 to 100% of the original laser beam. We

proceed the sparse reflectance data in the same manner

as the depth map using inpainting algorithm from [10]

to produce dense reflectance maps, and use exactly the

same decoder architecture for the reflectance map and

the depth map. Examples of dense reflectance map are

presented in figure 13.

7.2 Reflectance versus Depth

We report in figure 14 results using reflectance map

during the descriptor training (RGB(R), in gray). We

also illustrate in figure 7 the localization accuracy of the

different methods by comparing the top-1 retrieved can-

didate after descriptors comparison. Localization accu-

racy is slightly worst when using the reflectance map

than the results obtained while using the depth map.

Still, reflectance information is beneficial as it increases

the results over the RGB only descriptor. We can draw

the conclusion that scene geometry is more informative

for long term localization than reflectance property of

observed objects.

We find that the reflectance side information signal

enhances the image descriptor by leveraging visual clues
of material with particular property: low reflectance ca-

pability (like windows, see figure 7, 2nd row) or inversely

very high light reflecting property (e.g. traffic signs, see

figure 7, last row). In a different way, depth map train-

ing supervision provides interesting building shapes un-

derstanding (see the recognized tower building on fig-

ure 7, CMU - LT 2nd row).

7.3 Multi-modal complementarity of Reflectance and

Depth

In this final experiment, we compare the performances

of a single side modality training descriptor and a mul-

tiple side modalities training descriptor. We slightly

modify our original system to benefit from both depth

and reflectance information. The modified network is

presented in figure 15. We report localization results

of the three methods, depth map as side information

(RGB(D), in blue), reflectance map as side informa-
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f) CMU – Autumn

– Alexnet RGB(D) - - Resnet RGB(D) – Alexnet RGB(D) fine tuned - - Resnet RGB(D) fine tuned

Fig. 9 Results after fine tuning: we are able to drastically improve localization performance for the Oxford – Night
challenging scenario (c) by only fine tuning the decoder part of our network with weakly annotated data. Curves best viewed
in color.

Image RGB(D) - R RGB(D) - A
RGB(D) - R RGB(D) - A RGB(H) - A RGB - R

query (fine tuned) (fine tuned)

Fig. 10 Night to day image matching: we show top-1 retrieved candidate after the challenging night to day localizations
scenario. Red box indicates a wrong match and green box a proper one (i.e. retrieved image lies in 25m radius from the query
ground truth position). -A denotes Alexnet and -R truncated Resnet18 backbone used with NetVLAD.

tion (RGB(R), in gray) and depth and reflectance map

as side information (RGB(DR), in green), in figure 14.

We do not observe systematic improvement when

using both modalities. Nevertheless we obtain best lo-

calization results for 4 out of 5 query sets (figure 14 b,

c & e). We observe that modality combination is ben-

eficial only if each modal information performs equiv-

alently when used alone. In other words, if one modal-

ity is a lot more informative than the other on a spe-

cific dataset (for instance depth over reflectance for the

query set CMU - Snow, figure 14-d), the combination of

the both will cancel potential benefit given by the most

informative modality. On figure 7, we can observe suc-

cessful image localization on very challenging examples:

CMU - LT 1st row, where the closest reference image is

highly overexposed and on Oxford - Snow 1st row with

this very confounding image query.
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Fig. 11 Examples of domain translated images: first line are the original images and bottom line are the domain-
translated images. Night-to-day transfer is performed using authors’ model [2] and we train our own model for winter-to-
summer domain translation using images from the CMU dataset. Artifact are present in the last two rows summer images
(e.g. vegetation on buildings), showing the poor adaptation capability of the presented model to the Oxford Robotcar dataset
images.
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e) CMU – Snow

– Alexnet RGB + domain ada. - - Resnet RGB + domain ada.
– Alexnet RGB(D) + domain ada. - - Resnet RGB(D) + domain ada.
– Alexnet RGB - - Resnet RGB
– Alexnet RGB(D) fine tuned - - Resnet RGB(D) fine tuned

Fig. 12 Comparison with domain-adaptation
method: we use two different GANs in these experiments:
one for night to day domain transfer and another one for snow
to summer transfer. Domain adaptation performs well for
the very challenging night to day scenario and the use of our
descriptor, on top of the domain adaptation pre-processing,
further improves the localization performances.

These preliminary results concerning the use of mul-

tiple modalities during the training process of the de-

scriptor are encouraging. Still, additional experiments

have to be performed. In particular the behavior of the

proposal according to the joint use of these modali-

ties indicate that we have to focus the final descriptor

fusion; modality-aware aggregation descriptor or more

complex attention mechanism may be considered [73].

8 Conclusion

We have introduced a new competitive global image

descriptor designed for image-based localization under

challenging conditions. Our descriptor handle visual changes

Images

Ground
truth re-
flectance

map

Generated
re-

flectance
map

Fig. 13 Examples of dense reflectance map: the lighter
the color, the higher the reflection of the material. Reflectance
map highlights reflective areas, like road marking, road sign,
vegetation and cars. Figure best viewed in colors.

between images by learning the geometry of the scene.

Strength of our method remains in the fact that it

needs geometric information only during the learning

procedure. Our trained descriptor is then used on im-

ages only. Experiments show that our proposal is much

more efficient than state-of-the-art localization meth-

ods [3, 65], including methods based on side informa-

tion learning [32]. Our descriptor performs especially

well for challenging cross-season localization scenario,

therefore it can be used to solve long-term place recog-

nition problem. We additionally obtain encouraging re-

sults for night to day image retrieval. We also compare

our approach with domain adaptation methods and we

demonstrate that these two methods can be used jointly

for efficient localization in a very challenging scenario.

Finally, we show that our method can generalize to over

auxiliary modality supervision during training. We use

lidar reflectance to illustrate this generalization capa-

bility.
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e) CMU – Autumn

- - Resnet RGB(D) - - Resnet RGB(R) - - Resnet RGB(DR)

— Alexnet RGB(D) — Alexnet RGB(R) — Alexnet RGB(DR)

Fig. 14 Comparison of depth map and reflectance map as side information. The geometric information (in blue)
remains more informative than the reflectance map (in gray) for the task of image description for localization. However, when
combined (in green), depth map and reflectance map can benefit from each other and produce the most discriminative image
descriptors for scenarios a, b, c & e. Curves best viewed in color.
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Fig. 15 Multi-modal training: we modify the training
policy presented in figure 1 to handle multi-modality. Each
generative modal branch (DG and DGr) can be trained sep-
arately. Modality descriptors are trained jointly through the
final triplet loss LFθD,θR,θI .

In a future work, we will go deeper on the use of

other modalities as side information sources, like se-

mantic [73], and focusing on multi-modal fusion. We

also want to study the generalization capability of our

system, by considering a different image-based localiza-

tion task like direct pose regression [12].
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